JP2009156513A - Endothermic gas generating device - Google Patents

Endothermic gas generating device Download PDF

Info

Publication number
JP2009156513A
JP2009156513A JP2007335078A JP2007335078A JP2009156513A JP 2009156513 A JP2009156513 A JP 2009156513A JP 2007335078 A JP2007335078 A JP 2007335078A JP 2007335078 A JP2007335078 A JP 2007335078A JP 2009156513 A JP2009156513 A JP 2009156513A
Authority
JP
Japan
Prior art keywords
retort
concentration
damage
gas
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007335078A
Other languages
Japanese (ja)
Other versions
JP5149613B2 (en
Inventor
Yasuhiro Murai
康裕 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Plant Industries Co Ltd
Original Assignee
Daido Plant Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Plant Industries Co Ltd filed Critical Daido Plant Industries Co Ltd
Priority to JP2007335078A priority Critical patent/JP5149613B2/en
Publication of JP2009156513A publication Critical patent/JP2009156513A/en
Application granted granted Critical
Publication of JP5149613B2 publication Critical patent/JP5149613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an endothermic gas generating device, detecting the damage occurrence of retort at an early point in an operating state of the device. <P>SOLUTION: This endothermic gas generating device 1, having the retort 3 and a heater 4 in a furnace body 2, further has: a carbon dioxide gas concentration measuring device 21 for measuring a carbon dioxide gas concentration U of the atmosphere in the furnace body 2; and a determining device 25 for determining that the retort 3 has damage when a measurement value U of the carbon dioxide gas concentration with the carbon dioxide gas concentration measuring device 21 becomes more than a set value U<SB>0</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、熱処理用雰囲気ガスとして用いられる吸熱型ガスを生成する吸熱型ガス発生装置に関する。   The present invention relates to an endothermic gas generator that generates an endothermic gas used as an atmosphere gas for heat treatment.

鋼材などの被処理物に、無酸化加熱処理,光輝加熱処理,浸炭処理などの熱処理を施す熱処理炉においては、還元性(無酸化)雰囲気形成用のガスとして、一酸化炭素,水素及び窒素を主成分とする吸熱型ガスが利用される。そしてこの吸熱型ガスを生成する装置としては、一般に炉体内に、触媒の充填されたレトルトと、このレトルトを加熱するヒータとを設け、プロパン,ブタン又は天然ガス等の炭化水素ガスと空気との混合ガスを上記レトルトに流通させて高温加熱することにより、吸熱型ガスを生成する吸熱型ガス発生装置(変成炉ともいう)が用いられている(たとえば特許文献1〜3参照。)。
実公平8−982号公報 特許第2701334号公報 特開2002−356763号公報
In a heat treatment furnace that performs heat treatment such as non-oxidation heat treatment, bright heat treatment, and carburization treatment on an object such as steel, carbon monoxide, hydrogen, and nitrogen are used as gases for forming a reducing (non-oxidation) atmosphere. An endothermic gas as a main component is used. As an apparatus for generating this endothermic gas, a retort filled with a catalyst and a heater for heating this retort are generally provided in the furnace body, and a hydrocarbon gas such as propane, butane or natural gas and air are provided. An endothermic gas generator (also referred to as a shift furnace) that generates an endothermic gas by circulating a mixed gas through the retort and heating it at a high temperature is used (see, for example, Patent Documents 1 to 3).
No. 8-982 Japanese Patent No. 2701334 JP 2002-356663 A

ところが上記の吸熱型ガス発生装置においては、装置の長期間使用により、耐熱金属製のレトルトに、レトルト内と炉体内とが連通する亀裂やピンホールなどの損傷が発生することがある。このレトルトの損傷が発生すると、レトルト内のガスが炉体内へ漏出して燃焼し、レトルト自身及び炉体の損傷が更に進行することになるが、従来はこのレトルトの損傷発生は、雰囲気ガス発生装置の稼働中におけるヒータの断線や炉温過熱、炉体からの火炎の噴出などの異常発生により検知していたので、レトルトの損傷発生からかなり時間が経過してから損傷発生を検知することになり、装置各部の損傷拡大を防ぐことができなかった。   However, in the above endothermic gas generator, damage to the retort made of heat-resistant metal, such as cracks and pinholes that communicate between the retort and the furnace body, may occur due to long-term use of the apparatus. When this retort damage occurs, the gas in the retort leaks into the furnace and burns, causing further damage to the retort itself and the furnace body. Because it was detected by the occurrence of abnormalities such as heater disconnection, furnace temperature overheating, and flame ejection from the furnace body during operation of the equipment, it was decided to detect the occurrence of damage after a considerable amount of time had elapsed since the occurrence of retort damage. Therefore, it was not possible to prevent the damage of each part of the apparatus from being enlarged.

この発明は上記従来の問題点を解決しようとするもので、装置の稼働状態においてレトルトの損傷発生を早期に検知することができる吸熱型ガス発生装置を提供することを目的とする。   An object of the present invention is to provide an endothermic gas generator capable of detecting the occurrence of damage to the retort at an early stage in the operating state of the apparatus.

上記目的を達成するために発明者らは、吸熱型ガス発生装置の稼働中における炉体内の雰囲気ガス成分が、レトルトの損傷発生によりどのように変動するかを、詳細に調査・分析した結果、上記雰囲気ガス成分の変動に基づいてレトルトの損傷発生を検知できることを見出した。具体的には、レトルトが損傷すると、レトルト内の生成ガス(吸熱型ガス)が炉体内へ漏出して、その生成ガス中の一酸化炭素が高温の炉体内で炭酸ガスとなり、同じく生成ガス中の水素が水蒸気となり、これらの酸化に伴って炉体内の酸素濃度が減少し、さらに上記酸素濃度が減少すると生成ガス中の一酸化炭素の酸化不足により、未酸化状態の一酸化炭素濃度が増加し、また損傷がレトルトの入口付近の場合には原料ガスである炭化水素ガスの漏出により上記と同様な炭酸ガスの生成及び酸素濃度が減少するという現象が発生する。これらの炉体内の雰囲気ガス成分の変動を検出することにより、レトルトの損傷発生を検知できることを知見し、この知見に基づいてこの発明を完成するに至った。   In order to achieve the above object, the inventors conducted a detailed investigation and analysis on how the atmospheric gas components in the furnace body during operation of the endothermic gas generator fluctuate due to the occurrence of damage to the retort. It has been found that the occurrence of damage to the retort can be detected based on the fluctuation of the atmospheric gas component. Specifically, when the retort is damaged, the generated gas (endothermic gas) in the retort leaks into the furnace, and the carbon monoxide in the generated gas becomes carbon dioxide in the high-temperature furnace. The hydrogen in the furnace becomes water vapor, and the oxygen concentration in the furnace decreases with these oxidations. When the oxygen concentration is further reduced, the carbon monoxide concentration in the unoxidized state increases due to insufficient oxidation of carbon monoxide in the product gas. However, when the damage is in the vicinity of the inlet of the retort, the same phenomenon as the generation of carbon dioxide gas and the decrease in oxygen concentration occurs due to the leakage of the hydrocarbon gas as the raw material gas. It has been found that the occurrence of retort damage can be detected by detecting the variation of the atmospheric gas components in the furnace body, and the present invention has been completed based on this finding.

