JP2009155376A - Oxide phosphor epitaxial thin film - Google Patents

Oxide phosphor epitaxial thin film Download PDF

Info

Publication number
JP2009155376A
JP2009155376A JP2007332106A JP2007332106A JP2009155376A JP 2009155376 A JP2009155376 A JP 2009155376A JP 2007332106 A JP2007332106 A JP 2007332106A JP 2007332106 A JP2007332106 A JP 2007332106A JP 2009155376 A JP2009155376 A JP 2009155376A
Authority
JP
Japan
Prior art keywords
thin film
oxide phosphor
epitaxial thin
oxide
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007332106A
Other languages
Japanese (ja)
Other versions
JP5182857B2 (en
Inventor
Hiroshi Takashima
浩 高島
Nobuyuki Inaguma
宜之 稲熊
Noboru Miura
登 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007332106A priority Critical patent/JP5182857B2/en
Publication of JP2009155376A publication Critical patent/JP2009155376A/en
Application granted granted Critical
Publication of JP5182857B2 publication Critical patent/JP5182857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide phosphor epitaxial thin film capable of developing a red color which is the basis of manufacturing a display. <P>SOLUTION: The oxide phosphor epitaxial thin film is characterized in that: a thin film is formed on a substrate at a temperature of 600 to 800°C by epitaxial growth by a pulse laser accumulation method using a polycrystalline target material prepared by replacing an aluminum element with a perovskite; and the polycrystalline target material is expressed by (Sr<SB>1-x</SB>Pr<SB>x</SB>)(Ti<SB>1-y</SB>Al<SB>y</SB>)O<SB>3</SB>, wherein x and y satisfy 0≤x≤0.1 and 0≤y≤0.2, from which red fluorescent light is obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酸化物蛍光体エピタキシャル薄膜に係り、特に、赤色を発光することが可能な酸化物蛍光体エピタキシャル薄膜に関する。   The present invention relates to an oxide phosphor epitaxial thin film, and more particularly to an oxide phosphor epitaxial thin film capable of emitting red light.

従来、有機ELや無機EL等多数の蛍光体が知られているが、大気中暴露によって結晶性が低下し、蛍光特性の経年劣化が著しいという問題がある。   Conventionally, many phosphors such as organic EL and inorganic EL are known. However, there is a problem that crystallinity is lowered by exposure to the atmosphere, and aged deterioration of fluorescence characteristics is remarkable.

特許文献1には、イットリウムアルミネート等の無機母材材料に金属イオンを置換した複酸化物蛍光体薄膜の製造方法が示されている。
特許文献2には、無機母体材料に希土類金属イオンや遷移金属イオンを含有した材料に機械的外力を印加することにより発光する薄膜の製造方法が示されている。
特許文献3には、多結晶体Snペロブスカイト酸化物系の蛍光特性が示されている。
非特許文献1には、多結晶体ASnO3 系ペロブスカイト構造(A=Ca,Sr,Ba)において、Eu3+で置換した際に赤色蛍光特性が得られることが示されている。
非特許文献2には、多結晶体Sn系層状ペロブスカイト構造において青色蛍光が得られることが示されている。
非特許文献3には、多結晶体CaSnO3において、Tbを置換した際に蛍光特性が得られることが示されている。
非特許文献4には、多結晶体層状層状ペロブスカイトSrn+1TiO3n+1系で赤色蛍光特性が得られることが示されている。
非特許文献5には、SrTiO3単結晶および薄膜に関し、酸素欠損により青白蛍光が得られることが示されている。
非特許文献6には、多結晶体SrTiO3 にPr原子を置換することにより、赤色蛍光特性が得られることが示されている。
非特許文献7には、多結晶体Pr原子置換(CaxSr1-x)TiO3において赤色蛍光特性が得られることが示されている。
非特許文献8には、薄膜MHfO3:Tm置換の青色蛍光特性が得られることが示されている。
非特許文献9には、Er原子で置換したBaTiO3薄膜において蛍光特性が得られることが示されている。
Patent Document 1 discloses a method for producing a double oxide phosphor thin film in which a metal ion is substituted for an inorganic base material such as yttrium aluminate.
Patent Document 2 discloses a method for producing a thin film that emits light by applying a mechanical external force to a material containing a rare earth metal ion or a transition metal ion in an inorganic base material.
Patent Document 3 shows fluorescence characteristics of a polycrystalline Sn perovskite oxide system.
Non-Patent Document 1 shows that red fluorescence characteristics can be obtained when a polycrystalline ASnO 3 perovskite structure (A = Ca, Sr, Ba) is substituted with Eu 3+ .
Non-Patent Document 2 shows that blue fluorescence can be obtained in a polycrystalline Sn-based layered perovskite structure.
Non-Patent Document 3 shows that in the polycrystalline CaSnO 3 , fluorescence characteristics can be obtained when Tb is substituted.
Non-Patent Document 4 shows that red fluorescence characteristics can be obtained with a polycrystalline layered layered perovskite Sr n + 1 TiO 3n + 1 system.
Non-Patent Document 5 shows that blue-white fluorescence can be obtained by oxygen deficiency for SrTiO 3 single crystals and thin films.
Non-Patent Document 6 shows that red fluorescence characteristics can be obtained by substituting Pr atoms for polycrystalline SrTiO 3 .
Non-Patent Document 7 shows that red fluorescence characteristics can be obtained in polycrystalline Pr atom substitution (Ca x Sr 1-x ) TiO 3 .
Non-Patent Document 8 shows that a blue fluorescent characteristic of a thin film MHfO 3 : Tm substitution can be obtained.
Non-Patent Document 9 shows that fluorescence characteristics can be obtained in a BaTiO 3 thin film substituted with Er atoms.

