JP2009158445A - Method of manufacturing battery pack - Google Patents

Method of manufacturing battery pack Download PDF

Info

Publication number
JP2009158445A
JP2009158445A JP2007338927A JP2007338927A JP2009158445A JP 2009158445 A JP2009158445 A JP 2009158445A JP 2007338927 A JP2007338927 A JP 2007338927A JP 2007338927 A JP2007338927 A JP 2007338927A JP 2009158445 A JP2009158445 A JP 2009158445A
Authority
JP
Japan
Prior art keywords
welding
unit cell
connection fitting
welded
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007338927A
Other languages
Japanese (ja)
Other versions
JP5196995B2 (en
Inventor
Yutaka Miyazaki
裕 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007338927A priority Critical patent/JP5196995B2/en
Publication of JP2009158445A publication Critical patent/JP2009158445A/en
Application granted granted Critical
Publication of JP5196995B2 publication Critical patent/JP5196995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage of a unit cell due to thermal stress by stably welding the unit cell to a connection fitting, and preventing an harmful effect due to heat generation of a welding part of the unit cell, and also to extend a replacement time of a welding electrode by reducing consumption of the welding electrode. <P>SOLUTION: In a method of manufacturing a battery pack, connection fittings 20 are spot-welded to electrodes 19 of adjoining unit cells 10, and a plurality of unit cells 10 are connected through the connection fittings 20. In the manufacturing method, welding parts 23 of the connection fitting 20 are pressed against a surface of the unit cell 10 by welding and pressing means 40; a pair of electrodes 50 carrying a welding current are brought into contact with parts located on a surface of the connection fitting 20 and different from the welding parts 23; the welding current is carried to the connection fitting 20 by the pair of electrodes 50; the welding current carried to the connection fitting 20 is carried to the electrode 19 of the unit cell 10 by the welding parts 23 pressed by the welding and pressing means 40; and the welding part 23 of the connection fitting 20 is spot-welded to the electrode 19 of the unit cell 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、接続金具を介して複数の電池を接続する組電池の製造方法に関する。   The present invention relates to a method for manufacturing an assembled battery in which a plurality of batteries are connected via a connection fitting.

多数の素電池を接続金具で接続して制作される組電池は、主としてハイブリッドカーなどの電動車両に使用される。この構造の組電池は、低抵抗な状態でしっかりと電池を連結することが大切である。大きな接続抵抗は、出力を低下させるばかりでなく、ジュール熱が発生して発熱し、さらに抵抗ロスにより電力を有効利用できなくなるからである。複数の電池を、接続金具を介して直線状に連結する電池モジュールは開発されている(特許文献1参照)。   An assembled battery produced by connecting a large number of unit cells with connection fittings is mainly used for an electric vehicle such as a hybrid car. It is important that the assembled battery with this structure is firmly connected in a low resistance state. This is because a large connection resistance not only lowers the output, but also generates Joule heat and generates heat, and furthermore, the power cannot be effectively used due to resistance loss. A battery module that connects a plurality of batteries in a straight line via a connection fitting has been developed (see Patent Document 1).

特許文献1に記載される組電池は、図1と図2に示すように接続金具80を素電池90にスポット溶接して接続される。接続金具80は、図2に示すように、円盤83の外周に円筒部84を連結する形状に金属板をプレス成形して制作される。この接続金具80は、図1の断面図に示すように、円盤83である第1の溶接部81を素電池90の封口板92に溶接し、円筒部84である第2の溶接部82を他方の素電池90の外装缶91の外周面に溶接して、隣接する素電池90を直線状に直列に接続する。
特開平10−106533号公報
The assembled battery described in Patent Document 1 is connected by spot welding a connection fitting 80 to a unit cell 90 as shown in FIGS. As shown in FIG. 2, the connection fitting 80 is produced by press-molding a metal plate into a shape that connects the cylindrical portion 84 to the outer periphery of the disk 83. As shown in the cross-sectional view of FIG. 1, the connection fitting 80 welds a first welded portion 81 that is a disk 83 to a sealing plate 92 of a unit cell 90, and a second welded portion 82 that is a cylindrical portion 84. It welds to the outer peripheral surface of the armored can 91 of the other unit cell 90, and the adjacent unit cells 90 are connected linearly in series.
JP-A-10-106533

以上の電池モジュールは、以下の工程で、素電池90を接続金具80で直列に連結する。
(1)接続金具80の第1の溶接部81を、一方の素電池90の端面電極である封口板92の上に配設する。
(2)一対の溶接電極を第1の溶接部81に押圧し、溶接電極に電流を流して第1の溶接部81を封口板92に溶接する。
(3)接続金具80の円筒部84に、接続する素電池90の下端を挿入する。
(4)円筒部84である第2の溶接部82に、一対の溶接電極を押圧して、溶接電極に電流を流して第2の溶接部82を素電池90の外周面に溶接する。
In the above battery module, the unit cells 90 are connected in series by the connection fitting 80 in the following steps.
(1) The first welded portion 81 of the connection fitting 80 is disposed on the sealing plate 92 that is an end face electrode of one unit cell 90.
(2) The pair of welding electrodes are pressed against the first welding part 81, and a current is passed through the welding electrode to weld the first welding part 81 to the sealing plate 92.
(3) The lower end of the unit cell 90 to be connected is inserted into the cylindrical portion 84 of the connection fitting 80.
(4) A pair of welding electrodes is pressed against the second welding portion 82 that is the cylindrical portion 84, and current is passed through the welding electrodes to weld the second welding portion 82 to the outer peripheral surface of the unit cell 90.

以上の製造方法は、溶接電極の消耗が甚だしく、長時間にわたって安定して好ましい状態で接続金具を確実に素電池に溶接できない欠点があった。溶接電極は、定期的に交換され、また、交換する毎に、複数回にわたって試験的にスポット溶接して溶接状態を調整する必要があり、この工程で多数の素電池を無駄に消費する欠点があった。   The above-described manufacturing method has a drawback that the welding electrode is extremely consumed, and the connection fitting cannot be reliably welded to the unit cell in a stable and preferable state for a long time. Welding electrodes are periodically replaced, and each time they are replaced, it is necessary to adjust the welding state by spot welding several times on a trial basis, and this process has the disadvantage of wasting many unit cells. there were.

また、スポット溶接される部分の発熱が、素電池に損傷を与える弊害もあった。それは溶接部分の発熱が、内部の電極に、熱ストレスによる損傷を与えるからである。ハイブリッドカーのように多数の素電池を直列に接続する組電池にあっては、特定の素電池の故障は、組電池全体を使用不能とする。したがって、溶接工程における素電池の熱による弊害をいかに少なくできるか、いいかえると溶接部の発熱による損傷をいかに少なくできるかは、組電池の製造方法において極めて大切である。   In addition, the heat generated at the spot-welded part has a detrimental effect on the unit cell. This is because the heat generated in the welded portion damages the internal electrodes due to thermal stress. In an assembled battery in which a large number of unit cells are connected in series as in a hybrid car, a failure of a specific unit cell renders the entire assembled battery unusable. Therefore, it is very important in the method of manufacturing an assembled battery how to reduce the harmful effects of the heat of the unit cells in the welding process, in other words, how to reduce the damage caused by the heat generation of the welded portion.

本発明は、以上の欠点を解決すことを目的として開発されたもので、本発明の重要な目的は、溶接電極の消耗を少なくして溶接電極の交換時期を長くできると共に、接続金具を安定して素電池に溶接でき、しかも素電池の溶接部の発熱による弊害を防止して熱ストレスによる素電池の損傷を防止できる組電池の製造方法を提供することにある。   The present invention was developed for the purpose of solving the above drawbacks, and an important object of the present invention is to reduce the consumption of the welding electrode and to increase the replacement period of the welding electrode, and to stabilize the connection fitting. Another object of the present invention is to provide a method of manufacturing an assembled battery that can be welded to a unit cell, and that can prevent damage caused by heat generation at a welded portion of the unit cell and prevent damage to the unit cell due to thermal stress.

本発明の組電池の製造方法は、前述の目的を達成するために以下の方法で組電池を製造する。
組電池の製造方法は、隣接する素電池10の電極19に接続金具20をスポット溶接して、接続金具20を介して複数の素電池10を接続する。この製造方法は、素電池10の表面に接続金具20の溶接部23を溶接押圧具40で押圧すると共に、接続金具20の表面であって、溶接点28と異なる部分に溶接電流を流す一対の電極50を接触し、一対の電極50でもって接続金具20に溶接電流を通電し、この接続金具20に通電される溶接電流を溶接押圧具40で押圧している溶接部23で素電池10の電極19に通電して、接続金具20の溶接部23を素電池10の電極19にスポット溶接する。
In order to achieve the above-described object, the battery pack manufacturing method of the present invention manufactures the battery pack by the following method.
In the method for manufacturing the assembled battery, the connection fitting 20 is spot welded to the electrode 19 of the adjacent unit cell 10, and the plurality of unit cells 10 are connected via the connection fitting 20. In this manufacturing method, the welded portion 23 of the connection fitting 20 is pressed against the surface of the unit cell 10 by the welding pressing tool 40, and a pair of welding currents are supplied to the surface of the connection fitting 20 and different from the welding point 28. The electrode 50 is contacted, a welding current is passed through the connection fitting 20 with the pair of electrodes 50, and the welding cell 23 presses the welding current passed through the connection fitting 20 with the welding pressing tool 40. The electrode 19 is energized, and the welded portion 23 of the connection fitting 20 is spot welded to the electrode 19 of the unit cell 10.

本発明の請求項2の組電池の製造方法は、素電池10を直線状に配列して、素電池10の間に接続金具20を配設し、接続金具20の第1の溶接部23Aを一方の素電池10に溶接して、第2の溶接部23Bを他方の素電池10に溶接して隣接する素電池10を直列に接続する。   In the method for manufacturing an assembled battery according to claim 2 of the present invention, the unit cells 10 are arranged in a straight line, the connection fitting 20 is disposed between the unit cells 10, and the first welded portion 23 </ b> A of the connection fitting 20 is provided. Welding to one unit cell 10, welding the second welded portion 23B to the other unit cell 10, and connecting adjacent unit cells 10 in series.

本発明の請求項3の組電池の製造方法は、接続金具20で接続する素電池10を、外装缶11の開口部を封口板12で閉塞している円筒形電池とし、一方の素電池10である円筒形電池の封口板12に接続金具20の第1の溶接部23Aを溶接して、他方の素電池10である円筒形電池の外装缶11の底部に第2の溶接部23Bを溶接する。   In the method of manufacturing the assembled battery according to claim 3 of the present invention, the unit cell 10 connected by the connection fitting 20 is a cylindrical cell in which the opening of the outer can 11 is closed by the sealing plate 12. The first welded portion 23A of the connection fitting 20 is welded to the sealing plate 12 of the cylindrical battery that is, and the second welded portion 23B is welded to the bottom of the outer can 11 of the cylindrical battery that is the other unit cell 10. To do.

本発明の請求項4の組電池の製造方法は、直線状に連結される素電池10の間に、素電池10の外周部を絶縁する絶縁材30を配設し、この絶縁材30で素電池10から絶縁される接続金具20の表面に電極50を接触して、溶接部23を溶接する。   In the method for manufacturing an assembled battery according to claim 4 of the present invention, an insulating material 30 that insulates the outer periphery of the unit cell 10 is disposed between the unit cells 10 that are linearly connected. The electrode 50 is brought into contact with the surface of the connection fitting 20 that is insulated from the battery 10 to weld the welded portion 23.

本発明の請求項5の組電池の製造方法は、一対の電極50の間に溶接押圧具40を配設して接続金具20を素電池10に溶接する。   In the assembled battery manufacturing method according to the fifth aspect of the present invention, the welding pressing tool 40 is disposed between the pair of electrodes 50 to weld the connection fitting 20 to the unit cell 10.

本発明の組電池の製造方法は、溶接電極の消耗を少なくして溶接電極を交換時期を長くできる。また、接続金具を安定して素電池に溶接できる特徴がある。それは、本発明の製造方法が、素電池の表面に接続金具の溶接部を溶接押圧具で押圧し、さらに、接続金具の表面であって、溶接点と異なる部分に、溶接電流を流す一対の電極を接触して、一対の電極でもって接続金具に溶接電流を通電し、この接続金具に通電される溶接電流を溶接押圧具で押圧している溶接部で素電池に通電して、接続金具の溶接部を素電池にスポット溶接するからである。   The method for manufacturing an assembled battery according to the present invention can reduce the consumption of the welding electrode and extend the time for replacing the welding electrode. Further, there is a feature that the connection fitting can be stably welded to the unit cell. That is, the manufacturing method of the present invention presses the welded portion of the connection fitting on the surface of the unit cell with the welding pressing tool, and further causes a welding current to flow on the surface of the connection fitting that is different from the welding point. The electrode is brought into contact, a welding current is passed through the connection fitting with a pair of electrodes, and the unit cell is energized at the welded portion where the welding current applied to the connection fitting is pressed by a welding pressing tool. This is because spot welding is performed on the welded portion.

また、本発明の組電池の製造方法は、素電池の溶接部の発熱による弊害を防止して熱ストレスによる素電池の損傷を防止できる特徴も実現する。それは、本発明の製造方法が、接続金具の溶接部に、通電する電極とは別の溶接押圧具を押圧して溶接することから、この溶接押圧具で溶接部に発生する溶接熱を放熱できるからである。   In addition, the method for manufacturing an assembled battery according to the present invention also realizes a feature that can prevent damage due to heat stress and prevent damage to the unit cell due to heat stress. That is, since the manufacturing method of the present invention presses and welds a welding pressing tool different from the electrode to be energized to the welding part of the connection fitting, the welding heat generated in the welding part can be radiated by this welding pressing tool. Because.

さらに、本発明の請求項2の組電池の製造方法は、素電池を直線状に配列して素電池の間に接続金具を配設し、接続金具の第1の溶接部を一方の素電池に溶接して、第2の溶接部を他方の素電池に溶接して、隣接する素電池を直列に接続するので、接続金具で隣接する素電池を電気接続しながら直線状に連結できる。   Furthermore, in the method for manufacturing an assembled battery according to claim 2 of the present invention, the unit cells are arranged in a straight line, the connection fitting is disposed between the unit cells, and the first welded portion of the connection fitting is connected to one unit cell. Since the adjacent unit cells are connected in series by welding the second welded portion to the other unit cell, the adjacent unit cells can be connected in a straight line while being electrically connected by the connection fitting.

さらに、本発明の請求項3の組電池の製造方法は、接続金具で接続する素電池を、外装缶の開口部を封口板で閉塞している円筒形電池とし、一方の素電池である円筒形電池の封口板に接続金具の第1の溶接部を溶接して、他方の素電池である円筒形電池の外装缶の底部に第2の溶接部を溶接するので、素電池である円筒形電池を接続金具で直列に電気接続しなから、直線状に連結できる。   Furthermore, in the method for manufacturing an assembled battery according to claim 3 of the present invention, the unit cell connected by the connection fitting is a cylindrical cell in which the opening of the outer can is closed with a sealing plate, and the unit cell is a cylinder. The first welded portion of the connection fitting is welded to the sealing plate of the battery, and the second welded portion is welded to the bottom of the outer can of the cylindrical battery that is the other unit cell. Since the batteries are not electrically connected in series with the connection fitting, they can be connected in a straight line.