すなわち、請求項1記載の吸熱型ガス発生装置は、炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、前記炭酸ガス濃度測定装置による炭酸ガス濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする。   That is, the endothermic gas generator according to claim 1 is an endothermic gas generator provided with a retort and a heater in the furnace, and the carbon dioxide concentration measuring device for measuring the carbon dioxide concentration in the atmosphere in the furnace, And a determination device that determines that the retort is damaged when a measured value of the carbon dioxide concentration by the carbon dioxide concentration measuring device is equal to or greater than a set value.

この発明(請求項1〜4記載の発明)において「ヒータ」とは、炉体内の雰囲気を変化させるバーナ式のヒータを除外し、電熱式のヒータやラジアントチューブなどの輻射加熱ヒータを指称するものとする。   In this invention (inventions of claims 1 to 4), "heater" refers to a radiant heater such as an electric heater or a radiant tube, excluding burner heaters that change the atmosphere in the furnace. And

請求項1記載の発明によれば、濃度測定対象である炭酸ガスは、レトルトの損傷がない状態での稼働中の吸熱型ガス発生装置の炉体内には存在せず、レトルトの損傷によって前記生成ガス中の一酸化炭素および原料ガス中の炭化水素の酸化によりはじめて発生するものであるので、測定した炭酸ガス濃度と零に近い小さい炭酸ガス濃度設定値との対比により、精度よく早期にレトルトの損傷発生を検知することができる。   According to the first aspect of the present invention, the carbon dioxide gas that is a concentration measurement target does not exist in the furnace of the endothermic gas generator that is operating in a state where there is no damage to the retort, and the generation is caused by damage to the retort. Since it is generated only by the oxidation of carbon monoxide in the gas and hydrocarbons in the raw material gas, the retort of the retort can be detected quickly and accurately by comparing the measured carbon dioxide concentration with a small carbon dioxide concentration set value close to zero. Damage occurrence can be detected.

また請求項2記載の発明は、炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の酸素濃度を測定する酸素濃度測定装置と、前記酸素濃度測定装置による酸素濃度の測定値が設定値以下となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする。   According to a second aspect of the present invention, there is provided an endothermic gas generator having a retort and a heater in the furnace, an oxygen concentration measuring device for measuring the oxygen concentration of the atmosphere in the furnace, and an oxygen concentration by the oxygen concentration measuring device. And a determination device that determines that the retort is damaged when the measured value is equal to or less than a set value.

請求項2記載の発明によれば、濃度測定対象である酸素は、レトルトの損傷がない状態での稼働中の吸熱型ガス発生装置の炉体内では、炉体周囲の大気の酸素濃度(21%)にほぼ等しい酸素濃度を有するものであり、レトルトの損傷によって前記生成ガス中の一酸化炭素や水素の酸化及び原料ガス中の炭化水素の酸化に消費されることにより減少するものであるので、測定した酸素濃度と上記の大気の酸素濃度より所定量小さい酸素濃度設定値との対比により、早期にレトルトの損傷発生を検知することができる。   According to the second aspect of the present invention, the oxygen whose concentration is to be measured is the oxygen concentration (21%) of the atmosphere around the furnace body in the furnace body of the endothermic gas generator in operation in a state where the retort is not damaged. ) And is reduced by being consumed by the oxidation of carbon monoxide and hydrogen in the product gas and the oxidation of hydrocarbons in the raw material gas due to damage of the retort. The occurrence of retort damage can be detected at an early stage by comparing the measured oxygen concentration with the oxygen concentration set value that is a predetermined amount smaller than the oxygen concentration in the atmosphere.

また請求項3記載の吸熱型ガス発生装置は、炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の水分濃度を測定する水分濃度測定装置と、前記水分濃度測定装置による水分濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする。   The endothermic gas generator according to claim 3 is an endothermic gas generator provided with a retort and a heater in a furnace body, a moisture concentration measuring apparatus for measuring the moisture concentration of the atmosphere in the furnace body, and the moisture concentration measurement. And a determination device that determines that the retort is damaged when the measured value of the moisture concentration by the device exceeds a set value.

請求項3記載の発明によれば、濃度測定対象である水分は、レトルトの損傷がない状態での稼働中の吸熱型ガス発生装置の炉体内では、炉体周囲の大気の水分濃度にほぼ等しい水分濃度を有するものであり、レトルトの損傷によって前記生成ガス中の水素の酸化により増加するものであるので、測定した水分濃度と上記の大気の水分濃度より所定量大きい水分濃度設定値との対比により、早期にレトルトの損傷発生を検知することができる。   According to the third aspect of the present invention, the moisture whose concentration is to be measured is approximately equal to the moisture concentration of the atmosphere around the furnace body in the furnace body of the endothermic gas generator in operation in a state where there is no damage to the retort. Since it has a water concentration and increases due to oxidation of hydrogen in the product gas due to damage to the retort, the measured water concentration is compared with a water concentration set value that is a predetermined amount greater than the water concentration in the atmosphere. Thus, the occurrence of retort damage can be detected at an early stage.

また請求項4記載の吸熱型ガス発生装置は、炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の一酸化炭素濃度を測定する一酸化炭素濃度測定装置と、前記一酸化炭素濃度測定装置による一酸化炭素濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする。   The endothermic gas generator according to claim 4 is an endothermic gas generator provided with a retort and a heater in the furnace body, and a carbon monoxide concentration measuring device for measuring the carbon monoxide concentration in the atmosphere in the furnace body; And a determination device that determines that the retort is damaged when a measured value of the carbon monoxide concentration by the carbon monoxide concentration measurement device is equal to or greater than a set value.

請求項4記載の発明によれば、濃度測定対象である一酸化炭素は、レトルトの損傷がない状態での稼働中の吸熱型ガス発生装置の炉体内には存在せず、レトルトの損傷によって前記生成ガス中の一酸化炭素や水素の酸化及び原料ガス中の炭化水素の酸化に消費されることにより酸素濃度が減少すると、未酸化分の一酸化炭素としてその濃度が増加するものであるので、測定した一酸化炭素濃度と零に近い小さい一酸化炭素濃度設定値との対比により、精度よく早期にレトルトの損傷発生を検知することができる。   According to the invention of claim 4, carbon monoxide which is a concentration measurement target does not exist in the furnace body of the endothermic gas generator in operation in a state where the retort is not damaged, and the carbon monoxide which is being measured is damaged by the retort. When the oxygen concentration is decreased by being consumed by the oxidation of carbon monoxide and hydrogen in the product gas and the oxidation of hydrocarbons in the raw material gas, the concentration increases as unoxidized carbon monoxide, By comparing the measured carbon monoxide concentration with a small carbon monoxide concentration set value close to zero, the occurrence of retort damage can be detected quickly and accurately.