特開2003-183646号公報JP2003-183646 特開平11-219601号公報Japanese Patent Laid-Open No. 11-219601 特願2005-322286Japanese Patent Application 2005-322286 J. Alloy Compd. Vol.387, pp L1-4 (2005)J. Alloy Compd. Vol.387, pp L1-4 (2005) J. Mater. Sci. Lett., Vol.11, 1330 (1992)J. Mater. Sci. Lett., Vol. 11, 1330 (1992) Materials Chemistry and Physics Vol.93, pp.129-132 (2005)Materials Chemistry and Physics Vol.93, pp.129-132 (2005) J.J. Appl. Phys. Vol.44, pp. 761-764 (2005)J.J.Appl.Phys.Vol.44, pp.761-764 (2005) Nature materials Vol 4, 816 (2005)Nature materials Vol 4, 816 (2005) Appl. Phy. Lett Vol 78, 655 (2001)Appl. Phy. Lett Vol 78, 655 (2001) Chem. Mater. Vol 17, 3200 (2005)Chem. Mater. Vol 17, 3200 (2005) Appl. Surf. Sci. Vol 197-198, 402 (2002)Appl. Surf. Sci. Vol 197-198, 402 (2002) Appl. Phy. Lett Vol 65, 25 (1994)Appl. Phy. Lett Vol 65, 25 (1994)

従来技術に示すように、酸化物多結晶体においては良好な蛍光体が得られることは知られているが、ディスプレイ作製上必要な赤色、緑色、及び青色の3原色の蛍光を発する酸化物蛍光体エピタキシャル薄膜は知られていない。特に、ディスプレイ応用の際には、薄膜によるELの開発が必要不可欠であり、酸化物蛍光体エピタキシャル薄膜の開発が急務とされている。
本発明の目的は、ディスプレイ作製の基礎となる赤色の発色が可能な、酸化物蛍光体エピタキシャル薄膜を提供することにある。
As shown in the prior art, it is known that good phosphors can be obtained with oxide polycrystals, but oxide fluorescence that emits three primary colors of red, green, and blue, which are necessary for display production. No body epitaxial thin film is known. In particular, for display applications, the development of EL using thin films is indispensable, and the development of oxide phosphor epitaxial thin films is urgently required.
An object of the present invention is to provide an oxide phosphor epitaxial thin film capable of forming a red color, which is the basis of display production.

本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、アルミニウム元素をペロブスカイトに置換した多結晶ターゲット材料としてパルスレーザー堆積法によって、600℃以上800℃以下の温度でエピタキシャル成長により基板上に薄膜が形成されたことを特徴とする酸化物蛍光体エピタキシャル薄膜である。
第2の手段は、第1の手段において、前記多結晶ターゲット材料が、(Sr1-xPrx)(Ti1-yAly)O3 :0≦x≦0.1、0≦y≦0.2であり、赤色蛍光を得ることを特徴とする酸化物蛍光体エピタキシャル薄膜である。
第3の手段は、第1の手段または第2の手段において、前記基板が、SrTiO3、LaAlO3、LaGaO3、LaSrGaO4のいずれかからなるペロブスカイト関連構造を有する材料、またはMgO、MgAl2O4のいずれかからなる立方晶系もしくは正方晶系を有する材料であることを特徴とする酸化物蛍光体エピタキシャル薄膜である。
The present invention employs the following means in order to solve the above problems.
The first means is an oxide characterized in that a thin film is formed on a substrate by epitaxial growth at a temperature of 600 ° C. or higher and 800 ° C. or lower by a pulse laser deposition method as a polycrystalline target material in which aluminum element is replaced with perovskite. It is a phosphor epitaxial thin film.
The second means is that in the first means, the polycrystalline target material is (Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2. It is an oxide phosphor epitaxial thin film characterized by obtaining red fluorescence.
A third means is the material according to the first means or the second means, wherein the substrate has a perovskite-related structure made of any one of SrTiO 3 , LaAlO 3 , LaGaO 3 , LaSrGaO 4 , or MgO, MgAl 2 O 4. An oxide phosphor epitaxial thin film characterized by being a material having a cubic system or a tetragonal system composed of any one of 4 above.

本発明によれば、赤色の優れた蛍光特性を有する酸化物蛍光体エピタキシャル薄膜が得られる。この結果、酸化物エピタキシャル薄膜によるエレクトロルミネッセンスデバイスの開発が期待される。薄膜によるエレクトロルミネッセンスデバイスは、低電圧駆動が可能なことから、システムの小型化が実現される。また酸化物を利用することによって、試料の大気中暴露による結晶性の劣化が極めて少ない利点を有する。   According to the present invention, an oxide phosphor epitaxial thin film having excellent red fluorescence properties can be obtained. As a result, development of an electroluminescence device using an oxide epitaxial thin film is expected. Since the electroluminescent device using a thin film can be driven at a low voltage, the size of the system can be reduced. Further, by using an oxide, there is an advantage that the deterioration of crystallinity due to exposure of the sample to the atmosphere is extremely small.

本発明に係る酸化物蛍光体エピタキシャル薄膜の作製には、パルスレーザー堆積法を用いた。この薄膜は酸素気流中で成膜することができるため、酸化物薄膜成長時には酸素欠損等による電気的特性、蛍光特性の劣化を極めて少なくすることができる。パルスレーザー堆積法は、1Torr以下の低圧酸素中で、酸化物からなるターゲット材料にArF(波長193nm)のエキシマレーザーを照射し、ターゲット材料をプラズマ化させプルームを形成し、そのターゲット材料に対向した面に過熱した基板を配置し、薄膜を堆積させる手法である。1000℃以下の温度ではクラスター成長が支配的であり、ターゲット材料をその化学量論組成で成膜させることができることを特徴とする。   A pulsed laser deposition method was used for producing the oxide phosphor epitaxial thin film according to the present invention. Since this thin film can be formed in an oxygen stream, degradation of electrical characteristics and fluorescence characteristics due to oxygen deficiency or the like can be extremely reduced during the growth of the oxide thin film. In the pulsed laser deposition method, an oxide target material is irradiated with an excimer laser of ArF (wavelength: 193 nm) in low-pressure oxygen of 1 Torr or less, and the target material is turned into plasma to form a plume, which faces the target material. In this method, a superheated substrate is placed on the surface and a thin film is deposited. Cluster growth is dominant at a temperature of 1000 ° C. or lower, and the target material can be deposited with its stoichiometric composition.

本発明の成膜法の詳細について述べる。レーザー照射周波数は8Hzであり、成膜時間は30分である。また、基板とターゲット間距離は30mmとした。レーザーエネルギーは約120mJである。基板は典型例としてSrTiO3(001))単結晶研磨基板を用いた。SrTiO3の結晶構造は正方晶であり、格子定数は3.905nmである。ペロブスカイト酸化物の多くの材料はこの近傍の格子定数を持ち、その整合性が良いため、結晶性の優れた酸化物エピタキシャル薄膜の成長が期待される。 Details of the film forming method of the present invention will be described. The laser irradiation frequency is 8 Hz, and the film formation time is 30 minutes. The distance between the substrate and the target was 30 mm. The laser energy is about 120mJ. As a typical substrate, a SrTiO 3 (001)) single crystal polished substrate was used. The crystal structure of SrTiO 3 is tetragonal and the lattice constant is 3.905 nm. Since many materials of perovskite oxide have lattice constants in the vicinity of this material and have good matching, it is expected to grow an oxide epitaxial thin film with excellent crystallinity.

非特許文献4には、多結晶体層状ペロブスカイトSrn+1TiO3n+1系で赤色蛍光特性が示されている。また、非特許文献6には、多結晶体SrTiO3 にPr原子、Al原子を置換することで赤色蛍光特性が向上することが示されている。本発明は、これらの知見に基づいて、アルミニウム元素をペロブスカイトに置換した多結晶ターゲット材料として、(Sr1-xPrx)(Ti1-yAly)O3 :0≦x≦0.1、0≦y≦0.2を用い、パルスレーザー堆積法によって、600℃以上800℃以下の温度でエピタキシャル成長により基板上に酸化物蛍光体エピタキシャル薄膜が形成したものである。 Non-Patent Document 4 shows red fluorescence characteristics in a polycrystalline layered perovskite Sr n + 1 TiO 3n + 1 system. Non-Patent Document 6 shows that red fluorescence characteristics are improved by replacing Pr atoms and Al atoms with polycrystalline SrTiO 3 . Based on these findings, the present invention provides (Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 as a polycrystalline target material in which an aluminum element is substituted with perovskite. An oxide phosphor epitaxial thin film is formed on a substrate by epitaxial growth at a temperature of 600 ° C. or higher and 800 ° C. or lower by pulse laser deposition using ≦ y ≦ 0.2.

ここでは、前記化学組成の蛍光特性において最も良い蛍光特性が得られると考えられるx=0.02、y=0.05における実施例について述べる。基板温度は600℃、700℃、800℃で成膜を行った。結晶構造を調べるためX線回折を測定した。その結果、全ての温度で(001)薄膜が成長していることからエピタキシャル成長が確認された。   Here, an example in which x = 0.02 and y = 0.05, which are considered to obtain the best fluorescence characteristics among the fluorescence characteristics of the chemical composition, will be described. Film formation was performed at substrate temperatures of 600 ° C., 700 ° C., and 800 ° C. X-ray diffraction was measured to investigate the crystal structure. As a result, the (001) thin film was grown at all temperatures, confirming epitaxial growth.

典型例として700℃成長時のX線回折パターンを図1に示す。計算結果と多結晶体で得られた結果に対し、薄膜のパターンは(001)方位のみが出現していることから、(001)方位にエピタキシャル成長していることが分かる。   As a typical example, an X-ray diffraction pattern during growth at 700 ° C. is shown in FIG. In contrast to the calculation results and the results obtained for the polycrystal, only the (001) orientation appears in the thin film pattern, indicating that the epitaxial growth has occurred in the (001) orientation.

次に、基板温度600℃、700℃、800℃で成膜を行った薄膜の蛍光特性の調査を行った。典型例として700℃成膜された試料で測定された蛍光特性を図2に示す(励起波長330nm)。615nmの波長で蛍光特性が得られ、赤色であることが分かる。最適な化学組成でこれらの結果が得られたことから、(Sr1-xPrx)(Ti1-yAly)O3 :0≦x≦0.1、0≦y≦0.2の領域でも同様の蛍光特性が得られると考えられる。 Next, the fluorescence characteristics of the thin films formed at substrate temperatures of 600 ° C., 700 ° C., and 800 ° C. were investigated. As a typical example, fluorescence characteristics measured with a sample formed at 700 ° C. are shown in FIG. 2 (excitation wavelength: 330 nm). It can be seen that fluorescence characteristics are obtained at a wavelength of 615 nm and that the color is red. Since these results were obtained with an optimal chemical composition, the same applies to the region of (Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1 and 0 ≦ y ≦ 0.2. It is considered that fluorescence characteristics can be obtained.

また、上記実施例では基板材料として、酸化物系ぺロブスカイトSrTiO3単結晶基板を用いて(Sr1-xPrx)(Ti1-yAly)O3 :0≦x≦0.1、0≦y≦0.2エピタキシャル薄膜を形成に成功したことから、LaAlO3、LaGaO3、LaSrGaO4などのペロブスカイト関連構造基板やMgO、MgAl2O4などの立方晶系もしくは正方晶系の基板でも、エピタキシャル成長は可能であることが予想される。 Further, in the above embodiment, an oxide-based perovskite SrTiO 3 single crystal substrate is used as the substrate material (Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 ≦ Since we successfully formed an y ≦ 0.2 epitaxial thin film, epitaxial growth is possible even with perovskite-related structural substrates such as LaAlO 3 , LaGaO 3 , LaSrGaO 4 and cubic or tetragonal substrates such as MgO and MgAl 2 O 4 It is expected that

(Sr1-xPrx)(Ti1-yAly)O3:0≦x≦0.1、0≦y≦0.2(x=0.02、y=0.05)試料のパルスレーザー堆積法による700℃成長時のX線回折パターンを示す図である。(Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2 (x = 0.02, y = 0.05) When grown at 700 ° C. by pulsed laser deposition It is a figure which shows the X-ray-diffraction pattern of. (Sr1-xPrx)(Ti1-yAly)O3:0≦x≦0.1、0≦y≦0.2(x=0.02、y=0.05)試料のパルスレーザー堆積法による700℃成長時の蛍光特性を示す図である。(Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2 (x = 0.02, y = 0.05) When grown at 700 ° C. by pulsed laser deposition It is a figure which shows the fluorescence characteristic.

Claims (3)

アルミニウム元素をペロブスカイトに置換した多結晶ターゲット材料としてパルスレーザー堆積法によって、600℃以上800℃以下の温度でエピタキシャル成長により基板上に薄膜が形成されたことを特徴とする酸化物蛍光体エピタキシャル薄膜。   An oxide phosphor epitaxial thin film characterized in that a thin film is formed on a substrate by epitaxial growth at a temperature of 600 ° C. or higher and 800 ° C. or lower by a pulse laser deposition method as a polycrystalline target material in which aluminum element is replaced with perovskite. 前記多結晶ターゲット材料が、(Sr1-xPrx)(Ti1-yAly)O3 :0≦x≦0.1、0≦y≦0.2であり、赤色蛍光を得ることを特徴とする請求項1に記載の酸化物蛍光体エピタキシャル薄膜。 The polycrystalline target material is (Sr 1-x Pr x ) (Ti 1-y Al y ) O 3 : 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, and obtains red fluorescence. Item 2. The oxide phosphor epitaxial thin film according to Item 1. 前記基板が、SrTiO3、LaAlO3、LaGaO3、LaSrGaO4のいずれかからなるペロブスカイト関連構造を有する材料、またはMgO、MgAl2O4のいずれかからなる立方晶系もしくは正方晶系を有する材料であることを特徴とする請求項1または請求項2に記載の酸化物蛍光体エピタキシャル薄膜。 The substrate is a material having a perovskite-related structure made of any of SrTiO 3 , LaAlO 3 , LaGaO 3 , LaSrGaO 4 , or a material having a cubic system or a tetragonal system made of either MgO or MgAl 2 O 4. The oxide phosphor epitaxial thin film according to claim 1, wherein the oxide phosphor epitaxial thin film is provided.
JP2007332106A 2007-12-25 2007-12-25 Oxide phosphor epitaxial thin film Expired - Fee Related JP5182857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332106A JP5182857B2 (en) 2007-12-25 2007-12-25 Oxide phosphor epitaxial thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332106A JP5182857B2 (en) 2007-12-25 2007-12-25 Oxide phosphor epitaxial thin film

Publications (2)

Publication Number Publication Date
JP2009155376A true JP2009155376A (en) 2009-07-16
JP5182857B2 JP5182857B2 (en) 2013-04-17

Family

ID=40959745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332106A Expired - Fee Related JP5182857B2 (en) 2007-12-25 2007-12-25 Oxide phosphor epitaxial thin film

Country Status (1)

Country Link
JP (1) JP5182857B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020704A1 (en) * 2010-08-09 2012-02-16 独立行政法人産業技術総合研究所 Inorganic-oxide fluorescent material and thin film of white fluorescent material
JP2012036305A (en) * 2010-08-09 2012-02-23 National Institute Of Advanced Industrial Science & Technology Inorganic-oxide fluorescent material, method for producing the same, and light-emitting apparatus
JP2012046590A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial Science & Technology White fluorescent thin film, method for production thereof, and light-emitting device
CN104861969A (en) * 2015-05-20 2015-08-26 中国科学院新疆理化技术研究所 Aluminum calcium titanate solid-solution type red phosphor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353072A (en) * 2003-05-30 2004-12-16 National Institute For Materials Science Production method for dielectric
JP4873464B2 (en) * 2006-07-11 2012-02-08 独立行政法人産業技術総合研究所 Oxide phosphor epitaxial thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353072A (en) * 2003-05-30 2004-12-16 National Institute For Materials Science Production method for dielectric
JP4873464B2 (en) * 2006-07-11 2012-02-08 独立行政法人産業技術総合研究所 Oxide phosphor epitaxial thin film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012001971; Applied Physics Letters 78(5), 2001, 655-657 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020704A1 (en) * 2010-08-09 2012-02-16 独立行政法人産業技術総合研究所 Inorganic-oxide fluorescent material and thin film of white fluorescent material
JP2012036305A (en) * 2010-08-09 2012-02-23 National Institute Of Advanced Industrial Science & Technology Inorganic-oxide fluorescent material, method for producing the same, and light-emitting apparatus
JP2012046590A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial Science & Technology White fluorescent thin film, method for production thereof, and light-emitting device
CN104861969A (en) * 2015-05-20 2015-08-26 中国科学院新疆理化技术研究所 Aluminum calcium titanate solid-solution type red phosphor and preparation method thereof

Also Published As

Publication number Publication date
JP5182857B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4873464B2 (en) Oxide phosphor epitaxial thin film
JP5093694B2 (en) Oxide perovskite thin film EL device
Hao et al. Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis
Minami et al. ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices
US7427367B2 (en) Barium thioaluminate phosphor materials with novel crystal structures
CA2171020C (en) Ternary compound film and manufacturing method therefor
Hao et al. Tuning of the blue emission from europium-doped alkaline earth chloroborate thin films activated in air
JP5182857B2 (en) Oxide phosphor epitaxial thin film
Ueda et al. Photo-and cathodoluminescence of Eu3+ or Tb3+ doped CaZrO3 films prepared by pulsed laser deposition
CA2352499C (en) Phosphor multilayer and el panel
JP4457214B2 (en) Luminescent material, piezoelectric body, electrostrictive body, ferroelectric body, electroluminescent body, stress luminescent body, and methods for producing them
Tanaka et al. Blue luminescent SrGa2S4: Ce thin films grown by molecular beam epitaxy
Kim et al. The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12: Ce thin films
Shimizu et al. Preparation of thin films of perovskite-type YAlO3: Gd3+–Pr3+ UV phosphors
JP5030113B2 (en) Luminescent material and manufacturing method thereof
JP6339972B2 (en) Zinc oxide compound light-emitting film and method for producing the same
TW201326084A (en) Light-emitting ceramic
JP5339288B2 (en) Perovskite oxide fluorescent thin film
WO2012020704A1 (en) Inorganic-oxide fluorescent material and thin film of white fluorescent material
Ekmekçi Influence of europium doping on the crystallization, morphology, and the cathodoluminescent properties of PbNb2O6: Eu3+ phosphors
TW584660B (en) Phosphor thin film, preparation method, and EL panel
Jianhua et al. Blue-light emission from undoped and rare earth-doped wide bandgap oxides
Boukaous et al. Effect of solvents on the properties of ZnO thin layers obtained by sol gel dip coating process
JP5674005B2 (en) White phosphor thin film, method for producing the same, and light emitting device
KR100726338B1 (en) Method for controlling atmosphere in annealing process of ZnO thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees