JP2009155324A - 2-acrylamide-2-methylpropane sulfonic acid and process for producing the same - Google Patents

2-acrylamide-2-methylpropane sulfonic acid and process for producing the same Download PDF

Info

Publication number
JP2009155324A
JP2009155324A JP2008307822A JP2008307822A JP2009155324A JP 2009155324 A JP2009155324 A JP 2009155324A JP 2008307822 A JP2008307822 A JP 2008307822A JP 2008307822 A JP2008307822 A JP 2008307822A JP 2009155324 A JP2009155324 A JP 2009155324A
Authority
JP
Japan
Prior art keywords
acid
concentration
reaction
ppm
acrylamido
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008307822A
Other languages
Japanese (ja)
Other versions
JP5304205B2 (en
Inventor
Toshiyuki Wakayama
敏之 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2008307822A priority Critical patent/JP5304205B2/en
Publication of JP2009155324A publication Critical patent/JP2009155324A/en
Application granted granted Critical
Publication of JP5304205B2 publication Critical patent/JP5304205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide 2-acrylamide-2-methylpropanesulfonic acid with reduced amount of impurities and imparting a polymer with a high molecular weight, and to provide a method for producing the same. <P>SOLUTION: The invention relates to the process for producing 2-acrylamide-2-methylpropanesulfonic acid. During the reaction, the concentration of 2-methyl-2-propenyl-1-sulfonic acid and/or that of 2-methylidene-1, 3-propylenedisulfonic acid in the reaction system are determined. When the 2-methyl-2-propenyl-1-sulfonic acid concentration exceeds 12,000 ppm and/or the 2-methylidene-1,3-propylenedisulfonic acid concentration exceeds 6,000 ppm, then the concentration of sulfur trioxide in the reaction system is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2−アクリルアミド−2−メチルプロパンスルホン酸(以下、ATBSと略記する場合がある。)、及びその製造方法に関する。更に詳述すれば、本発明は特定の不純物含有量が少ないATBS、及びその製造方法に関する。   The present invention relates to 2-acrylamido-2-methylpropanesulfonic acid (hereinafter sometimes abbreviated as ATBS) and a method for producing the same. More specifically, the present invention relates to ATBS with a low specific impurity content and a method for producing the same.

ATBSは、アクリル繊維の改質剤として、分散剤や凝集剤のモノマー原料として、又は化粧品の増粘剤用のモノマー原料として、更には原油の高次回収用に使用される薬剤製造用の原料モノマー等として広い分野で使用されている。   ATBS is a raw material for pharmaceutical production used as a modifier for acrylic fibers, as a monomer raw material for dispersants and flocculants, or as a monomer raw material for cosmetic thickeners, and for higher-level recovery of crude oil. Used as a monomer in a wide range of fields.

これらの用途に用いられる、上記ATBSを原料モノマーとして製造されるポリマーは特に高分子量であることが要求される。即ち、上記用途に使用されるATBSには、重合を阻害する物質の含有量を極力低下させることが求められると共に、安定した品質であることが求められている。   The polymer produced using the above ATBS as a raw material monomer used for these applications is particularly required to have a high molecular weight. That is, the ATBS used for the above applications is required to reduce the content of a substance that inhibits polymerization as much as possible and to have a stable quality.

ATBSは、通常アクリロニトリル、硫酸、イソブチレンを付加反応させることにより製造され、その性状は常態においては白色針状結晶であって、融点は185℃である(例えば特許文献1)。     ATBS is usually produced by addition reaction of acrylonitrile, sulfuric acid, and isobutylene, and its properties are normally white needle-like crystals with a melting point of 185 ° C. (for example, Patent Document 1).

上記付加反応において、アクリロニトリル、硫酸、イソブチレンの3成分はそれぞれ等モルで反応するが、アクリロニトリルは反応媒体の役割も担うため、硫酸及びイソブチレンと比較して大過剰に用いられる。   In the above addition reaction, the three components of acrylonitrile, sulfuric acid, and isobutylene react in equimolar amounts, but acrylonitrile also serves as a reaction medium, and is therefore used in a large excess compared to sulfuric acid and isobutylene.

ATBSは、アクリロニトリルに難溶性であるので、反応後得られる反応生成物はアクリロニトリル中にATBSが析出したスラリー状である。通常ATBSの製造においては、このスラリーからATBSを分離して、これを次の精製工程で精製することが行われている。精製方法としては、アクリロニトリルで洗浄する方法がある。(例えば特許文献1)。   Since ATBS is hardly soluble in acrylonitrile, the reaction product obtained after the reaction is in the form of a slurry in which ATBS is precipitated in acrylonitrile. Usually, in the production of ATBS, ATBS is separated from this slurry and purified in the next purification step. As a purification method, there is a method of washing with acrylonitrile. (For example, patent document 1).

又、粗ATBSをメタノールで再結晶する方法(例えば特許文献2)、陰イオン交換樹脂を用いて精製する方法(例えば特許文献3)、アクリロニトリルの存在下にATBSの水溶液を蒸留して水を除去してATBSのアクリルニトリル分散液を得た後、ATBSを分散液から濾別する方法(例えば特許文献4)等が知られている。   Also, a method of recrystallizing crude ATBS with methanol (for example, Patent Document 2), a method for purification using an anion exchange resin (for example, Patent Document 3), and removing water by distilling an aqueous solution of ATBS in the presence of acrylonitrile. Then, after obtaining an ATBS acrylonitrile dispersion, ATBS is filtered from the dispersion (for example, Patent Document 4).

しかし、重合を阻害する物質が何であるかについては明確な結論はなく、従って従来は十分にATBSを精製することにより、上記要請に応える方法が採用されている。上記十分に精製する方法は、重合を阻害する物質を特定出来ていないことから、その阻害する特定物質を除去することに特化されたものではなく、一般的により純度を高める通常の方法が採用されているに過ぎない。従って、場合により過剰に精製される場合もあり、得られるATBSの不純物濃度に関する品質の安定化は困難である。
特公昭50-30059号 (例1) 特開2004−359591号 (請求項1) 特開2004−143078号 (請求項1) 特開2004−277363号 (請求項1)
However, there is no clear conclusion as to what is a substance that inhibits polymerization. Therefore, conventionally, a method that meets the above requirements by sufficiently purifying ATBS has been adopted. Since the substance that inhibits the polymerization has not been specified, the above-described method of sufficient purification is not specialized in removing the specific substance that inhibits the polymerization. It has only been done. Therefore, in some cases, it may be excessively purified, and it is difficult to stabilize the quality related to the impurity concentration of ATBS obtained.
Japanese Patent Publication No.50-30059 (Example 1) JP-A-2004-359591 (Claim 1) JP 2004-143078 (Claim 1) JP-A-2004-277363 (Claim 1)

本発明者は、上記問題を解決するために種々検討した結果、第1に、反応副生物である、2−メチル−2−プロペニル−1−スルホン酸(IBSAと略記する)及び2−メチリデン−1,3−プロピレンジスルホン酸(IBDSAと略記する)は、重合の連鎖移動作用を有し、ATBS中のこれらの化合物の含有量が増加すると、ATBSの共重合体の分子量が高くならないことを見出した。更に、検討した結果、上記副生物の含有量は高速液体クロマトグラフィーで正確に定量出来ること、またATBSの製造工程において上記副生物を所定値以下に制御することにより、高分子量のポリマーを製造することの出来るATBSを製造できること等を知得した。本発明は、上記検討の結果完成するに至ったものである。   As a result of various studies to solve the above problems, the present inventor firstly made 2-methyl-2-propenyl-1-sulfonic acid (abbreviated as IBSA) and 2-methylidene- which are reaction by-products. 1,3-propylene disulfonic acid (abbreviated as IBDSA) has a chain transfer action of polymerization, and it is found that the molecular weight of the copolymer of ATBS does not increase when the content of these compounds in ATBS increases. It was. Furthermore, as a result of investigation, the content of the by-product can be accurately quantified by high-performance liquid chromatography, and a high-molecular weight polymer is produced by controlling the by-product to a predetermined value or less in the ATBS production process. It was learned that ATBS can be manufactured. The present invention has been completed as a result of the above studies.

従って、本発明の目的とするところは、重合を阻害する化合物の含有率が低くいATBS、及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an ATBS having a low content of a compound that inhibits polymerization, and a method for producing the ATBS.