以上説明したようにこの発明によれば、吸熱型ガス発生装置の稼働中において、レトルトの損傷発生により変動する炉体内の雰囲気ガス成分の変動状況を検出することにより、レトルトの損傷発生を早期に検知することができる。   As described above, according to the present invention, during the operation of the endothermic gas generator, the occurrence of retort damage is detected at an early stage by detecting the fluctuation state of the atmospheric gas component that fluctuates due to the occurrence of damage to the retort. Can be detected.

また上記の効果に加えて、請求項1記載の発明によれば、レトルト損傷発生検知用の測定・判定対象ガスとして、レトルト損傷なしの状態の炉体内及び炉体の周囲の大気中には存在しない炭酸ガスを用いているので、濃度零に近い低濃度の設定値Uをもとに精度よくレトルト損傷発生を検出でき、特に早期にレトルトの損傷発生を検知することができる。 In addition to the above effects, according to the first aspect of the present invention, as a measurement / judgment target gas for detecting the occurrence of retort damage, it exists in the atmosphere in the furnace body and around the furnace body in a state without retort damage. Since carbon dioxide gas that is not used is used, occurrence of retort damage can be detected with high accuracy based on a low concentration set value U 0 close to zero, and retort damage can be detected particularly early.

以下図1〜図2に示す第1例により、請求項1記載の発明の実施の形態を説明する。図1において1は吸熱型ガス発生装置で、2はその炉体であり、この炉体2内には内部に図示しないニッケル触媒などを充填したU字形のレトルト3と、このレトルト加熱用の電熱式のヒータ4とが設けられている。レトルト3は複数本並設されているが、1本のみを図示してある。   An embodiment of the invention described in claim 1 will be described below with reference to a first example shown in FIGS. In FIG. 1, 1 is an endothermic gas generator, 2 is a furnace body thereof, a U-shaped retort 3 filled with a nickel catalyst (not shown) in the furnace body 2, and electric heat for heating the retort. A heater 4 of the type is provided. A plurality of retorts 3 are arranged side by side, but only one is shown.

5は原料ガス供給路で、炉体2の外部に突出したレトルト3の一端部に接続され、6は生成ガス送出路で、同じくレトルト3の他端部に接続されている。原料ガス供給路5には、下流部で合流した炭化水素ガス供給路7と空気供給路8とが、ルーツブロワ9を介して接続されている。10,11は流量計、12は空気入口部のフィルタ、13は図示しない炭化水素ガス供給装置から供給されるガス流量を調節して空気と炭化水素ガスの混合比を調節するバルブである。また14は生成ガス送出路6に設けたガス冷却用のクーラで、生成ガス送出路6の先端側は、開閉弁15を介して、図示しない雰囲気熱処理炉等の生成ガス使用装置に接続されている。   Reference numeral 5 denotes a raw material gas supply path which is connected to one end of the retort 3 projecting outside the furnace body 2, and 6 is a generated gas delivery path which is also connected to the other end of the retort 3. A hydrocarbon gas supply path 7 and an air supply path 8 joined at the downstream portion are connected to the source gas supply path 5 via a roots blower 9. 10 and 11 are flow meters, 12 is a filter at the air inlet, and 13 is a valve that adjusts the flow rate of gas supplied from a hydrocarbon gas supply device (not shown) to adjust the mixing ratio of air and hydrocarbon gas. Reference numeral 14 denotes a cooler for gas cooling provided in the product gas delivery path 6, and the front end side of the product gas delivery path 6 is connected to a product gas use device such as an atmospheric heat treatment furnace (not shown) via an on-off valve 15. Yes.

一方20はレトルト損傷検出装置で、炉体2内の炭酸ガス濃度Uを測定する炭酸ガス濃度測定装置21と、この測定装置による炭酸ガス濃度の測定値が設定値U以上となった場合にレトルト3の損傷有りと判定する判定装置25とから成る。 On the other hand, reference numeral 20 denotes a retort damage detection device, which is a carbon dioxide concentration measuring device 21 that measures the carbon dioxide concentration U in the furnace body 2 and when the measured value of the carbon dioxide concentration by this measuring device is equal to or greater than a set value U 0. And a determination device 25 that determines that the retort 3 is damaged.

炭酸ガス濃度測定装置21は、一端部が炉体2内に開口するサンプリング管22を、ガス吸引用のポンプ23を介して炭酸ガス濃度を計測する炭酸ガス分析計24に接続して成る。また判定装置25は、炭酸ガス濃度の設定値Uを設定するための設定器26と、上記炭酸ガス分析計24の出力する炭酸ガス濃度測定値Uと上記設定値Uとを比較して、炭酸ガス濃度測定値が設定値U以上となったとき、損傷検出信号Sを出力する比較器27とから成り、この例では損傷検出信号Sは警報器28に入力される構成としてある。 The carbon dioxide concentration measuring device 21 is configured by connecting a sampling tube 22 whose one end opens into the furnace body 2 to a carbon dioxide analyzer 24 that measures the carbon dioxide concentration via a gas suction pump 23. The determination device 25 compares the setting device 26 for setting the carbon dioxide concentration set value U 0 , the carbon dioxide concentration measurement value U output from the carbon dioxide analyzer 24 and the set value U 0. The comparator 27 outputs a damage detection signal S 1 when the measured value of the carbon dioxide gas concentration is equal to or greater than the set value U 0. In this example, the damage detection signal S 1 is input to the alarm device 28. is there.

次に図2は、吸熱型ガス発生装置1の稼働中にレトルト3が損傷した場合の炉体2内の炭酸ガス濃度の変化を略示する線図で、レトルト損傷なしの状態では炉体2内の炭酸ガス濃度は零であるが、時点Tでレトルトの損傷が発生すると、この損傷部から炉体2内へ漏出した生成ガス(吸熱型ガス)中の一酸化炭素及び原料ガス中の炭化水素が高温の炉体内で酸化して炭酸ガスとなり、炉体2内の炭酸ガス濃度が図示のように増加する。そこで炭酸ガス濃度の設定値として、濃度零に近い設定値Uを選定して設定器26の設定をおこなっておく。 Next, FIG. 2 is a diagram schematically showing a change in carbon dioxide gas concentration in the furnace body 2 when the retort 3 is damaged during the operation of the endothermic gas generator 1. Although the concentration of carbon dioxide inside is zero, the retort damage at T 1 is generated, the carbon monoxide and the raw material gas in the product gas leaking from the damaged portion into the furnace body 2 (endothermic gas) The hydrocarbon is oxidized in the furnace body at a high temperature to become carbon dioxide, and the concentration of carbon dioxide in the furnace body 2 increases as shown in the figure. Therefore, the setting device 26 is set by selecting a setting value U 0 close to zero as the setting value of the carbon dioxide gas concentration.

上記構成の装置において、原料ガス供給路5からレトルト3内に原料ガスを供給し、ヒータ4により加熱したレトルト3内を流通させて吸熱型ガスの生成をおこなっている吸熱型ガス発生装置1の稼働中には、レトルト損傷検出装置20も連続作動させて炉体2内の雰囲気ガスの一部(少量)をポンプ23により連続吸引して炭酸ガス濃度の監視(炭酸ガス分析計24による炭酸ガス濃度測定値Uと設定値Uとの比較器27における対比)を常時おこなう。この状態で、時点Tでレトルト3に損傷が発生すると、前述のように炭酸ガスが発生しその濃度が増加するので、炭酸ガス分析計24による炭酸ガス濃度の測定値Uが設定値U以上となった時点Tで判定装置25がレトルト損傷を検知して損傷検出信号Sを発し、警報器28の吹鳴によりレトルト損傷が報知される。 In the apparatus having the above-described configuration, the endothermic gas generator 1 is configured to supply the source gas from the source gas supply path 5 into the retort 3 and circulate through the retort 3 heated by the heater 4 to generate the endothermic gas. During operation, the retort damage detector 20 is also continuously operated, and a part (small amount) of atmospheric gas in the furnace body 2 is continuously sucked by the pump 23 to monitor the carbon dioxide concentration (carbon dioxide gas by the carbon dioxide analyzer 24). Comparison between the measured density value U and the set value U 0 in the comparator 27 is always performed. In this state, when the damage to the retort 3 at T 1 is produced, since its concentration carbon dioxide gas is generated as described above increases, the measured value U of carbon dioxide concentration by carbon dioxide analyzer 24 is a set value U 0 The determination device 25 detects the retort damage at the time T 2 when the above is reached and issues a damage detection signal S 1, and the retort damage is notified by the sounding of the alarm device 28.

以上のように、炉体2内の雰囲気の炭酸ガス濃度が設定値以上となったことによりレトルト3の損傷発生を検出するようにしたので、損傷によりレトルト3内から漏出した生成ガス及び原料ガスが炉体内に高濃度に充満して激しく燃焼するのに至る前の、一酸化炭素及び炭化水素の燃焼による炭酸ガス発生の初期の段階、すなわちレトルト損傷発生後の早期の時点で、レトルトの損傷発生を検知することができるのである。また特にこの例では、測定・判定対象ガスである炭酸ガスは、レトルト損傷なしの状態の炉体内及び炉体の周囲の大気中には存在しないので、ガスサンプリングに伴って炉体内に侵入する空気によって影響を受けることもなく、濃度零に近い低濃度の設定値Uをもとに精度よくレトルト損傷発生を検出でき、レトルト損傷発生後短時間で損傷発生を検知することができるのである。 As described above, since the occurrence of damage to the retort 3 is detected when the carbon dioxide concentration in the atmosphere in the furnace body 2 exceeds the set value, the generated gas and the raw material gas leaked from the retort 3 due to damage Retort damage at an early stage of carbon dioxide generation by carbon monoxide and hydrocarbon combustion, that is, at an early stage after the occurrence of retort damage, before the furnace is filled with high concentration and burned vigorously The occurrence can be detected. Particularly in this example, carbon dioxide gas, which is a measurement / judgment target gas, does not exist in the furnace body without retort damage and in the atmosphere around the furnace body. Therefore, the occurrence of retort damage can be detected accurately based on the low concentration set value U 0 close to zero, and the occurrence of damage can be detected in a short time after the occurrence of retort damage.

次に図3〜図4に示す第2例により、請求項2記載の発明の実施の形態を説明する。この例の装置は、前記第1例における炭酸ガス濃度を測定対象とするレトルト損傷検出装置20のかわりに、酸素濃度を測定対象とするレトルト損傷検出装置30を用いたものであり、その他の構成は前記第1例の装置と同じであるので、図1と同一部分には図1と同一符号を付して図示し、それらの部分の詳細な説明は省略する。   Next, an embodiment of the invention described in claim 2 will be described with reference to a second example shown in FIGS. The apparatus of this example uses a retort damage detection device 30 whose measurement target is oxygen concentration instead of the retort damage detection device 20 whose measurement target is carbon dioxide concentration in the first example, and has other configurations. Since this is the same as the apparatus of the first example, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof will be omitted.

すなわち、レトルト損傷検出装置30は、炉体2内の酸素濃度を測定する酸素濃度測定装置31と、この測定装置による酸素濃度の測定値が設定値以下となった場合にレトルト3の損傷有りと判定する判定装置35とから成る。   That is, the retort damage detection device 30 includes an oxygen concentration measurement device 31 that measures the oxygen concentration in the furnace body 2 and that the retort 3 is damaged when the measured value of the oxygen concentration by the measurement device is equal to or less than a set value. And a determination device 35 for determination.

酸素濃度測定装置31は、一端部が炉体2内に開口するサンプリング管32を、ガス吸引用のポンプ33を介して酸素濃度を計測する酸素センサ34に接続して成る。また判定装置35は、酸素濃度の設定値Vを設定するための設定器36と、上記酸素センサ34の出力する酸素濃度測定値Vと上記設定値Vとを比較して、酸素濃度測定値が設定値V以下となったとき、損傷検出信号Sを出力する比較器37とから成り、この例でも損傷検出信号Sは警報器38に入力される構成としてある。 The oxygen concentration measuring device 31 is configured by connecting a sampling tube 32 whose one end opens into the furnace body 2 to an oxygen sensor 34 for measuring the oxygen concentration via a gas suction pump 33. The determination device 35 includes a setter 36 for setting a set value V 0 which oxygen concentration is compared with the oxygen concentration measurement value V and the set value V 0 to the output of the oxygen sensor 34, the oxygen concentration measurement When the value becomes equal to or less than the set value V 0 , the comparator 37 outputs a damage detection signal S 2. In this example, the damage detection signal S 2 is input to the alarm device 38.

次に図4は、吸熱型ガス発生装置1の稼働中にレトルト3が損傷した場合の炉体2内の酸素濃度の変化を略示する線図で、レトルト損傷なしの状態では炉体2内の酸素濃度は炉体周囲の大気の酸素濃度Va(=21%)にほぼ等しい値を示すものであるが、時点Tでレトルトの損傷が発生すると、この損傷部から炉体2内へ漏出した生成ガス(吸熱型ガス)中の一酸化炭素及び原料ガス中の炭化水素が高温の炉体内で酸化して炭酸ガスとなり、同じく生成ガス中の水素が水蒸気となるのに伴って、炉体2内の酸素濃度が図示のように減少する。そこで酸素濃度の設定値として、上記大気の酸素濃度Vaより所定量小さい設定値Vを選定して設定器36の設定をおこなっておく。 Next, FIG. 4 is a diagram schematically showing a change in oxygen concentration in the furnace body 2 when the retort 3 is damaged during the operation of the endothermic gas generator 1. When the oxygen concentration while indicating approximately equal to the oxygen concentration Va (= 21%) of the surrounding atmosphere furnace, the retort damage occurs at time T 1, leakage from the damaged portion into the furnace body 2 As the carbon monoxide in the generated gas (endothermic gas) and the hydrocarbon in the raw material gas are oxidized in the high-temperature furnace to become carbon dioxide, and the hydrogen in the generated gas also becomes water vapor, the furnace The oxygen concentration in 2 decreases as shown. Therefore, as the oxygen concentration setting value, a setting value V 0 smaller than the atmospheric oxygen concentration Va by a predetermined amount is selected and the setting device 36 is set.