さらに、本発明の請求項4の組電池の製造方法は、直線状に連結される素電池の間に、素電池の外周部を絶縁する絶縁材を配設し、この絶縁材で素電池から絶縁される接続金具の表面に電極を接触して溶接部を溶接するので、溶接押圧具で押圧する接続金具の溶接部を、効率よく確実に素電池に溶接できる。それは、接続金具の電極接触部分を素電池から絶縁して、溶接押圧具で押圧される溶接部に電流を集中できるからである。   Furthermore, in the method for manufacturing an assembled battery according to claim 4 of the present invention, an insulating material that insulates the outer peripheral portion of the unit cell is disposed between the unit cells connected in a straight line, and the insulating material is used to remove the unit cell from the unit cell. Since the electrode is brought into contact with the surface of the connection fitting to be insulated and the welded portion is welded, the welded portion of the connection fitting pressed by the welding pressing tool can be efficiently and reliably welded to the unit cell. This is because the electrode contact portion of the connection fitting can be insulated from the unit cell and the current can be concentrated on the welded portion pressed by the welding pressing tool.

さらにまた、本発明の請求項5の組電池の製造方法は、一対の電極の間に前記溶接押圧具を配設して接続金具を素電池に溶接するので、接続金具の電極で通電される領域を溶接押圧具で押圧して効率よく溶接できる。   Furthermore, in the method for manufacturing an assembled battery according to claim 5 of the present invention, since the welding pressing tool is disposed between a pair of electrodes and the connection fitting is welded to the unit cell, the connection bracket electrode is energized. The region can be efficiently welded by pressing with a welding pressing tool.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための組電池の製造方法を例示するものであって、本発明は組電池の製造方法を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a method for manufacturing an assembled battery for embodying the technical idea of the present invention, and the present invention does not specify the following method for manufacturing an assembled battery.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図3の組電池は、充電できる複数の素電池10を接続金具20を介して直列に接続して直線状に連結している。この構造の組電池は、さらに複数個を直列に接続して、主としてハイブリッドカー等の電動車両に使用される。ただ、本発明の組電池は、電動車両以外の用途であって、大出力が要求される用途にも使用できる。図の組電池は、円筒形電池である素電池10を直線状に連結して直列に接続している。ただし、組電池は、角型電池である素電池を直線状に連結して直列に接続することもできる。   In the assembled battery of FIG. 3, a plurality of rechargeable unit cells 10 are connected in series via connection fittings 20 and connected in a straight line. A plurality of assembled batteries having this structure are connected in series to be used mainly in an electric vehicle such as a hybrid car. However, the assembled battery of the present invention can be used for applications other than electric vehicles and for which high output is required. In the battery pack shown in the figure, unit cells 10 that are cylindrical batteries are connected in a straight line. However, the assembled battery can also be connected in series by linearly connecting the unit cells, which are square batteries.

素電池10は、ニッケル水素電池、リチウムイオン電池、ニッケルカドミウム電池等の充電できる全ての電池を使用することができる。ただ、電動車両用の組電池に使用される素電池には、ニッケル水素電池やリチウムイオン電池が適している。体積と重量に対する出力が大きくて、優れた大電流特性を有するからである。   As the unit cell 10, any rechargeable battery such as a nickel metal hydride battery, a lithium ion battery, or a nickel cadmium battery can be used. However, nickel-metal hydride batteries and lithium ion batteries are suitable for the unit cells used for the assembled batteries for electric vehicles. It is because the output with respect to a volume and a weight is large and it has the outstanding large current characteristic.

素電池10である円筒形電池は、図4の断面図に示すように、外装缶11の開口部を、凸部電極13のある封口板12で気密に密閉している。外装缶11と封口板12は金属板である。外装缶11は、金属板を底のある筒状にプレス成形して製作される。封口板12は、中央に凸部電極13を設けている。外装缶11の内部には、電極(図示せず)が内蔵される。さらに、電解液も充填される。外装缶11は、開口部の端部をかしめ加工して封口板12を気密に固定している。封口板12は、ガスケット14を介して外装缶11のかしめ部に挟着されて気密に固定される。ガスケット14は絶縁性のあるゴム状弾性体で、封口板12と外装缶11とを絶縁すると共に、封口板12と外装缶11との隙間を気密に閉塞する。この構造の素電池10は、封口板12をかしめて挟着するために、封口板12を設けている端部に、周囲に沿ってリング溝15が設けられる。さらに、封口板12の周縁にはカシメ凸条16が設けられる。この素電池10は、封口板12を第1の電極として、外装缶11を第2の電極としている。ニッケル水素電池は、第1の電極を正極として第2の電極を負極としている。素電池は、第1の電極を負極として第2の電極を正極とすることもできる。   As shown in the cross-sectional view of FIG. 4, the cylindrical battery that is the unit cell 10 hermetically seals the opening of the outer can 11 with a sealing plate 12 having a convex electrode 13. The outer can 11 and the sealing plate 12 are metal plates. The outer can 11 is manufactured by press-molding a metal plate into a cylindrical shape with a bottom. The sealing plate 12 is provided with a convex electrode 13 in the center. An electrode (not shown) is built in the outer can 11. Furthermore, the electrolytic solution is also filled. The outer can 11 has a sealing plate 12 hermetically fixed by caulking the end of the opening. The sealing plate 12 is sandwiched between the caulked portions of the outer can 11 via the gasket 14 and is hermetically fixed. The gasket 14 is an insulating rubber-like elastic body that insulates the sealing plate 12 and the outer can 11 and airtightly closes the gap between the sealing plate 12 and the outer can 11. In the unit cell 10 having this structure, a ring groove 15 is provided along the periphery at an end portion where the sealing plate 12 is provided in order to crimp the sealing plate 12 and sandwich it. Further, crimping ridges 16 are provided on the periphery of the sealing plate 12. This unit cell 10 has a sealing plate 12 as a first electrode and an outer can 11 as a second electrode. The nickel metal hydride battery uses a first electrode as a positive electrode and a second electrode as a negative electrode. The unit cell can also have the first electrode as a negative electrode and the second electrode as a positive electrode.

組電池は、図4の断面図と図5の分解斜視図に示すように、直線状に連結している素電池10の端面の間に、素電池10を電気接続する接続金具20と、この接続金具20を定位置に配設する絶縁材30とを配設している。図に示す組電池は、図において下にある一方の素電池10の封口板12である第1の電極19Aと、上にある他方の素電池10の外装缶11の底部である第2の電極19Bとを接続金具20で接続している。素電池10は、封口板12と外装缶11を正負の電極とするので、封口板12に接続される接続金具20が外装缶11の一部であるカシメ凸条16に接触するとショートする。図4の断面図に示す組電池は、接続金具20とカシメ凸条16を絶縁材30で絶縁している。   As shown in the cross-sectional view of FIG. 4 and the exploded perspective view of FIG. 5, the assembled battery includes a connection fitting 20 that electrically connects the unit cells 10 between the end surfaces of the unit cells 10 that are linearly coupled, An insulating material 30 for arranging the connection fitting 20 at a fixed position is provided. The assembled battery shown in the figure includes a first electrode 19A that is a sealing plate 12 of one lower unit cell 10 in the figure and a second electrode that is the bottom of an outer can 11 of the other unit cell 10 that is on the upper side. 19B is connected to the connecting bracket 20. Since the unit cell 10 uses the sealing plate 12 and the outer can 11 as positive and negative electrodes, a short circuit occurs when the connection fitting 20 connected to the sealing plate 12 contacts the caulking ridge 16 that is a part of the outer can 11. In the assembled battery shown in the cross-sectional view of FIG. 4, the connection fitting 20 and the crimping ridge 16 are insulated by an insulating material 30.

接続金具20は、金属板をプレス成形して製作される。接続金具20は、鉄板等の下地金属板の両面に金属メッキ層を設けている。金属メッキ層は、導電性に優れた電気抵抗の小さい導電メッキ層と、この導電メッキ層の表面に積層している溶接に適した抵抗メッキ層とからなる。導電メッキ層は、銅や銀、あるいはこれ等の合金であって、下地金属板と抵抗メッキ層よりも電気抵抗の小さいメッキ層である。抵抗メッキ層は、ニッケルやクローム、あるいはこれらの合金であって、導電メッキ層よりも電気抵抗が大きいメッキ層である。この接続金具20は、抵抗メッキ層で発熱しやすく、素電池10の電極19に速やかに溶接される。また、導電メッキ層によって電気抵抗が小さく、素電池10を低抵抗な状態で直列に接続できる。   The connection fitting 20 is manufactured by press-molding a metal plate. The connection fitting 20 is provided with metal plating layers on both surfaces of a base metal plate such as an iron plate. The metal plating layer is composed of a conductive plating layer having excellent electrical conductivity and a small electrical resistance, and a resistance plating layer suitable for welding laminated on the surface of the conductive plating layer. The conductive plating layer is copper, silver, or an alloy thereof, and is a plating layer having a lower electrical resistance than the base metal plate and the resistance plating layer. The resistance plating layer is nickel, chrome, or an alloy thereof, and is a plating layer having an electric resistance higher than that of the conductive plating layer. The connection fitting 20 is likely to generate heat in the resistance plating layer and is quickly welded to the electrode 19 of the unit cell 10. Moreover, the electric resistance is small due to the conductive plating layer, and the unit cells 10 can be connected in series in a low resistance state.

接続金具20は、対向するように隣接して配設される素電池10の電極19に溶接部23が溶接して接続されて、隣接する素電池10を直列に電気接続する。図4と図5に示す接続金具20は、図において下にある一方の素電池10の第1の電極19Aである封口板12に溶接される第1の溶接部23Aと、この第1の溶接部23Aの外側にあって、他方の素電池10の第2の電極19Bである外装缶11の底部に溶接される第2の溶接部23Bとを備える。以下、接続金具20を接続する図において、第1の溶接部23Aを接続する素電池(図4と図5において、下にある素電池)を第1の素電池10A、第2の溶接部23Bを接続する素電池(図4と図5において、上にある素電池)を第2の素電池10Bとする。   The connection fitting 20 is welded and connected to the electrodes 19 of the unit cells 10 disposed adjacent to each other so as to face each other, and the adjacent unit cells 10 are electrically connected in series. 4 and 5 includes a first welding portion 23A welded to the sealing plate 12 which is the first electrode 19A of one unit cell 10 on the lower side in the figure, and the first welding. 2nd welding part 23B which is outside the part 23A and is welded to the bottom part of the outer can 11 which is the second electrode 19B of the other unit cell 10. Hereinafter, in the drawing for connecting the connection fitting 20, the unit cell (the unit cell below in FIGS. 4 and 5) to which the first welded portion 23A is connected is referred to as the first unit cell 10A and the second welded portion 23B. Is a second unit cell 10B (a unit cell on the top in FIGS. 4 and 5).

図の接続金具20は、金属板を穴のあるリング状にプレス加工して、内側に第1の溶接部23Aを設けて、外側に第2の溶接部23Bを設けている。第1の溶接部23Aと第2の溶接部23Bは、対向する素電池10の電極19に溶接されて、隣接して配設している素電池10を直列に接続する。さらに、図の接続金具20は、中心孔24を設けて、ここに凸部電極13を配設している。接続金具は、中心孔を開口することなく、凸部電極を案内する部分を突出させる形状とすることもできる。   The connecting fitting 20 shown in the drawing is formed by pressing a metal plate into a ring shape with a hole, provided with a first welded portion 23A on the inner side, and provided with a second welded portion 23B on the outer side. 23 A of 1st weld parts and the 2nd weld part 23B are welded to the electrode 19 of the unit cell 10 which opposes, and the unit cell 10 arrange | positioned adjacently is connected in series. Further, the connecting fitting 20 shown in the figure has a central hole 24 in which the convex electrode 13 is disposed. The connection fitting can also be shaped to project the portion that guides the convex electrode without opening the center hole.

図4と図5に示す接続金具20は、第1の溶接部23Aを設けている円盤部21の外周に、第2の溶接部23Bとなる筒体部22を設けるように、金属板をプレス加工している。円盤部21は、中心孔24の周囲に第1の溶接部23Aを設けて、第1の溶接部23Aの外側に通電部25を設けている。第1の溶接部23Aが通電部25から突出するように、第1の溶接部23Aと通電部25とを段差のある形状にプレス加工している。この接続金具20は、図4に示すように、第1の溶接部23Aを第1の素電池10Aの封口板12に溶接する状態で、通電部25を第1の素電池10Aの外装缶11のカシメ凸条16から離して、通電部25とカシメ凸条16との間に絶縁材30を配置している。絶縁材30は、接続金具20の通電部25とカシメ凸条16とを絶縁して、通電部25がカシメ凸条16にショートするのを防止する。   4 and 5 presses a metal plate so that a cylindrical body portion 22 serving as a second welded portion 23B is provided on the outer periphery of the disc portion 21 provided with the first welded portion 23A. Processing. The disk portion 21 is provided with a first welded portion 23A around the center hole 24 and an energized portion 25 outside the first welded portion 23A. The first welded portion 23A and the energized portion 25 are pressed into a stepped shape so that the first welded portion 23A protrudes from the energized portion 25. As shown in FIG. 4, the connection fitting 20 is configured such that the current-carrying portion 25 is welded to the sealing plate 12 of the first unit cell 10 </ b> A while the first welded portion 23 </ b> A is welded to the outer can 11 of the first unit cell 10 </ b> A. The insulating material 30 is disposed between the energizing portion 25 and the crimping ridges 16 apart from the crimping ridges 16. The insulating material 30 insulates the current-carrying portion 25 of the connection fitting 20 and the caulking ridge 16 and prevents the current-carrying portion 25 from shorting to the caulking ridge 16.

接続金具20は、第1の溶接部23Aと第2の溶接部23Bに、各々溶接するために複数の溶接凸部23a、23bを設けて、溶接凸部23a、23bを溶接することができる。第1の溶接部23Aの溶接凸部23aは、第1の素電池10Aの封口板12の方向に突出して、第1の電極19Aである封口板12に溶接される。第2の溶接部23Bの溶接凸部23bは、第1の素電池10Bの外装缶11の表面に向かって突出して、第2の電極19Bである外装缶11の底部に溶接される。図6の平面図に示す接続金具20は、第1の溶接部23Aに4個の溶接凸部23aを設けて、第2の溶接部23Bに8個の溶接凸部23bを設けている。   The connection fitting 20 can be welded to the first and second welded portions 23A and 23B by providing a plurality of welded convex portions 23a and 23b for welding to the first welded portion 23A and the second welded portion 23B, respectively. The welding convex portion 23a of the first welding portion 23A protrudes in the direction of the sealing plate 12 of the first unit cell 10A and is welded to the sealing plate 12 that is the first electrode 19A. The welding convex part 23b of the 2nd welding part 23B protrudes toward the surface of the exterior can 11 of the 1st unit cell 10B, and is welded to the bottom part of the exterior can 11 which is the 2nd electrode 19B. The connection fitting 20 shown in the plan view of FIG. 6 is provided with four welding projections 23a on the first welding portion 23A and eight welding projections 23b on the second welding portion 23B.

