JP2009158496A - Lithium polymer battery - Google Patents

Lithium polymer battery Download PDF

Info

Publication number
JP2009158496A
JP2009158496A JP2009097986A JP2009097986A JP2009158496A JP 2009158496 A JP2009158496 A JP 2009158496A JP 2009097986 A JP2009097986 A JP 2009097986A JP 2009097986 A JP2009097986 A JP 2009097986A JP 2009158496 A JP2009158496 A JP 2009158496A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
powder
polymer battery
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097986A
Other languages
Japanese (ja)
Inventor
Kazuo Yamada
和夫 山田
Koichi Ui
幸一 宇井
Shumei Nishijima
主明 西島
Naoto Torata
直人 虎太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009097986A priority Critical patent/JP2009158496A/en
Publication of JP2009158496A publication Critical patent/JP2009158496A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems in a lithium polymer battery provided by polymerization after impregnating a precursor of a high polymer solid electrolyte into a graphite negative electrode: an unreactive monomer remains since a radical generated in polymerization is consumed by graphite, so that a polymer battery cannot be produced which is superior in long-term reliability; and liquid leakage occurs in abnormal time since gel is liquefied at the high temperature in a polymer battery using physical cross-linked gel. <P>SOLUTION: The lithium polymer battery includes: a positive electrode; a negative electrode including a negative electrode active material composed of carbon material powder and a binder material; and an electrolyte using chemical cross-linked gel, wherein the carbon material powder is composed of a mixture of at least two or more of composite graphite material powders in which a surface of high crystalline graphite powder (A) is covered with a low crystalline carbon material (B). The graphite material powders have the mutually different covering ratio (an average value of quantity of B/(quantity of A + quantity of B)), and the binder material is a rubber-based binding material. By the lithium polymer battery, the battery superior in high energy density and long-term reliability (a cycle characteristic) can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムポリマー電池に関する。更に詳しくは、本発明は、高結晶性黒鉛粉末の表面に低結晶性炭素材料を付着させた複合黒鉛材料粉末を活物質とする負極を用いたリチウムポリマー電池に関する。   The present invention relates to a lithium polymer battery. More specifically, the present invention relates to a lithium polymer battery using a negative electrode using a composite graphite material powder in which a low crystalline carbon material is adhered to the surface of a highly crystalline graphite powder as an active material.

近年、負極に金属リチウムやその合金を利用するかわりに、リチウムイオンの吸蔵−放出過程を利用した炭素材料や導電性高分子等のマトリックス材料が開発された。これにより、金属リチウムやその合金を利用した場合に起こったデンドライトの生成が原理上起こらなくなり、電池内部の短絡という問題が激減するに至った。特に、炭素材料は他の材料よりもリチウムの吸蔵−放出電位がリチウムの折出−溶解電位に近いことが知られている。中でも黒鉛材料は、理論的に炭素原子6個に対してリチウム原子1個の割合で、その結晶格子中にリチウムを取り込むことができることから、単位重量及び単位体積あたり高い容量を有する炭素材料である。更に、黒鉛材料は、リチウムの挿入−脱離の電位が平坦で、化学的に安定であり、電池のサイクル安定性にも大きく寄与するものである。   In recent years, instead of using metallic lithium or an alloy thereof for the negative electrode, a matrix material such as a carbon material or a conductive polymer using a lithium ion storage-release process has been developed. As a result, the generation of dendrite that occurs when metallic lithium or an alloy thereof is used does not occur in principle, and the problem of short circuit inside the battery is drastically reduced. In particular, it is known that a carbon material has a lithium occlusion-release potential closer to a lithium folding-dissolution potential than other materials. Above all, the graphite material is a carbon material having a high capacity per unit weight and unit volume because it can theoretically incorporate lithium into the crystal lattice at a ratio of one lithium atom to six carbon atoms. . Further, the graphite material has a flat lithium insertion-extraction potential, is chemically stable, and greatly contributes to the cycle stability of the battery.

例えば、表面処理した黒鉛系炭素材料を負極活物質に用いるもの等がある(非特許文献1、特許文献1〜5参照)。
黒鉛系炭素材料は、エチレンカーボネート(EC)を主体とする有機電解液を用いることによって、ほぼ理論容量に近い放電容量が得られる。また、その充放電の電位がリチウムの溶解−折出の電位よりわずかに高く、かつ非常に平坦であるため、黒鉛系炭素材料を負極活物質に用いて電池を作製した場合に、高容量かつ電池電圧の平坦性が高い二次電池が実現でき、電池の高容量化を達成できる。
For example, there is one using a surface-treated graphite-based carbon material as a negative electrode active material (see Non-Patent Document 1, Patent Documents 1 to 5).
By using an organic electrolyte mainly composed of ethylene carbonate (EC), the graphite-based carbon material can obtain a discharge capacity that is almost equal to the theoretical capacity. In addition, since the charge / discharge potential is slightly higher than the dissolution-folding potential of lithium and is very flat, when a battery is produced using a graphite-based carbon material as a negative electrode active material, A secondary battery with a high flatness of the battery voltage can be realized, and a high capacity of the battery can be achieved.

しかしながら黒鉛系炭素材料は、結晶性が高いため有機電解液の分解を引き起こすという問題点が残されている。例えば、有機電解液用溶媒であるプロピレンカーボネート(PC)はその電位窓の広さ、凝固点の低さ(−70℃)及び化学的安定性の高さから、リチウム二次電池用の電解液の溶媒として広く用いられている。しかし、黒鉛系炭素材料を負極活物質に用いた場合、PCの分解反応が顕著に起こり、10%のPCが電解液に存在するだけで黒鉛系炭素材料からなる負極は充放電ができないということが報告されている(非特許文献2参照)。   However, the graphite-based carbon material has a problem of causing decomposition of the organic electrolyte because of its high crystallinity. For example, propylene carbonate (PC), which is a solvent for organic electrolytes, has a wide potential window, a low freezing point (−70 ° C.), and high chemical stability. Widely used as a solvent. However, when a graphite-based carbon material is used as the negative electrode active material, the decomposition reaction of PC is remarkable, and the negative electrode made of the graphite-based carbon material cannot be charged / discharged only by the presence of 10% PC in the electrolyte. Has been reported (see Non-Patent Document 2).

その解決策として、電解液にビニレンカーボネート等の添加剤を加え、負極活物質である黒鉛系炭素材料上に積極的に皮膜を形成し、その皮膜によってその後の電解液の分解を抑える、又は高結晶性黒鉛系炭素材料の表面を低結晶性炭素材料で覆うことにより、高結晶性黒鉛系炭素材料がもつ高容量の特徴と、低結晶性炭素材料の特徴である、電解液の選択性がないことを兼ね備えた複合黒鉛材料が提案されている。   As a solution, an additive such as vinylene carbonate is added to the electrolytic solution, and a film is positively formed on the graphite-based carbon material, which is the negative electrode active material. By covering the surface of the crystalline graphite carbon material with a low crystalline carbon material, the high capacity characteristics of the high crystalline graphite carbon material and the selectivity of the electrolyte, which is a characteristic of the low crystalline carbon material, can be achieved. There has been proposed a composite graphite material that has nothing.

近年、液体の電解液を用いた電池の耐漏液性、高い安全性、長期保存性を向上させることを目的として、高いイオン伝導性を有するイオン伝導性ポリマーが報告され、上記の問題を解決する手段の1つとして、さまざまな研究が進められている。現在検討されているイオン伝導性ポリマーとして、エチレンオキシドを基本単位とするホモポリマー又はコポリマーの直鎖状高分子、網状架橋高分子又は櫛型高分子等が提案され、ほぼ実用化されつつある。
上記のイオン伝導性ポリマーを用いた電池については、特許文献等に広く記載されており、例えば、アーマンド(Armand)らによる米国特許(特許文献6参照)やノース(North)の米国特許(特許文献7参照)及びフーパー(Hooper)らの米国特許(特許文献8参照)等が挙げられる。
In recent years, ion conductive polymers having high ion conductivity have been reported for the purpose of improving leakage resistance, high safety, and long-term storage stability of batteries using liquid electrolytes, and solve the above problems. Various researches are underway as one of the means. As ion-conducting polymers currently under investigation, homopolymers or copolymers of linear polymers, reticulated crosslinked polymers, comb polymers, etc. based on ethylene oxide have been proposed and are almost in practical use.
Batteries using the above ion-conducting polymers are widely described in patent documents and the like, for example, U.S. patents by Armand et al. (See U.S. Patent Document 6) and U.S. patents by North (Patent Documents). 7) and Hooper et al. US Patent (see Patent Document 8).

これらの特徴として挙げられるのが、ポリエーテル構造を有する高分子材料中に電解質塩を溶解した溶液を含むイオン伝導性ポリマーを用いていることである。これらのイオン伝導性ポリマーは、室温以下でのイオン伝導度が低いため、特に携帯電子機器の駆動用電源やメモリーバックアップ電源向けの電池に要求される小型・軽量かつ高エネルギー密度化が実現できない。
そこで、上述のイオン伝導性ポリマーよりも更にイオン伝導性の向上を図る方法として、モノマーと、有機溶媒(特にECあるいはPC等の高誘電率有機溶媒)と電解質塩とからなる電解液とを混合し、モノマーを重合することによって、電解液をポリマーネットワーク中に保持し、固体状態を保ったゲル状のポリマー電解質(以下化学架橋ゲルという)が提案されている。
A feature of these is that an ion conductive polymer containing a solution in which an electrolyte salt is dissolved in a polymer material having a polyether structure is used. Since these ionic conductive polymers have low ionic conductivity at room temperature or lower, it is not possible to realize the small size, light weight, and high energy density required for batteries for driving power sources for mobile electronic devices and memory backup power sources.
Therefore, as a method for further improving the ion conductivity compared to the above-described ion conductive polymer, a monomer, an organic solvent (in particular, a high dielectric constant organic solvent such as EC or PC) and an electrolyte solution composed of an electrolyte salt are mixed. In addition, a gel-like polymer electrolyte (hereinafter referred to as a chemical cross-linking gel) has been proposed in which an electrolytic solution is held in a polymer network by polymerizing monomers to maintain a solid state.

特開平4−115457号公報JP-A-4-115457 特開平4−115458号公報JP-A-4-115458 特開平4−368778号公報JP-A-4-368778 特開平5−28996号公報Japanese Patent Laid-Open No. 5-28996 特開平5−114421号公報Japanese Patent Laid-Open No. 5-114421 米国特許第4,303,748号明細書U.S. Pat. No. 4,303,748 米国特許第4,589,197号明細書US Pat. No. 4,589,197 米国特許第4,547,440号明細書US Pat. No. 4,547,440 特表平8−507407号公報JP-T 8-507407

J.Electrochm.Soc.,Vol.137,2009(1990)J. et al. Electrochm. Soc. , Vol. 137, 2009 (1990) J.Electrochem.Soc.,Vol.142,1746(1995)J. et al. Electrochem. Soc. , Vol. 142, 1746 (1995)

化学架橋ゲルは、電解液の保持力が高く、また高温(例えば100℃程度)になっても溶融しないものもあり、異常時における液漏れ防止という観点からは有効である。しかしながら、低温での性能が悪い、架橋させるためにプレカーサーにて添加する開始剤が電池中に残存し電池性能の劣化を引き起こす等、まだ解決すべき課題は多い。
一方、ヘキサフルオロプロピレン−ポリフッ化ビニリデンの共重合体を物理架橋させることで、電解液を保持させたゲル電解質(以下、物理架橋ゲルという)が提案されている(特許文献9参照)。
Some chemical cross-linking gels have high electrolytic solution holding power and do not melt even at high temperatures (for example, about 100 ° C.), and are effective from the viewpoint of preventing liquid leakage in an abnormal state. However, there are still many problems to be solved, such as poor performance at low temperatures, and the initiator added in the precursor for crosslinking remains in the battery, causing deterioration of battery performance.
On the other hand, a gel electrolyte (hereinafter, referred to as a physical cross-linked gel) in which an electrolytic solution is held by physically cross-linking a hexafluoropropylene-polyvinylidene fluoride copolymer has been proposed (see Patent Document 9).

このタイプのゲルは電池素子を形成後、電解液を注液し、加熱することによって一旦溶融させ、冷却することによってゲルを形成するため、液体の電解液を用いたリチウムイオン電池の製造方法と類似の方法で製造することができる等の利点をもつ。
物理架橋ゲルは、室温ではゲル状となっており、ある程度の液漏れ防止の効果が期待できる。しかし、高温になるとゲル状となっていたものが溶融し、ゲルの状態を保つことができないため、電池異常時の液漏れ防止の観点からは十分ではなかった。そのような状況のもと、液漏れ防止の効果が十分期待できる化学架橋ゲルを用いた高性能のリチウムポリマー電池が強く望まれている。
This type of gel is formed by injecting an electrolytic solution after forming a battery element, melting it once by heating, and forming a gel by cooling, so that a method for producing a lithium ion battery using a liquid electrolytic solution and It has the advantage that it can be manufactured by a similar method.
The physical cross-linking gel is in the form of a gel at room temperature and can be expected to have a certain degree of liquid leakage prevention effect. However, since the gel-like material melts at a high temperature and cannot maintain the gel state, it is not sufficient from the viewpoint of preventing liquid leakage when the battery is abnormal. Under such circumstances, there is a strong demand for a high-performance lithium polymer battery using a chemically cross-linked gel that can be sufficiently expected to prevent liquid leakage.

本発明の目的は、電池の異常時に電池の温度が上昇した場合においても、電解液の液漏れを起こすことなく、かつリチウムイオン電池に匹敵する負荷特性、温度特性、エネルギー密度を有する高性能リチウムポリマー電池を提供することにある。
かくして本発明によれば、正極、炭素材料粉末からなる負極活物質と結着材とを含む負極、化学架橋ゲルを用いた電解質とを備え、前記炭素材料粉末は、高結晶性黒鉛粉末(A)の表面が低結晶性炭素材料(B)で被覆され、かつ互いに異なる被覆比(Bの量/(Aの量+Bの量)の平均値)を有する少なくとも2種類以上の複合黒鉛材料粉末の混合物からなり、前記結着材がゴム系の結着材であることを特徴とするリチウムポリマー電池が提供される。
The object of the present invention is to provide high performance lithium having load characteristics, temperature characteristics, and energy density comparable to those of a lithium ion battery without causing leakage of the electrolyte even when the temperature of the battery rises when the battery is abnormal. It is to provide a polymer battery.
Thus, according to the present invention, a positive electrode, a negative electrode including a negative electrode active material made of carbon material powder and a binder, and an electrolyte using a chemical cross-linking gel, the carbon material powder is a highly crystalline graphite powder (A ) Of the composite graphite material powder of which at least two types of composite graphite material powders are coated with the low crystalline carbon material (B) and have different coverage ratios (average amount of B / (A amount + B amount)) There is provided a lithium polymer battery comprising a mixture, wherein the binder is a rubber-based binder.

本発明によれば、複合黒鉛材料粉末を少なくとも2種類以上混合した負極活物質を使用することにより、高エネルギー密度でかつ長期信頼性(サイクル特性)に優れたリチウムポリマー電池を得ることができる。
更に、本発明によって提供されるリチウムポリマー電池は化学架橋ゲルを用いているため、電池が高温下にさらされた場合であっても、ゲルが溶解して液状化することがない。よって、電池の膨れ等が起こりにくい高信頼性の電池を得ることができる。
更に、本発明によって提供されるリチウムポリマー電池の負極の結着材はゴム系の結着材であるため、活物質の膨張収縮に追従し、負極のサイクル劣化を抑えることができる。
リチウムポリマー電池の特徴は、薄型化が可能で形状が自由な点にあり、電子機器の隙間に内蔵して用いることによって、その特徴を更に有効に生かすことができる。ユーザーが簡単に取替えできないような使い方においては、長期信頼性、電池の膨れにくさは非常に重要であり、この工業的な意義は大きいものである。
According to the present invention, a lithium polymer battery having high energy density and excellent long-term reliability (cycle characteristics) can be obtained by using a negative electrode active material in which at least two types of composite graphite material powders are mixed.
Furthermore, since the lithium polymer battery provided by the present invention uses a chemically crosslinked gel, the gel does not dissolve and liquefy even when the battery is exposed to high temperatures. Therefore, it is possible to obtain a highly reliable battery that is unlikely to swell.
Furthermore, since the binder for the negative electrode of the lithium polymer battery provided by the present invention is a rubber-based binder, it can follow the expansion and contraction of the active material and suppress cycle deterioration of the negative electrode.
The feature of the lithium polymer battery is that it can be thinned and has a free shape, and can be used more effectively by being incorporated in a gap of an electronic device. For usage that cannot be easily replaced by the user, long-term reliability and the difficulty of battery expansion are very important, and this industrial significance is great.

本発明の複合黒鉛材料粉末の一例を示す断面図である。It is sectional drawing which shows an example of the composite graphite material powder of this invention.

複合黒鉛材料粉末は、負極活物質としては優れるが、表面の低結晶性炭素材料により、高結晶性黒鉛粉末(以下、黒鉛粉末ともいう)が従来有する潤滑性が阻害され、その充填性が悪く、高密度の負極が得られない場合がある。この充填性について、本発明の発明者等は、詳細に検討した結果、充填性は、被覆比、あるいは芯材の種類等の複合黒鉛材料粉末の物性値によって大きく左右されることがわかった。   The composite graphite material powder is excellent as a negative electrode active material, but the low crystallinity carbon material on the surface hinders the lubricity conventionally possessed by high crystallinity graphite powder (hereinafter also referred to as graphite powder) and has poor packing properties. In some cases, a high-density negative electrode cannot be obtained. The inventors of the present invention examined the filling property in detail, and as a result, it was found that the filling property greatly depends on the physical properties of the composite graphite material powder such as the coating ratio or the type of the core material.

更に、上記観点から本発明の発明者等は、物性値の互いに異なる2種以上の複合黒鉛材料粉末を負極活物質として用いることによって、化学架橋ゲルのプレカーサーを硬化する際に、効率よく架橋が行われることも見出した。効率よく架橋が行われる理由は次のように推測される。黒鉛粉末は、開始剤から熱、あるいはUV等の手段によって発生したラジカルを、その活性な部位で消費し、重合反応を阻害する。表面を低結晶性炭素材料で被覆することで、黒鉛粉末によるラジカルの消費が抑えられ、発生したラジカルが効率よく重合反応に使われると考えられる。   Furthermore, from the above viewpoint, the inventors of the present invention can efficiently crosslink when curing the precursor of the chemically crosslinked gel by using two or more kinds of composite graphite material powders having different physical property values as the negative electrode active material. I also found out that it would be done. The reason why the crosslinking is efficiently performed is assumed as follows. The graphite powder consumes radicals generated from the initiator by means of heat, UV, or the like at its active site and inhibits the polymerization reaction. By coating the surface with a low crystalline carbon material, it is considered that the consumption of radicals by the graphite powder is suppressed, and the generated radicals are used efficiently in the polymerization reaction.

本発明において互いに物性値が異なる少なくとも2種類以上の複合黒鉛材料粉末を含むということは、少なくとも主活物質としての複合黒鉛材料粉末と、その充填性を向上させるための複合黒鉛材料粉末の2種類を含むことを意味する。このような少なくとも2種類以上の複合黒鉛材料粉末を含む負極により、高容量密度で、かつ負荷特性の優れた高性能な二次電池が作製可能となる。   In the present invention, the inclusion of at least two types of composite graphite material powders having different physical property values means that at least two types of composite graphite material powder as a main active material and composite graphite material powder for improving the filling properties thereof. Is included. With such a negative electrode including at least two types of composite graphite material powder, a high-performance secondary battery having a high capacity density and excellent load characteristics can be produced.

複合黒鉛材料粉末は、粉末の集合体であり、厳密に言えば完全に均一な粉末の集合体を得ることは難しいため、粒子ひとつひとつの物性値と、粒子の集合体としての物性値(平均値)を有することになる。本発明において2種類以上とは、後者の集合体として互いに異なる物性値の複合黒鉛材料粉末が、2種類以上存在することを意味する。ここで、物性値とは、結晶性(面間隔、結晶子サイズ等)、比表面積、粒度分布、被覆比、ラマン強度比、真密度、嵩密度、純度、形状等が挙げられる。   The composite graphite material powder is an aggregate of powder. Strictly speaking, it is difficult to obtain a completely uniform powder aggregate. Therefore, the physical property value of each particle and the physical property value (average value) ). In the present invention, the term “two or more types” means that there are two or more types of composite graphite material powders having different physical properties as the latter aggregate. Here, the physical property values include crystallinity (plane spacing, crystallite size, etc.), specific surface area, particle size distribution, coating ratio, Raman intensity ratio, true density, bulk density, purity, shape, and the like.

本発明において、被覆比が互いに異なる2種以上の複合黒鉛材料粉末を使用することが好ましい。具体的には、被覆比が互いに異なるとは、低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)の平均値(以下被覆比という)が異なることを意味する。被覆比を異ならせることにより、より高容量密度で、かつ高性能な二次電池が作製可能となる。
なお、被覆比とは、粒子ひとつひとつの値ではなく、複合黒鉛材料粉末の集合体としての値、即ち平均値を意味する。この値は、製造工程における黒鉛粉末の重量と、最終的に得られた複合黒鉛材料粉末の重量変化によって算出される。
In the present invention, it is preferable to use two or more composite graphite material powders having different coating ratios. Specifically, different coating ratios mean that the amount of low crystalline carbon material / (the amount of high crystalline graphite powder + the amount of low crystalline carbon material) (hereinafter referred to as the coating ratio) is different. Means. By making the covering ratios different, a secondary battery with higher capacity density and higher performance can be produced.
The covering ratio means a value as an aggregate of composite graphite material powder, that is, an average value, not a value for each particle. This value is calculated from the weight of the graphite powder in the manufacturing process and the weight change of the finally obtained composite graphite material powder.

被覆比の大きい方の複合黒鉛材料粉末の被覆比は0.03〜0.25の範囲内にあることが好ましく、より好ましくは0.1〜0.25である。被覆比が0.25より大きいと、低結晶部分が多くなりすぎて、充放電容量が低くなるので好ましくない。また、0.03未満になると電解液の分解に対する制御効果が低くなるため好ましくない。
また、被覆比の小さい方の複合黒鉛材料粉末の被覆比は、0.01〜0.10が好ましい。更に好ましくは0.01〜0.05である。0.01未満の材料では、上述した重合の阻害要因を抑えるのに十分ではなく、また0.1より大きい被覆比では性能の優れ、かつ高充填密度の負極が得られにくいため好ましくない。
The covering ratio of the composite graphite material powder having the larger covering ratio is preferably in the range of 0.03 to 0.25, more preferably 0.1 to 0.25. When the covering ratio is larger than 0.25, the low crystal portion is excessively increased, and the charge / discharge capacity is lowered, which is not preferable. Moreover, since the control effect with respect to decomposition | disassembly of electrolyte solution will become low when it becomes less than 0.03, it is unpreferable.
The coverage ratio of the composite graphite material powder having the smaller coverage ratio is preferably 0.01 to 0.10. More preferably, it is 0.01-0.05. If the material is less than 0.01, it is not sufficient to suppress the above-described polymerization inhibition factors, and a coating ratio greater than 0.1 is not preferable because it is difficult to obtain a negative electrode with excellent performance and high packing density.

更に、被覆比の大きい複合黒鉛材料粉末の量に対する被覆比の小さい複合黒鉛材料粉末の量は重量比で50%以下であることが好ましく、より好ましくは10〜30%程度である。加える量が多すぎると、その材料の性質が支配的になり、重合を阻害する要因を抑える効果が十分に得られなかったり、材料自身が配向し、電解液の染み込みが悪くなる等の理由によって、負荷特性等が悪くなったりする。また加える量が十分でないと、充填性向上の効果が十分に得られない問題が生じる。   Furthermore, the amount of the composite graphite material powder having a small coating ratio relative to the amount of the composite graphite material powder having a large coating ratio is preferably 50% or less by weight, and more preferably about 10 to 30%. If the amount added is too large, the properties of the material will dominate, and the effect of suppressing the factors that inhibit the polymerization will not be sufficiently obtained, or the material itself will be oriented, so that the penetration of the electrolyte will deteriorate. , Load characteristics, etc. may deteriorate. Further, if the amount to be added is not sufficient, there arises a problem that the effect of improving the filling property cannot be obtained sufficiently.

また、被覆比を異ならせる代わりに、黒鉛粉末の種類を変えることによって、高容量密度かつ高性能の電池を得ることも可能である。これまで、X線回折、ラマン分光法、真密度等により定義されていた結晶性の評価が異なる2種類以上の黒鉛粉末を用い、同等の被覆比で低結晶性炭素材料を被覆した場合であっても、黒鉛粉末の種類によって充填性が異なることが明らかになった。これは、X線回折法等の評価手段によって判断できない微細組織の並び、芯材の形状に由来する複合黒鉛材料粉末の形状、粒径のバランス等の違いによって、充填性に差が生じるものと推察される。   Moreover, it is also possible to obtain a battery having a high capacity density and a high performance by changing the kind of graphite powder instead of changing the covering ratio. This is the case where two or more types of graphite powders with different crystallinity evaluations defined by X-ray diffraction, Raman spectroscopy, true density, etc., are used to coat a low crystalline carbon material with an equivalent coating ratio. However, it became clear that the filling properties differ depending on the type of graphite powder. This is because the difference in filling properties is caused by the difference in the fine structure alignment, the shape of the composite graphite material powder derived from the shape of the core material, the balance of particle diameters, etc., which cannot be judged by the evaluation means such as the X-ray diffraction method. Inferred.

黒鉛粉末が異なる場合の被覆比は特に限定されないが、より充填性を上げるために、被覆比の大きい複合黒鉛材料粉末の被覆比は0.03〜0.25であることが好ましく、被覆比の小さい複合黒鉛材料粉末の被覆比は0.01〜0.10であることが好ましく、更に好ましくは0.01〜0.05である。
また、被覆比の大きい複合黒鉛材料粉末の量に対する被覆比の小さい複合黒鉛材料粉末の量は重量比で50%以下であることが好ましく、より好ましくは10〜30%程度である。加える量が多すぎると、その材料の性質が支配的になり、重合を阻害する要因を抑える効果が十分に得られなかったり、材料自身が配向し、電解液の染み込みが悪くなる等の理由によって、負荷特性等が悪くなったりする。また加える量が十分でないと、充填性向上の効果が十分に得られない問題が生じる。
The coating ratio when the graphite powder is different is not particularly limited, but in order to further improve the filling property, the coating ratio of the composite graphite material powder having a large coating ratio is preferably 0.03 to 0.25. The covering ratio of the small composite graphite material powder is preferably 0.01 to 0.10, more preferably 0.01 to 0.05.
Further, the amount of the composite graphite material powder having a small coating ratio relative to the amount of the composite graphite material powder having a large coating ratio is preferably 50% or less by weight, and more preferably about 10 to 30%. If the amount added is too large, the properties of the material will dominate, and the effect of suppressing the factors that inhibit the polymerization will not be sufficiently obtained, or the material itself will be oriented, so that the penetration of the electrolyte will deteriorate. , Load characteristics, etc. may deteriorate. Further, if the amount to be added is not sufficient, there arises a problem that the effect of improving the filling property cannot be obtained sufficiently.

本発明においては、被覆比の大きい複合黒鉛材料粉末の黒鉛粉末として塊状の人造黒鉛を用い、被覆比の小さい複合黒鉛材料粉末の黒鉛粉末として天然黒鉛粉末を用いた場合に良好な結果が得られている。
本発明では、充填性の程度を示す指標として、圧縮比というパラメータを定義し、複合黒鉛材料粉末の物性を規定する。ここで、圧縮比とは、対象となる複合黒鉛材料粉末に、バインダーとして7.5重量部(複合黒鉛材料粉末100重量部に対して)のPVDF(ポリフッ化ビニリデン)を加え、溶剤と混合して得られたスラリーを、銅箔上に塗布し、線圧300kg/cmにてプレスした場合の厚み変化を意味し、具体的には、
圧縮比=プレス後の塗膜の厚み/プレス前の塗膜の厚み
で定義される。
In the present invention, good results are obtained when massive artificial graphite is used as the graphite powder of the composite graphite material powder having a large coating ratio and natural graphite powder is used as the graphite powder of the composite graphite material powder having a low coating ratio. ing.
In the present invention, a parameter called a compression ratio is defined as an index indicating the degree of filling property, and the physical properties of the composite graphite material powder are defined. Here, the compression ratio means that 7.5 parts by weight of PVDF (polyvinylidene fluoride) as a binder is added to the target composite graphite material powder and mixed with a solvent. The slurry obtained in this way is applied on a copper foil and means a change in thickness when pressed at a linear pressure of 300 kg / cm. Specifically,
Compression ratio = defined by the thickness of the coating film after pressing / the thickness of the coating film before pressing.

更に、塗膜を作製した場合の塗膜密度も重要である。つまりプレス前の塗膜密度が高く、更に圧縮比が小さいほど、高密度の負極を得ることが可能となる。圧縮比が十分に小さくても、プレス前の塗膜密度が小さすぎる場合には、高密度の負極を得るためにプレスを行うと黒鉛粉末の配向が起こり易くなり、負荷特性の悪い負極になる場合がある。また、プレス前の塗膜密度が十分に高い材料であっても、圧縮比が大きいと高エネルギー密度の負極が得られないため好ましくない。   Furthermore, the coating film density when the coating film is produced is also important. That is, the higher the coating film density before pressing and the smaller the compression ratio, the higher the density of the negative electrode can be obtained. Even if the compression ratio is sufficiently small, if the coating film density before pressing is too small, the orientation of the graphite powder tends to occur when pressing to obtain a high-density negative electrode, resulting in a negative electrode with poor load characteristics. There is a case. Moreover, even if the coating film density before pressing is sufficiently high, a high energy density negative electrode cannot be obtained if the compression ratio is large, which is not preferable.

本発明においては、プレス前の塗膜密度を0.7g/cm3以上となるようにし、圧縮比が0.4〜0.7であり、プレス後の塗膜密度が1.5g/cm3以上となるように、2種以上の複合黒鉛材料粉末を混合することが好ましい。プレス後の塗膜密度が高いほど、高容量の負極が得られるが、プレス前の塗膜密度が低く、圧縮比が小さい場合に得られた高密度の負極は、材料の配向等により負荷特性が悪くなることがあり好ましくない。また、好ましくはプレス後の塗膜密度は1.8g/cm3程度までに抑えることが好ましい。これ以上高い場合は、負極中の空隙が十分ではないため、負極中の電解質の量が十分ではなく、負荷特性等の電池特性が十分に得られない場合がある。 In the present invention, the coating density before pressing is 0.7 g / cm 3 or more, the compression ratio is 0.4 to 0.7, and the coating density after pressing is 1.5 g / cm 3. In order to achieve the above, it is preferable to mix two or more kinds of composite graphite material powder. The higher the coating film density after pressing, the higher the capacity of the negative electrode is obtained, but the high density negative electrode obtained when the coating density before pressing is low and the compression ratio is small is May be worse, and is not preferable. Moreover, it is preferable that the coating film density after pressing is suppressed to about 1.8 g / cm 3 . If it is higher than this, since the voids in the negative electrode are not sufficient, the amount of electrolyte in the negative electrode is not sufficient, and battery characteristics such as load characteristics may not be sufficiently obtained.

本発明における複合黒鉛材料粉末は、気相法、液相法、固相法等の手法により、図1に示すように高結晶性黒鉛粉末1の表面が低結晶性炭素材料2で被覆されることによって得ることができる。
芯材に用いる黒鉛粉末は、天然黒鉛、粒子状(鱗片状乃至塊状、繊維状、ウイスカー状、球状、破砕状等)の人造黒鉛、あるいは、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等の黒鉛化品の1種又は2種以上が使用できる。
The composite graphite material powder in the present invention is coated with the low crystalline carbon material 2 on the surface of the high crystalline graphite powder 1 as shown in FIG. 1 by means of a gas phase method, a liquid phase method, a solid phase method, or the like. Can be obtained.
Graphite powder used for the core material is natural graphite, particulate (scalar or lump, fiber, whisker, spherical, crushed, etc.) artificial graphite, or mesocarbon microbeads, mesophase pitch powder, isotropic pitch One or more of graphitized products such as powder can be used.

ここで、芯材となる黒鉛粉末として、更に好ましくは、X線広角回折法による(002)面の平均面間隔(d002)が0.335〜0.340nm、(002)面方向の結晶子厚み(Lc)が10nm以上(より好ましくは、40nm以上)、(110)面方向の結晶子厚み(La)が10nm以上(より好ましくは、50nm以上)、またアルゴンレーザーラマンによる1580cm-1付近のピーク強度比に対する1360cm-1付近のピーク強度比(以後R値と記す)が0.5以下(より好ましくは、0.4以下)であることが好ましい。平均面間隔が0.340nmより大きい場合、あるいはLc、Laが10nmより小さい場合、あるいはR値が0.5を超える場合には、黒鉛粉末の結晶性が充分ではなく、複合黒鉛材料粉末を作製した際に、リチウムの溶解析出に近い低い電位部分(Liの電位基準で0〜300mV)の容量が十分ではなくなるので、好ましくない。 Here, the graphite powder as the core material is more preferably an average interplanar spacing (d002) of (002) plane of 0.335 to 0.340 nm and a crystallite thickness in the (002) plane direction by X-ray wide angle diffraction method. (Lc) is 10 nm or more (more preferably, 40 nm or more), (110) plane crystallite thickness (La) is 10 nm or more (more preferably, 50 nm or more), and a peak near 1580 cm −1 by argon laser Raman. It is preferable that the peak intensity ratio (hereinafter referred to as R value) near 1360 cm −1 with respect to the intensity ratio is 0.5 or less (more preferably 0.4 or less). When the average interplanar spacing is larger than 0.340 nm, or when Lc and La are smaller than 10 nm, or when the R value exceeds 0.5, the crystallinity of the graphite powder is not sufficient, and a composite graphite material powder is produced. In this case, the capacity of the low potential portion (0 to 300 mV on the basis of the Li potential) close to the dissolution and precipitation of lithium is not sufficient, which is not preferable.

芯材となる黒鉛粉末の粒径分布は、0.1〜150μm程度であることが好ましい。黒鉛粉末の表面が低結晶性炭素材料で被覆された複合黒鉛材料粉末の粒径は、実質的に芯材である黒鉛粉末の粒径に依存するため、芯材の粒径により、最終生成物の粒径もほぼ規定されることになる。芯材の粒径が、0.1μmよりも小さい場合には、電池のセパレータの空孔を通して内部短絡を引き起こす危険性が高くなるのに対し、150μmよりも大きくなる場合には、負極の均一性、活物質の充填密度、負極を作製する工程上でのハンドリング性等が低下するので、いずれも好ましくない。
ここでの粒径とは、粉末の平均値であり、レーザー回折式粒度分布計により測定された粒度分布において、ピークを示す値を粒径と定義している。
The particle size distribution of the graphite powder as the core material is preferably about 0.1 to 150 μm. The particle size of the composite graphite material powder whose surface of the graphite powder is coated with the low crystalline carbon material substantially depends on the particle size of the graphite powder that is the core material. The particle size of the film is also almost specified. When the particle size of the core material is smaller than 0.1 μm, the risk of causing an internal short circuit through the pores of the battery separator increases, whereas when larger than 150 μm, the uniformity of the negative electrode Further, since the packing density of the active material, the handling property in the process of producing the negative electrode, and the like are deteriorated, neither is preferable.
The particle size here is an average value of the powder, and a value indicating a peak in the particle size distribution measured by a laser diffraction particle size distribution meter is defined as the particle size.

上記黒鉛粉末の表面に低結晶性炭素材料を形成する手法において、気相法とは、気体状の原料、あるいは液体状の原料を噴霧、あるいはバブリング等の手法により、反応系内に輸送し、原料の熱分解によって黒鉛粉末の表面に気相から炭素を形成させる方法である。熱分解温度としては、原料によって異なるが、450〜1500℃程度の温度範囲で行うことができる。
原料としてはメタン、エタン、プロパン等の脂肪族飽和炭化水素、プロピレン等の脂肪族不飽和炭化水素、べンゼン、トルエン、キシレン、ナフタレン、ペリレン等の芳香族炭化水素が挙げられる。また、適宜アルゴン、窒素等の不活性ガスをキャリアガスとして用いることも可能であり、また水素を添加して、気相中でのすすの発生を抑える等の方法も考えられる。
In the method of forming a low crystalline carbon material on the surface of the graphite powder, the vapor phase method is a method of spraying gaseous raw material or liquid raw material or transporting it into the reaction system by a method such as bubbling, In this method, carbon is formed from the gas phase on the surface of the graphite powder by pyrolysis of the raw material. Although it changes with raw materials as a thermal decomposition temperature, it can carry out in the temperature range of about 450-1500 degreeC.
Examples of the raw material include aliphatic saturated hydrocarbons such as methane, ethane, and propane, aliphatic unsaturated hydrocarbons such as propylene, and aromatic hydrocarbons such as benzene, toluene, xylene, naphthalene, and perylene. In addition, an inert gas such as argon or nitrogen can be used as a carrier gas as appropriate, and a method of adding hydrogen to suppress the generation of soot in the gas phase is also conceivable.

上記黒鉛粉末の表面に低結晶性炭素材料を形成する手法において、液相法とは炭素前駆体が液相を経由して炭素化される原料を黒鉛の表面に付着させ、それらを焼成することによって表面に炭素を形成する方法である。原料としてはナフタレン、フェナントレン、アセナフチレン、アントラセン、トリフェニレン、ピレン、クリセン、ペリレン等の芳香族炭化水素、これらを加熱加圧下で重縮合して得られたタールあるいはピッチ類、あるいはこれらの芳香族炭化水素の混合物を主成分とするタール、ピッチ、アスファルト、油類があげられ、その由来は、石油系及び石炭系を問わない。   In the method of forming a low crystalline carbon material on the surface of the graphite powder, the liquid phase method is a method in which a carbon precursor is carbonized via a liquid phase, attached to the surface of the graphite, and fired. To form carbon on the surface. Raw materials include aromatic hydrocarbons such as naphthalene, phenanthrene, acenaphthylene, anthracene, triphenylene, pyrene, chrysene, and perylene, tars or pitches obtained by polycondensation of these under heat and pressure, or aromatic hydrocarbons thereof. Tar, pitch, asphalt, and oils mainly composed of a mixture of the above are available, regardless of whether they are petroleum-based or coal-based.

また、焼成に先立ち、炭素前駆体が被覆された黒鉛粉末を洗浄工程に供してもよい。洗浄工程を加えることにより、炭素前駆体の低分子成分を取り除くことができ、炭素前駆体からの炭化率を向上させることができるとともに、粒子同士が焼成の際に融着、あるいは凝集を抑えるといった効果が得られる。ここで、洗浄に用いる有機溶媒としては、トルエン、キノリン、アセトン、ヘキサン、ベンゼン、キシレン、メチルナフタレン、アルコール類、石炭系油、石油系油等が挙げられる。これらの中では、トルエン、キノリン、アセトン、ベンゼン、キシレン、メタノール、石炭系軽油・中油、石油系軽油・中油等がより好ましい。   Prior to firing, graphite powder coated with a carbon precursor may be subjected to a washing step. By adding a washing step, low molecular components of the carbon precursor can be removed, the carbonization rate from the carbon precursor can be improved, and particles can be prevented from being fused or aggregated during firing. An effect is obtained. Here, examples of the organic solvent used for washing include toluene, quinoline, acetone, hexane, benzene, xylene, methylnaphthalene, alcohols, coal oil, and petroleum oil. Among these, toluene, quinoline, acetone, benzene, xylene, methanol, coal-based light oil / middle oil, petroleum-based light oil / middle oil, and the like are more preferable.

上記黒鉛粉末の表面に低結晶性炭素材料を形成する手法において、固相法とは、炭素前駆体が固相を経由して炭素化される原料を黒鉛の表面に付着させ、それらを焼成することによって表面に炭素を形成する方法である。一般に、樹脂は固相を経由して炭素化がすすむが、そのような樹脂を黒鉛粉末の表面に付着させるには、溶剤に溶解する、融点以上の温度に加熱する等の手法により液状とし、上記液相法の説明に記載した手法により混合し、表面に付着させる方法が挙げられる。また樹脂と黒鉛粉末を混合し、焼成時に融点付近で保持することによって混合することも可能である。   In the method of forming a low crystalline carbon material on the surface of the above graphite powder, the solid phase method is a method in which a raw material that is carbonized via a solid phase is attached to the surface of the graphite, and these are fired. This is a method of forming carbon on the surface. In general, the carbonization of the resin proceeds via a solid phase, but in order to attach such a resin to the surface of the graphite powder, the resin is dissolved in a solvent, heated to a temperature higher than the melting point, etc. The method of mixing by the method described in description of the said liquid phase method, and making it adhere to the surface is mentioned. It is also possible to mix the resin and graphite powder by mixing them and holding them near the melting point during firing.

具体的な原料としては、ポリアミドイミド樹脂;ポリアミド樹脂;ポリアセチレン、ポリ(p−フェニレン)、ポリ(p−フェニレンビニレン)等の共役系樹脂、フェノール樹脂;フルフリルアルコール樹脂;セルロース;ポリアクリロニトリル、ポリ(α−ハロゲン化アクリロニトリル)等のアクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリ塩化ビニル等のハロゲン化ビニル樹脂;等が挙げられる。また、焼成条件としては上記液層法に記載の焼成方法、焼成雰囲気が適用可能である。   Specific raw materials include: polyamideimide resin; polyamide resin; conjugated resins such as polyacetylene, poly (p-phenylene), poly (p-phenylene vinylene), phenol resin; furfuryl alcohol resin; cellulose; polyacrylonitrile, poly Acrylic resins such as (α-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and chlorinated polyvinyl chloride; and the like. As the firing conditions, the firing method and firing atmosphere described in the above liquid layer method can be applied.

また、上記方法によって得られた低結晶性炭素材料とは、更に好ましくは、X線広角回折法による(002)面の平均面間隔(d002)が340nmより大きく、(002)面方向の結晶子厚み(Lc)が40nmより小さく(より好ましくは、10nmより小さい)、(110)面方向の結晶子厚み(La)が50nmより小さく(より好ましくは10nmより小さい)、またR値が0.4より大きい(より好ましくは、0.5より大きい)ことが好ましい。   Further, the low crystalline carbon material obtained by the above method is more preferably a crystallite in the (002) plane direction having an average (002) plane spacing (d002) of more than 340 nm by the X-ray wide angle diffraction method. The thickness (Lc) is smaller than 40 nm (more preferably smaller than 10 nm), the crystallite thickness (La) in the (110) plane direction is smaller than 50 nm (more preferably smaller than 10 nm), and the R value is 0.4. It is preferably larger (more preferably larger than 0.5).

上記活物質100重量部に対して、結着材を1〜30重量部混合して負極を形成する。この結着材には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、合成ゴム類等を用いることができるがこれに限定されるものではない。結着材が30重量部より多いと、負極の抵抗あるいは分極等が大きくなり放電容量が小さくなるため実用的なリチウムポリマー電池が作製できない。逆に、結着材が、1重量部より少ないと結着能力がなくなってしまい、実用的ではない。負極作製において、結着性を上げるために、結着材の融点前後の温度で熱処理を行うこともできる。   A negative electrode is formed by mixing 1 to 30 parts by weight of a binder with respect to 100 parts by weight of the active material. As the binder, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefin-based polymers such as polyethylene and polypropylene, synthetic rubbers and the like can be used, but are not limited thereto. If the binder is more than 30 parts by weight, the resistance or polarization of the negative electrode increases and the discharge capacity decreases, making it impossible to produce a practical lithium polymer battery. On the other hand, when the amount of the binder is less than 1 part by weight, the binding ability is lost, which is not practical. In the preparation of the negative electrode, heat treatment can be performed at a temperature around the melting point of the binder in order to increase the binding property.

上記圧縮比を有する負極を得るために、上記結着材の中でも合成ゴム類を結着材として用いることが好ましい。上記圧縮比を有し、プレス後の塗膜密度が1.5g/cc以上の物性を有する負極は、充放電に伴う、負極の膨張収縮の繰り返しによりサイクル劣化が起こり易い場合がある。ゴム系の結着材は、強い結着能とゴム弾性を有するため、活物質の膨張収縮に追従し、負極のサイクル劣化を抑えることが可能となると考えられる。   In order to obtain a negative electrode having the compression ratio, it is preferable to use synthetic rubbers as the binder among the binders. A negative electrode having the above compression ratio and having a physical property of a coating film density after pressing of 1.5 g / cc or more may easily undergo cycle deterioration due to repeated expansion and contraction of the negative electrode accompanying charging and discharging. Since the rubber-based binder has strong binding ability and rubber elasticity, it is considered that it can follow the expansion and contraction of the active material and suppress cycle deterioration of the negative electrode.

本発明における化学架橋ゲルの原料となる重合性モノマーは、電解質の溶媒溶液と親和性があり、重合可能な官能基を有する化合物であれば、特に制限はない。例えばポリエーテル構造及び不飽和二重結合基を有するもの、オリゴエステルアクリレート、ポリエステル、ポリイミン、ポリチオエーテル、ポリサルファン等のポリマーを与える重合性モノマーの単独もしくは二種以上の併用が挙げられる。なお、溶媒との親和性からポリエーテル構造及び不飽和二重結合基を有するものが好ましい。ポリエーテル構造単位としては、例えばエチレンオキシド、プロピレンオキシド、ブチレンオキシド、グリシジルエーテル類等が挙げられ、これらの単独又は二種以上の組み合わせが好適に用いられる。また、二種以上の組み合わせの場合、その形態はブロック、ランダムを問わず適宜選択できる。中でもアクリレート系の材料で多官能モノマーと単官能モノマーからなる重合性モノマーの使用が、負極の体積変化に追従する強度と弾性を有するゲルを与えるため好ましい。   The polymerizable monomer used as the raw material for the chemically crosslinked gel in the present invention is not particularly limited as long as it is a compound having an affinity for an electrolyte solvent solution and having a polymerizable functional group. For example, the thing which has a polyether structure and an unsaturated double bond group, the polymeric monomer which gives polymers, such as oligoester acrylate, polyester, polyimine, polythioether, polysulfane, is used individually or in combination of 2 or more types. In addition, those having a polyether structure and an unsaturated double bond group are preferred from the viewpoint of affinity with a solvent. Examples of the polyether structural unit include ethylene oxide, propylene oxide, butylene oxide, glycidyl ethers and the like, and these are used alone or in combination of two or more. In the case of a combination of two or more, the form can be selected as appropriate regardless of whether it is a block or random. Among them, the use of a polymerizable monomer composed of a polyfunctional monomer and a monofunctional monomer as an acrylate-based material is preferable because it gives a gel having strength and elasticity to follow the volume change of the negative electrode.

アクリレート系のモノマーとしては、ポリエーテルポリオールの末端ヒドロキシル基をアクリル酸でエステル化したものを好適に用いることができる。多官能モノマーはエチレングリコール、グリセリン、トリメチロールプロパンなどの多価アルコールを開始剤として、これにエチレンオキシド(EO)単独またはEOとプロピレンオキシド(PO)を付加重合させて得られたポリエーテルポリオールの末端ヒドロキシル基をアクリル酸でエステル化することにより得られる。また、単官能モノマーは、メタノール、エタノール、プロパノールなどの1価アルコールを開始剤として、これにエチレンオキシド(EO)単独またはEOとプロピレンオキシド(PO)を付加重合させて得られたポリエーテルポリオールの末端ヒドロキシル基をアクリル酸でエステル化することにより得られる。   As the acrylate monomer, one obtained by esterifying the terminal hydroxyl group of polyether polyol with acrylic acid can be suitably used. The polyfunctional monomer is a polyhydric alcohol such as ethylene glycol, glycerin, or trimethylolpropane as an initiator, and the end of polyether polyol obtained by addition polymerization of ethylene oxide (EO) alone or EO and propylene oxide (PO). It is obtained by esterifying a hydroxyl group with acrylic acid. The monofunctional monomer is a terminal end of a polyether polyol obtained by addition polymerization of ethylene oxide (EO) alone or EO and propylene oxide (PO) with a monohydric alcohol such as methanol, ethanol or propanol as an initiator. It is obtained by esterifying a hydroxyl group with acrylic acid.

ここで多官能モノマーは、ゲル電解質の電解液の保液性に重要な役割を示し、平均分子量が5,000〜10,000の範囲であることがさらに好ましい。上記範囲内の多官能モノマーを採用した場合、プレカーサーを調整する場合に、容易に電解液に溶解することができ、また、ゲル電解質作成時に優れた保液性を有する。
一方、単官能モノマーは、平均分子量が小さい方がゲル電解質の柔軟性が向上でき、平均分子量200〜3,000程度のものが好適に用いられる。
Here, the polyfunctional monomer shows an important role in the liquid retention of the electrolyte solution of the gel electrolyte, and the average molecular weight is more preferably in the range of 5,000 to 10,000. When a polyfunctional monomer within the above range is employed, it can be easily dissolved in the electrolyte when adjusting the precursor, and has excellent liquid retention when preparing the gel electrolyte.
On the other hand, the monofunctional monomer having a smaller average molecular weight can improve the flexibility of the gel electrolyte, and those having an average molecular weight of about 200 to 3,000 are preferably used.

また、電解質に用いる電解液としては、PC、EC、ブチレンカーボネート等の環状カーボネート類と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ−ブチロラクトン、γ−バレロラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられ、これらを用いることができる。   Examples of the electrolyte used for the electrolyte include cyclic carbonates such as PC, EC, and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, γ-butyrolactone, and γ-valero. Lactones such as lactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, dioxane, dimethyl sulfoxide, sulfolane, Examples thereof include methyl sulfolane, acetonitrile, methyl formate, methyl acetate, and the like.

電解質塩として、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、リンフッ化リチウム(LiPF6)、6フッ化砒酸リチウム(LiAsF6)、6フッ化アンチモン酸リチウム(LiSbF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、トリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)等のリチウム塩が挙げられ、これらの1種以上を混合して用いることができる。
電解質は、前記で選ばれた溶媒に電解質塩を溶解することによって電解液を調製し、上記重合性モノマーと混合し、重合させることによって得られる。
As an electrolyte salt, lithium perchlorate (LiClO 4), lithium borofluoride (LiBF 4), Rinfu' lithium (LiPF 6), 6 fluoride arsenate lithium (LiAsF 6), 6 lithium fluoride antimonate (LiSbF 6), Examples thereof include lithium salts such as lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium trifluoromethanesulfonate (LiN (CF 3 SO 2 ) 2 ), and the like. The above can be mixed and used.
The electrolyte is obtained by preparing an electrolytic solution by dissolving an electrolyte salt in the solvent selected above, mixing with the polymerizable monomer, and polymerizing.

上記、重合性モノマーと電解液の比率は、電解液に匹敵する性能と、液漏れを起こさない電解液の保持性の観点から、電解液:モノマーが70:30〜99:1が好ましく、より好ましくは80:20〜97:3である。
また単官能モノマーと多官能モノマーを混合して用いる場合、モノマーの混合比は、多官能モノマー:単官能モノマーが4:6〜9:1の範囲で混合することが好ましい。
The ratio of the polymerizable monomer to the electrolytic solution is preferably from 70:30 to 99: 1 of the electrolytic solution: monomer from the viewpoint of performance comparable to the electrolytic solution and the retention of the electrolytic solution that does not cause liquid leakage. Preferably it is 80: 20-97: 3.
Moreover, when mixing and using a monofunctional monomer and a polyfunctional monomer, it is preferable that the mixing ratio of a monomer mixes in the range of polyfunctional monomer: monofunctional monomer 4: 6-9: 1.

高分子固体電解質の架橋方法としては、紫外線、電子線、可視光等の光エネルギーを用いる方法、加熱による方法を用いることができる。必要であれば重合開始剤を用いることも重要である。特に紫外線あるいは加熱による架橋方法においては、数%以下の重合開始剤を加えることが好ましい。重合開始剤としては、トリメチルシリルベンゾフェノン、ベンゾイン、2−メチルベンゾイン、4−メトキシベンゾフェノン、ベンゾインメチルエーテルアントラキノン、ベンジルジメチルケタール等の光重合開始剤や、過酸化ベンゾイル、過酸化メチルエチルケトン、α,α′−アゾビスイソブチロニトリル等の重合開始剤を添加してもよい。   As a method for crosslinking the polymer solid electrolyte, a method using light energy such as ultraviolet rays, electron beams, or visible light, or a method using heating can be used. It is also important to use a polymerization initiator if necessary. Particularly in the crosslinking method by ultraviolet rays or heating, it is preferable to add a polymerization initiator of several percent or less. As the polymerization initiator, photopolymerization initiators such as trimethylsilylbenzophenone, benzoin, 2-methylbenzoin, 4-methoxybenzophenone, benzoin methyl ether anthraquinone, benzyldimethyl ketal, benzoyl peroxide, methyl ethyl ketone peroxide, α, α′- A polymerization initiator such as azobisisobutyronitrile may be added.

また、紫外線重合、紫外線の波長は250〜360nmが適当である。開始剤を用いる場合であっても、本発明によれば、少ない開始剤で良好な重合体を得ることが可能である。残存重合開始剤、重合開始剤による副生成物は電池特性に悪影響を及ぼす場合があり、必要最小限に留めるのが好ましい。開始剤の量としては、開始剤の種類にもよるが、重合性モノマーと電解液とからなるプレカーサーに対し、通常3000ppm以下に抑えることが好ましい。   In addition, the wavelength of ultraviolet polymerization and ultraviolet light is suitably 250 to 360 nm. Even when an initiator is used, according to the present invention, it is possible to obtain a good polymer with a small amount of initiator. Residual polymerization initiators and by-products from the polymerization initiators may adversely affect battery characteristics, and are preferably kept to the minimum necessary. Although it depends on the type of the initiator, the amount of the initiator is usually preferably suppressed to 3000 ppm or less with respect to the precursor composed of the polymerizable monomer and the electrolytic solution.

本発明のリチウムポリマー二次電池における正極としては、例えばリチウムを含有した酸化物を正極活物質として用いることができる。具体的な例としてはLiCoO2、LiNiO2、LiFeO2、LiMnO2、LiMn24、あるいはそれらの遷移金属の一部を置換した材料、等が挙げられ、これに導電材、結着材及び場合によっては、固体電解質等を混合して形成される。
この混合比は、活物質100重量部に対して、導電材を5〜50重量部、結着材を1〜30重量部とすることができる。この導電材には、カーボンブラック(アセチレンブラック、サーマルブラック、チャンネルブラック等)等の炭素類や、グラファイト粉末、金属粉末等を用いることができるがこれに限定されるものではない。
As the positive electrode in the lithium polymer secondary battery of the present invention, for example, an oxide containing lithium can be used as the positive electrode active material. Specific examples include LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , or materials obtained by substituting a part of their transition metals, and the like. In some cases, it is formed by mixing a solid electrolyte or the like.
The mixing ratio can be 5 to 50 parts by weight of the conductive material and 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the active material. As the conductive material, carbons such as carbon black (acetylene black, thermal black, channel black, etc.), graphite powder, metal powder, and the like can be used, but are not limited thereto.

この結着材には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、合成ゴム類等を用いることができるがこれに限定されるものではない。
導電材が5重量部より少ない、あるいは結着材が30重量部より多いと、正極の抵抗あるいは分極等が大きくなり放電容量が小さくなるため実用的なリチウムポリマー電池が作製できない。導電材が50重量部より多い(混合する導電材の種類により重量部は変わる)と正極内に含まれる活物質量が減るため正極としての放電容量が小さくなる。結着材は、1重量部より少ないと結着能力がなくなってしまい、30重量部より多いと、導電材の場合と同様に、正極内に含まれる活物質量が減り、更に、上記に記載のごとく、正極の抵抗あるいは分極等が大きくなり放電容量が小さくなるため実用的ではない。正極作製において、結着性を上げるためにそれぞれの結着材の融点前後の温度で熱処理を行うことが好ましい。
As the binder, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefin-based polymers such as polyethylene and polypropylene, synthetic rubbers and the like can be used, but are not limited thereto.
When the conductive material is less than 5 parts by weight or the binder is more than 30 parts by weight, the resistance or polarization of the positive electrode increases and the discharge capacity decreases, so that a practical lithium polymer battery cannot be produced. If the conductive material is more than 50 parts by weight (the weight part varies depending on the type of conductive material to be mixed), the amount of the active material contained in the positive electrode is reduced, so that the discharge capacity as the positive electrode is reduced. When the binder is less than 1 part by weight, the binding ability is lost. When the binder is more than 30 parts by weight, the amount of the active material contained in the positive electrode is reduced as in the case of the conductive material. As described above, since the resistance or polarization of the positive electrode increases and the discharge capacity decreases, it is not practical. In the production of the positive electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder in order to improve the binding property.

実施例1、比較例1
高分子固体電解質のプレカーサーの硬化に与える影響を見るために、黒鉛材料粉末を混合した状態でプレカーサーの硬化実験を行った。
プレカーサーの調整
1mol/リットルのLiBF4を溶解したECとγ−ブチロラクトンの1:1の混合溶媒を電解液とした。エチレンオキサイドとプロピレンオキシドの共重合体を含有してなる平均分子量7500〜9000の四官能アクリレートモノマーと平均分子量200〜300の単官能アクリレートモノマーが重量比で7:3のモノマーを、電解液とモノマーの比率が95:5となるように電解液に混合した。その溶液に熱重合開始剤を全重量に対して200ppm加えプレカーサーとした。使用した熱重合開始剤は、t−ブチルパーオキシネオデカネートである。
Example 1 and Comparative Example 1
In order to see the effect of the solid polymer electrolyte on the curing of the precursor, a curing experiment of the precursor was performed in a state where the graphite material powder was mixed.
Preparation of precursor A 1: 1 mixed solvent of EC and γ-butyrolactone in which 1 mol / liter of LiBF 4 was dissolved was used as an electrolytic solution. A tetrafunctional acrylate monomer having an average molecular weight of 7500 to 9000 comprising a copolymer of ethylene oxide and propylene oxide and a monofunctional acrylate monomer having an average molecular weight of 200 to 300 is converted to a monomer having a weight ratio of 7: 3. Was mixed with the electrolytic solution so that the ratio of the ratio was 95: 5. A thermal polymerization initiator was added to the solution in an amount of 200 ppm based on the total weight to prepare a precursor. The thermal polymerization initiator used is t-butyl peroxyneodecanate.

黒鉛粉末とプレカーサーの比が重量比で1:10となるように両者を混合し、80℃恒温漕にて24時間保持し、プレカーサーの硬化状況を確認した。
黒鉛粉末としてティムカル社製人造黒鉛(KS25)を芯材とし、低結晶性炭素材料で被覆された複合黒鉛材料粉末で低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)の平均値を変更したものを用いて硬化実験を行った(実施例1)。また、低結晶性炭素材料で被覆されない場合を比較例1とした。結果を表1に示す。表1中、◎は十分に硬化しており、液状の部分もない状況を意味し、○はゲルは若干柔らかいが液状の部分は残っていない状況を意味し、×は十分に硬化せず、液状の部分が観察される状況を意味する。
Both were mixed so that the weight ratio of the graphite powder and the precursor was 1:10, and kept at 80 ° C. for 24 hours to confirm the curing state of the precursor.
The amount of low crystalline carbon material in the composite graphite material powder coated with low crystalline carbon material with artificial graphite (KS25) made by Timcal as the core as graphite powder / (amount of high crystalline graphite powder + low crystallinity) A curing experiment was carried out using a carbon material whose average value was changed (Example 1). Further, Comparative Example 1 was defined as a case where it was not coated with a low crystalline carbon material. The results are shown in Table 1. In Table 1, ◎ means that it is sufficiently cured and has no liquid part, ○ means that the gel is slightly soft but no liquid part remains, and × does not sufficiently cure, It means a situation where a liquid part is observed.

Figure 2009158496
Figure 2009158496

表1から、被覆比が大きいほど硬化状況が良好であった。
同様にして、開始剤の量を変更して実験を行ったところ、変更しても硬化度の傾向は同様であり、被覆比が大きい方がよく硬化している。
また、開始剤をプレカーサー全量に対し5000ppm程度まで増やした場合は、黒鉛粉末のみでもある程度の硬化状況がえられた。したがって複合黒鉛材料粉末は、開始剤濃度によらず硬化し、特に開始剤が5000ppm以下の領域で芯材のみの場合より効果が大きいものであることがわかった。
From Table 1, the larger the coating ratio, the better the curing situation.
Similarly, when the amount of the initiator was changed and the experiment was conducted, the tendency of the degree of curing was the same even when the amount was changed, and the larger the covering ratio, the better the curing.
In addition, when the initiator was increased to about 5000 ppm with respect to the total amount of the precursor, a certain degree of curing was obtained with only graphite powder. Therefore, it was found that the composite graphite material powder was cured regardless of the initiator concentration, and in particular, the effect was greater than the case of using only the core material in the region where the initiator was 5000 ppm or less.

実施例2
(正極の作製)
正極活物質にコバルト酸リチウム(LiCoO2)を使用した。結着材であるポリフッ化ビニリデンを、一旦乳鉢で溶剤N−メチル−2−ピロリドンに溶かした結着材溶液に、上記正極活物質とアセチレンブラックとの混合物を分散させることによりペーストを作製した。
このようにして得られたペーストをアルミニウム箔集電体上に塗布し、これを60℃で仮乾燥、150℃で熱処理後プレスした。負極サイズを3.5×3cm(塗工部3×3cm)とし、無塗工部にアルミニウム箔(50μm)を溶接した。更に水分除去のために180℃で減圧乾燥したものを試験用の正極として用いた。塗膜密度は2.9g/cm3であった。
Example 2
(Preparation of positive electrode)
Lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material. A paste was prepared by dispersing a mixture of the positive electrode active material and acetylene black in a binder solution in which polyvinylidene fluoride as a binder was once dissolved in a solvent N-methyl-2-pyrrolidone in a mortar.
The paste thus obtained was applied onto an aluminum foil current collector, which was temporarily dried at 60 ° C., heat treated at 150 ° C. and pressed. The negative electrode size was 3.5 × 3 cm (coated portion 3 × 3 cm), and an aluminum foil (50 μm) was welded to the uncoated portion. Furthermore, what was dried under reduced pressure at 180 ° C. for water removal was used as a positive electrode for testing. The coating film density was 2.9 g / cm 3 .

(負極の作製)
負極活物質にティムカル社製人造黒鉛(KS25)を芯材として用い、表面が低結晶性炭素材料で被覆された複合黒鉛材料粉末(粒径12μm、d(002)=0.337nm、R値=0.4、低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)=0.18)を80重量部と、天然黒鉛(マダガスカル産)を芯材として表面が低結晶性炭素で被覆された複合黒鉛材料粉末(粒径16μm、d(002)=0.336nm、R値=0.21、低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)=0.05)を20重量部との混合物を負極活物質として用い、結着材であるポリフッ化ビニリデンを乳鉢で溶剤N−メチル−2−ピロリドンに溶かした溶液に分散させ、ペースト状にしたものを、20μmの銅箔に塗布し、これを60℃で仮乾燥、240℃で熱処理後プレスした。負極サイズを3.5×3cm(塗工部3×3cm)とし、無塗工部にニッケル箔(50μm)のリードを溶接した。更に水分除去のために150℃で真空乾燥したものを負極として用いた。塗膜密度は1.58g/cm3であった。
(Preparation of negative electrode)
Composite graphite material powder (particle size 12 μm, d (002) = 0.337 nm, R value =) using artificial graphite (KS25) manufactured by Timcal Co. as a negative electrode active material as a core material and having a surface coated with a low crystalline carbon material 0.4, amount of low crystalline carbon material / (amount of high crystalline graphite powder + amount of low crystalline carbon material) = 0.18) and natural graphite (made in Madagascar) as a core material Composite graphite material powder whose surface is coated with low crystalline carbon (particle size 16 μm, d (002) = 0.336 nm, R value = 0.21, amount of low crystalline carbon material / (high crystalline graphite powder (Amount + amount of low crystalline carbon material) = 0.05) was used as a negative electrode active material and a mixture of polyvinylidene fluoride as a binder was dissolved in a solvent N-methyl-2-pyrrolidone in a mortar. Disperse in a solution and make a paste, 20 μm And coating a copper foil, which preliminarily dried at 60 ° C., and pressed after heat treatment at 240 ° C.. The negative electrode size was 3.5 × 3 cm (coated portion 3 × 3 cm), and a nickel foil (50 μm) lead was welded to the uncoated portion. Furthermore, what was vacuum-dried at 150 degreeC for water removal was used as a negative electrode. The coating film density was 1.58 g / cm 3 .

(プレカーサーの調製)
1.8mol/リットルのLiBF4を溶解したECとγ−ブチロラクトンの1:1の混合溶媒を電解液とした。エチレンオキサイドとプロピレンオキシドの共重合体を含有してなる平均分子量7500〜9000の四官能アクリレートモノマーと平均分子量200〜300の単官能アクリレートモノマーが重量比で7:3のモノマーを、電解液とモノマーの比率が97:3となるように電解液に混合した。その溶液に熱重合開始剤を全重量に対して200ppm加えプレカーサーとした。
(Precursor preparation)
A 1: 1 mixed solvent of EC and γ-butyrolactone in which 1.8 mol / liter of LiBF 4 was dissolved was used as an electrolytic solution. A tetrafunctional acrylate monomer having an average molecular weight of 7500 to 9000 comprising a copolymer of ethylene oxide and propylene oxide and a monofunctional acrylate monomer having an average molecular weight of 200 to 300 is converted to a monomer having a weight ratio of 7: 3. Was mixed with the electrolyte solution so that the ratio of the ratio was 97: 3. A thermal polymerization initiator was added to the solution in an amount of 200 ppm based on the total weight to prepare a precursor.

(電池の作製)
ポリエステル製の不織布をセパレータとして用い、上記のようにして得られた電極を対向するように重ね合わせ、袋状に加工したアルミラミネートの袋に挿入した。そこに、上記のプレカーサーを入れ、減圧下で熱封口を行った。次に、80℃にて4時間保持して、熱重合を行い、ポリマー電池を作製した。得られた電池を電流値4mA、充電4.1V−CCCV(電流電圧一定)、放電2.75V−CC(電流一定)の条件にて充放電を繰り返し、サイクル特性を測定した。用いた材料、混合比率等を表2に、塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率を表3に示す。
(Production of battery)
A polyester non-woven fabric was used as a separator, and the electrodes obtained as described above were stacked so as to face each other and inserted into a bag of aluminum laminate processed into a bag shape. The above precursor was put therein, and heat sealing was performed under reduced pressure. Next, it was held at 80 ° C. for 4 hours, and thermal polymerization was performed to produce a polymer battery. The obtained battery was repeatedly charged and discharged under the conditions of a current value of 4 mA, a charge of 4.1 V-CCCV (constant current voltage), and a discharge of 2.75 V-CC (constant current), and cycle characteristics were measured. Table 2 shows the materials used, mixing ratios, etc. Table 3 shows the coating density (before pressing), compression ratio, coating density (after pressing), volumetric energy density per negative electrode active material layer, and capacity retention during cycling. Shown in

比較例2
負極活物質として、ティムカル社製人造黒鉛(KS25)を芯材として用い、表面が低結晶性炭素材料で被覆された複合黒鉛材料粉末(粒径12μm、d(002)=0.337nm、R値=0.4、低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)=0.18)を単独で用いたこと以外は実施例2と同様に負極を作製した。得られた負極の塗膜密度は1.46g/cm3であった。このようにして得られた負極を用いたこと以外は実施例2と同様に電池を作製し、充放電試験を行った。用いた材料、混合比率等を表2に、塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率を表3に示す。
Comparative Example 2
Composite graphite material powder (particle size 12 μm, d (002) = 0.337 nm, R value) using artificial graphite (KS25) manufactured by Timcal as a core material as a negative electrode active material and having a surface coated with a low crystalline carbon material = 0.4, amount of low crystalline carbon material / (amount of high crystalline graphite powder + amount of low crystalline carbon material) = 0.18) was used in the same way as in Example 2 except that Was made. The coating density of the obtained negative electrode was 1.46 g / cm 3 . A battery was prepared in the same manner as in Example 2 except that the negative electrode thus obtained was used, and a charge / discharge test was performed. Table 2 shows the materials used, mixing ratios, etc. Table 3 shows the coating density (before pressing), compression ratio, coating density (after pressing), volumetric energy density per negative electrode active material layer, and capacity retention during cycling. Shown in

比較例3
負極活物質として、ティムカル社製人造黒鉛(KS25)を芯材として用い、表面が低結晶性炭素材料で被覆された複合黒鉛材料粉末(粒径12μm、d(002)=0.337nm、R値=0.4、低結晶性炭素材料の量/(高結晶性黒鉛粉末の量+低結晶性炭素材料の量)=0.18)を80重量部と、天然黒鉛(マダガスカル産、粒径14μm、d(002)=0.3358nm、R値=0.1)を20重量部との混合物を用いたこと以外は実施例2と同様に負極を作製した。得られた負極の塗膜密度は1.65g/cm3であった。このようにして得られた負極を用いた以外は実施例2と同様に電池を作製し、充放電試験を行った。用いた材料、混合比率等を表2に、塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率を表3に示す。
Comparative Example 3
Composite graphite material powder (particle size 12 μm, d (002) = 0.337 nm, R value) using artificial graphite (KS25) manufactured by Timcal Co. as a negative electrode active material as a negative electrode active material and having a surface coated with a low crystalline carbon material = 0.4, amount of low crystalline carbon material / (amount of high crystalline graphite powder + amount of low crystalline carbon material) = 0.18), natural graphite (made in Madagascar, particle size 14 μm) , D (002) = 0.3358 nm, R value = 0.1) was used in the same manner as in Example 2 except that a mixture with 20 parts by weight was used. The coating density of the obtained negative electrode was 1.65 g / cm 3 . A battery was prepared in the same manner as in Example 2 except that the negative electrode thus obtained was used, and a charge / discharge test was performed. Table 2 shows the materials used, mixing ratios, etc. Table 3 shows the coating density (before pressing), compression ratio, coating density (after pressing), volumetric energy density per negative electrode active material layer, and capacity retention during cycling. Shown in

実施例3〜5、比較例4〜5
炭素材料として表2中に示す黒鉛材料粉末を活物質として用いたこと以外は実施例2と同様に負極及び電池を作製した。結果(塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率)を表3に示す。表2中、MCMBとは、ピッチ系の球状炭素材料であるメソカーボンマイクロビーズの略称である。
Examples 3-5, Comparative Examples 4-5
A negative electrode and a battery were produced in the same manner as in Example 2 except that the graphite material powder shown in Table 2 was used as the carbon material as the active material. Table 3 shows the results (coating density (before pressing), compression ratio, coating density (after pressing), volumetric energy density per negative electrode active material layer, capacity retention rate during cycling). In Table 2, MCMB is an abbreviation for mesocarbon microbeads, which are pitch-based spherical carbon materials.

Figure 2009158496
Figure 2009158496

Figure 2009158496
Figure 2009158496

以上の結果が示すように、実施例によれば、高容量密度かつ、サイクル特性が優れたリチウムポリマー電池を得ることができる。単独で複合黒鉛材料粉末を用いた場合(比較例2と5)、電極の容量密度が低く、また、充填助剤として天然黒鉛を用いた場合(比較例3)、十分なサイクル特性が得られなかった。これは、複合黒鉛を単独で用いた場合には、プレス性が低いため、密度が上がらないことに起因し、また充填助剤として天然黒鉛を用いた場合には、実施例1の結果から天然黒鉛によってプレカーサーの重合が阻害され、電池中に残存した未反応モノマーが悪影響を及ぼしていると推察される。   As the above results show, according to the example, a lithium polymer battery having a high capacity density and excellent cycle characteristics can be obtained. When the composite graphite material powder is used alone (Comparative Examples 2 and 5), the capacity density of the electrode is low, and when natural graphite is used as a filling aid (Comparative Example 3), sufficient cycle characteristics are obtained. There wasn't. This is because when the composite graphite is used alone, the pressability is low, and therefore the density does not increase. When natural graphite is used as a filling aid, the natural graphite is obtained from the results of Example 1. It is assumed that the polymerization of the precursor is inhibited by graphite, and the unreacted monomer remaining in the battery has an adverse effect.

実施例6
正極及び負極には表4に示す複合黒鉛材料粉末を用いたこと以外は、実施例2と同様にして作製した。
(正極用のプレカーサーの調整)
2.5mol/リットルのLiBF4を溶解したECとγ−ブチロラクトンとPCの1:2:1の混合溶媒を電解液とした。エチレンオキサイドとプロピレンオキシドの共重合体を含有してなる平均分子量7500〜9000の四官能アクリレートモノマーと平均分子量200〜300の単官能アクリレートモノマーが重量比で9:1のモノマーを、電解液とモノマーの比率が97:3となるように電解液に混合した。その溶液にUV開始剤を全重量に対して2000ppm加えプレカーサーとした。
Example 6
It produced similarly to Example 2 except having used the composite graphite material powder shown in Table 4 for the positive electrode and the negative electrode.
(Adjusting the precursor for the positive electrode)
A 1: 2: 1 mixed solvent of EC, γ-butyrolactone, and PC in which 2.5 mol / liter LiBF 4 was dissolved was used as an electrolyte. A tetrafunctional acrylate monomer having an average molecular weight of 7500 to 9000 comprising a copolymer of ethylene oxide and propylene oxide and a monofunctional acrylate monomer having an average molecular weight of 200 to 300 is a monomer having a weight ratio of 9: 1. Was mixed with the electrolyte solution so that the ratio of the ratio was 97: 3. 2000 ppm of UV initiator was added to the solution with respect to the total weight, and it was set as the precursor.

(負極用のプレカーサーの調整)
1mol/リットルのLiBF4を溶解したエチレンカーボネート(EC)とγ−ブチロラクトンとプロピレンカーボネート(PC)の1:2:1の混合溶媒を電解液とした。エチレンオキサイドとプロピレンオキシドの共重合体を含有してなる平均分子量7500〜9000の四官能アクリレートモノマーと平均分子量200〜300の単官能アクリレートモノマーが重量比で8:2のモノマーを、電解液とモノマーの比率が95:5となるように電解液に混合した。その溶液にUV開始剤を全重量に対して2000ppm加えプレカーサーとした。
(Adjusting the precursor for the negative electrode)
A 1: 2: 1 mixed solvent of ethylene carbonate (EC), γ-butyrolactone, and propylene carbonate (PC) in which 1 mol / liter of LiBF 4 was dissolved was used as an electrolytic solution. A tetrafunctional acrylate monomer having an average molecular weight of 7500 to 9000 comprising a copolymer of ethylene oxide and propylene oxide and a monofunctional acrylate monomer having an average molecular weight of 200 to 300 is a monomer having a weight ratio of 8: 2, electrolyte solution and monomer Was mixed with the electrolytic solution so that the ratio of the ratio was 95: 5. 2000 ppm of UV initiator was added to the solution with respect to the total weight, and it was set as the precursor.

(電池の作製)
正極上にポリエステル製の不織布をセパレータとして重ね合わせ、正極用のプレカーサーを含浸した後、石英製の板にはさみ、30mW/cm2のUV光を30s照射し、セパレーターと正極と電解質層を一体化した。
負極には負極用のプレカーサーを含浸させ、同様にUV光を照射し、負極と電解質層が一体化した。得られた極を活物質層が対向するように貼り合わせ、袋状に加工したアルミラミネートの中に挿入し、減圧下で熱シールすることにより、リチウムポリマー電池を作製した。得られた電池を電流値4mA、充電4.1V−CCCV、放電2.75V−CCの条件にて充放電を繰り返し、サイクル特性を測定した。用いた材料、混合比率等を表4に、塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率を表5に示す。
(Production of battery)
A polyester non-woven fabric is laminated on the positive electrode as a separator, impregnated with a precursor for the positive electrode, then sandwiched between quartz plates, irradiated with 30 mW / cm 2 UV light for 30 s, and the separator, the positive electrode and the electrolyte layer are integrated. did.
The negative electrode was impregnated with a precursor for the negative electrode, and was similarly irradiated with UV light, so that the negative electrode and the electrolyte layer were integrated. The obtained electrode was bonded so that the active material layers were opposed to each other, inserted into a bag-shaped aluminum laminate, and heat sealed under reduced pressure to produce a lithium polymer battery. The obtained battery was repeatedly charged and discharged under the conditions of a current value of 4 mA, a charge of 4.1 V-CCCV, and a discharge of 2.75 V-CC, and cycle characteristics were measured. Table 4 shows the materials used, mixing ratios, etc. Table 5 shows the coating density (before pressing), compression ratio, coating density (after pressing), volumetric energy density per negative electrode active material layer, and capacity retention during cycling. Shown in

実施例7
負極の結着材として、SBR(スチレンブタジエンゴム):2部とCMC−NH4:2部を用い、分散媒として水を用いたこと以外は実施例6と同様にリチウムポリマー電池を作製し、評価を行った。混合比率等を表4に、塗膜密度(プレス前)、圧縮比、塗膜密度(プレス後)、負極活物質層当たりの体積エネルギー密度、サイクル時の容量保持率を表5に示す。
比較例6
表4に示す複合黒鉛材料粉末を用いたこと以外は実施例6と同様にしてポリマー電池を作製した。結果を表5に示す。
Example 7
A lithium polymer battery was prepared and evaluated in the same manner as in Example 6 except that SBR (styrene butadiene rubber): 2 parts and CMC-NH4: 2 parts were used as the negative electrode binder, and water was used as the dispersion medium. Went. Table 4 shows the mixing ratio and the like, and Table 5 shows the coating density (before pressing), the compression ratio, the coating density (after pressing), the volume energy density per negative electrode active material layer, and the capacity retention during cycling.
Comparative Example 6
A polymer battery was produced in the same manner as in Example 6 except that the composite graphite material powder shown in Table 4 was used. The results are shown in Table 5.

Figure 2009158496
Figure 2009158496

Figure 2009158496
Figure 2009158496

上記結果から、複合黒鉛材料粉末が異なるだけでサイクル特性が大きく異なることがわかる。これは、比較例の複合黒鉛材料粉末では、開始剤によって発生したラジカルが黒鉛粉末によって消費され、負極中に未反応モノマーが多く残ったためと考えられる。更に、負極の結着材として、SBR(スチレンブタジエンゴム)を用いた場合、より優れた性能が得られることがわかる。   From the above results, it can be seen that only the composite graphite material powder is different and the cycle characteristics are greatly different. This is presumably because in the composite graphite material powder of the comparative example, radicals generated by the initiator were consumed by the graphite powder, and a large amount of unreacted monomer remained in the negative electrode. Furthermore, it can be seen that when SBR (styrene butadiene rubber) is used as the binder for the negative electrode, better performance can be obtained.

1 高結晶性黒鉛粉末
2 低結晶性炭素材料
1 High crystalline graphite powder 2 Low crystalline carbon material

Claims (3)

正極、炭素材料粉末からなる負極活物質と結着材とを含む負極、化学架橋ゲルを用いた電解質とを備え、前記炭素材料粉末は、高結晶性黒鉛粉末(A)の表面が低結晶性炭素材料(B)で被覆され、かつ互いに異なる被覆比(Bの量/(Aの量+Bの量)の平均値)を有する少なくとも2種類以上の複合黒鉛材料粉末の混合物からなり、前記結着材がゴム系の結着材であることを特徴とするリチウムポリマー電池。   A positive electrode, a negative electrode including a negative electrode active material made of carbon material powder and a binder, and an electrolyte using a chemically cross-linked gel, wherein the surface of the high crystalline graphite powder (A) has low crystallinity The binder is a mixture of at least two types of composite graphite material powders coated with the carbon material (B) and having different coating ratios (B amount / (A amount + B amount) average value). A lithium polymer battery characterized in that the material is a rubber-based binder. 前記負極が、前記負極活物質100重量部に対して前記結着材1〜30重量部を含む請求項1に記載のリチウムポリマー電池。   The lithium polymer battery according to claim 1, wherein the negative electrode includes 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the negative electrode active material. 前記負極が、前記負極活物質と前記結着材とを含む塗膜をプレスして得られたプレス後の塗膜が1.5g/cm3以上1.8g/cm3未満の密度を有する塗膜を含む請求項1又は2に記載のリチウムポリマー電池。 Coating said negative electrode, said negative electrode active material and the coating film after the pressing obtained coating film was pressed comprising said binder has a density of less than 1.5 g / cm 3 or more 1.8 g / cm 3 The lithium polymer battery according to claim 1, comprising a film.
JP2009097986A 2009-04-14 2009-04-14 Lithium polymer battery Pending JP2009158496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097986A JP2009158496A (en) 2009-04-14 2009-04-14 Lithium polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097986A JP2009158496A (en) 2009-04-14 2009-04-14 Lithium polymer battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002273688A Division JP4336087B2 (en) 2002-09-19 2002-09-19 Lithium polymer battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009158496A true JP2009158496A (en) 2009-07-16

Family

ID=40962239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097986A Pending JP2009158496A (en) 2009-04-14 2009-04-14 Lithium polymer battery

Country Status (1)

Country Link
JP (1) JP2009158496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
JP2014078318A (en) * 2012-10-08 2014-05-01 Toyota Motor Corp Method of manufacturing lithium ion secondary battery
WO2015152114A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based active material, negative electrode, and negative ion secondary cell
WO2017057123A1 (en) * 2015-09-30 2017-04-06 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883608A (en) * 1994-09-13 1996-03-26 Toshiba Battery Co Ltd Lithium secondary battery
JPH10284057A (en) * 1997-03-31 1998-10-23 Toray Ind Inc Electrode for battery and secondary battery using the same
JP2002008656A (en) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd Lithium secondary battery
JP2002042872A (en) * 2000-07-31 2002-02-08 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2002141062A (en) * 2000-11-02 2002-05-17 Mitsui Mining Co Ltd Graphite/carbon complex material for lithium secondary battery anode, its manufacturing method and lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883608A (en) * 1994-09-13 1996-03-26 Toshiba Battery Co Ltd Lithium secondary battery
JPH10284057A (en) * 1997-03-31 1998-10-23 Toray Ind Inc Electrode for battery and secondary battery using the same
JP2002008656A (en) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd Lithium secondary battery
JP2002042872A (en) * 2000-07-31 2002-02-08 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
JP2002141062A (en) * 2000-11-02 2002-05-17 Mitsui Mining Co Ltd Graphite/carbon complex material for lithium secondary battery anode, its manufacturing method and lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
JP2014078318A (en) * 2012-10-08 2014-05-01 Toyota Motor Corp Method of manufacturing lithium ion secondary battery
WO2015152114A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Graphite-based active material, negative electrode, and negative ion secondary cell
JPWO2015152114A1 (en) * 2014-03-31 2017-04-13 Necエナジーデバイス株式会社 Graphite-based active material, negative electrode and lithium ion secondary battery
US10305108B2 (en) 2014-03-31 2019-05-28 Nec Energy Devices, Ltd. Graphite-based active material, negative electrode, and lithium ion secondary battery
WO2017057123A1 (en) * 2015-09-30 2017-04-06 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery
JPWO2017057123A1 (en) * 2015-09-30 2018-07-19 Necエナジーデバイス株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP3358653A4 (en) * 2015-09-30 2019-03-27 NEC Energy Devices, Ltd. Negative electrode for lithium ion secondary batteries and lithium ion secondary battery
US10714751B2 (en) 2015-09-30 2020-07-14 Envision Aesc Energy Devices, Ltd. Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7749653B2 (en) Lithium ion battery
JP5671775B2 (en) Lithium ion secondary battery
KR101361567B1 (en) Composite graphite particles and use of same
EP1148570A2 (en) Nonaqueous electrolyte secondary battery
JP5671772B2 (en) Lithium ion secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
WO2012105510A1 (en) Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
JP2007180015A (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery using it
JP2020064873A (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery using the same
CN108933276B (en) Lithium secondary battery
JP4336087B2 (en) Lithium polymer battery and manufacturing method thereof
JP5476273B2 (en) Non-aqueous electrolyte secondary battery
KR100762796B1 (en) Manufacturing Method of Negative Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising The Same
JP2007165299A (en) Lithium secondary battery
JP5636623B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP2009158496A (en) Lithium polymer battery
JP2007165298A (en) Lithium secondary battery
JP4367015B2 (en) battery
US10431813B2 (en) Carbon-silicon composite structure and method of preparing the same
JP5906761B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JPH07235327A (en) Nonaqueous electrolyte secondary battery
JP4781545B2 (en) Non-aqueous electrolyte lithium secondary battery
KR100859628B1 (en) Prismatic lithium rechargeable battery including polymer anhydrous electrolytes, and thereof method
JP2007165301A (en) Lithium secondary battery
JP2001148241A (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226