上記目的を達成する本発明は、以下のものである。   The present invention for achieving the above object is as follows.

〔1〕 下記式(1)     [1] The following formula (1)

Figure 2009155324
Figure 2009155324

で示される2−メチル−2−プロペニル−1−スルホン酸の含有量が100ppm以下、及び
下記式(2)
The content of 2-methyl-2-propenyl-1-sulfonic acid represented by the formula is 100 ppm or less, and the following formula (2)

Figure 2009155324
Figure 2009155324

で示される2−メチリデン−1,3−プロピレンジスルホン酸の含有量が100ppm以下であることを特徴とする下記式(3) The content of 2-methylidene-1,3-propylene disulfonic acid represented by formula (3) is 100 ppm or less.

Figure 2009155324
Figure 2009155324

で示される2−アクリルアミド-2-メチルプロパンスルホン酸。 2-acrylamido-2-methylpropanesulfonic acid represented by

〔2〕 アクリロニトリルと、発煙硫酸と、イソブチレンとを反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応系内の三酸化硫黄の濃度を低減させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。     [2] A method for producing 2-acrylamido-2-methylpropanesulfonic acid, which comprises reacting acrylonitrile, fuming sulfuric acid and isobutylene, wherein 2-methyl-2-propenyl-1- exists in the reaction system during the reaction When the concentration of sulfonic acid and / or 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm, and / or 2-methylidene-1 A process for producing 2-acrylamido-2-methylpropanesulfonic acid, wherein the concentration of sulfur trioxide in the reaction system is reduced when the concentration of 1,3-propylenedisulfonic acid exceeds 6000 ppm.

〔3〕 アクリロニトリルと、発煙硫酸と、イソブチレンとを連続的に反応系に供給して反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応系に供給する発煙硫酸中の三酸化硫黄の濃度を低減させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の連続製造方法。     [3] A method for producing 2-acrylamido-2-methylpropanesulfonic acid, in which acrylonitrile, fuming sulfuric acid, and isobutylene are continuously supplied to the reaction system and reacted, and is present in the reaction system during the reaction. -When the concentration of methyl-2-propenyl-1-sulfonic acid and / or 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm 2-acrylamide-2, characterized by reducing the concentration of sulfur trioxide in the fuming sulfuric acid supplied to the reaction system when the concentration of 2-methylidene-1,3-propylene disulfonic acid exceeds 6000 ppm -A continuous process for producing methylpropanesulfonic acid.

〔4〕 アクリロニトリルと、発煙硫酸と、イソブチレンとを反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応時間を増加させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の連続製造方法。     [4] A process for producing 2-acrylamido-2-methylpropanesulfonic acid, which comprises reacting acrylonitrile, fuming sulfuric acid and isobutylene, wherein 2-methyl-2-propenyl-1- exists in the reaction system during the reaction When the concentration of sulfonic acid and / or 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm, and / or 2-methylidene-1 , A method for continuously producing 2-acrylamido-2-methylpropanesulfonic acid, wherein the reaction time is increased when the concentration of propylenedisulfonic acid exceeds 6000 ppm.

〔5〕 〔2〕乃至〔4〕の何れかの製造方法で製造して得られるスラリー液中の2−アクリルアミド-2-メチルプロパンスルホン酸の粗体を濾別してケーキを得、次いでアクリロニトリル、アセトニトリル、アセトン、メタノール、エタノール、2−プロパノール、ブタノール、酢酸エチル、酢酸からなる群から選ばれる1の溶媒又はこれらの混合溶媒を用いて前記ケーキを洗浄する2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。     [5] A crude product of 2-acrylamido-2-methylpropanesulfonic acid in the slurry obtained by the production method of any one of [2] to [4] is filtered to obtain a cake, and then acrylonitrile, acetonitrile Of 2-acrylamido-2-methylpropanesulfonic acid, wherein the cake is washed with one solvent selected from the group consisting of ethanol, acetone, methanol, ethanol, 2-propanol, butanol, ethyl acetate, and acetic acid, or a mixed solvent thereof. Production method.

〔6〕 〔2〕乃至〔4〕の何れかの製造方法で製造して得られるスラリー液中の2−アクリルアミド-2-メチルプロパンスルホン酸の粗体を濾別してケーキを得、次いで前記ケーキを温度60〜130℃で10〜300分間乾燥させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。     [6] A crude product of 2-acrylamido-2-methylpropanesulfonic acid in a slurry obtained by the production method according to any one of [2] to [4] is filtered to obtain a cake, and then the cake is obtained. A method for producing 2-acrylamido-2-methylpropanesulfonic acid, which is dried at a temperature of 60 to 130 ° C. for 10 to 300 minutes.

本発明のATBSは、IBSA及びIBDSAの含有量が低い。従って、このATBSを共重合して得られるポリマーは分子量が高い。   The ATBS of the present invention has a low content of IBSA and IBDSA. Therefore, the polymer obtained by copolymerizing this ATBS has a high molecular weight.

本発明のATBSの製造方法においては、副生物IBSA、IBDSAの生成量を測定して、三酸化硫黄の濃度を調整することにより、高純度のATBSを簡単に製造できる。従って、後工程の精製工程が簡略化される。   In the method for producing ATBS of the present invention, high purity ATBS can be easily produced by measuring the amount of by-products IBSA and IBDSA produced and adjusting the concentration of sulfur trioxide. Therefore, the subsequent purification process is simplified.

2−アクリルアミド-2-メチルプロパンスルホン酸(ATBS)
本発明は、下記式(1)
2-Acrylamide-2-methylpropanesulfonic acid (ATBS)
The present invention provides the following formula (1)

Figure 2009155324
Figure 2009155324

で示される2−メチル−2−プロペニル−1−スルホン酸(IBSA)の含有量が100ppm以下、及び
下記式(2)
The content of 2-methyl-2-propenyl-1-sulfonic acid (IBSA) represented by the formula is 100 ppm or less, and the following formula (2)

Figure 2009155324
Figure 2009155324

で示される2−メチリデン−1,3−プロピレンジスルホン酸(IBDSA)の含有量が100ppm以下の、下記式(3) The content of 2-methylidene-1,3-propylene disulfonic acid (IBDSA) represented by the formula (3) is 100 ppm or less

Figure 2009155324
Figure 2009155324

で示される2−アクリルアミド-2-メチルプロパンスルホン酸(ATBS)である。 2-acrylamido-2-methylpropanesulfonic acid (ATBS).

このATBSは、IBSA、IBDSAの含有量が、それぞれ100ppm以下(質量基準)の高純度である。IBSA、IBDSAは、前述のように、ATBSを製造する際に副生する化合物であり、これらの化合物は、ラジカル重合反応において、連鎖移動剤として作用する。従って、これらIBSA、IBDSAが存在すると、ラジカル重合反応においてATBS又はその塩を、単独もしくは共重合して得られるポリマーの分子量の低下の原因になる。更に、これら化合物の含有量のバラツキは、ATBS又はその塩を、単独もしくは共重合して得られるポリマーの分子量のバラツキの原因になる。   This ATBS has a high purity in which the contents of IBSA and IBDSA are each 100 ppm or less (mass basis). As described above, IBSA and IBDSA are compounds by-produced when producing ATBS, and these compounds act as a chain transfer agent in the radical polymerization reaction. Therefore, the presence of these IBSA and IBDSA causes a decrease in the molecular weight of the polymer obtained by homopolymerizing or copolymerizing ATBS or a salt thereof in the radical polymerization reaction. Furthermore, variations in the content of these compounds cause variations in the molecular weight of a polymer obtained by singly or copolymerizing ATBS or a salt thereof.

本発明者は、IBSA、IBDSAが連鎖移動作用を有することを以下の実験により確認した。   The present inventor confirmed that IBSA and IBDSA have a chain transfer action by the following experiment.

即ち、アクリルアミド、ATBSの水溶液にIBSAの添加量を変化させて添加した。このモノマー水溶液を重合させることにより、共重合ポリマーを得た。この共重合ポリマーを水に溶解し、この水溶液の粘度を測定した結果を図1に示した。   That is, the amount of IBSA added was changed to an aqueous solution of acrylamide and ATBS. A copolymer was obtained by polymerizing the monomer aqueous solution. The result of measuring the viscosity of this aqueous solution by dissolving this copolymer in water is shown in FIG.

実験は、以下の手順で行った。先ず、ATBS40gを水60gに溶解し、48質量%のNaOH水溶液を添加してpHを8に調整した。これに水を加えて35質量%濃度に調整した。40質量%のアクリルアミド水溶液55.6gを加え、更に水5.2gを加えて、モノマー濃度を35質量%にした。このモノマー水溶液に窒素を吹込むと共に、液温を30℃に調整した後、過硫酸アンモニウム0.7g、亜硫酸ナトリウム0.7g、銅イオンを10ppm(質量基準)含む塩化銅水溶液0.6g、ジアゾ系ラジカル重合開始剤としてV−50(商品名 和光純薬工業株式会社製)の10質量%水溶液0.7gを加えた。2時間後に反応を終了して共重合ポリマーを取出した。   The experiment was performed according to the following procedure. First, 40 g of ATBS was dissolved in 60 g of water, and a 48 mass% NaOH aqueous solution was added to adjust the pH to 8. Water was added thereto to adjust the concentration to 35% by mass. 55.6 g of a 40% by mass acrylamide aqueous solution was added, and 5.2 g of water was further added to adjust the monomer concentration to 35% by mass. Nitrogen was blown into this monomer aqueous solution and the liquid temperature was adjusted to 30 ° C., then 0.7 g of ammonium persulfate, 0.7 g of sodium sulfite, 0.6 g of an aqueous copper chloride solution containing 10 ppm (mass basis) of copper ions, diazo series As a radical polymerization initiator, 0.7 g of a 10 mass% aqueous solution of V-50 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) was added. After 2 hours, the reaction was terminated and the copolymer was taken out.

この共重合ポリマー1.15gを水393gに溶解した後、食塩23.4gを添加し、粘度測定用試料液(共重合ポリマー濃度0.25質量%)を得た。粘度測定は以下の条件で行った。   After 1.15 g of this copolymer was dissolved in 393 g of water, 23.4 g of sodium chloride was added to obtain a sample solution for viscosity measurement (copolymer concentration 0.25% by mass). Viscosity measurement was performed under the following conditions.

粘度計:ブルックフィールド社製デジタル粘度計
ローター回転速度:60rpm
測定温度:25℃
図1から、IBSAの添加量が増加するにつれて、粘度の低下が起り、得られる共重合ポリマーの平均分子量が低下することが分る。このデータから、IBSAが、連鎖移動剤として作用することが確認された。
Viscometer: Brookfield digital viscometer Rotor rotation speed: 60 rpm
Measurement temperature: 25 ° C
As can be seen from FIG. 1, as the amount of IBSA increases, the viscosity decreases and the average molecular weight of the resulting copolymerized polymer decreases. This data confirmed that IBSA acts as a chain transfer agent.

上記IBSAと同様の実験をIBDSAについて行った。結果を図2に示す。図2から、IBDSAが連鎖移動剤として作用することが確認された。     Experiments similar to IBSA were performed on IBDSA. The results are shown in FIG. From FIG. 2, it was confirmed that IBDSA acts as a chain transfer agent.

更に、上記図1、2の結果から、ATBSが高い重合性を維持し、これを重合させる場合に高い分子量のポリマーが得られるためには、IBSA、IBDSAの何れもが100ppm(質量基準)以下である必要があることが確認された。     Furthermore, from the results of FIGS. 1 and 2 above, in order to maintain a high polymerizability of ATBS and to obtain a polymer having a high molecular weight when polymerized, ATBS and IBDSA are both 100 ppm (mass basis) or less. It was confirmed that it was necessary.

ATBSの製造方法
以下、上記ATBSの製造方法について説明する。
ATBS Manufacturing Method Hereinafter, the ATBS manufacturing method will be described.

下記化学式(3)で示される2−アクリルアミド−2−メチルプロパンスルホン酸(ATBS)は、下記反応式(A)に示されるように、原料であるアクリロニトリル(4)と、硫酸(5)と、イソブチレン(6)とを反応させて製造する。反応は、バッチ反応でも連続反応でも良い。   As shown in the following reaction formula (A), 2-acrylamido-2-methylpropanesulfonic acid (ATBS) represented by the following chemical formula (3) is a raw material acrylonitrile (4), sulfuric acid (5), Prepared by reacting with isobutylene (6). The reaction may be a batch reaction or a continuous reaction.

Figure 2009155324
Figure 2009155324

アクリロニトリルと、硫酸と、イソブチレンとの反応に際しては、先ず低温(−15〜−10℃程度)下にアクリロニトリルと硫酸とを混合しておき、この混合物を撹拌しながら、これにイソブチレンを吹込む。反応が開始すると、反応熱により混合物の温度が上昇するので、混合物を冷却して温度を40〜50℃に維持することが好ましい。   In the reaction of acrylonitrile, sulfuric acid, and isobutylene, first, acrylonitrile and sulfuric acid are mixed at a low temperature (about -15 to -10 ° C), and isobutylene is blown into the mixture while stirring the mixture. When the reaction starts, the temperature of the mixture increases due to the heat of reaction. Therefore, it is preferable to cool the mixture and maintain the temperature at 40 to 50 ° C.

ATBSは、上記3原料成分の等モル付加反応により生成し、反応液は反応の経過と共に固体結晶のATBSを分散させたスラリーになる。このスラリーの分散媒の大部分は硫酸及びイソブチレンに比べて大過剰に混合したアクリロニトリルである。   ATBS is generated by an equimolar addition reaction of the above three raw material components, and the reaction liquid becomes a slurry in which ATBS of solid crystals is dispersed with the progress of the reaction. Most of the dispersion medium of this slurry is acrylonitrile mixed in a large excess compared with sulfuric acid and isobutylene.

上記3原料成分の混合割合に関しては、硫酸に対するイソブチレンの割合については、ほぼ等モルにすることが好ましく、またそれらに対するアクリロニトリルの割合は10〜20倍モルが好ましい。このような割合の混合液を用いて反応させることにより、反応生成液として固形分濃度が15〜25質量%のスラリーが得られる。   Regarding the mixing ratio of the three raw material components, the ratio of isobutylene to sulfuric acid is preferably about equimolar, and the ratio of acrylonitrile to them is preferably 10 to 20 times mol. By making it react using the liquid mixture of such a ratio, the slurry whose solid content concentration is 15-25 mass% is obtained as a reaction product liquid.

なお、上記反応において、反応系内に存在する水分は副反応を引き起す原因になり、好ましくない。上記原料成分はいずれも水分を含まないものを使用することが好ましい。特に硫酸については、濃硫酸と発煙硫酸との混合物を使用することが好ましい。   In the above reaction, moisture present in the reaction system causes a side reaction, which is not preferable. It is preferable to use a raw material component that does not contain moisture. Particularly for sulfuric acid, it is preferable to use a mixture of concentrated sulfuric acid and fuming sulfuric acid.

上記のようにして製造したスラリーを、次いで遠心分離操作等によって固液分離して、ATBSの結晶を取出し、これに更に洗浄、乾燥等の後処理を施すことにより、製品(ATBS)を得る。   The slurry produced as described above is then solid-liquid separated by a centrifugal operation or the like to take out ATBS crystals, and further subjected to post-treatment such as washing and drying to obtain a product (ATBS).

(第1の制御方法)
本発明においては、上記のATBSを製造する反応において、反応系内に存在する副生物のIBSA、IBDSAの存在量を測定し、この測定値を基礎にして反応条件を制御するものである。制御方法は、IBSA、IBDSAの何れか又は両方の濃度を測定し、IBSAの濃度が12000ppmを超える場合、及び/又はIBDSAの濃度が6000ppmを超える場合には、反応系内の三酸化硫黄の濃度を低減させる様にするものである。三酸化硫黄の濃度を低減させる方法としては、硫酸と共に反応系に供給している三酸化硫黄の供給量を減少させ、又は供給を停止する方法がある。
(First control method)
In the present invention, in the above reaction for producing ATBS, the abundances of by-products IBSA and IBDSA present in the reaction system are measured, and the reaction conditions are controlled based on the measured values. The control method measures the concentration of either or both of IBSA and IBDSA, and when the concentration of IBDSA exceeds 12000 ppm and / or when the concentration of IBDSA exceeds 6000 ppm, the concentration of sulfur trioxide in the reaction system It is intended to reduce. As a method of reducing the concentration of sulfur trioxide, there is a method of decreasing the supply amount of sulfur trioxide supplied to the reaction system together with sulfuric acid or stopping the supply.

IBSA、IBDSAの存在量の測定は、何れの測定方法でも良い。しかし、高速液体クロマトグラフ(HPLCと略記する。)を用いて測定する方法が、測定の簡便さ、測定値の正確さの点で好ましい。   Any measurement method may be used for measuring the abundance of IBSA and IBDSA. However, a method of measuring using a high performance liquid chromatograph (abbreviated as HPLC) is preferable in terms of simplicity of measurement and accuracy of measurement values.

図3は、ATBSの製造反応において、反応系中に存在する三酸化硫黄の過剰量と、IBSA、IBDSAの濃度との関係を実測して得られたグラフを示す。このグラフから、反応系中に三酸化硫黄が増加すると、IBSA、IBDSAが増えることが分る。なお、三酸化硫黄過剰量とは、100%硫酸を基準とし、この100%硫酸に対して過剰に存在する三酸化硫黄量を%で示したものである。   FIG. 3 shows a graph obtained by actually measuring the relationship between the excess amount of sulfur trioxide present in the reaction system and the concentrations of IBSA and IBDSA in the ATBS production reaction. From this graph, it can be seen that when sulfur trioxide increases in the reaction system, IBSA and IBDSA increase. The excess amount of sulfur trioxide refers to the amount of sulfur trioxide present in excess with respect to this 100% sulfuric acid in% based on 100% sulfuric acid.

上記の様に反応条件を制御することにより、通常ATBS中のIBSAの濃度が12000ppm(質量基準)以下、IBDSAの濃度が6000ppm(質量基準)以下の反応スラリーが得られる。   By controlling the reaction conditions as described above, a reaction slurry is usually obtained in which the concentration of IBSA in ATBS is 12000 ppm (mass basis) or less and the concentration of IBDSA is 6000 ppm (mass basis) or less.

(第2の制御方法)
第2の制御方法は、反応系内に存在する副生物のIBSA、IBDSAの存在量を測定し、IBSAの濃度が12000ppmを超える場合、及び/又はIBDSAの濃度が6000ppmを超える場合には、反応時間を長くする様に制御するものである。
(Second control method)
The second control method measures the amount of by-product IBSA and IBDSA present in the reaction system. If the concentration of IBSA exceeds 12000 ppm and / or if the concentration of IBDSA exceeds 6000 ppm, It is controlled so as to lengthen the time.

図4は、反応系内に存在するIBSA、IBDSAと反応時間との関係を実測して得られたグラフを示す。このグラフによれば、反応時間を長くすると、IBSAの濃度は減少し、IBDSAの濃度は一時的に増加した後、減少することが認められる。従って、反応系内のIBSA、IBDSAの濃度が高くなる場合は、反応時間を長くするように制御すればよいことが分る。反応時間を長くする方法としては、例えば、連続的製造装置の場合は、反応器内の反応液の滞留時間を長くする方法がある。     FIG. 4 shows a graph obtained by actually measuring the relationship between IBSA and IBDSA present in the reaction system and the reaction time. According to this graph, it can be seen that as the reaction time is increased, the concentration of IBSA decreases, and the concentration of IBDSA increases temporarily and then decreases. Therefore, it can be seen that when the concentration of IBSA and IBDSA in the reaction system is high, the reaction time may be controlled to be long. As a method for increasing the reaction time, for example, in the case of a continuous production apparatus, there is a method for increasing the residence time of the reaction liquid in the reactor.

上記の様に反応条件を制御することにより、通常ATBS中のIBSAの濃度が12000ppm(質量基準)以下、IBDSAの濃度が6000ppm(質量基準)以下の反応スラリーが得られる。   By controlling the reaction conditions as described above, a reaction slurry is usually obtained in which the concentration of IBSA in ATBS is 12000 ppm (mass basis) or less and the concentration of IBDSA is 6000 ppm (mass basis) or less.

次に、アクリロニトリル、発煙硫酸、イソブチレンを反応させて上記制御の基に反応させて得られるATBSを含む反応スラリーから、ATBSを単離する。単離方法は、得られる反応スラリーからATBS粗体を固液分離し、ATBSを含有するケーキを得、その後ケーキを乾燥する方法がある。得られるATBSは、IBSA、IBDSA等の不純物を多く含んでいるので、このままでは高分子量のポリマーの製造用には利用できない。従って、ケーキは精製工程で精製する必要がある。   Next, ATBS is isolated from the reaction slurry containing ATBS obtained by reacting acrylonitrile, fuming sulfuric acid, and isobutylene with the above-mentioned control group. The isolation method includes a method in which the ATBS crude product is solid-liquid separated from the resulting reaction slurry to obtain a cake containing ATBS, and then the cake is dried. The obtained ATBS contains a large amount of impurities such as IBSA and IBDSA, and thus cannot be used for production of a high molecular weight polymer as it is. Therefore, the cake needs to be purified in the purification process.

精製工程の一例として、反応スラリーを固液分離して得られるケーキをさらにアクリロニトリルで洗浄する方法がある。この場合、IBSA、IBDSAの濃度の変化につき、詳細に調べた。その結果を図5に示す。洗浄溶剤のアクリロニトリル量を増やすとATBS中のIBSA、IBDSAが洗浄除去される。アクリロニトリル以外の溶剤を使用しても、同様に精製できる。     As an example of the purification step, there is a method in which a cake obtained by solid-liquid separation of the reaction slurry is further washed with acrylonitrile. In this case, changes in the concentrations of IBSA and IBDSA were examined in detail. The result is shown in FIG. When the amount of acrylonitrile in the cleaning solvent is increased, IBSA and IBDSA in ATBS are cleaned and removed. Even if a solvent other than acrylonitrile is used, it can be similarly purified.

反応スラリーを固液分離して得られるケーキをアクリロニトリル等の溶剤で洗浄し、得られる洗浄ケーキを乾燥して溶剤を除去するとATBS製品が得られる。洗浄溶剤の使用量は、洗浄されるケーキの固形分質量の0.5〜10倍量が好ましく、1〜3倍量がより好ましい。洗浄溶剤としては、アクリロニトリル、アセトニトリル、アセトン、メタノール、エタノール、2−プロパノール、ブタノール、酢酸エチル、酢酸等、又はこれらの混合溶剤が好ましい。特にアクリロニトリルが好ましい。   The cake obtained by solid-liquid separation of the reaction slurry is washed with a solvent such as acrylonitrile, and the resulting washed cake is dried to remove the solvent to obtain an ATBS product. The amount of the cleaning solvent used is preferably 0.5 to 10 times, more preferably 1 to 3 times the solid mass of the cake to be cleaned. As the cleaning solvent, acrylonitrile, acetonitrile, acetone, methanol, ethanol, 2-propanol, butanol, ethyl acetate, acetic acid and the like, or a mixed solvent thereof is preferable. Particularly preferred is acrylonitrile.

上記反応スラリーから分離されたケーキを、洗浄溶剤で洗浄することにより、ケーキは精製され、IBSA、IBDSA濃度は100ppm(質量基準)以下になる。   By washing the cake separated from the reaction slurry with a washing solvent, the cake is purified, and the concentration of IBSA and IBDSA becomes 100 ppm (mass basis) or less.

乾燥工程は、従来ケーキに含浸されている溶剤を除去することを目的に実施してきた。     The drying process has been performed for the purpose of removing the solvent impregnated in the conventional cake.

本発明者は、乾燥工程において、IBSA、IBDSA等の不純物の濃度を検討した。その結果、この乾燥工程における乾燥条件を制御することにより、これらIBSA、IBDSAを減少させ、製品の品質を向上させることができることがわかった。     The inventor examined the concentration of impurities such as IBSA and IBDSA in the drying process. As a result, it was found that by controlling the drying conditions in this drying step, these IBSA and IBDSA can be reduced and the product quality can be improved.

図6は、洗浄ケーキの乾燥温度及び乾燥時間と、製品ケーキ中のIBSA濃度との関係を示すグラフである。これら化合物は、熱分解することにより減少していると考えられる。     FIG. 6 is a graph showing the relationship between the drying temperature and drying time of the washed cake and the IBSA concentration in the product cake. These compounds are thought to decrease due to thermal decomposition.

このグラフから、洗浄ケーキを60〜130℃で、10〜300分間、好ましくは10〜130分間乾燥させることにより、洗浄ケーキ中のIBSA、IBDSA濃度を減少させることが出来ることが分る。     From this graph, it can be seen that the IBSA and IBDSA concentrations in the washed cake can be reduced by drying the washed cake at 60 to 130 ° C. for 10 to 300 minutes, preferably 10 to 130 minutes.

例えば、反応において三酸化硫黄量が過剰になり、IBSA含有量が増加した場合や、固液分離工程においてケーキの洗浄が不充分でIBSA含有量を下げることができなかった場合、または同工程のケーキ洗浄工程を省略した場合、図6のグラフのデータに従って(1)乾燥温度を上げる、(2)乾燥時間を延長する、等の対処により、製品中のIBSA、IBDSA濃度を低下させることが出来る。     For example, when the amount of sulfur trioxide is excessive in the reaction and the IBSA content is increased, or when the cake is not sufficiently washed in the solid-liquid separation process and the IBSA content cannot be reduced, or When the cake washing process is omitted, the IBSA and IBDSA concentrations in the product can be reduced by taking measures such as (1) increasing the drying temperature and (2) extending the drying time according to the data in the graph of FIG. .

以下、実施例により、本発明を具体的に説明する。各実施例で示す濃度はHPLCにより定量した濃度である。
HPLC条件;Waters社製 高速液体クロマトグラフ
カラム;GLサイエンス社製ODS−3
溶離液;0.03%トリフルオロ酢酸水/アセトニトリル
溶離液流量;0.8ml/min
検出波長;200nm
Hereinafter, the present invention will be described specifically by way of examples. The concentration shown in each example is a concentration determined by HPLC.
HPLC conditions; Waters high performance liquid chromatograph column; GL Science ODS-3
Eluent: 0.03% aqueous trifluoroacetic acid / acetonitrile eluent flow rate: 0.8 ml / min
Detection wavelength: 200 nm

実施例1
攪拌機及び入口管と出口管とを備えたガラス反応器を2個連結し、下記条件でアクリロニトリルおよび発煙硫酸を第一反応器に仕込み、アクリロニトリルと発煙硫酸とを混合した後、この混合液を第二反応器に供給した。第二反応器において、前記混合物中にイソブチレンガスを吹き込み、ATBSを合成した。上記反応は連続的に行った。
Example 1
Two glass reactors equipped with a stirrer and an inlet pipe and an outlet pipe were connected, acrylonitrile and fuming sulfuric acid were charged into the first reactor under the following conditions, and after mixing acrylonitrile and fuming sulfuric acid, Two reactors were fed. In the second reactor, isobutylene gas was blown into the mixture to synthesize ATBS. The above reaction was carried out continuously.

発煙硫酸1モルに対し、アクリロニトリルの供給量を11モル、イソブチレンの供給量を0.9モルの割合でそれぞれ供給した。発煙硫酸の供給量は、1.6モル/時間であり、反応は12時間連続的に行った。反応中に、反応液を採取し、HPLCでIBSA、IBDSAの濃度を測定し、発煙硫酸の供給量を表1に示す様に調節した。   The amount of acrylonitrile supplied was 11 mol and the amount of isobutylene supplied was 0.9 mol per mol of fuming sulfuric acid. The supply amount of fuming sulfuric acid was 1.6 mol / hour, and the reaction was continuously performed for 12 hours. During the reaction, the reaction solution was collected, the concentrations of IBSA and IBDSA were measured by HPLC, and the supply amount of fuming sulfuric acid was adjusted as shown in Table 1.

なお、発煙硫酸における三酸化硫黄の濃度は0.6%であり、市販の20%発煙硫酸に対して、アクリロニトリル等の原料から持ち込まれる水分を加味した上で、濃硫酸を混合して濃度調整をした。第一反応器は−5〜−15℃に維持し、滞留時間は10分とした。第二反応器は30〜50℃に維持し、滞留時間は90分とした。     In addition, the concentration of sulfur trioxide in fuming sulfuric acid is 0.6%, and the concentration is adjusted by mixing concentrated sulfuric acid after adding moisture brought from raw materials such as acrylonitrile to commercially available 20% fuming sulfuric acid. Did. The first reactor was maintained at -5 to -15 ° C and the residence time was 10 minutes. The second reactor was maintained at 30-50 ° C. and the residence time was 90 minutes.

上記製造で得られたATBSのスラリーをグラスフィルターで吸引ろ過して、グラスフィルター上にケーキを得た。ケーキ質量に対して表1に記載した量のアクリロニトリルをケーキに注いで再度吸引ろ過して、ケーキを洗浄した。   The ATBS slurry obtained in the above production was suction filtered with a glass filter to obtain a cake on the glass filter. The amount of acrylonitrile described in Table 1 with respect to the cake mass was poured into the cake and suction filtered again to wash the cake.

ケーキをトレイに移し、80℃の乾燥温度で90分乾燥した。   The cake was transferred to a tray and dried at a drying temperature of 80 ° C. for 90 minutes.

得られたATBSパウダーをHPLC分析にかけ、IBSA及びIBDSAの濃度を測定した。   The obtained ATBS powder was subjected to HPLC analysis, and the concentrations of IBSA and IBDSA were measured.

次に、上記方法により得られたATBSを用いて、ATBSとアクリルアミドとの共重合ポリマーを製造した。     Next, a copolymer of ATBS and acrylamide was produced using ATBS obtained by the above method.

この共重合ポリマーの製造は、以下の手順で行った。先ず、ATBS40gを水60gに溶解し、48質量%のNaOH水溶液を添加してpHを8に調整した。これに水を加えて35質量%濃度に調整した。40質量%のアクリルアミド水溶液55.6gを加え、更に水5.2gを加えて、モノマー濃度を35質量%にした。このモノマー水溶液に窒素を吹込みながら液温を30℃に調整した後、過硫酸アンモニウム0.7g、亜硫酸ナトリウム0.7g、銅イオンを10ppm(質量基準)含む塩化銅水溶液0.6g、ジアゾ系ラジカル重合開始剤としてV−50(和光純薬工業株式会社製)の10質量%水溶液0.7gを加えた。2時間後に反応を終了して共重合ポリマーを取出した。   The copolymer was produced according to the following procedure. First, 40 g of ATBS was dissolved in 60 g of water, and a 48 mass% NaOH aqueous solution was added to adjust the pH to 8. Water was added thereto to adjust the concentration to 35% by mass. 55.6 g of 40% by mass acrylamide aqueous solution was added, and 5.2 g of water was further added to adjust the monomer concentration to 35% by mass. After adjusting the liquid temperature to 30 ° C. while blowing nitrogen into the monomer aqueous solution, 0.7 g of ammonium persulfate, 0.7 g of sodium sulfite, 0.6 g of an aqueous copper chloride solution containing 10 ppm (mass basis) of copper ions, a diazo radical As a polymerization initiator, 0.7 g of a 10 mass% aqueous solution of V-50 (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After 2 hours, the reaction was terminated and the copolymer was taken out.

この共重合ポリマー1.15gを水393gに溶解した後、食塩23.4gを添加し、粘度測定用試料液(共重合ポリマー濃度0.25質量%)を得た。       After 1.15 g of this copolymer was dissolved in 393 g of water, 23.4 g of sodium chloride was added to obtain a sample solution for viscosity measurement (copolymer concentration 0.25% by mass).

この粘度測定用試料液の粘度をUL粘度測定装置にて測定した。結果を表1に示した。     The viscosity of the sample liquid for viscosity measurement was measured with a UL viscosity measuring device. The results are shown in Table 1.

実施例2
実施例1においてケーキを洗浄するアクリロニトリル量を半分にした。図5のデータから、IBSAの残存が予想できたので、これを減少させるために、通常の乾燥温度よりも高い110℃で、乾燥を90分間行った。得られたATBSパウダーをHPLC分析した。実施例1と同様に操作して、ATBSとアクリルアミドとの共重合ポリマーを製造した。実施例1と同様にして共重合ポリマーの粘度測定を行った。結果を表1に記載した。
Example 2
In Example 1, the amount of acrylonitrile for washing the cake was halved. From the data shown in FIG. 5, IBSA could be expected to remain, and in order to reduce this, drying was performed at 110 ° C., which is higher than the normal drying temperature, for 90 minutes. The obtained ATBS powder was analyzed by HPLC. In the same manner as in Example 1, a copolymer of ATBS and acrylamide was produced. In the same manner as in Example 1, the viscosity of the copolymer was measured. The results are shown in Table 1.

実施例3
実施例1においてケーキの乾燥温度を110℃にした以外は、同じ操作を実施した。得られたATBSパウダーをHPLC分析した。実施例1と同様に操作して、ATBSとアクリルアミドとの共重合ポリマーを製造した。実施例1と同様にして共重合ポリマーの粘度測定を行った。結果を表1に記載した。
Example 3
The same operation was performed except that the drying temperature of the cake was 110 ° C. in Example 1. The obtained ATBS powder was analyzed by HPLC. In the same manner as in Example 1, a copolymer of ATBS and acrylamide was produced. In the same manner as in Example 1, the viscosity of the copolymer was measured. The results are shown in Table 1.

実施例4
実施例3においてケーキを洗浄する溶剤を酢酸に変更した以外は、同じ操作を実施した。得られたATBSパウダーをHPLC分析した。実施例1と同様に操作して、ATBSとアクリルアミドとの共重合ポリマーを製造した。実施例1と同様にして共重合ポリマーの粘度測定を行った。結果を表1に記載した。
Example 4
The same operation was performed except that the solvent for washing the cake in Example 3 was changed to acetic acid. The obtained ATBS powder was analyzed by HPLC. In the same manner as in Example 1, a copolymer of ATBS and acrylamide was produced. In the same manner as in Example 1, the viscosity of the copolymer was measured. The results are shown in Table 1.

実施例5
実施例1において、三酸化硫黄濃度を2%に変更し、反応滞留時間を120分に変更して合成反応を実施した。また、ケーキの乾燥を110℃で180分実施した。得られたATBSパウダーをHPLC分析した。実施例1と同様に操作して、ATBSとアクリルアミドとの共重合ポリマーを製造した。実施例1と同様にして共重合ポリマーの粘度測定を行った。結果を表1に記載した。
Example 5
In Example 1, the synthesis reaction was carried out with the sulfur trioxide concentration changed to 2% and the reaction residence time changed to 120 minutes. The cake was dried at 110 ° C. for 180 minutes. The obtained ATBS powder was analyzed by HPLC. In the same manner as in Example 1, a copolymer of ATBS and acrylamide was produced. In the same manner as in Example 1, the viscosity of the copolymer was measured. The results are shown in Table 1.

Figure 2009155324
Figure 2009155324

比較例1
実施例1と同様にして連続的にATBSを合成した。但し、反応中にIBSA、IBDSAの濃度をHPLCで分析することなく、最初の仕込割合を維持した。反応終了後、反応液を採取し、HPLC分析にてIBSA、IBDSAの濃度を測定したところ、IBSA濃度は15,000ppm、IBDSA濃度は2,000ppmであった。得られたATBSのスラリーをグラスフィルターで吸引ろ過して、グラスフィルター上にケーキを得た。ケーキ固形分質量の2倍量のアクリロニトリルをケーキ上に注いで再度吸引ろ過することにより、ケーキを洗浄した。ケーキをトレイに移し、80℃の乾燥温度で90分間乾燥した。得られたATBSパウダーをLC分析し、IBSA及びIBDSAの濃度を測定したところ、IBSA濃度は150ppm、IBDSA濃度は80ppmであった。
Comparative Example 1
ATBS was continuously synthesized in the same manner as in Example 1. However, the initial charge ratio was maintained without analyzing the concentrations of IBSA and IBDSA by HPLC during the reaction. After the completion of the reaction, the reaction solution was collected, and the concentrations of IBSA and IBDSA were measured by HPLC analysis. The IBSA concentration was 15,000 ppm and the IBDSA concentration was 2,000 ppm. The obtained ATBS slurry was suction filtered through a glass filter to obtain a cake on the glass filter. The cake was washed by pouring acrylonitrile twice the cake solid mass on the cake and suction filtering again. The cake was transferred to a tray and dried at a drying temperature of 80 ° C. for 90 minutes. The obtained ATBS powder was analyzed by LC and the concentrations of IBSA and IBDSA were measured. As a result, the IBSA concentration was 150 ppm and the IBDSA concentration was 80 ppm.

実施例1と同様にして重合評価を行ったところ、UL粘度=2.6mPa・sであった。     When the polymerization evaluation was performed in the same manner as in Example 1, the UL viscosity was 2.6 mPa · s.

SOの過剰度の設定は実施例1と同一にしたが、製造中における発煙硫酸濃度、濃硫酸濃度、原料の持ち込み水分の若干の変動によって、実際にはSOの過剰度が変動する。反応液中に不純物濃度を測定して条件を補正すべきところを、測定をすることなく最初のSOの設定のまま反応を続けたので、上記比較例1に記載のとおり、IBSAおよびIBDSAの濃度は増減し、品質が低下した。更に、製造ロット間の不純物濃度のバラツキが大きくなる。 Although the setting of the SO 3 excess was the same as in Example 1, the SO 3 excess actually fluctuates due to slight variations in the fuming sulfuric acid concentration, the concentrated sulfuric acid concentration, and the water content brought in during the production. Where the impurity concentration was measured in the reaction solution and the conditions were to be corrected, the reaction was continued with the initial SO 3 setting without performing the measurement. As described in Comparative Example 1 above, the results of IBSA and IBDSA The concentration increased and decreased and the quality decreased. Further, the variation in the impurity concentration between production lots increases.

参考試験例1、2、比較参考試験例1
ATBS40gを純水40gに溶解し、16.25質量%苛性ソーダ水溶液を添加して、pH8〜8.5に調整した。この際、液温を測定し、25℃を超えないように、必要に応じて冷却した。pH調整後、純水を添加して146gのATBS中和水溶液(30.3wt%)とした。別の容器に40質量%のアクリルアミド水溶液370.2g、前記ATBS中和水溶液66.5g、純水363.4gを取り混合した。このモノマー混合液のpHを測定したところ6.8であった。このモノマー混合液を重合用容器に移し、窒素2L/minを吹き込んだ。1時間後、窒素の吹き込みを継続しながら、液温を20℃に調整した。
Reference Test Examples 1 and 2, Comparative Reference Test Example 1
40 g of ATBS was dissolved in 40 g of pure water, and a 16.25% by mass aqueous caustic soda solution was added to adjust the pH to 8 to 8.5. At this time, the liquid temperature was measured and cooled as necessary so as not to exceed 25 ° C. After adjusting the pH, pure water was added to obtain 146 g of an ATBS neutralized aqueous solution (30.3 wt%). In a separate container, 370.2 g of a 40% by mass acrylamide aqueous solution, 66.5 g of the ATBS neutralized aqueous solution, and 363.4 g of pure water were mixed. The measured pH of this monomer mixture was 6.8. This monomer mixture was transferred to a polymerization vessel and nitrogen 2 L / min was blown into the vessel. After 1 hour, the liquid temperature was adjusted to 20 ° C. while continuing to blow nitrogen.

このモノマー溶液に、100ppm銅水溶液0.39ml、10質量%V−50水溶液3.02ml、1質量%過硫酸アンモニウム2.02mlを添加した。15分後、モノマー溶液中への窒素吹き込みを停止し、重合容器の気相部へ窒素40ml/minを吹き込む変更を行った。重合熱により、徐々に温度が上昇し、2時間後に70℃に達した後は、徐々に温度が下がった。8時間後に重合ゲルを取出し、生成した重合ゲルを冷却させた。得られたゲルをミートチョッパーを用いて裁断した。裁断したゲルを80℃で3時間乾燥した。さらに、乾燥したゲルを粉砕機にかけた。得られた粉を下記の方法に従って水に溶解し、その物性を測定した。     To this monomer solution, 0.39 ml of 100 ppm aqueous copper solution, 3.02 ml of 10 mass% V-50 aqueous solution and 2.02 ml of 1 mass% ammonium persulfate were added. After 15 minutes, the blowing of nitrogen into the monomer solution was stopped, and a change was made to blow nitrogen of 40 ml / min into the gas phase part of the polymerization vessel. The temperature gradually increased due to the polymerization heat, and after reaching 70 ° C. after 2 hours, the temperature gradually decreased. After 8 hours, the polymer gel was taken out and the produced polymer gel was cooled. The resulting gel was cut using a meat chopper. The cut gel was dried at 80 ° C. for 3 hours. Further, the dried gel was applied to a pulverizer. The obtained powder was dissolved in water according to the following method, and its physical properties were measured.

(塩粘度)
上記操作で得られた粉2.26gを500ml容器にとり、純水400mlを加えた。ジャーテスター(回転数200rpm、攪拌時間5時間)を用いて粉を溶解した後、食塩16gを添加した。さらに30分攪拌し、塩粘度測定溶液とした。
(Salt viscosity)
2.26 g of the powder obtained by the above operation was placed in a 500 ml container, and 400 ml of pure water was added. After dissolving the powder using a jar tester (rotation speed 200 rpm, stirring time 5 hours), 16 g of sodium chloride was added. The mixture was further stirred for 30 minutes to obtain a salt viscosity measurement solution.

粘度測定は、B型粘度計を使用し、溶液温度を25℃に調整して測定した。測定結果を表2に示した。     Viscosity was measured using a B-type viscometer with the solution temperature adjusted to 25 ° C. The measurement results are shown in Table 2.

(水不溶解物量)
上記操作で得られた粉0.5gを500ml容器にとり、純水500mlを加えた。ジャーテスター(回転数200rpm、攪拌時間5時間)を用いて粉を溶解し、不溶解物量測定溶液とした。
(Amount of water insoluble matter)
0.5 g of the powder obtained by the above operation was placed in a 500 ml container, and 500 ml of pure water was added. The powder was dissolved using a jar tester (rotation speed: 200 rpm, stirring time: 5 hours) to obtain an insoluble matter amount measurement solution.

不溶解物量測定は、80メッシュ篩に上記溶液を流し込み、10分後に篩上に残存したゲルをメスシリンダーに移してその容積を測定した。測定結果を表2に示した。
(曳糸性)
上記操作で得られた粉1.5gを500ml容器にとり、純水500mlを加えた。ジャーテスター(回転数200rpm、攪拌時間5時間)で溶解し、曳糸性測定溶液とした。
For the measurement of the amount of insoluble matter, the solution was poured into an 80 mesh sieve, and after 10 minutes, the gel remaining on the sieve was transferred to a measuring cylinder and its volume was measured. The measurement results are shown in Table 2.
(Spinning)
1.5 g of the powder obtained by the above operation was placed in a 500 ml container, and 500 ml of pure water was added. It melt | dissolved with the jar tester (rotation speed 200rpm, stirring time 5 hours), and it was set as the spinnability measurement solution.

曳糸性測定は、溶液温度を25℃に調整して、引下げ速度を5mm/秒で測定した。測定結果を表2に示した。   In the measurement of the spinnability, the solution temperature was adjusted to 25 ° C., and the pulling-down rate was measured at 5 mm / second. The measurement results are shown in Table 2.

使用した曳糸性測定方法は、下降速度を5mm/秒に調節した台座に、試料を入れた容器を置き、一方試料容器の上方から吊したカラス玉(直径10mm)の下端を試料液面下27mmまで浸漬する。この状態で、台座を5mm/秒の速度で下降させる。ガラス玉の下端が試料液面を離れた時から、曳糸がガラス玉から切れた時までに要した時間を計測し、その時間に台座の下降速度(5mm/秒)を掛けた数値を曳糸性(mm)とする。   The spinnability measurement method used was to place a sample container on a pedestal whose descent rate was adjusted to 5 mm / second, while the lower end of a crow ball (diameter 10 mm) suspended from above the sample container was below the sample liquid level. Immerse to 27 mm. In this state, the pedestal is lowered at a speed of 5 mm / sec. Measure the time required from when the lower end of the glass ball leaves the sample surface to when the kite thread breaks from the glass ball, and multiply the time by the descent speed of the pedestal (5 mm / sec). Thread property (mm).

Figure 2009155324
Figure 2009155324

塩粘度、曳糸性の値から明らかなように、IBSAおよびIBDSAの濃度を測定して100ppm以下に低減する様に反応を制御することにより、高分子量のポリマーを製造できることがわかる。     As is apparent from the values of salt viscosity and spinnability, it is understood that a polymer having a high molecular weight can be produced by measuring the concentrations of IBSA and IBDSA and controlling the reaction so as to reduce it to 100 ppm or less.

ATBS中のISBA濃度と、得られたポリマーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the ISBA density | concentration in ATBS, and the viscosity of the obtained polymer. ATBS中のIBSA濃度と、得られたポリマーの粘度との関係を示すグラフである。It is a graph which shows the relationship between the IBSA density | concentration in ATBS, and the viscosity of the obtained polymer. ATBSの製造において、三酸化硫黄量濃度と、副生するIBSA、IBDSA濃度との関係を示すグラフである。It is a graph which shows the relationship between sulfur trioxide amount density | concentration and IBSA and IBDSA density | concentration byproduced in manufacture of ATBS. 反応滞留時間と、副生するIBSA、IBDSA濃度との関係を示すグラフである。It is a graph which shows the relationship between reaction residence time and IBSA and IBDSA density | concentration byproduced. ケーキの洗浄溶媒量と、IBSAとの関係を示すグラフである。It is a graph which shows the relationship between the washing | cleaning solvent amount of a cake, and IBSA. ケーキの乾燥時間、温度とケーキ中のIBSA濃度との関係を示すグラフである。It is a graph which shows the relationship between the drying time of cake, temperature, and the IBSA density | concentration in a cake.

Claims (6)

下記式(1)
Figure 2009155324
で示される2−メチル−2−プロペニル−1−スルホン酸の含有量が100ppm以下、及び
下記式(2)
Figure 2009155324

で示される2−メチリデン−1,3−プロピレンジスルホン酸の含有量が100ppm以下であることを特徴とする下記式(3)
Figure 2009155324


で示される2−アクリルアミド-2-メチルプロパンスルホン酸。
Following formula (1)
Figure 2009155324
The content of 2-methyl-2-propenyl-1-sulfonic acid represented by the formula is 100 ppm or less, and the following formula (2)
Figure 2009155324

The content of 2-methylidene-1,3-propylene disulfonic acid represented by formula (3) is 100 ppm or less.
Figure 2009155324


2-acrylamido-2-methylpropanesulfonic acid represented by
アクリロニトリルと、発煙硫酸と、イソブチレンとを反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応系内の三酸化硫黄の濃度を低減させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。 A process for producing 2-acrylamido-2-methylpropanesulfonic acid, which comprises reacting acrylonitrile, fuming sulfuric acid and isobutylene, wherein 2-methyl-2-propenyl-1-sulfonic acid present in the reaction system during the reaction and The concentration of 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm and / or 2-methylidene-1,3- A method for producing 2-acrylamido-2-methylpropanesulfonic acid, wherein the concentration of sulfur trioxide in the reaction system is reduced when the concentration of propylene disulfonic acid exceeds 6000 ppm. アクリロニトリルと、発煙硫酸と、イソブチレンとを連続的に反応系に供給して反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応系に供給する発煙硫酸中の三酸化硫黄の濃度を低減させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の連続製造方法。 A process for producing 2-acrylamido-2-methylpropanesulfonic acid, in which acrylonitrile, fuming sulfuric acid, and isobutylene are continuously supplied to the reaction system and reacted, and the 2-methyl- existing in the reaction system during the reaction When the concentration of 2-propenyl-1-sulfonic acid and / or 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm, and / or Or 2-acrylamido-2-methylpropane characterized by reducing the concentration of sulfur trioxide in fuming sulfuric acid supplied to the reaction system when the concentration of 2-methylidene-1,3-propylene disulfonic acid exceeds 6000 ppm A continuous process for producing sulfonic acid. アクリロニトリルと、発煙硫酸と、イソブチレンとを反応させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法であって、反応中に反応系に存在する2−メチル−2−プロペニル−1−スルホン酸及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度を測定し、2−メチル−2−プロペニル−1−スルホン酸の濃度が12000ppmを超える場合、及び/又は2−メチリデン−1,3−プロピレンジスルホン酸の濃度が6000ppmを超える場合に反応時間を増加させることを特徴とする2−アクリルアミド-2-メチルプロパンスルホン酸の連続製造方法。 A process for producing 2-acrylamido-2-methylpropanesulfonic acid, which comprises reacting acrylonitrile, fuming sulfuric acid and isobutylene, wherein 2-methyl-2-propenyl-1-sulfonic acid present in the reaction system during the reaction and The concentration of 2-methylidene-1,3-propylene disulfonic acid is measured and the concentration of 2-methyl-2-propenyl-1-sulfonic acid exceeds 12000 ppm and / or 2-methylidene-1,3- A continuous process for producing 2-acrylamido-2-methylpropanesulfonic acid, characterized in that the reaction time is increased when the concentration of propylene disulfonic acid exceeds 6000 ppm. 請求項2乃至4の何れかの製造方法で製造して得られるスラリー液中の2−アクリルアミド-2-メチルプロパンスルホン酸の粗体を濾別してケーキを得、次いでアクリロニトリル、アセトニトリル、アセトン、メタノール、エタノール、2−プロパノール、ブタノール、酢酸エチル、酢酸からなる群から選ばれる1の溶媒又はこれらの混合溶媒を用いて前記ケーキを洗浄する2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。 A crude product of 2-acrylamido-2-methylpropanesulfonic acid in the slurry obtained by the production method according to any one of claims 2 to 4 is separated by filtration to obtain a cake, and then acrylonitrile, acetonitrile, acetone, methanol, A method for producing 2-acrylamido-2-methylpropanesulfonic acid, wherein the cake is washed with one solvent selected from the group consisting of ethanol, 2-propanol, butanol, ethyl acetate, and acetic acid, or a mixed solvent thereof. 請求項2乃至4の何れかの製造方法で製造して得られるスラリー液中の2−アクリルアミド-2-メチルプロパンスルホン酸の粗体を濾別してケーキを得、次いで前記ケーキを温度60〜130℃で10〜300分間乾燥させる2−アクリルアミド-2-メチルプロパンスルホン酸の製造方法。 A crude product of 2-acrylamido-2-methylpropanesulfonic acid in the slurry obtained by the production method according to any one of claims 2 to 4 is filtered to obtain a cake, and then the cake is heated to 60 to 130 ° C. A method for producing 2-acrylamido-2-methylpropanesulfonic acid, which is dried for 10 to 300 minutes.
JP2008307822A 2007-12-06 2008-12-02 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same Active JP5304205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307822A JP5304205B2 (en) 2007-12-06 2008-12-02 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007315989 2007-12-06
JP2007315989 2007-12-06
JP2008307822A JP5304205B2 (en) 2007-12-06 2008-12-02 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009155324A true JP2009155324A (en) 2009-07-16
JP5304205B2 JP5304205B2 (en) 2013-10-02

Family

ID=40959709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307822A Active JP5304205B2 (en) 2007-12-06 2008-12-02 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same

Country Status (1)

Country Link
JP (1) JP5304205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270168A (en) * 2009-05-19 2010-12-02 Toagosei Co Ltd Aqueous thickener, method for producing the same, and aqueous thickened solution using the same
US10759746B2 (en) 2017-03-20 2020-09-01 S.P.C.M. Sa Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163524A (en) * 1978-06-12 1979-12-26 Nitto Chem Ind Co Ltd Production of high-purity 2-acrylamide-2- methylpropanesulfonic acid
JPH05508869A (en) * 1991-06-03 1993-12-09 ザ ルブリゾル コーポレイション Method for preparing purified acrylamide sulfonic acid monomer derivatives
JP2003137857A (en) * 2001-10-31 2003-05-14 Toagosei Co Ltd Method for producing 2-acrylamido-2- methylpropanesulfonic acid
JP2004143078A (en) * 2002-10-24 2004-05-20 Toagosei Co Ltd Method for producing solution of acrylamidealkanesulfonic acid
JP2004277363A (en) * 2003-03-18 2004-10-07 Toagosei Co Ltd Method for purifying acrylamidoalkanesulfonic acid
JP2004359591A (en) * 2003-06-04 2004-12-24 Toagosei Co Ltd Refining process for acrylamidoalkanesulfonic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163524A (en) * 1978-06-12 1979-12-26 Nitto Chem Ind Co Ltd Production of high-purity 2-acrylamide-2- methylpropanesulfonic acid
JPH05508869A (en) * 1991-06-03 1993-12-09 ザ ルブリゾル コーポレイション Method for preparing purified acrylamide sulfonic acid monomer derivatives
JP2003137857A (en) * 2001-10-31 2003-05-14 Toagosei Co Ltd Method for producing 2-acrylamido-2- methylpropanesulfonic acid
JP2004143078A (en) * 2002-10-24 2004-05-20 Toagosei Co Ltd Method for producing solution of acrylamidealkanesulfonic acid
JP2004277363A (en) * 2003-03-18 2004-10-07 Toagosei Co Ltd Method for purifying acrylamidoalkanesulfonic acid
JP2004359591A (en) * 2003-06-04 2004-12-24 Toagosei Co Ltd Refining process for acrylamidoalkanesulfonic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270168A (en) * 2009-05-19 2010-12-02 Toagosei Co Ltd Aqueous thickener, method for producing the same, and aqueous thickened solution using the same
US10759746B2 (en) 2017-03-20 2020-09-01 S.P.C.M. Sa Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid
US11365173B2 (en) 2017-03-20 2022-06-21 Spcm Sa Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid
US11535588B2 (en) 2017-03-20 2022-12-27 Spcm Sa Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid
US11535587B2 (en) 2017-03-20 2022-12-27 Spcm Sa Hydrated crystalline form of 2-acrylamido-2-methylpropane sulfonic acid

Also Published As

Publication number Publication date
JP5304205B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5163094B2 (en) Continuous production method of 2-acrylamido-2-methylpropanesulfonic acid
US8247601B2 (en) 2-acrylamide-2-methylpropanesulfonic acid and process for producing the same
EP3350159B1 (en) Method for producing the 2-acrylamido-2-methylpropane sulfonic acid monomer and polymer comprising said monomer
JP2011046612A (en) Method for producing 2-acrylamide-2-methylpropanesulfonic acid
US20130137893A1 (en) Process for preparing and purifying salts of acrylamido-2-methylpropanesulfonic acid
CN109705347B (en) Process method for separating oligomer from polyphenylene sulfide resin synthetic slurry
JP5304205B2 (en) 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same
JP2020520362A (en) Aging of 1,4-bis(4-phenoxybenzoyl)benzene
CN104230763B (en) A kind of production method of 2-acrylamide-2-methylpro panesulfonic acid
JP2010229250A (en) Method for producing 2-acrylamido-2-methylpropanesulfonic acid
JP3885555B2 (en) Method for producing 2-acrylamido-2-methylpropanesulfonic acid
JP4178909B2 (en) Method for producing acrylamide alkanesulfonic acid solution
JP5163131B2 (en) 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same
CN104066714B (en) The method of the salt of preparation and purification acrylamido-2-methyl propane sulfonic acid
JP2004277363A (en) Method for purifying acrylamidoalkanesulfonic acid
JP2005029476A (en) METHOD FOR PRODUCING tert-BUTYLACRYLAMIDE
JP2004359591A (en) Refining process for acrylamidoalkanesulfonic acid
CN1085660C (en) Process for preparing monomer of sodium allylsulfonate
JPH05163235A (en) Production of high-purity 2-acrylamide-2-methylpropanesulfonic acid
CN110857279B (en) Preparation method of 2-acrylamide-2-methylpropanesulfonic acid
JP3282642B2 (en) Method for producing high-purity 2-acrylamide-2-methylpropanesulfonic acid
JP2008285446A (en) METHOD FOR PRODUCING MIXED CRYSTAL OF TYPE I CRYSTAL AND TYPE II CRYSTAL OF (±)2-(DIMETHYLAMINO)-1-{[O-(m-METHOXYPHENETHYL)PHENOXY]METHYL}ETHYL HYDROGEN SUCCINATE HYDROCHLORIDE
JP3932814B2 (en) Acrylonitrile recovery method
JP2009029728A (en) Method for producing adamantyl (meth)acrylate
JP2000128854A (en) Production of acrylamidoalkanesulfonic acid salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5304205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250