図6の接続金具20は、第1の溶接部23Aに切欠部26を設けて、第1の溶接部23Aを複数に分割している。第1の溶接部23Aの切欠部26は、第1の溶接部23Aの中心孔24から半径方向に延長して設けている。図の第1の溶接部23Aは、等間隔で4箇所に切欠部26を設けて4分割すると共に、分割された各々の分割部に溶接凸部23aを設けている。すなわち、第1の溶接部23Aは、90度ピッチで等間隔に溶接凸部23aを設けている。第1の溶接部23Aに設けられる各4個の溶接凸部23aは、同心円状に配置している。   In the connection fitting 20 of FIG. 6, a cutout portion 26 is provided in the first welded portion 23A, and the first welded portion 23A is divided into a plurality of pieces. The cutout portion 26 of the first welded portion 23A is provided so as to extend in the radial direction from the center hole 24 of the first welded portion 23A. The first welded portion 23A in the figure is divided into four parts by providing cutouts 26 at four locations at equal intervals, and a welded convex part 23a is provided at each divided part. That is, the first welded portion 23A is provided with welded convex portions 23a at equal intervals with a 90-degree pitch. Each of the four weld projections 23a provided on the first weld 23A is arranged concentrically.

さらに、図5と図6の接続金具20は、第2の溶接部23Bにも切欠部27を設けて、第2の溶接部23Bを複数に分割している。第2の溶接部23Bの切欠部27は、筒状の筒体部22の軸方向に延長して設けており、中間をV字状に折曲してなる形状としている。図の第2の溶接部23Bも、90度ピッチで等間隔に切欠部27を設けて4分割している。第2の溶接部23Bの切欠部27は、第1の溶接部23Aに設ける切欠部26の間に位置するように設けている。すなわち、接続金具20は、第1の溶接部23Aの切欠部26と、第2の溶接部23Bの切欠部27とを、互いに位置をずらして設けている。第2の溶接部23Bは、切欠部27で分割された各々の分割部の両端部に溶接凸部23bを設けている。   Further, in the connection fitting 20 of FIGS. 5 and 6, the second welded portion 23B is also provided with a notch 27 to divide the second welded portion 23B into a plurality of parts. The cutout portion 27 of the second welded portion 23B is provided so as to extend in the axial direction of the tubular cylindrical body portion 22, and has a shape formed by bending the middle into a V shape. The second welded portion 23B shown in the figure is also divided into four parts by providing cutout portions 27 at equal intervals at a pitch of 90 degrees. The cutout portion 27 of the second welded portion 23B is provided so as to be positioned between the cutout portions 26 provided in the first welded portion 23A. That is, the connection fitting 20 is provided with the cutout portion 26 of the first welded portion 23A and the cutout portion 27 of the second welded portion 23B that are displaced from each other. The second welded portion 23 </ b> B is provided with welded convex portions 23 b at both ends of each divided portion divided by the notch portion 27.

絶縁材30は、絶縁特性のゴム状弾性体で全体を成形している。絶縁材30は、互いに直列に接続される素電池10の外周面を覆う外周絶縁部31を有する。図4の断面図に示す絶縁材30の外周絶縁部31は、素電池10の端部を挿入する筒状としている。筒状の外周絶縁部31は、第1の素電池10Aの端部を挿入する筒状としている。外周絶縁部31である筒部は、素電池10の端部を挿入して定位置に連結できるように、その内形を素電池10の外形としている。弾性変形するゴム状弾性体で成形される絶縁材は、外周絶縁部の筒部の内径を、素電池の外径よりも小さくし、素電池の端部を挿入する状態で弾性的に伸長する状態とすることもできる。   The insulating material 30 is entirely formed of a rubber-like elastic body having insulating characteristics. The insulating material 30 has the outer periphery insulating part 31 which covers the outer peripheral surface of the unit cell 10 connected in series with each other. The outer peripheral insulating portion 31 of the insulating material 30 shown in the cross-sectional view of FIG. 4 has a cylindrical shape into which the end of the unit cell 10 is inserted. The cylindrical outer peripheral insulating portion 31 has a cylindrical shape into which the end portion of the first unit cell 10A is inserted. The cylindrical part which is the outer periphery insulating part 31 has the inner shape as the outer shape of the unit cell 10 so that the end of the unit cell 10 can be inserted and connected to a fixed position. The insulating material formed of a rubber-like elastic body that is elastically deformed makes the inner diameter of the cylindrical portion of the outer peripheral insulating portion smaller than the outer diameter of the unit cell, and elastically expands in a state where the end of the unit cell is inserted. It can also be in a state.

さらに、図4の絶縁材30は、筒状である外周絶縁部31の内面に突出して抜止ストッパ35を設けている。抜止ストッパ35は、第1の素電池10Aの外周に設けているリング溝15に案内される。この絶縁材30は、第1の素電池10Aを筒状の外周絶縁部31に挿入して、抜止ストッパ35をリング溝15に入れて、抜け難いように連結できる。   Furthermore, the insulating material 30 in FIG. 4 protrudes from the inner surface of the cylindrical outer peripheral insulating portion 31 and is provided with a retaining stopper 35. The retaining stopper 35 is guided by the ring groove 15 provided on the outer periphery of the first unit cell 10A. The insulating material 30 can be connected so that the first unit cell 10 </ b> A is inserted into the cylindrical outer peripheral insulating portion 31 and the retaining stopper 35 is inserted into the ring groove 15 so that it is difficult to be removed.

さらに、図4と図5の絶縁材30は、接続金具20が第1の素電池10Aの外装缶11とショートするのを阻止するために、内側に絶縁リング32を突出するように設けている。絶縁リング32は、第1の素電池10Aのカシメ凸条16の表面にあって、カシメ凸部16の表面を絶縁している。接続金具20の通電部25は、絶縁リング32の上面に配設されて、第1の素電池10Aのカシメ凸条16から絶縁される。さらに、絶縁リング32の内周縁には、カシメ凸条16の内面を被覆するリング凸条34を一体成形して設けている。リング凸条34は、カシメ凸条16の内側に嵌入される形状である。この絶縁材30は、リング凸条34をカシメ凸条16の内側に嵌入して第1の素電池10Aの端部の定位置に配設される。   Further, the insulating material 30 in FIGS. 4 and 5 is provided so that the insulating ring 32 protrudes inside in order to prevent the connection fitting 20 from short-circuiting with the outer can 11 of the first unit cell 10A. . The insulating ring 32 is on the surface of the crimping ridge 16 of the first unit cell 10 </ b> A and insulates the surface of the crimping projection 16. The energizing portion 25 of the connection fitting 20 is disposed on the upper surface of the insulating ring 32 and is insulated from the caulking ridge 16 of the first unit cell 10A. Furthermore, a ring ridge 34 that covers the inner surface of the crimping ridge 16 is integrally formed on the inner peripheral edge of the insulating ring 32. The ring ridge 34 is shaped to be fitted inside the caulking ridge 16. This insulating material 30 is disposed at a fixed position at the end of the first unit cell 10 </ b> A with the ring ridge 34 inserted inside the caulking ridge 16.

以上の組電池は、以下の工程で、対向する素電池10を直列に接続する。
(1)第1の素電池10Aの上に絶縁材30をセットし、この絶縁材30の上に接続金具20をセットする。この状態で、第1の素電池10Aの第1の電極側の端部は、絶縁材30の外周絶縁部31に挿入される。絶縁材30の絶縁リング32は、第1の素電池10Aのカシメ凸条16と接続金具20の通電部25とを絶縁する。
The above assembled battery connects opposing unit cells 10 in series in the following steps.
(1) The insulating material 30 is set on the first unit cell 10 </ b> A, and the connection fitting 20 is set on the insulating material 30. In this state, the end on the first electrode side of the first unit cell 10 </ b> A is inserted into the outer peripheral insulating portion 31 of the insulating material 30. The insulating ring 32 of the insulating material 30 insulates the caulking ridge 16 of the first unit cell 10 </ b> A and the energizing portion 25 of the connection fitting 20.

(2)図7と図8で示すように、一対の溶接押圧具40を第1の溶接部23Aに押しつける。溶接押圧具40は、第1の溶接部23Aに設けている溶接凸部23aを素電池10の封口板12に押圧する。さらに、接続金具20の通電部25に電極50を接触させる。接続金具20は、第1の溶接部23Aに設けている溶接凸部23aを溶接点28として溶接押圧具40で押圧し、溶接点28と異なる部分である、第1の溶接部23Aの外側の通電部25を電極接触部29として電極50を接触させる。この状態で、電極50を介して、図8の太線で示すように溶接電流を流して第1の溶接部23Aを第1の素電池10Aの封口板12に溶接する。接続金具20は、電極50から通電されて、溶接押圧具40で押圧される第1の溶接部23Aを素電池10に溶接する。 (2) As shown in FIGS. 7 and 8, the pair of welding pressing tools 40 are pressed against the first welding portion 23A. The welding pressing tool 40 presses the welding convex portion 23 a provided in the first welding portion 23 </ b> A against the sealing plate 12 of the unit cell 10. Further, the electrode 50 is brought into contact with the energization part 25 of the connection fitting 20. The connection fitting 20 presses the welding convex part 23a provided in the first welding part 23A as the welding point 28 with the welding pressing tool 40, and is a part different from the welding point 28, outside the first welding part 23A. The electrode 50 is brought into contact with the energizing portion 25 as the electrode contact portion 29. In this state, a welding current is passed through the electrode 50 as shown by a thick line in FIG. 8 to weld the first welded portion 23A to the sealing plate 12 of the first unit cell 10A. The connection fitting 20 is energized from the electrode 50 and welds the first welding portion 23 </ b> A pressed by the welding pressing tool 40 to the unit cell 10.

溶接押圧具40は、電極50よりも強い力で接続金具20を押圧して、接続金具20の溶接部23を素電池10に溶接する。接続金具20は、電極50から溶接電流を供給して、溶接押圧具40に押圧される溶接部23を素電池10に溶接する。したがって、溶接押圧具40は、接続金具20に溶接電流を供給する電極50よりも強い力で接続金具20を押圧して、溶接部23を素電池10に溶接する。たとえば、溶接押圧具40の押圧力は、電極50の押圧力の2倍〜20倍とする。ただし、溶接押圧具の押圧力は、接続金具の材質、厚さ、溶接凸部の形状や数により変化し、また電極の押圧力は、接続金具との接触面積や溶接電流などで変化するので、溶接押圧具と電極の押圧力は、種々の条件を考慮して最適値に設定される。   The welding pressing tool 40 presses the connection fitting 20 with a stronger force than the electrode 50 and welds the welded portion 23 of the connection fitting 20 to the unit cell 10. The connection fitting 20 supplies a welding current from the electrode 50 to weld the welded portion 23 pressed by the welding pressing tool 40 to the unit cell 10. Therefore, the welding pressing tool 40 presses the connection fitting 20 with a stronger force than the electrode 50 that supplies the welding current to the connection fitting 20 to weld the welded portion 23 to the unit cell 10. For example, the pressing force of the welding pressing tool 40 is 2 to 20 times the pressing force of the electrode 50. However, the pressing force of the welding pressing tool varies depending on the material and thickness of the connection fitting, and the shape and number of welding projections, and the pressing force of the electrode changes depending on the contact area with the fitting and the welding current. The pressing force of the welding pressing tool and the electrode is set to an optimum value in consideration of various conditions.

以上の溶接方法は、直線状に連結される素電池10の間に、素電池10の外周部のカシメ凸条16を絶縁する絶縁材30を配設して、絶縁材30でもって、素電池10のカシメ凸条16から接続金具20の通電部25を絶縁する。絶縁材30で絶縁される接続金具20の通電部25の表面に電極50を接触して接続金具20に溶接電流を供給して、溶接押圧具40で押圧される溶接部23を溶接する。この方法は、電極50を接触させる通電部25を素電池10から絶縁する。このため、電極50が接触される接続金具20の通電部25が素電池10に溶接されず、溶接押圧具40で押圧する溶接部23を確実に溶接できる。また、電極50が押圧する通電部25が溶接されないことから、電極50の溶接熱による弊害を解消して、電極50の寿命を特に長くできる。   In the above welding method, the insulating material 30 that insulates the caulking ridge 16 on the outer peripheral portion of the unit cell 10 is disposed between the unit cells 10 that are linearly connected. The current-carrying portion 25 of the connection fitting 20 is insulated from the ten crimping ridges 16. The electrode 50 is brought into contact with the surface of the current-carrying portion 25 of the connection fitting 20 insulated by the insulating material 30 to supply a welding current to the connection fitting 20, and the welding portion 23 pressed by the welding pressing tool 40 is welded. In this method, the current-carrying portion 25 that contacts the electrode 50 is insulated from the unit cell 10. For this reason, the energization part 25 of the connection fitting 20 with which the electrode 50 is contacted is not welded to the unit cell 10, and the welding part 23 pressed by the welding pressing tool 40 can be reliably welded. In addition, since the current-carrying portion 25 pressed by the electrode 50 is not welded, the adverse effect due to the welding heat of the electrode 50 can be eliminated, and the life of the electrode 50 can be particularly prolonged.

さらに、以上の溶接方法は、一対の電極50の間に溶接押圧具40を配設して接続金具20を素電池10に溶接している。この方法は、図8の太線と矢印で示すように、接続金具20に一対の電極50で通電して、通電される領域を溶接押圧具40で押圧して溶接できる。このため、溶接押圧具40で確実に溶接部23を溶接できる特徴がある。   Further, in the above welding method, the welding pressing tool 40 is disposed between the pair of electrodes 50 to weld the connection fitting 20 to the unit cell 10. In this method, as shown by a thick line and an arrow in FIG. 8, the connection fitting 20 can be energized with a pair of electrodes 50, and a region to be energized can be pressed with a welding pressing tool 40 to be welded. For this reason, there exists the characteristic which can weld the welding part 23 reliably with the welding press tool 40. FIG.

図7と図8の溶接押圧具40は、一対のロッドからなり、ロッドの先端で溶接部23を押圧して、素電池10に溶接する。一対のロッドは、溶接部23に向かって接近し、また離れる方向に往復運動する往復運動台(図示せず)に固定されて、一緒に溶接部23を押圧する。溶接押圧具40は、溶接部23を押圧して溶接すると共に、溶接時に発生する溶接熱を放熱する。溶接押圧具40は、金属製として溶接部23の溶接熱を効率よく冷却できる。金属が効率よく溶接熱を伝導して放熱するからである。溶接押圧具40を金属製とするロッドは、先端を絶縁し、あるいは絶縁して往復運動台に連結される。この構造は、一対の金属ロッドが溶接電流をショートして、溶接電流のバイパスによる溶接不良を解消できる。ただし、溶接押圧具は、必ずしも金属性とする必要はなく、たとえばセラミックスなどの耐熱材で制作することもできる。   The welding pressing tool 40 of FIG. 7 and FIG. 8 consists of a pair of rods, presses the welding part 23 with the tip of the rod, and welds it to the unit cell 10. The pair of rods are fixed to a reciprocating table (not shown) that moves toward and away from the welded portion 23 and presses the welded portion 23 together. The welding pressing tool 40 presses and welds the welded portion 23 and radiates welding heat generated during welding. The welding pressing tool 40 is made of metal and can efficiently cool the welding heat of the welded portion 23. This is because the metal conducts welding heat efficiently and dissipates heat. The rod made of metal for the welding pressing tool 40 is connected to the reciprocating table with the tip insulated or insulated. With this structure, the pair of metal rods can shorten the welding current, and the welding failure due to the welding current bypass can be eliminated. However, the welding pressing tool does not necessarily need to be metallic, and can be made of a heat-resistant material such as ceramics.

(3)第1の溶接部23Aを第1の素電池10Aの第1の電極19Aである封口板12に溶接した後、第2の素電池10Bの下端部を、接続金具20の筒体部22に挿入する。第2の素電池10Bは、筒状である筒体部22に挿入して第2の溶接部23Bに連結される。この状態で、第2の素電池10Bの外装缶11の底部に、接続金具20の第2の溶接部23が接触される。 (3) After welding the first welded portion 23A to the sealing plate 12 that is the first electrode 19A of the first unit cell 10A, the lower end portion of the second unit cell 10B is connected to the cylindrical portion of the connection fitting 20. 22 is inserted. The second unit cell 10B is inserted into the cylindrical body portion 22 and connected to the second welding portion 23B. In this state, the second welded portion 23 of the connection fitting 20 is brought into contact with the bottom of the outer can 11 of the second unit cell 10B.

(4)図9と図10に示すように、接続金具20の第2の溶接部23Bを溶接押圧具40で押圧して、溶接押圧具40の外側に電極50を接触させる。いいかえると、一対の電極50の間に溶接押圧具40をセットして、溶接点28となる溶接凸部23bを第2の素電池10Bの外装缶11の表面に押圧する。一対の溶接押圧具40は、切欠部27を跨ぐように、すなわち一対の溶接押圧具40の間に切欠部27を配置するように、第2の溶接部23Bの溶接凸部23bを押圧する。電極50は、第2の溶接部23Bである筒体部22の表面であって、溶接点28と異なる部分を電極接触部29として、すなわち、接溶凸部23aを設けない第2の溶接部23Bの表面に接触させる。この状態で、電極50から溶接電流を接続金具20に供給して、第2の溶接部23Bを第2の素電池10Bの外装缶11の底部に溶接する。 (4) As shown in FIGS. 9 and 10, the second welding portion 23 </ b> B of the connection fitting 20 is pressed with the welding pressing tool 40, and the electrode 50 is brought into contact with the outside of the welding pressing tool 40. In other words, the welding pressing tool 40 is set between the pair of electrodes 50, and the welding convex portion 23b that becomes the welding point 28 is pressed against the surface of the outer can 11 of the second unit cell 10B. The pair of welding pressing tools 40 press the welding projections 23b of the second welding portion 23B so as to straddle the notching portions 27, that is, so as to arrange the notching portions 27 between the pair of welding pressing tools 40. The electrode 50 is a surface of the cylindrical body portion 22 which is the second welded portion 23B, and a portion different from the welding point 28 is used as an electrode contact portion 29, that is, a second welded portion in which the welded convex portion 23a is not provided. Contact the surface of 23B. In this state, a welding current is supplied from the electrode 50 to the connection fitting 20, and the second welded portion 23B is welded to the bottom of the outer can 11 of the second unit cell 10B.

この溶接工程において、溶接押圧具40と電極50は、第1の溶接部23Aを第1の素電池10Aに溶接するのと同じものを使用する。すなわち、溶接押圧具40を金属製として溶接部23を効率よく冷却し、金属製の溶接押圧具40を絶縁して往復運動台(図示せず)に連結してショート電流を防止し、さらに溶接押圧具40の押圧力を電極50の押圧力よりも強くすると共に、一対の電極50の間に溶接押圧具40をセットして、溶接部23を確実に溶接する。   In this welding process, the welding press tool 40 and the electrode 50 are the same as those used to weld the first welded portion 23A to the first unit cell 10A. That is, the welding pressing tool 40 is made of metal to efficiently cool the welded portion 23, the metal welding pressing tool 40 is insulated and connected to a reciprocating motion table (not shown) to prevent a short current, and further welding While making the pressing force of the pressing tool 40 stronger than the pressing force of the electrode 50, the welding pressing tool 40 is set between the pair of electrodes 50 to reliably weld the welded portion 23.

さらに、第2の溶接部23Bを第2の素電池10Bの外装缶11に溶接する工程において、図11に示すように、第2の溶接部23Bの内面であって、電極50を接触させる電極接触部29の内面に絶縁材39を配設して、絶縁材39でもって第2の溶接部23Bの電極接触部29と外装缶11との間を絶縁することができる。この状態で電極50から第2の溶接部23Bに溶接電流を供給すると、溶接電流は、図11の鎖線で示すバイパス経路に流れることなく、図の太線で示す経路に流れて、溶接部23Bの溶接凸部23bを確実に外装缶11に溶接する。   Further, in the step of welding the second welded portion 23B to the outer can 11 of the second unit cell 10B, as shown in FIG. 11, the electrode which is the inner surface of the second welded portion 23B and contacts the electrode 50 An insulating material 39 is disposed on the inner surface of the contact portion 29 so that the insulating material 39 can insulate the electrode contact portion 29 of the second welded portion 23 </ b> B from the outer can 11. In this state, when a welding current is supplied from the electrode 50 to the second welding portion 23B, the welding current does not flow in the bypass path indicated by the chain line in FIG. 11 but flows in the path indicated by the thick line in FIG. The welding projection 23b is reliably welded to the outer can 11.

従来の電池モジュールの連結構造を示す拡大断面図である。It is an expanded sectional view which shows the connection structure of the conventional battery module. 図1の電池モジュールの接続金具を示す斜視図である。It is a perspective view which shows the connection metal fitting of the battery module of FIG. 本発明の一実施例にかかる製造方法で製造される組電池の一例を示す斜視図である。It is a perspective view which shows an example of the assembled battery manufactured with the manufacturing method concerning one Example of this invention. 図3に示す組電池の素電池と接続金具の連結構造を示す拡大断面図である。It is an expanded sectional view which shows the connection structure of the unit cell of the assembled battery shown in FIG. 3, and a connection metal fitting. 図3に示す組電池の分解斜視図である。It is a disassembled perspective view of the assembled battery shown in FIG. 接続金具の平面図である。It is a top view of a connection metal fitting. 第1の素電池に接続金具を溶接する状態を示す斜視図である。It is a perspective view which shows the state which welds a connection metal fitting to a 1st unit cell. 第1の素電池に接続金具を溶接する状態を示す拡大断面図である。It is an expanded sectional view which shows the state which welds a connection metal fitting to a 1st unit cell. 第2の素電池に接続金具を溶接する状態を示す斜視図である。It is a perspective view which shows the state which welds a connection metal fitting to a 2nd unit cell. 第2の素電池に接続金具を溶接する状態を示す拡大断面図である。It is an expanded sectional view which shows the state which welds a connection metal fitting to a 2nd unit cell. 第2の素電池に接続金具を溶接する他の一例を示す拡大断面図である。It is an expanded sectional view which shows another example which welds a connection metal fitting to a 2nd unit cell.

符号の説明Explanation of symbols

10…素電池 10A…第1の素電池
10B…第2の素電池
11…外装缶
12…封口板
13…凸部電極
14…ガスケット
15…リング溝
16…カシメ凸条
19…電極 19A…第1の電極
19B…第2の電極
20…接続金具
21…円盤部
22…筒体部
23…溶接部 23A…第1の溶接部
23a…溶接凸部
23B…第2の溶接部
23b…溶接凸部
24…中心孔
25…通電部
26…切欠部
27…切欠部
28…溶接点
29…電極接触部
30…絶縁材
31…外周絶縁部
32…絶縁リング
34…リング凸条
35…抜止ストッパ
39…絶縁材
40…溶接押圧具
50…電極
80…接続金具
81…第1の溶接部
82…第2の溶接部
83…円盤
84…円筒部
90…素電池
91…外装缶
92…封口板
10: Unit cell 10A: First unit cell
DESCRIPTION OF SYMBOLS 10B ... 2nd unit cell 11 ... Exterior can 12 ... Sealing plate 13 ... Convex part electrode 14 ... Gasket 15 ... Ring groove 16 ... Caulking protrusion 19 ... Electrode 19A ... 1st electrode
19B ... 2nd electrode 20 ... Connection metal fitting 21 ... Disk part 22 ... Cylindrical body part 23 ... Welding part 23A ... 1st welding part
23a ... welding convex part
23B ... second weld
23b ... weld convex part 24 ... center hole 25 ... energizing part 26 ... notch part 27 ... notch part 28 ... welding point 29 ... electrode contact part 30 ... insulating material 31 ... outer periphery insulating part 32 ... insulating ring 34 ... ring convex strip 35 ... Stop stopper 39 ... Insulating material 40 ... Welding pressing tool 50 ... Electrode 80 ... Connection fitting 81 ... First welded portion 82 ... Second welded portion 83 ... Disc 84 ... Cylindrical portion 90 ... Unit cell 91 ... Exterior can 92 ... Sealing Board

Claims (5)

隣接する素電池(10)の電極(19)に接続金具(20)をスポット溶接して、接続金具(20)を介して複数の素電池(10)を接続する組電池の製造方法であって、
前記素電池(10)の表面に接続金具(20)の溶接部(23)を溶接押圧具(40)で押圧すると共に、接続金具(20)の表面であって溶接点(28)と異なる部分に溶接電流を流す一対の電極(50)を接触し、一対の電極(50)でもって接続金具(20)に溶接電流を通電し、この接続金具(20)に通電される溶接電流を溶接押圧具(40)で押圧している溶接部(23)で素電池(10)の電極(19)に通電して、接続金具(20)の溶接部(23)を素電池(10)の電極(19)にスポット溶接する組電池の製造方法。
A method of manufacturing an assembled battery in which a connection fitting (20) is spot welded to an electrode (19) of an adjacent unit cell (10), and a plurality of unit cells (10) are connected via the connection fitting (20). ,
The welded portion (23) of the connection fitting (20) is pressed to the surface of the unit cell (10) with a welding pressing tool (40), and the surface of the connection fitting (20) is different from the welding point (28). A pair of electrodes (50) in contact with each other, the welding current is passed through the connection fitting (20) with the pair of electrodes (50), and the welding current supplied to the connection fitting (20) is welded and pressed. The electrode (19) of the unit cell (10) is energized by the welded part (23) pressed by the tool (40), and the welded part (23) of the connection fitting (20) is connected to the electrode of the unit cell (10) ( 19) A method for manufacturing an assembled battery by spot welding.
前記素電池(10)を直線状に配列して素電池(10)の間に接続金具(20)を配設し、接続金具(20)の第1の溶接部(23A)を一方の素電池(10)に溶接して、第2の溶接部(23B)を他方の素電池(10)に溶接して隣接する素電池(10)を直列に接続する請求項1に記載される組電池の製造方法。   The unit cells (10) are arranged in a straight line, a connection fitting (20) is arranged between the unit cells (10), and the first welded portion (23A) of the connection fitting (20) is connected to one unit cell. The assembled battery according to claim 1, wherein the second unit cell (10) is connected in series by welding the second welded part (23B) to the other unit cell (10). Production method. 前記接続金具(20)で接続する素電池(10)を、外装缶(11)の開口部を封口板(12)で閉塞している円筒形電池とし、一方の素電池(10)である円筒形電池の封口板(12)に接続金具(20)の第1の溶接部(23A)を溶接して、他方の素電池(10)である円筒形電池の外装缶(11)の底部に第2の溶接部(23B)を溶接する請求項2に記載される組電池の製造方法。   The unit cell (10) to be connected by the connection fitting (20) is a cylindrical battery in which the opening of the outer can (11) is closed by the sealing plate (12), and the one unit cell (10) is a cylinder. The first welded portion (23A) of the connection fitting (20) is welded to the sealing plate (12) of the battery, and the second unit cell (10) is connected to the bottom of the outer casing (11) of the cylindrical battery. The method for manufacturing an assembled battery according to claim 2, wherein the two welds (23 B) are welded. 直線状に連結される素電池(10)の間に、素電池(10)の外周部を絶縁する絶縁材(30)を配設し、この絶縁材(30)で素電池(10)から絶縁される接続金具(20)の表面に電極(50)を接触して、溶接部(23)を溶接する請求項1に記載される組電池の製造方法。   An insulating material (30) that insulates the outer periphery of the unit cell (10) is disposed between the unit cells (10) connected in a straight line, and is insulated from the unit cell (10) by the insulating material (30). The method for manufacturing an assembled battery according to claim 1, wherein the electrode (50) is brought into contact with the surface of the connection fitting (20) to be welded to weld the welded portion (23). 前記一対の電極(50)の間に前記溶接押圧具(40)を配設して、接続金具(20)を素電池(10)に溶接する請求項1に記載される組電池の製造方法。   The method for manufacturing an assembled battery according to claim 1, wherein the welding pressing tool (40) is disposed between the pair of electrodes (50), and the connection fitting (20) is welded to the unit cell (10).
JP2007338927A 2007-12-28 2007-12-28 Manufacturing method of battery pack Expired - Fee Related JP5196995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338927A JP5196995B2 (en) 2007-12-28 2007-12-28 Manufacturing method of battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338927A JP5196995B2 (en) 2007-12-28 2007-12-28 Manufacturing method of battery pack

Publications (2)

Publication Number Publication Date
JP2009158445A true JP2009158445A (en) 2009-07-16
JP5196995B2 JP5196995B2 (en) 2013-05-15

Family

ID=40962205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338927A Expired - Fee Related JP5196995B2 (en) 2007-12-28 2007-12-28 Manufacturing method of battery pack

Country Status (1)

Country Link
JP (1) JP5196995B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184385A (en) * 2000-12-13 2002-06-28 Matsushita Electric Ind Co Ltd Connection structure between cells, and connection method
JP2002246003A (en) * 2001-02-21 2002-08-30 Toshiba Battery Co Ltd Connection member for battery
JP2002246006A (en) * 2001-02-21 2002-08-30 Toshiba Battery Co Ltd Battery connection member
JP2002261512A (en) * 2001-03-01 2002-09-13 Murata Mfg Co Ltd Non-reversible circuit element, manufacturing method therefor, and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184385A (en) * 2000-12-13 2002-06-28 Matsushita Electric Ind Co Ltd Connection structure between cells, and connection method
JP2002246003A (en) * 2001-02-21 2002-08-30 Toshiba Battery Co Ltd Connection member for battery
JP2002246006A (en) * 2001-02-21 2002-08-30 Toshiba Battery Co Ltd Battery connection member
JP2002261512A (en) * 2001-03-01 2002-09-13 Murata Mfg Co Ltd Non-reversible circuit element, manufacturing method therefor, and communication device

Also Published As

Publication number Publication date
JP5196995B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5153230B2 (en) Battery module
JP5110842B2 (en) Battery pack and manufacturing method thereof
JP5528746B2 (en) Assembled battery
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP2001345088A (en) Battery pack and its manufacturing method
CN107611329B (en) Battery welding device and battery module
KR102123674B1 (en) Battery Pack Comprising Electrode Terminal Connecting Plate
JP2007066537A (en) Secondary battery
US20060040176A1 (en) Prismatic battery cells, batteries with prismatic battery cells and methods of making same
JP5087218B2 (en) Secondary battery and manufacturing method thereof
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
JPWO2019244392A1 (en) Battery module
JP5051986B2 (en) Battery pack and manufacturing method thereof
JP2000149907A (en) Inter-battery connecting structure and method
JP5196995B2 (en) Manufacturing method of battery pack
KR100555263B1 (en) Method and apparatus for manufacturing battery module and unit battery cell for use in battery module
JP2016195106A (en) Fuel battery cell and manufacturing apparatus for the same
JP4373049B2 (en) Storage battery
KR20120009416A (en) Connecting structure for exteriorly connecting battery cells
JP3895995B2 (en) Assembled battery
JP4923986B2 (en) battery
CA2911076C (en) Terminal plate for fuel cell, and fuel cell
JP2003229107A (en) Battery pack
JP3920651B2 (en) Assembled battery
JP7285817B2 (en) SEALED BATTERY AND METHOD OF MANUFACTURING SEALED BATTERY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees