JP2009158602A - Light waveform shaping device and light waveform shaping element - Google Patents

Light waveform shaping device and light waveform shaping element Download PDF

Info

Publication number
JP2009158602A
JP2009158602A JP2007332939A JP2007332939A JP2009158602A JP 2009158602 A JP2009158602 A JP 2009158602A JP 2007332939 A JP2007332939 A JP 2007332939A JP 2007332939 A JP2007332939 A JP 2007332939A JP 2009158602 A JP2009158602 A JP 2009158602A
Authority
JP
Japan
Prior art keywords
saturation region
absorption
waveform shaping
gain
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007332939A
Other languages
Japanese (ja)
Other versions
JP5034930B2 (en
Inventor
Haruhiko Kuwazuka
治彦 鍬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007332939A priority Critical patent/JP5034930B2/en
Publication of JP2009158602A publication Critical patent/JP2009158602A/en
Application granted granted Critical
Publication of JP5034930B2 publication Critical patent/JP5034930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a good waveform for a fast light signal faster than response speed of a gain saturation region and an absorption saturation region to enable waveform shaping when shaping the waveform by means of a light waveform shaping element having the two regions connected in series. <P>SOLUTION: The light waveform shaping device includes the light waveform shaping element 1 having the gain saturation region 4 for causing gain saturation and the absorption saturation region 5 for causing absorption saturation connected in series, and a driving circuit 20 for driving the element 1. The device is constituted so that response speed of the gain saturation region 4 coincides with that of the absorption saturation region 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば光通信システムにおいて用いられ、例えば伝送等の際に劣化した光信号の波形を整形する光波形整形装置及び光波形整形素子に関する。   The present invention relates to an optical waveform shaping device and an optical waveform shaping element that are used in an optical communication system, for example, and shape a waveform of an optical signal deteriorated during transmission or the like.

現在の光通信システムでは、光信号を電気信号に変換し、電気信号の波形を整形した後、再び、電気信号を光信号に変換して、光信号の波形整形を行なう方法が取られている。
一方、電気回路を省くことによって波形整形装置の小型化・省電力化を図るために、電気信号を光信号に変換することなく、光信号のまま処理する全光信号処理による光波形整形方法が多くの機関で研究されている。
In the current optical communication system, after converting an optical signal into an electrical signal and shaping the waveform of the electrical signal, a method of converting the electrical signal into an optical signal and shaping the waveform of the optical signal again is taken. .
On the other hand, in order to reduce the size and power consumption of the waveform shaping device by omitting the electric circuit, there is an optical waveform shaping method by all-optical signal processing that processes an optical signal as it is without converting the electric signal into an optical signal. It has been studied in many institutions.

全光信号処理による光波形整形を実現する一つの方法として、半導体光増幅器(SOA;Semiconductor Optical Amplification)の利得飽和を用いてマークレベルの雑音を抑制する方法が検討されている。
この方法では、SOAに強度の高い光を入力すると、利得飽和を起こして出力光のパワーレベルが一定になるのを利用して、マークレベルのパワーを一定にし、マークレベル(1レベル)の雑音を抑制する。
As one method for realizing optical waveform shaping by all-optical signal processing, a method of suppressing mark level noise using gain saturation of a semiconductor optical amplifier (SOA) has been studied.
In this method, when high intensity light is input to the SOA, gain saturation occurs and the power level of the output light becomes constant, so that the mark level power is constant and the mark level (1 level) noise is obtained. Suppress.

この方法は、マッハツェンダ干渉計の非線形の入出力特性を用いるような他の全光信号処理による光波形整形方法と比べて、簡単な構造で装置を実現できるという特徴を持っている。また、入力信号の波長を変えないで再生できるという特徴も持っている。
例えば、バルクや量子井戸活性層を持つSOAでは利得応答速度が遅く、ビットレートが大幅に制限されてしまうため、活性層に利得応答速度の速い量子ドットを用い、可飽和吸収体を集積することによって、40Gb/s信号の0(OFF)及び1(ON)レベルの雑音の圧縮が可能となることが示唆されている(例えば非特許文献1参照)。
This method has a feature that an apparatus can be realized with a simple structure as compared with an optical waveform shaping method using other all-optical signal processing using the nonlinear input / output characteristics of a Mach-Zehnder interferometer. It also has the feature that it can be reproduced without changing the wavelength of the input signal.
For example, an SOA having a bulk or quantum well active layer has a slow gain response speed and greatly limits the bit rate. Therefore, a quantum dot having a high gain response speed is used in the active layer and a saturable absorber is integrated. Thus, it is suggested that noise of 0 (OFF) and 1 (ON) levels of a 40 Gb / s signal can be compressed (see, for example, Non-Patent Document 1).

さらに、一段の増幅部と可飽和吸収部では十分な非線形性が得られないため、増幅部と可飽和吸収部を多段に配置した光非線形増幅素子が提案されている(例えば特許文献1参照)。
特開平5−75212号公報 秋山知之他、「量子ドット半導体光増幅器による40Gb/s信号再生」、2005年春季応用物理学会学術講演会予稿集
Furthermore, since sufficient nonlinearity cannot be obtained with a single-stage amplification unit and saturable absorption unit, an optical nonlinear amplification element in which the amplification unit and saturable absorption unit are arranged in multiple stages has been proposed (see, for example, Patent Document 1). .
JP-A-5-75212 Tomoyuki Akiyama et al., “40Gb / s signal regeneration using quantum dot semiconductor optical amplifier”, Proceedings of the 2005 Spring Conference of Applied Physics

ところで、光波形整形素子において、利得飽和を起こす利得飽和領域と、吸収飽和を起こす吸収飽和領域とを直列に接続することによって、利得飽和によってマークレベル(1レベル)の雑音を抑制するとともに、吸収飽和によってスペースレベル(0レベル)の雑音を抑制することができる。
しかしながら、利得飽和領域及び吸収飽和領域のそれぞれの特性が最も良くなるように設定し、このように設定された利得飽和領域と吸収飽和領域を単純に直列に接続しただけでは、これらの2つの領域の応答速度よりも速い高速の光信号においては、良好な波形が得られないということがわかった。
By the way, in the optical waveform shaping element, a gain saturation region that causes gain saturation and an absorption saturation region that causes absorption saturation are connected in series, thereby suppressing mark level (1 level) noise by gain saturation and absorption. Saturation can suppress space level (zero level) noise.
However, if the gain saturation region and the absorption saturation region are set to have the best characteristics, and the gain saturation region and the absorption saturation region thus set are simply connected in series, these two regions It was found that a good waveform could not be obtained with a high-speed optical signal faster than the above response speed.

そこで、利得飽和領域と吸収飽和領域を直列に接続した光波形整形素子を用いて波形整形を行なう場合に、例えばこれらの2つの領域の応答速度よりも速い高速の光信号においても良好な波形が得られ、波形整形が可能となるようにしたい。   Therefore, when waveform shaping is performed using an optical waveform shaping element in which a gain saturation region and an absorption saturation region are connected in series, a good waveform is obtained even in a high-speed optical signal that is faster than the response speed of these two regions, for example. I want to be able to obtain and shape the waveform.

このため、本光波形整形装置は、利得飽和を起こす利得飽和領域と吸収飽和を起こす吸収飽和領域とを備え、利得飽和領域と吸収飽和領域とが直列に接続されている光波形整形素子と、光波形整形素子を駆動する駆動回路とを備え、利得飽和領域の応答速度と吸収飽和領域の応答速度とが一致するように構成されていることを要件とする。
本光波形整形素子は、利得飽和を起こす利得飽和領域と、吸収飽和を起こす吸収飽和領域とを備え、利得飽和領域と吸収飽和領域とが直列に接続されており、利得飽和領域の飽和の深さと吸収飽和領域の飽和の深さとが一致するように構成されていることを要件とする。
For this reason, the optical waveform shaping device includes a gain saturation region that causes gain saturation and an absorption saturation region that causes absorption saturation, and an optical waveform shaping element in which the gain saturation region and the absorption saturation region are connected in series, And a drive circuit that drives the optical waveform shaping element, and the response speed of the gain saturation region and the response speed of the absorption saturation region are configured to be the same.
This optical waveform shaping element includes a gain saturation region that causes gain saturation and an absorption saturation region that causes absorption saturation. The gain saturation region and the absorption saturation region are connected in series, and the saturation level of the gain saturation region is And the saturation depth of the absorption saturation region are required to be the same.

したがって、本光波形整形装置及び光波形整形素子によれば、利得飽和領域と吸収飽和領域を直列に接続した光波形整形素子を用いて波形整形を行なう場合に、例えばこれらの2つの領域の応答速度よりも速い高速の光信号においても良好な波形が得られ、波形整形が可能となるという利点がある。   Therefore, according to the present optical waveform shaping device and optical waveform shaping element, when waveform shaping is performed using an optical waveform shaping element in which a gain saturation region and an absorption saturation region are connected in series, for example, the response of these two regions There is an advantage that a good waveform can be obtained even in a high-speed optical signal faster than the speed, and waveform shaping becomes possible.

以下、図面により、本実施形態にかかる光波形整形装置及び光波形整形素子について、図1〜図6を参照しながら説明する。
本実施形態にかかる光波形整形装置は、図1に示すように、利得飽和を起こす利得飽和領域4と吸収飽和を起こす吸収飽和領域5とを備え、利得飽和領域4と吸収飽和領域5とが直列に接続(縦続接続)されている光波形整形素子1と、この光波形整形素子1を駆動する駆動回路(電気回路;制御回路)20とを備える。
Hereinafter, an optical waveform shaping device and an optical waveform shaping element according to the present embodiment will be described with reference to FIGS.
As shown in FIG. 1, the optical waveform shaping device according to the present embodiment includes a gain saturation region 4 that causes gain saturation and an absorption saturation region 5 that causes absorption saturation. The gain saturation region 4 and the absorption saturation region 5 include An optical waveform shaping element 1 connected in series (cascade connection) and a drive circuit (electric circuit; control circuit) 20 for driving the optical waveform shaping element 1 are provided.

本実施形態では、図1に示すように、光波形整形素子1は、活性層2を有する半導体光導波路3を備え、利得飽和領域(光増幅領域)4と吸収飽和領域(可飽和吸収領域;光吸収領域)5とが半導体光導波路3が延びる方向に沿って(光導波方向に沿って)交互に設けられている。
つまり、本光波形整形素子1は、図1に示すように、一の導電型の半導体基板(ここではn型InP基板)6上に形成された半導体光導波路3上に、活性層2に順バイアスで電流を注入する領域(利得飽和領域)4と活性層2に逆バイアス電圧を印加する領域(吸収飽和領域)5とが交互に形成されるように、他の導電型のコンタクト層(ここではp型InGaAsコンタクト層)7及び電極(ここではp側電極)8が分割されて形成された導波路型光半導体素子として構成される。
In this embodiment, as shown in FIG. 1, the optical waveform shaping element 1 includes a semiconductor optical waveguide 3 having an active layer 2, and includes a gain saturation region (light amplification region) 4 and an absorption saturation region (saturable absorption region; The light absorption regions 5 are alternately provided along the direction in which the semiconductor optical waveguide 3 extends (along the optical waveguide direction).
In other words, as shown in FIG. 1, the present optical waveform shaping element 1 is formed in the order of the active layer 2 on the semiconductor optical waveguide 3 formed on one conductive type semiconductor substrate (here, n-type InP substrate) 6. A contact layer of another conductivity type (here, a region in which current is injected by bias (gain saturation region) 4 and a region (absorption saturation region) 5 in which a reverse bias voltage is applied to the active layer 2 are alternately formed. In the figure, a p-type InGaAs contact layer 7 and an electrode (here, p-side electrode) 8 are divided into waveguide type optical semiconductor elements.

このように、利得飽和領域4と吸収飽和領域5とが直列に接続されているため(ここでは一素子中で利得飽和領域4と吸収飽和領域5とが繰り返される構造になっているため)、利得飽和によってマークレベル(1レベル)の雑音が抑圧されるとともに、吸収飽和によってスペースレベル(0レベル)の雑音が抑圧されることになる。
本実施形態では、利得飽和領域4及び吸収飽和領域5は、同一の活性層2を有する半導体光導波路3によって構成される。
As described above, the gain saturation region 4 and the absorption saturation region 5 are connected in series (here, because the gain saturation region 4 and the absorption saturation region 5 are repeated in one element), Mark level (1 level) noise is suppressed by gain saturation, and space level (0 level) noise is suppressed by absorption saturation.
In this embodiment, the gain saturation region 4 and the absorption saturation region 5 are constituted by the semiconductor optical waveguide 3 having the same active layer 2.

ここで、活性層2は量子ドット活性層(ここでは多重積層量子ドット活性層)としている。例えば、多重積層量子ドット活性層は、InAs量子ドットをInGaAsPバリア層で埋め込んだ量子ドット層を、各量子ドット層の量子ドットが上下に接合されるように、複数層積層させた構造になっている。つまり、多重積層量子ドット活性層は、量子ドットが複数積層されてなる多重積層量子ドットをInGaAsPバリア層で埋め込んだ構造になっている。これにより、40Gb/s以上の高ビットレートの信号再生を実現しうる。   Here, the active layer 2 is a quantum dot active layer (here, a multi-stacked quantum dot active layer). For example, the multi-layered quantum dot active layer has a structure in which a plurality of quantum dot layers in which InAs quantum dots are embedded with an InGaAsP barrier layer are stacked so that the quantum dots of each quantum dot layer are joined vertically. Yes. That is, the multi-stacked quantum dot active layer has a structure in which a multi-stack quantum dot formed by stacking a plurality of quantum dots is embedded with an InGaAsP barrier layer. Thereby, signal reproduction at a high bit rate of 40 Gb / s or more can be realized.

また、本実施形態では、図1に示すように、同一活性層2を持つ半導体光導波路(半導体積層構造)3の表面上に形成される電極(ここではp側電極)8を分離して、1つの素子上に、利得飽和領域4及び吸収飽和領域5を光導波方向に沿って直列に形成している。
以下、本光波形整形素子1について、より具体的に説明する。
本光波形整形素子1は、図1に示すように、n型InP基板6上に、n型InPクラッド層(下側クラッド層;図示せず)を介して活性層2を含むメサ構造が形成されており、電流狭窄及び光の閉じ込めのために、このメサ構造がp型InP層9とn型InP層10とをpn接合してなる埋込層によって埋め込まれた構造になっている。なお、本光波形整形素子1は、活性層2の上側及び下側に光ガイド層(例えばInGaAsP−SCH層)を備えるものとして構成しても良い。
In the present embodiment, as shown in FIG. 1, an electrode (here, p-side electrode) 8 formed on the surface of a semiconductor optical waveguide (semiconductor laminated structure) 3 having the same active layer 2 is separated, On one element, the gain saturation region 4 and the absorption saturation region 5 are formed in series along the optical waveguide direction.
Hereinafter, the optical waveform shaping element 1 will be described more specifically.
As shown in FIG. 1, the optical waveform shaping element 1 has a mesa structure including an active layer 2 on an n-type InP substrate 6 via an n-type InP clad layer (lower clad layer; not shown). In order to confine current and confine light, this mesa structure is buried by a buried layer formed by pn junction of the p-type InP layer 9 and the n-type InP layer 10. In addition, you may comprise this optical waveform shaping element 1 as a thing provided with the light guide layer (for example, InGaAsP-SCH layer) on the upper side and the lower side of the active layer 2. FIG.

また、n型InP埋込層10上にはp型InPクラッド層(上側クラッド層)11が形成されており、このp型InPクラッド層11上にp型InGaAsコンタクト層7が積層されている。
そして、p型InGaAsコンタクト層7上にp側電極8が形成されている。一方、n側電極(図示せず)はn型InP基板6の裏面に形成されている。
A p-type InP clad layer (upper clad layer) 11 is formed on the n-type InP buried layer 10, and a p-type InGaAs contact layer 7 is laminated on the p-type InP clad layer 11.
A p-side electrode 8 is formed on the p-type InGaAs contact layer 7. On the other hand, an n-side electrode (not shown) is formed on the back surface of the n-type InP substrate 6.

ところで、利得飽和領域及び可飽和吸収領域(吸収飽和領域)のそれぞれの特性が最も良くなるように設定し、このように設定された利得飽和領域と可飽和吸収領域を単純に直列に接続しただけでは、これらの2つの領域の応答速度よりも速い高速の光信号においては、良好な波形が得られないということがわかった。
ここで、図3は、可飽和吸収領域の特性が最も良くなるように設定された可飽和吸収領域の応答特性を示している。
By the way, the gain saturation region and the saturable absorption region (absorption saturation region) are set to have the best characteristics, and the gain saturation region and the saturable absorption region thus set are simply connected in series. Thus, it has been found that a good waveform cannot be obtained with a high-speed optical signal that is faster than the response speed of these two regions.
Here, FIG. 3 shows the response characteristics of the saturable absorption region set so that the characteristics of the saturable absorption region are the best.

図3に示すように、光が可飽和吸収領域に入力されてから、可飽和吸収領域で吸収飽和が起きて完全に光が透過できるようになるまで、所定の時間がかかる。つまり、可飽和吸収領域の応答時間[可飽和吸収領域の透過率が1/e(e:自然対数の底)になるまでの時間]はt1である。このため、光出力波形は、図3に示すような波形になってしまい、崩れてしまう。 As shown in FIG. 3, it takes a predetermined time from when light is input to the saturable absorption region until absorption saturation occurs in the saturable absorption region and light can be completely transmitted. That is, the response time of the saturable absorption region [time until the transmittance of the saturable absorption region becomes 1 / e (e: the base of natural logarithm)] is t 1 . For this reason, the optical output waveform becomes a waveform as shown in FIG.

一方、図4は、利得飽和領域の特性が最も良くなるように設定された利得飽和領域の応答特性を示している。
図4に示すように、利得飽和を起こす光が利得飽和領域に入射すると、利得飽和によって利得飽和領域の光増幅率は時間とともに減少していき、光出力も時間とともに減少していくことになる。この場合、利得飽和領域の応答時間[利得飽和領域の増幅率が1/e(e:自然対数の底)になるまでの時間]はt2である。
On the other hand, FIG. 4 shows the response characteristics of the gain saturation region set so that the characteristics of the gain saturation region are the best.
As shown in FIG. 4, when light that causes gain saturation enters the gain saturation region, the optical gain in the gain saturation region decreases with time due to gain saturation, and the optical output also decreases with time. . In this case, the gain response time of the saturation region [amplification factor of the gain saturation region 1 / e (e: base of natural logarithm) on until the time] is t 2.

このような可飽和吸収領域と利得飽和領域を単純に直列に接続した素子の応答特性は、図5に示すようになる。このため、光出力波形は、図5に示すような波形になってしまい、崩れてしまう。
このように、可飽和吸収領域の応答時間t1は利得飽和領域の応答時間t2と比べて長く、可飽和吸収領域の応答速度は利得飽和領域の応答速度と比べて遅いため、素子全体の応答速度は、可飽和吸収領域の応答速度で制限されてしまい、高速応答を実現することができない。
FIG. 5 shows the response characteristics of an element in which such a saturable absorption region and a gain saturation region are simply connected in series. For this reason, the optical output waveform becomes a waveform as shown in FIG.
Thus, the response time t 1 in the saturable absorption region is longer than the response time t 2 in the gain saturation region, and the response speed in the saturable absorption region is slower than the response speed in the gain saturation region. The response speed is limited by the response speed of the saturable absorption region, and a high-speed response cannot be realized.

そこで、本光波形整形装置では、意図的に、利得飽和領域に流す電流を少なくし、利得飽和領域の応答速度を遅くして、図2(A),(B)に示すように、利得飽和領域の応答速度と可飽和吸収領域の応答速度とが一致するように構成することで、利得飽和領域の利得の立ち上がり特性と、可飽和吸収領域の立ち上がり特性とが相殺されるようにし、高速信号でも動作可能な良好な特性を実現できるようにしている。   Therefore, in the present optical waveform shaping device, the current that flows through the gain saturation region is intentionally reduced and the response speed in the gain saturation region is slowed down, as shown in FIGS. 2 (A) and 2 (B). By configuring so that the response speed of the region matches the response speed of the saturable absorption region, the gain rising characteristic of the gain saturation region and the rising characteristic of the saturable absorption region are offset, and a high-speed signal is obtained. However, it is possible to realize good characteristics that can be operated.

つまり、本実施形態では、図2(A),(B)に示すように、光波形整形装置は、利得飽和領域4の応答時間t2と吸収飽和領域5の応答時間t1とが一致し、かつ、利得飽和領域4の飽和の深さ[利得飽和(増幅率の飽和)の深い領域に達するまでの利得(増幅率)の変化幅;図2(A)では増幅率が1/10になるまでの増幅率の変化幅]と吸収飽和領域5の飽和の深さ[吸収飽和(透過率の飽和)の深い領域に達するまでの吸収率(透過率)の変化幅;図2(B)では透過率が10倍になるまでの透過率の変化幅]とが一致するように構成されている。 That is, in the present embodiment, as shown in FIG. 2 (A), (B) , an optical waveform shaping device, the response time t 2 of the gain saturation region 4 and the response time t 1 of the absorption saturation region 5 matches And the depth of saturation of the gain saturation region 4 [the change width of the gain (amplification factor) until reaching the deep region of gain saturation (amplification factor saturation); in FIG. 2A, the amplification factor is 1/10 Change width until gain] and the saturation depth of the absorption saturation region 5 [change width of the absorption rate (transmittance) until reaching a deep region of absorption saturation (transmittance saturation); FIG. 2 (B) Then, the change width of the transmittance until the transmittance becomes 10 times] is matched.

具体的には、光波形整形素子1は、利得飽和領域4の飽和の深さと吸収飽和領域5の飽和の深さとが一致するように、利得飽和領域4の長さ及び吸収飽和領域5の長さが設定されている(例えば図1参照)。
駆動回路20は、図1に示すように、利得飽和領域4に接続され、利得飽和領域4の活性層2に電流を供給する電流源21と、吸収飽和領域5の活性層2に接続され、吸収飽和領域5に電圧を印加する電圧源22とを備える。そして、図2(A),(B)に示すように、電流源21から利得飽和領域4の活性層2に供給される電流値及び電圧源22によって吸収飽和領域5の活性層2に印加される電圧値は、利得飽和領域4の応答時間t2と吸収飽和領域5の応答時間t1とが一致するように設定されている。
Specifically, the optical waveform shaping element 1 includes the length of the gain saturation region 4 and the length of the absorption saturation region 5 so that the saturation depth of the gain saturation region 4 matches the saturation depth of the absorption saturation region 5. Is set (see, for example, FIG. 1).
As shown in FIG. 1, the drive circuit 20 is connected to the gain saturation region 4, connected to the current source 21 that supplies current to the active layer 2 in the gain saturation region 4, and to the active layer 2 in the absorption saturation region 5, And a voltage source 22 for applying a voltage to the absorption saturation region 5. 2A and 2B, the current value supplied from the current source 21 to the active layer 2 in the gain saturation region 4 and the voltage source 22 are applied to the active layer 2 in the absorption saturation region 5. that the voltage value, the response time t 2 of the gain saturation region 4 and the response time t 1 of the absorption saturation region 5 is set to match.

このように、利得飽和領域4及び吸収飽和領域5の応答時間及び飽和の深さを設定することで、利得飽和領域の応答速度と吸収飽和領域5の応答速度とが一致し、利得飽和領域の利得の立ち上がり特性と可飽和吸収領域の立ち上がり特性とが相殺されて、光波形整形装置の応答特性は、図2(A)に示すようになり、高速信号でも動作可能な良好な特性を実現できることになる。   In this way, by setting the response time and the depth of saturation of the gain saturation region 4 and the absorption saturation region 5, the response speed of the gain saturation region matches the response speed of the absorption saturation region 5, and the gain saturation region 5 The gain rise characteristic and the rise characteristic of the saturable absorption region are canceled out, and the response characteristic of the optical waveform shaping device is as shown in FIG. 2A, and it is possible to realize a good characteristic that can operate even with a high-speed signal. become.

以下、より具体的な構成例について、図6を参照しながら説明する。
図6に示すように、n−InP(n=1×1018cm-3)基板6上に、例えばMOCVD法によって自然形成のInAs量子ドット(面密度4×1010cm-2)を含む層を5層成長させて、量子ドット活性層2(活性層幅2μm)を形成し、活性層2の両側をp型InP層9,n型InP層10で埋め込んだ構造で、利得飽和領域4と吸収飽和領域5とを多段に繰り返した構造の光波形整形素子1において、利得飽和領域4及び吸収飽和領域5の飽和の深さを共に3dBとし、利得飽和領域4及び吸収飽和領域5の応答時間を共に25psとするには、各利得飽和領域4の長さを6mmとし、各吸収飽和領域5の長さを500μmとし、各利得飽和領域4に2.5Aの順バイアス電流を流し、各吸収飽和領域5に0.7Vの逆バイアス電圧(−0.7V)を印加すれば良い。
Hereinafter, a more specific configuration example will be described with reference to FIG.
As shown in FIG. 6, on the n-InP (n = 1 × 10 18 cm −3 ) substrate 6, a layer containing InAs quantum dots (surface density 4 × 10 10 cm −2 ) naturally formed by MOCVD, for example. 5 are grown to form a quantum dot active layer 2 (active layer width 2 μm), and both sides of the active layer 2 are buried with a p-type InP layer 9 and an n-type InP layer 10. In the optical waveform shaping element 1 having a structure in which the absorption saturation region 5 is repeated in multiple stages, the saturation depths of the gain saturation region 4 and the absorption saturation region 5 are both 3 dB, and the response time of the gain saturation region 4 and the absorption saturation region 5 is To 25 ps, the length of each gain saturation region 4 is set to 6 mm, the length of each absorption saturation region 5 is set to 500 μm, and a forward bias current of 2.5 A is supplied to each gain saturation region 4 to absorb each absorption. A reverse bias voltage of 0.7 V (saturation region 5) 0.7V) may be applied to.

つまり、利得飽和領域4の長さを6mmとすると、飽和の深さは3dBとなり、利得は18dBとなる。また、利得飽和領域4に2.5Aの順バイアス電流を流すと、利得飽和領域4の応答時間は25psとなる。一方、吸収飽和領域5の長さを500μmとすると、飽和の深さは3dBとなる。また、吸収飽和領域5に0.7Vの逆バイアス電圧(−0.7V)を印加すると、吸収飽和領域5の応答時間は25psとなる。   That is, if the length of the gain saturation region 4 is 6 mm, the saturation depth is 3 dB and the gain is 18 dB. When a forward bias current of 2.5 A is passed through the gain saturation region 4, the response time of the gain saturation region 4 is 25 ps. On the other hand, when the length of the absorption saturation region 5 is 500 μm, the saturation depth is 3 dB. When a reverse bias voltage (−0.7 V) of 0.7 V is applied to the absorption saturation region 5, the response time of the absorption saturation region 5 is 25 ps.

このように設定された光波形整形素子1に、光ファイバ30及び集光レンズ31を介して外部から、40Gbpsの高速信号であってピークパワー2dBm(1.6mW)の信号光(入力信号光)を入力すると、長さ6mmの利得飽和領域4で、3dBの利得飽和を起こし、15dBの利得が得られ、17dBのピークパワーの信号光となる。このピークパワー17dBの信号光が吸収飽和領域5に入力すると、長さ500μmの吸収飽和領域5で3dBの吸収飽和を起こす。   A signal light (input signal light) having a peak power of 2 dBm (1.6 mW), which is a high-speed signal of 40 Gbps, is applied to the optical waveform shaping element 1 set in this manner from the outside through the optical fiber 30 and the condenser lens 31. , A gain saturation of 3 dB occurs in the gain saturation region 4 having a length of 6 mm, a gain of 15 dB is obtained, and the signal light has a peak power of 17 dB. When the signal light having a peak power of 17 dB is input to the absorption saturation region 5, the absorption saturation of 3 dB occurs in the absorption saturation region 5 having a length of 500 μm.

このように、利得飽和領域4と吸収飽和領域5とで飽和の深さが一致しており、さらに、利得飽和領域4の応答時間と吸収飽和領域5の応答時間とは共に25psとなっているため、利得飽和領域4の利得の立ち上がり特性と、可飽和吸収領域5の立ち上がり特性とが相殺され、利得飽和領域4及び吸収飽和領域5の応答時間25psを上回る40Gbpsの高速信号であっても、波形整形効果が得られることになり、高速信号でも動作可能な良好な特性を実現できることになる。   Thus, the saturation depths of the gain saturation region 4 and the absorption saturation region 5 are the same, and the response time of the gain saturation region 4 and the response time of the absorption saturation region 5 are both 25 ps. Therefore, the gain rise characteristic of the gain saturation region 4 and the rise characteristic of the saturable absorption region 5 are canceled out, and even a high-speed signal of 40 Gbps exceeding the response time 25 ps of the gain saturation region 4 and the absorption saturation region 5 A waveform shaping effect can be obtained, and good characteristics capable of operating even with high-speed signals can be realized.

そして、波形整形効果が得られた信号光(出力信号光)が集光レンズ32及び光ファイバ33を介して外部へ出力されることになる。
なお、上述のように利得飽和領域4と吸収飽和領域5とを多段に繰り返した構造にすることによって波形整形効果が大きくなるが、一段でも効果はある。
したがって、本実施形態にかかる光波形整形装置及び光波形整形素子によれば、利得飽和領域4と吸収飽和領域5を直列に接続した光波形整形素子1を用いて波形整形を行なう場合に、例えばこれらの2つの領域4,5の応答速度よりも速い高速の光信号においても良好な波形が得られ、波形整形が可能となるという利点がある。
Then, the signal light (output signal light) from which the waveform shaping effect is obtained is output to the outside through the condenser lens 32 and the optical fiber 33.
Although the waveform shaping effect is increased by making the gain saturation region 4 and the absorption saturation region 5 repeated in multiple stages as described above, even one stage is effective.
Therefore, according to the optical waveform shaping device and the optical waveform shaping element according to the present embodiment, when performing waveform shaping using the optical waveform shaping element 1 in which the gain saturation region 4 and the absorption saturation region 5 are connected in series, for example, Even in a high-speed optical signal that is faster than the response speed of these two regions 4 and 5, there is an advantage that a good waveform can be obtained and waveform shaping can be performed.

また、利得飽和領域4と吸収飽和領域5を直列に接続した光波形整形素子1を用いるため、高速動作可能な光波形整形装置を簡単な構成で実現でき、光通信装置の小型化・省電力化を実現できることになる。
なお、上述の実施形態では、複数の利得飽和領域4と複数の吸収飽和領域5とを備え、これらが光導波方向に沿って交互に設けられた光波形整形素子1を例に挙げて説明しているが、これに限られるものではなく、例えば、1つの利得飽和領域と1つの吸収飽和領域とを備える光波形整形素子に本発明を適用することもできる。
Further, since the optical waveform shaping element 1 in which the gain saturation region 4 and the absorption saturation region 5 are connected in series is used, an optical waveform shaping device capable of operating at high speed can be realized with a simple configuration, and the optical communication device can be reduced in size and power consumption. Can be realized.
In the above-described embodiment, the optical waveform shaping element 1 including a plurality of gain saturation regions 4 and a plurality of absorption saturation regions 5 and alternately provided along the optical waveguide direction will be described as an example. However, the present invention is not limited to this. For example, the present invention can be applied to an optical waveform shaping element having one gain saturation region and one absorption saturation region.

また、上述の実施形態では、InP系材料を用いた導波路埋込構造デバイスを例に挙げて説明しているが、これに限られるものではなく、例えばGaAs系材料を用いても本発明にかかる光波形整形素子を実現することができる。
さらに、上述の実施形態では、埋込構造としてpn埋込構造を用いているが、これに限られるものではなく、例えば半絶縁性埋込構造を用いても良い。また、上述の実施形態では、導波路埋込構造を用いているが、これに限られるものではなく、例えば導波路構造をリッジ構造にしても良い。
In the above-described embodiment, the waveguide embedded structure device using the InP-based material has been described as an example. However, the present invention is not limited to this. For example, the present invention can be applied to a GaAs-based material. Such an optical waveform shaping element can be realized.
Furthermore, in the above-described embodiment, the pn buried structure is used as the buried structure, but the present invention is not limited to this. For example, a semi-insulating buried structure may be used. In the above-described embodiment, the waveguide embedded structure is used. However, the present invention is not limited to this. For example, the waveguide structure may be a ridge structure.

また、上述の実施形態では、同一活性層2を持つ半導体光導波路(半導体積層構造)3の表面上に形成されるp側電極8を分離して、1つの素子上に、利得飽和領域4及び吸収飽和領域5を光導波方向に沿って直列に形成しているが、これに限られるものではなく、例えば、同一活性層2を持つ半導体光導波路(半導体積層構造)3の表面上に形成されるンタクト層(ここではp型コンタクト層)7及び電極(ここではp側電極)8を分離して、1つの素子上に、コンタクト層7及び電極8を有する利得飽和領域4、及び、コンタクト層7及び電極8を有する吸収飽和領域5を光導波方向に沿って直列に形成しても良い。この場合、エッチングによってコンタクト層7の一部を取り除いて、分離されたコンタクト層7が光導波方向に沿って直列に並ぶように形成し、これらの分離されたコンタクト層7上のそれぞれに独立に電極8を形成すれば良い。また、コンタクト層の一部をエッチングして分離し、分離されたコンタクト層上に電極を形成するようにして、利得飽和領域と吸収飽和領域とを分離しているが、電極分離方法(電極分離構造)はこれに限られるものではない。例えばプロトン注入(イオン注入)によってコンタクト層の一部を高抵抗化して電極分離を行なうようにしても良い。   In the above-described embodiment, the p-side electrode 8 formed on the surface of the semiconductor optical waveguide (semiconductor laminated structure) 3 having the same active layer 2 is separated, and the gain saturation region 4 and The absorption saturation region 5 is formed in series along the optical waveguide direction, but is not limited to this. For example, the absorption saturation region 5 is formed on the surface of the semiconductor optical waveguide (semiconductor laminated structure) 3 having the same active layer 2. The contact saturation layer 4 (here, p-type contact layer) 7 and the electrode (here p-side electrode) 8 are separated, the gain saturation region 4 having the contact layer 7 and the electrode 8 on one element, and the contact layer The absorption saturation region 5 having the electrodes 7 and the electrodes 8 may be formed in series along the optical waveguide direction. In this case, a part of the contact layer 7 is removed by etching so that the separated contact layers 7 are arranged in series along the optical waveguide direction, and each of the separated contact layers 7 is independently formed. The electrode 8 may be formed. Further, the gain saturation region and the absorption saturation region are separated by etching and separating a part of the contact layer and forming an electrode on the separated contact layer. The structure is not limited to this. For example, electrode separation may be performed by increasing the resistance of a part of the contact layer by proton implantation (ion implantation).

また、本発明は、上述した実施形態に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。   The present invention is not limited to the configuration described in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態にかかる光波形整形装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the optical waveform shaping apparatus concerning one Embodiment of this invention. (A)は本発明の一実施形態にかかる光波形整形装置に備えられる利得飽和領域の応答特性を示しており、(B)は本発明の一実施形態にかかる光波形整形装置に備えられる可飽和吸収領域の応答特性を示しており、(C)は本発明の一実施形態にかかる光波形整形装置の応答特性を示している。(A) shows the response characteristics of the gain saturation region provided in the optical waveform shaping device according to one embodiment of the present invention, and (B) is applicable to the optical waveform shaping device according to one embodiment of the present invention. The response characteristics of the saturated absorption region are shown, and (C) shows the response characteristics of the optical waveform shaping device according to the embodiment of the present invention. 利得飽和領域及び可飽和吸収領域のそれぞれの特性が最も良くなるように設定し、これらを単純に直列に接続してなる光波形整形装置の課題を説明するための図であり、可飽和吸収領域の応答特性を示す図である。It is a figure for demonstrating the subject of the optical waveform shaping device which is set so that each characteristic of a gain saturation area | region and a saturable absorption area | region may become the best, and these are simply connected in series, A saturable absorption area | region It is a figure which shows the response characteristic. 利得飽和領域及び可飽和吸収領域のそれぞれの特性が最も良くなるように設定し、これらを単純に直列に接続してなる光波形整形装置の課題を説明するための図であり、利得飽和領域の応答特性を示す図である。It is a figure for explaining the problem of the optical waveform shaping device that is set so that the respective characteristics of the gain saturation region and the saturable absorption region become the best, and these are simply connected in series. It is a figure which shows a response characteristic. 利得飽和領域及び可飽和吸収領域のそれぞれの特性が最も良くなるように設定し、これらを単純に直列に接続してなる光波形整形装置の課題を説明するための図であり、光波形整形素子の応答特性を示す図である。It is a figure for explaining the subject of the optical waveform shaping device which set up so that each characteristic of a gain saturation field and a saturable absorption field may become the best, and these were simply connected in series, and an optical waveform shaping element It is a figure which shows the response characteristic. 本発明の一実施形態にかかる光波形整形装置の具体的な構成例を示す模式図である。It is a schematic diagram which shows the specific structural example of the optical waveform shaping apparatus concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1 光波形整形素子
2 活性層(量子ドット活性層)
3 半導体光導波路
4 利得飽和領域
5 吸収飽和領域(可飽和吸収領域)
6 半導体基板(n型InP基板)
7 コンタクト層(p型InGaAsコンタクト層)
8 電極(p側電極)
9 p型InP層
10 n型InP層
11 p型InPクラッド層
20 駆動回路
21 電流源
22 電圧源
30,33 光ファイバ
31,32 集光レンズ
1 Optical Waveform Shaping Element 2 Active Layer (Quantum Dot Active Layer)
3 Semiconductor optical waveguide 4 Gain saturation region 5 Absorption saturation region (saturable absorption region)
6 Semiconductor substrate (n-type InP substrate)
7 Contact layer (p-type InGaAs contact layer)
8 electrodes (p-side electrode)
9 p-type InP layer 10 n-type InP layer 11 p-type InP clad layer 20 drive circuit 21 current source 22 voltage source 30, 33 optical fiber 31, 32 condenser lens

Claims (6)

利得飽和を起こす利得飽和領域と吸収飽和を起こす吸収飽和領域とを備え、前記利得飽和領域と前記吸収飽和領域とが直列に接続されている光波形整形素子と、
前記光波形整形素子を駆動する駆動回路とを備え、
前記利得飽和領域の応答速度と前記吸収飽和領域の応答速度とが一致するように構成されていることを特徴とする光波形整形装置。
An optical waveform shaping element comprising a gain saturation region causing gain saturation and an absorption saturation region causing absorption saturation, wherein the gain saturation region and the absorption saturation region are connected in series;
A drive circuit for driving the optical waveform shaping element,
An optical waveform shaping device configured so that a response speed of the gain saturation region matches a response speed of the absorption saturation region.
前記利得飽和領域の応答時間と前記吸収飽和領域の応答時間とが一致し、かつ、前記利得飽和領域の飽和の深さと前記吸収飽和領域の飽和の深さとが一致するように構成されていることを特徴とする、請求項1記載の光波形整形装置。   The gain saturation region response time and the absorption saturation region response time match, and the gain saturation region saturation depth and the absorption saturation region saturation depth match. The optical waveform shaping device according to claim 1, wherein: 前記光波形整形素子は、前記利得飽和領域の飽和の深さと前記吸収飽和領域の飽和の深さとが一致するように、前記利得飽和領域の長さ及び前記吸収飽和領域の長さが設定されていることを特徴とする、請求項1又は2記載の光波形整形装置。   In the optical waveform shaping element, the length of the gain saturation region and the length of the absorption saturation region are set so that the saturation depth of the gain saturation region matches the saturation depth of the absorption saturation region. The optical waveform shaping device according to claim 1, wherein the optical waveform shaping device is provided. 前記駆動回路は、
前記利得飽和領域に接続され、前記利得飽和領域に電流を供給する電流源と、
前記吸収飽和領域に接続され、前記吸収飽和領域に電圧を印加する電圧源とを備え、
前記電流源から前記利得飽和領域に供給される電流値及び前記電圧源によって前記吸収飽和領域に印加される電圧値は、前記利得飽和領域の応答時間と前記吸収飽和領域の応答時間とが一致するように設定されていることを特徴とする、請求項1〜3のいずれか1項に記載の光波形整形装置。
The drive circuit is
A current source connected to the gain saturation region and supplying a current to the gain saturation region;
A voltage source connected to the absorption saturation region and applying a voltage to the absorption saturation region;
The current value supplied from the current source to the gain saturation region and the voltage value applied to the absorption saturation region by the voltage source match the response time of the gain saturation region and the response time of the absorption saturation region. The optical waveform shaping device according to claim 1, wherein the optical waveform shaping device is set as follows.
前記光波形整形素子は、前記利得飽和領域と前記吸収飽和領域とが前記半導体光導波路に沿って交互に設けられていることを特徴とする、請求項1〜4のいずれか1項に記載の光波形整形装置。   5. The optical waveform shaping element according to claim 1, wherein the gain saturation region and the absorption saturation region are alternately provided along the semiconductor optical waveguide. 6. Optical waveform shaping device. 利得飽和を起こす利得飽和領域と、
吸収飽和を起こす吸収飽和領域とを備え、
前記利得飽和領域と前記吸収飽和領域とが直列に接続されており、前記利得飽和領域の飽和の深さと前記吸収飽和領域の飽和の深さとが一致するように構成されていることを特徴とする光波形整形素子。
A gain saturation region that causes gain saturation;
With an absorption saturation region that causes absorption saturation,
The gain saturation region and the absorption saturation region are connected in series, and the saturation depth of the gain saturation region is configured to match the saturation depth of the absorption saturation region. Optical waveform shaping element.
JP2007332939A 2007-12-25 2007-12-25 Optical waveform shaping device Active JP5034930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332939A JP5034930B2 (en) 2007-12-25 2007-12-25 Optical waveform shaping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332939A JP5034930B2 (en) 2007-12-25 2007-12-25 Optical waveform shaping device

Publications (2)

Publication Number Publication Date
JP2009158602A true JP2009158602A (en) 2009-07-16
JP5034930B2 JP5034930B2 (en) 2012-09-26

Family

ID=40962325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332939A Active JP5034930B2 (en) 2007-12-25 2007-12-25 Optical waveform shaping device

Country Status (1)

Country Link
JP (1) JP5034930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383126A (en) * 2017-02-28 2019-10-25 慧与发展有限责任合伙企业 Quantum dot photonics
CN110383126B (en) * 2017-02-28 2024-05-24 慧与发展有限责任合伙企业 Quantum dot semiconductor optical amplifier and quantum dot photoelectric detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575212A (en) * 1991-09-17 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical nonlinear amplifying element
JP2004185021A (en) * 2004-01-05 2004-07-02 Fujitsu Ltd Method, apparatus and system for waveform shaping of signal light
JP2008205204A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Optical-waveform shaping element
JP2009053268A (en) * 2007-08-23 2009-03-12 Fujitsu Ltd Optical waveform shaping element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575212A (en) * 1991-09-17 1993-03-26 Nippon Telegr & Teleph Corp <Ntt> Optical nonlinear amplifying element
JP2004185021A (en) * 2004-01-05 2004-07-02 Fujitsu Ltd Method, apparatus and system for waveform shaping of signal light
JP2008205204A (en) * 2007-02-20 2008-09-04 Fujitsu Ltd Optical-waveform shaping element
JP2009053268A (en) * 2007-08-23 2009-03-12 Fujitsu Ltd Optical waveform shaping element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383126A (en) * 2017-02-28 2019-10-25 慧与发展有限责任合伙企业 Quantum dot photonics
CN110383126B (en) * 2017-02-28 2024-05-24 慧与发展有限责任合伙企业 Quantum dot semiconductor optical amplifier and quantum dot photoelectric detector

Also Published As

Publication number Publication date
JP5034930B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4934271B2 (en) Single power supply optical integrated device
JP6541898B2 (en) Semiconductor optical amplifier and method of manufacturing the same, optical phase modulator
JP5144306B2 (en) Optical semiconductor device and manufacturing method thereof
JP2013222795A (en) Modulator integrated laser element
CN103777377A (en) Semiconductor optical modulator
Qasaimeh Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiers
US11342724B2 (en) Semiconductor optical integrated device
JP6939411B2 (en) Semiconductor optical device
JP2007158204A (en) Optical integrated device
JP4427067B2 (en) Optical waveform shaping element
JP5034930B2 (en) Optical waveform shaping device
JP2005116644A (en) Semiconductor opto-electronic waveguide
JP5483655B1 (en) Optical storage device
US5841151A (en) Quasi type II semiconductor quantum well device
US9088127B2 (en) Methods of modulating a quantum dot laser and a multisection quantum dot laser
JP5521678B2 (en) Semiconductor optical waveform shaping device
JP4941175B2 (en) Optical waveform shaping element
Zhang et al. High-speed hybrid silicon microring lasers
US6897993B2 (en) Electroabsorption modulator, modulator laser device and method for producing an electroabsorption modulator
JP2005135956A (en) Semiconductor optical amplifier, its manufacturing method, and optical communication device
Klamkin et al. High-output saturation power variable confinement slab-coupled optical waveguide amplifier
JP2013246343A (en) Semiconductor optical modulator
JP3721788B2 (en) Semiconductor optical amplifier
JP6320138B2 (en) Electroabsorption semiconductor optical modulator
Shimada et al. Lateral integration of VCSEL and slow light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150