上記構成の装置において、原料ガス供給路5からレトルト3内に原料ガスを供給し、ヒータ4により加熱したレトルト3内を流通させて吸熱型ガスの生成をおこなっている吸熱型ガス発生装置1の稼働中には、レトルト損傷検出装置30も連続作動させて炉体2内の雰囲気ガスの一部(少量)をポンプ33により連続吸引して酸素濃度の監視(酸素センサ34による酸素濃度測定値Vと設定値Vとの比較器37における対比)を常時おこなう。この状態で、時点Tでレトルト3に損傷が発生すると、前述のように酸素濃度が減少するので、酸素センサ34による酸素濃度の測定値Vが設定値V以下となった時点Tで判定装置35がレトルト損傷を検知して損傷検出信号Sを発し、警報器38の吹鳴によりレトルト損傷が報知される。 In the apparatus having the above-described configuration, the endothermic gas generator 1 is configured to supply the source gas from the source gas supply path 5 into the retort 3 and circulate through the retort 3 heated by the heater 4 to generate the endothermic gas. During operation, the retort damage detection device 30 is also continuously operated, and a portion (small amount) of atmospheric gas in the furnace body 2 is continuously sucked by the pump 33 to monitor the oxygen concentration (the measured oxygen concentration value V by the oxygen sensor 34). performed constantly compared) in the comparator 37 with the set value V 0 and. In this state, when the damage to the retort 3 at T 1 is generated, due to the reduced oxygen concentration as described above, at the time T 2 measured value V of the oxygen concentration by the oxygen sensor 34 reaches the set value V 0 below determination device 35 detects the retort damage issues a damage detection signal S 2, retort damage is informed by sounding of the alarm device 38.

以上のように、炉体2内の雰囲気の酸素濃度が設定値以下となったことによりレトルト3の損傷発生を検出するようにしたので、損傷によりレトルト3内から漏出した生成ガス及び原料ガスが炉体内に高濃度に充満して激しく燃焼するのに至る前の、一酸化炭素及び炭化水素及び水素の酸化による酸素濃度減少の初期の段階、すなわちレトルト損傷発生後の早期の時点で、レトルトの損傷発生を検知することができるのである。   As described above, since the occurrence of damage to the retort 3 is detected when the oxygen concentration in the atmosphere in the furnace body 2 is equal to or lower than the set value, the generated gas and the raw material gas leaked from the retort 3 due to the damage are detected. At an early stage of oxygen concentration reduction due to oxidation of carbon monoxide, hydrocarbons and hydrogen, that is, at an early stage after the occurrence of retort damage, before the furnace body is filled to a high concentration and burned vigorously. The occurrence of damage can be detected.

次に図5〜図6に示す第3例により、請求項3記載の発明の実施の形態を説明する。この例の装置は、前記第1例における炭酸ガス濃度を測定対象とするレトルト損傷検出装置20のかわりに、水分濃度を測定対象とするレトルト損傷検出装置40を用いたものであり、その他の構成は前記第1例の装置と同じであるので、図1と同一部分には図1と同一符号を付して図示し、それらの部分の詳細な説明は省略する。   Next, an embodiment of the invention described in claim 3 will be described with reference to a third example shown in FIGS. The apparatus of this example uses a retort damage detection apparatus 40 whose measurement target is water concentration instead of the retort damage detection apparatus 20 whose measurement target is carbon dioxide concentration in the first example, and has other configurations. Since this is the same as the apparatus of the first example, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof will be omitted.

すなわち、レトルト損傷検出装置40は、炉体2内の水分濃度(この例では露点)を測定する水分濃度測定装置41と、この測定装置による水分濃度の測定値が設定値以上となった場合にレトルト3の損傷有りと判定する判定装置45とから成る。   That is, the retort damage detection device 40 is configured to measure a moisture concentration measuring device 41 that measures the moisture concentration in the furnace body 2 (dew point in this example), and when the measured value of the moisture concentration by the measuring device exceeds a set value. And a determination device 45 that determines that the retort 3 is damaged.

水分濃度測定装置41は、一端部が炉体2内に開口するサンプリング管42を、ガス吸引用のポンプ43を介して水分濃度を計測する露点計44に接続して成る。また判定装置45は、水分濃度の設定値Wを設定するための設定器46と、上記露点計44の出力する水分濃度測定値Wと上記設定値Wとを比較して、水分濃度測定値が設定値W以上となったとき、損傷検出信号Sを出力する比較器47とから成り、この例でも損傷検出信号Sは警報器48に入力される構成としてある。 The moisture concentration measuring device 41 is configured by connecting a sampling tube 42 whose one end opens into the furnace body 2 to a dew point meter 44 that measures the moisture concentration via a gas suction pump 43. The determining device 45 includes a setter 46 for setting the set value W 0 of the moisture concentration is compared with the water content measurement W and the set value W 0 of the output of the dew-point meter 44, a water content measurement When the value becomes equal to or greater than the set value W 0 , the comparator 47 outputs a damage detection signal S 3. In this example, the damage detection signal S 3 is input to the alarm device 48.

次に図6は、吸熱型ガス発生装置1の稼働中にレトルト3が損傷した場合の炉体2内の水分濃度(露点)の変化を略示する線図で、レトルト損傷なしの状態では炉体2内の水分濃度は炉体周囲の大気の水分濃度Waにほぼ等しい値を示すものであるが、時点Tでレトルトの損傷が発生すると、この損傷部から炉体2内へ漏出した生成ガス(吸熱型ガス)中の水素が高温の炉体内で酸化して水蒸気となり、炉体2内の水分濃度が図示のように増加する。そこで水分濃度の設定値として、上記の大気の水分濃度Waより所定量大きい(高露点の)設定値Wを選定して設定器46の設定をおこなっておく。 Next, FIG. 6 is a diagram schematically showing a change in the moisture concentration (dew point) in the furnace body 2 when the retort 3 is damaged during operation of the endothermic gas generator 1. Although the water concentration in the body 2 shows a value substantially equal to the moisture concentration Wa of the surrounding atmosphere furnace, the retort damage at T 1 is generated, leaking from the damaged portion into the furnace body 2 produced Hydrogen in the gas (endothermic gas) is oxidized in the high temperature furnace body to become water vapor, and the moisture concentration in the furnace body 2 increases as shown in the figure. Therefore, the setter 46 is set by selecting a set value W 0 (a high dew point) that is a predetermined amount larger than the above-described atmospheric water concentration Wa as the set value of the moisture concentration.

上記構成の装置において、原料ガス供給路5からレトルト3内に原料ガスを供給し、ヒータ4により加熱したレトルト3内を流通させて吸熱型ガスの生成をおこなっている吸熱型ガス発生装置1の稼働中には、レトルト損傷検出装置40も連続作動させて炉体2内の雰囲気ガスの一部(少量)をポンプ43により連続吸引して水分濃度の監視(露点計44による水分濃度測定値Wと設定値Wとの比較器47における対比)を常時おこなう。この状態で、時点Tでレトルト3に損傷が発生すると、前述のように水分濃度が増加するので、露点計44による水分濃度の測定値Wが設定値W以上となった時点Tで判定装置45がレトルト損傷を検知して損傷検出信号Sを発し、警報器48の吹鳴によりレトルト損傷が報知される。 In the apparatus having the above-described configuration, the endothermic gas generator 1 is configured to supply the source gas from the source gas supply path 5 into the retort 3 and circulate through the retort 3 heated by the heater 4 to generate the endothermic gas. During operation, the retort damage detector 40 is also continuously operated, and a portion (small amount) of the atmospheric gas in the furnace body 2 is continuously sucked by the pump 43 to monitor the moisture concentration (the measured moisture concentration value W by the dew point meter 44). performed constantly compared) in the comparator 47 with the set value W 0 and. In this state, when the damage to the retort 3 at T 1 is generated, because the water concentration as described above increases, when T 2 measured value W of the water concentration by the dew point meter 44 reaches the set value W 0 or more The determination device 45 detects the retort damage and issues a damage detection signal S 3, and the retort damage is notified by the sounding of the alarm device 48.

以上のように、炉体2内の雰囲気の水分濃度が設定値以上となったことによりレトルト3の損傷発生を検出するようにしたので、損傷によりレトルト3内から漏出した生成ガス及び原料ガスが炉体内に高濃度に充満して激しく燃焼するのに至る前の、生成ガス中の水素の酸化による水蒸気発生の初期の段階、すなわちレトルト損傷発生後の早期の時点で、レトルトの損傷発生を検知することができるのである。なお上記水分濃度は、露点として測定・判定するかわりに湿度として測定・判定するなどしてもよい。   As described above, since the occurrence of damage to the retort 3 is detected when the moisture concentration in the atmosphere in the furnace body 2 is equal to or higher than the set value, the generated gas and the raw material gas leaked from the retort 3 due to damage are Retort damage detection is detected at an early stage of water vapor generation due to oxidation of hydrogen in the product gas, that is, at an early stage after occurrence of retort damage, before the furnace body is filled with high concentration and violently burns. It can be done. The moisture concentration may be measured / determined as humidity instead of being measured / determined as a dew point.

次に図7〜図8に示す第4例により、請求項4記載の発明の実施の形態を説明する。この例の装置は、前記第1例における炭酸ガス濃度を測定対象とするレトルト損傷検出装置20のかわりに、一酸化炭素濃度を測定対象とするレトルト損傷検出装置50を用いたものであり、その他の構成は前記第1例の装置と同じであるので、図1と同一部分には図1と同一符号を付して図示し、それらの部分の詳細な説明は省略する。   Next, the fourth embodiment shown in FIGS. 7 to 8 is used to explain an embodiment of the present invention. The apparatus of this example uses a retort damage detection device 50 whose measurement target is carbon monoxide concentration instead of the retort damage detection device 20 whose measurement target is carbon dioxide concentration in the first example. Since the configuration is the same as that of the apparatus of the first example, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

すなわち、レトルト損傷検出装置50は、炉体2内の一酸化炭素濃度を測定する一酸化炭素濃度測定装置51と、この測定装置による一酸化炭素濃度の測定値が設定値以上となった場合にレトルト3の損傷有りと判定する判定装置55とから成る。   That is, the retort damage detection device 50 is configured to measure the carbon monoxide concentration measuring device 51 that measures the carbon monoxide concentration in the furnace body 2 and when the measured value of the carbon monoxide concentration by the measuring device is equal to or greater than a set value. And a determination device 55 that determines that the retort 3 is damaged.

一酸化炭素濃度測定装置51は、一端部が炉体2内に開口するサンプリング管52を、ガス吸引用のポンプ53を介して一酸化炭素濃度を計測するCOガス分析計54に接続して成る。また判定装置55は、一酸化炭素濃度の設定値Xを設定するための設定器56と、上記COガス分析計54の出力する一酸化炭素濃度測定値Xと上記設定値Xとを比較して、一酸化炭素濃度測定値が設定値X以上となったとき、損傷検出信号Sを出力する比較器57とから成り、この例でも損傷検出信号Sは警報器58に入力される構成としてある。 The carbon monoxide concentration measuring device 51 is formed by connecting a sampling pipe 52 whose one end opens into the furnace body 2 to a CO gas analyzer 54 that measures the carbon monoxide concentration via a gas suction pump 53. . The determination device 55, compared with a setter 56 for setting the setting value X 0 of the concentration of carbon monoxide, the carbon monoxide concentration measurement value X and the set value X 0 output by the above CO gas analyzer 54 to, when the concentration of carbon monoxide measured value is the set value X 0 or more, consists of a comparator 57 which outputs a flaw detection signal S 4, damage detection signal S 4 in this example is input to the alarm 58 The configuration is as follows.

次に図8は、吸熱型ガス発生装置1の稼働中にレトルト3が損傷した場合の炉体2内の一酸化炭素濃度の変化を略示する線図に、前記第2例の図4における酸素濃度の変化を破線で併記した線図である。レトルト損傷なしの状態では炉体2内の一酸化炭素濃度は零であるが、時点Tでレトルトの損傷が発生すると、先ず前記第2例と同じくこの損傷部から炉体2内へ漏出した生成ガス(吸熱型ガス)中の一酸化炭素及び原料ガス中の炭化水素が酸化して炭酸ガスとなり、同じく生成ガス中の水素が高温の炉体内で酸化して水蒸気となることにより、炉体2内の酸素濃度が前記大気の酸素濃度Vaから図示のように減少するので、これに伴って未酸化の一酸化炭素の濃度が、上記酸化過程の進行により図示のように増加する。そこで一酸化炭素濃度の設定値として、濃度零に近い設定値Xを選定して設定器56の設定をおこなっておく。 Next, FIG. 8 is a diagram schematically showing a change in the concentration of carbon monoxide in the furnace body 2 when the retort 3 is damaged during the operation of the endothermic gas generator 1, and in FIG. 4 of the second example. It is the diagram which combined the change of oxygen concentration with the broken line. Carbon monoxide concentration in the furnace body 2 in the state without a retort damage is zero, but when retort damage occurs at time T 1, was first leaked to the second embodiment and the same furnace body 2 from the damaged portion The carbon monoxide in the product gas (endothermic gas) and the hydrocarbon in the raw material gas are oxidized to carbon dioxide, and the hydrogen in the product gas is also oxidized in the high temperature furnace to become water vapor. As the oxygen concentration in 2 decreases from the atmospheric oxygen concentration Va as shown in the figure, the concentration of unoxidized carbon monoxide increases as shown in the figure as the oxidation process proceeds. So as the setting value of carbon monoxide density, should make the settings of the setter 56 selects the set value X 0 is close to the concentration zero.

上記構成の装置において、原料ガス供給路5からレトルト3内に原料ガスを供給し、ヒータ4により加熱したレトルト3内を流通させて吸熱型ガスの生成をおこなっている吸熱型ガス発生装置1の稼働中には、レトルト損傷検出装置50も連続作動させて炉体2内の雰囲気ガスの一部(少量)をポンプ53により連続吸引して一酸化炭素濃度の監視(COガス分析計54による一酸化炭素濃度測定値Xと設定値Xとの比較器57における対比)を常時おこなう。この状態で、時点Tでレトルト3に損傷が発生後、前述のように一酸化炭素濃度が零から増加するので、COガス分析計54による一酸化炭素濃度の測定値Xが設定値X以上となった時点Tで判定装置55がレトルト損傷を検知して損傷検出信号Sを発し、警報器58の吹鳴によりレトルト損傷が報知される。 In the apparatus having the above-described configuration, the endothermic gas generator 1 is configured to supply the source gas from the source gas supply path 5 into the retort 3 and circulate through the retort 3 heated by the heater 4 to generate the endothermic gas. During operation, the retort damage detection device 50 is also continuously operated, and a part (small amount) of the atmospheric gas in the furnace body 2 is continuously sucked by the pump 53 to monitor the carbon monoxide concentration (one by the CO gas analyzer 54). performing the comparison) in the comparator 57 with the carbon oxides concentration measurement value X and the set value X 0 at all times. In this state, after injury to retort 3 at T 1 is generated, because the concentration of carbon monoxide as described above is increased from zero, the measured value X is the set value X of the carbon monoxide concentration with CO gas analyzer 54 0 above and is time T 2 in the determination apparatus 55 emits a damage detection signal S 4 detects the retort damage, retort damage is informed by sounding of alarm 58.

以上のように、炉体2内の雰囲気の一酸化炭素濃度が設定値以上となったことによりレトルト3の損傷発生を検出するようにしたので、損傷によりレトルト3内から漏出した生成ガス中の一酸化炭素が未酸化のまま炉体外へ流出して激しく燃焼するのに至る前の、炉体内での一酸化炭素増加の初期の段階、すなわちレトルト損傷発生後の早期の時点で、レトルトの損傷発生を検知することができるのである。またこの例の測定・判定対象である一酸化炭素は、レトルト損傷なしの炉体内及び炉体の周囲の大気中には存在しないので、濃度零に近い低濃度の設定値Xをもとに精度よくレトルトの損傷発生を検出でき、レトルトの損傷発生を確実に検知することができるのである。 As described above, since the occurrence of damage to the retort 3 is detected when the carbon monoxide concentration in the atmosphere in the furnace body 2 exceeds the set value, the generated gas leaked from the retort 3 due to damage Retort damage at an early stage of carbon monoxide increase in the furnace, that is, at an early stage after the occurrence of retort damage, before the carbon monoxide flows out of the furnace and burns violently. The occurrence can be detected. In addition, since carbon monoxide, which is the object of measurement and judgment in this example, does not exist in the furnace body without retort damage and in the atmosphere around the furnace body, based on the low concentration set value X 0 close to zero. The occurrence of damage to the retort can be detected with high accuracy, and the occurrence of damage to the retort can be reliably detected.

この発明は上記各例に限定されるものではなく、たとえば炭酸ガス濃度測定装置21,酸素濃度測定装置31,水分濃度測定装置41,一酸化炭素濃度測定装置51等の具体的構成は上記以外のものとしてもよく、同様に判定装置25,35,45,55の具体的構成も上記以外のものとしてもよい。また判定装置25,35,45,55による損傷検出信号S,S,S,Sは、上記の例の警報器に出力するほか、OK・NGを表示する表示灯に出力したり、吸熱型ガス発生装置の制御装置へ出力して、たとえば吸熱型ガス発生装置の原料ガス供給路に設けた緊急時作動用の開閉弁などの動作制御用の原信号として利用するようにしてもよい。 The present invention is not limited to the above examples. For example, the specific configurations of the carbon dioxide concentration measuring device 21, the oxygen concentration measuring device 31, the moisture concentration measuring device 41, the carbon monoxide concentration measuring device 51, and the like are other than those described above. Similarly, the specific configurations of the determination devices 25, 35, 45, and 55 may be other than those described above. Further, the damage detection signals S 1 , S 2 , S 3 , and S 4 by the determination devices 25, 35, 45, and 55 are output to the alarm device in the above example, and are also output to an indicator lamp that displays OK / NG. The output to the control device of the endothermic gas generator is used as an original signal for controlling the operation of an on-off valve for emergency operation provided in the raw material gas supply path of the endothermic gas generator, for example. Good.

この発明の実施の形態の第1例を示す吸熱型ガス発生装置の機器系統図である。1 is an equipment system diagram of an endothermic gas generator showing a first example of an embodiment of the present invention. 図1の吸熱型ガス発生装置の炉体内における炭酸ガス濃度の変化を示す略示線図である。It is a schematic diagram which shows the change of the carbon dioxide gas concentration in the furnace body of the endothermic gas generator of FIG. この発明の実施の形態の第2例を示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 and showing a second example of the embodiment of the present invention. 図3の吸熱型ガス発生装置の炉体内における酸素濃度の変化を示す略示線図である。It is a schematic diagram which shows the change of the oxygen concentration in the furnace body of the endothermic gas generator of FIG. この発明の実施の形態の第3例を示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 and showing a third example of the embodiment of the present invention. 図5の吸熱型ガス発生装置の炉体内における水分濃度の変化を示す略示線図である。FIG. 6 is a schematic diagram showing a change in moisture concentration in the furnace of the endothermic gas generator of FIG. 5. この発明の実施の形態の第4例を示す図1相当図である。FIG. 6 is a view corresponding to FIG. 1 and showing a fourth example of the embodiment of the present invention. 図7の吸熱型ガス発生装置の炉体内における一酸化炭素濃度の変化を示す略示線図である。It is a schematic diagram which shows the change of the carbon monoxide density | concentration in the furnace body of the endothermic gas generator of FIG.

符号の説明Explanation of symbols

1…吸熱型ガス発生装置、2…炉体、3…レトルト、4…ヒータ、20…レトルト損傷検出装置、21…炭酸ガス濃度測定装置、24…炭酸ガス分析計、25…判定装置、30…レトルト損傷検出装置、31…酸素濃度測定装置、34…酸素センサ、35…判定装置、40…レトルト損傷検出装置、41…水分濃度測定装置、44…露点計、45…判定装置、50…レトルト損傷検出装置、51…一酸化炭素濃度測定装置、54…COガス分析計、55…判定装置。   DESCRIPTION OF SYMBOLS 1 ... Endothermic gas generator, 2 ... Furnace body, 3 ... Retort, 4 ... Heater, 20 ... Retort damage detector, 21 ... Carbon dioxide gas concentration measuring device, 24 ... Carbon dioxide analyzer, 25 ... Judgment device, 30 ... Retort damage detection device, 31 ... oxygen concentration measurement device, 34 ... oxygen sensor, 35 ... determination device, 40 ... retort damage detection device, 41 ... moisture concentration measurement device, 44 ... dew point meter, 45 ... determination device, 50 ... retort damage Detection device, 51... Carbon monoxide concentration measurement device, 54... CO gas analyzer, 55.

Claims (4)

炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、前記炭酸ガス濃度測定装置による炭酸ガス濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする吸熱型ガス発生装置。   In an endothermic gas generator having a retort and a heater in the furnace, a carbon dioxide concentration measuring device for measuring the carbon dioxide concentration in the atmosphere in the furnace, and a measured value of the carbon dioxide concentration by the carbon dioxide concentration measuring device are set. An endothermic gas generator comprising: a determination device that determines that the retort is damaged when the value exceeds the value. 炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の酸素濃度を測定する酸素濃度測定装置と、前記酸素濃度測定装置による酸素濃度の測定値が設定値以下となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする吸熱型ガス発生装置。   In an endothermic gas generator having a furnace with a retort and a heater, the oxygen concentration measuring device for measuring the oxygen concentration in the atmosphere in the furnace and the measured value of the oxygen concentration by the oxygen concentration measuring device are below a set value. An endothermic gas generator comprising: a determination device that determines that the retort is damaged when the retort is damaged. 炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の水分濃度を測定する水分濃度測定装置と、前記水分濃度測定装置による水分濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする吸熱型ガス発生装置。   In an endothermic gas generator having a furnace with a retort and a heater, the moisture concentration measuring device for measuring the moisture concentration of the atmosphere in the furnace body, and the measured value of the moisture concentration by the moisture concentration measuring device exceed a set value. An endothermic gas generator comprising: a determination device that determines that the retort is damaged when the retort is damaged. 炉体内にレトルトとヒータをそなえた吸熱型ガス発生装置において、前記炉体内の雰囲気の一酸化炭素濃度を測定する一酸化炭素濃度測定装置と、前記一酸化炭素濃度測定装置による一酸化炭素濃度の測定値が設定値以上となった場合に前記レトルトの損傷有りと判定する判定装置とを、具備したことを特徴とする吸熱型ガス発生装置。   In an endothermic gas generator having a retort and a heater in the furnace, a carbon monoxide concentration measuring device for measuring the carbon monoxide concentration in the atmosphere in the furnace, and the carbon monoxide concentration measured by the carbon monoxide concentration measuring device. An endothermic gas generator, comprising: a determination device that determines that the retort is damaged when a measured value is equal to or greater than a set value.
JP2007335078A 2007-12-26 2007-12-26 Endothermic gas generator Expired - Fee Related JP5149613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335078A JP5149613B2 (en) 2007-12-26 2007-12-26 Endothermic gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335078A JP5149613B2 (en) 2007-12-26 2007-12-26 Endothermic gas generator

Publications (2)

Publication Number Publication Date
JP2009156513A true JP2009156513A (en) 2009-07-16
JP5149613B2 JP5149613B2 (en) 2013-02-20

Family

ID=40960729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335078A Expired - Fee Related JP5149613B2 (en) 2007-12-26 2007-12-26 Endothermic gas generator

Country Status (1)

Country Link
JP (1) JP5149613B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923815A (en) * 1982-07-30 1984-02-07 Chugai Ro Kogyo Kaisha Ltd Device for producing atmosphere gas
JPH0222412A (en) * 1988-07-12 1990-01-25 Daido Steel Co Ltd Method for operating atmospheric gas generating device
JPH0430035U (en) * 1990-07-04 1992-03-11
JPH0430036U (en) * 1990-07-04 1992-03-11
JP2002357388A (en) * 2001-06-01 2002-12-13 Daido Steel Co Ltd Heat treating furnace
JP2002356763A (en) * 2001-03-29 2002-12-13 Denso Corp Gas carburizing method and its device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923815A (en) * 1982-07-30 1984-02-07 Chugai Ro Kogyo Kaisha Ltd Device for producing atmosphere gas
JPH0222412A (en) * 1988-07-12 1990-01-25 Daido Steel Co Ltd Method for operating atmospheric gas generating device
JPH0430035U (en) * 1990-07-04 1992-03-11
JPH0430036U (en) * 1990-07-04 1992-03-11
JP2002356763A (en) * 2001-03-29 2002-12-13 Denso Corp Gas carburizing method and its device
JP2002357388A (en) * 2001-06-01 2002-12-13 Daido Steel Co Ltd Heat treating furnace

Also Published As

Publication number Publication date
JP5149613B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
EP3948077B1 (en) Method for operating a premix gas burner, a premix gas burner and a boiler
CN104329170B (en) Gas turbine equipment
JP5969028B2 (en) Water heating system with oxygen sensor
KR101619919B1 (en) Method for heat treatment and heat treatment apparatus, and heat treatment system
JP6005252B2 (en) Gas turbine system, control device, and operation method of gas turbine
KR20070099568A (en) Indirect heat exchanger
US10563922B2 (en) Method and device for detecting a leakage in the area of at least one cooling device of a furnace and a furnace
EP2960577B1 (en) Marine boiler and method for operating marine boiler
JP7275601B2 (en) boiler equipment
JP7362912B2 (en) Combustion analyzer with dual measurement of carbon monoxide and methane
JP5149613B2 (en) Endothermic gas generator
JP2008101842A (en) Abnormality detecting method of combustion device
JP2011039011A (en) Sulfidation corrosion evaluation method
JP2020106405A (en) Coal spontaneous heating character evaluation method, and coal spontaneous heating character evaluation device
KR20130001893A (en) Apparatus and method for sorting and supplying a gas
JP2010112892A (en) Device and method for measuring ignition temperature
JP5425983B2 (en) Gas temperature control method and gas temperature control device for gasification melting furnace
JP2009281618A (en) Combustion equipment and abnormality diagnosing method of combustion equipment
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
US20140093971A1 (en) System and Method for Determining Concentration of Oxygen in Chemical Mixtures
JP6287356B2 (en) Combustion calorie measurement system
KR101070065B1 (en) Hot stove combustion control apparatus capable of controlling carbon dioxide
JP2010164215A (en) Open type combustion device
EP4265965A1 (en) Control mechanism for a combustion appliance
KR101760104B1 (en) Apparatus for branching gas

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees