JP2009155153A - Porous gunpowder and method for producing the same - Google Patents

Porous gunpowder and method for producing the same Download PDF

Info

Publication number
JP2009155153A
JP2009155153A JP2007334686A JP2007334686A JP2009155153A JP 2009155153 A JP2009155153 A JP 2009155153A JP 2007334686 A JP2007334686 A JP 2007334686A JP 2007334686 A JP2007334686 A JP 2007334686A JP 2009155153 A JP2009155153 A JP 2009155153A
Authority
JP
Japan
Prior art keywords
explosive
porous
aqueous solution
granular
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007334686A
Other languages
Japanese (ja)
Other versions
JP5268348B2 (en
Inventor
Hideya Osawa
秀也 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2007334686A priority Critical patent/JP5268348B2/en
Publication of JP2009155153A publication Critical patent/JP2009155153A/en
Application granted granted Critical
Publication of JP5268348B2 publication Critical patent/JP5268348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Glanulating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular porous gunpowder having a high rate of gas evolution in combustion and a method for producing the same. <P>SOLUTION: The method for producing the granular porous gunpowder includes a step of preparing a lacquer comprising a gunpowder component, an organic solvent and a nitrate and/or a sulfate, a step of preparing a granulation aqueous solution having specific gravity (20°C) of 1.0-1.1, and a heating step wherein the lacquer is added to the granulation aqueous solution and the granulation aqueous solution is heated under stirring to a temperature exceeding a boiling point of the organic solvent. The porous gunpowder has tentative specific gravity of 0.5-0.9 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、小銃等の銃器の発射薬として使用できる粒状の多孔質火薬とその製造方法に関する。   The present invention relates to a granular porous explosive that can be used as a propellant for a firearm such as a rifle and a method for producing the same.

銃器等に使用する火薬(発射薬又は推進薬)には、燃焼時におけるガス発生速度を大きくするという要請がある。ガス発生速度を大きくするには燃焼表面積を増大させる方法があり、スライスする方法、多孔質にする方法が知られている。スライスする方法では燃焼表面積の増加に限界があるため、より燃焼表面積を増大させるには多孔質にする方法が望ましい。   There is a demand for an explosive (propellant or propellant) used for a firearm or the like to increase the gas generation rate during combustion. In order to increase the gas generation rate, there is a method of increasing the combustion surface area, and a slicing method and a porous method are known. Since the slicing method has a limit in increasing the combustion surface area, a porous method is desirable to increase the combustion surface area.

火薬を多孔質にする方法としては、従来から、圧伸方法を用いた成形方法が採用されているが、圧伸方法では口金から細長く押出されたものを任意の長さ(または厚み)に裁断(切断)して発射薬を製造するため、圧伸方法で製造された成形体は、切断面や切断端部等の表面にバリ(不定形の突起)を有することから、流動性が低下したり、嵩高になって、所定の容器に充填する場合等秤量に誤差が生じたりする問題がある。   As a method for making explosives porous, a molding method using a drawing method has been conventionally used. However, in the drawing method, a material extruded from a base is cut into an arbitrary length (or thickness). In order to produce a propellant by (cutting), the molded body produced by the drawing method has burrs (indeterminate projections) on the surface such as the cut surface and the cut end, so that the fluidity is lowered. There is a problem that an error occurs in the weighing such as when the container is bulky and filled into a predetermined container.

特許文献1には、ニトロセルロースラッカー、酢酸エチル、安定剤、高分子凝集剤からなるラッカー混液を、水溶液中に投入攪拌して、加温することで小粒状の火薬組成物を製造する方法が記載されている。しかし、多孔質化についての記載は全くない。   Patent Document 1 discloses a method for producing a small explosive composition by charging a lacquer mixed solution composed of nitrocellulose lacquer, ethyl acetate, a stabilizer, and a polymer flocculant into an aqueous solution and heating the mixture. Are listed. However, there is no description about making it porous.

特許文献2には、発射薬として、仮比重が0.2以下で、発泡した球状や多孔質円筒状のものを使用することが記載されているが、製造方法についての記載は全くない。   Patent Document 2 describes that a propellant having a temporary specific gravity of 0.2 or less and a foamed spherical or porous cylindrical shape is used, but there is no description of a production method.

特許文献3には、平均粒子径が5〜200μm、見掛け比重が0.001〜0.4g/ccの硝化綿系中空粒子が記載されている。しかし、余りにも見掛け比重が小さすぎ、銃器等の発射薬として適していない。   Patent Document 3 describes nitrified cotton-based hollow particles having an average particle diameter of 5 to 200 μm and an apparent specific gravity of 0.001 to 0.4 g / cc. However, the apparent specific gravity is too small, and it is not suitable as a propellant for firearms.

特許文献4には、粉状火薬組成物の製造方法が記載されているが、多孔質化についての記載は全くない。
特公昭61−37239号公報 特公平3−81078号公報 特開平3−7733号公報 特開2002−179491号公報
Patent Document 4 describes a method for producing a powdered explosive composition, but there is no description about making it porous.
Japanese Patent Publication No. 61-37239 Japanese Patent Publication No. 3-81078 Japanese Patent Laid-Open No. 3-7733 JP 2002-179491 A

本発明は、流動性が良く、燃焼表面積を増大させることができ、さらにガス発生速度を高めることができる粒状の多孔質火薬とその製造方法を提供することを課題とする。   An object of the present invention is to provide a granular porous explosive that has good fluidity, can increase the combustion surface area, and can increase the gas generation rate, and a method for producing the same.

本発明は、課題の解決手段として、下記の各発明を提供する。
1.火薬成分、有機溶媒、硝酸塩及び/又は硫酸塩を含むラッカーを調製する工程、
比重(20℃)が1.0〜1.1の造粒水溶液を調製する工程、
前記造粒水溶液に前記ラッカーを添加した後、当該造粒水溶液を、攪拌しながら、前記有機溶媒の沸点を超える温度まで昇温させる昇温工程、
を有している、粒状の多孔質火薬の製造方法。
昇温工程では、造粒水溶液をさらに85℃以上に(85〜95℃程度まで)昇温して、多孔質火薬中の有機溶媒や水分をさらに低減してもよい。
2.さらに多孔質火薬を圧延手段により扁平状にする圧扁工程を有している、請求項1記載の多孔質火薬の製造方法。粒状の多孔質火薬は水と共に圧延してもよく、圧延手段としては、圧延ロール等を用いてもよい。
3.さらに多孔質火薬の表面を被覆剤で被覆する表膠工程を有している、請求項1記載の多孔質火薬の製造方法。
4.前記有機溶媒が、火薬成分に対する良溶媒と貧溶媒の組み合わせである、請求項1〜3のいずれか1項記載の多孔質火薬の製造方法。
5.前記ラッカーに含まれる硝酸塩及び/又は硫酸塩の含有量が火薬成分100質量部に対して1〜70質量部である、請求項1〜4のいずれか1項記載の多孔質火薬の製造方法。
6.前記造粒水溶液の比重(20℃)が1.005〜1.05である、請求項1〜5のいずれか1項記載の多孔質火薬の製造方法。
7.下記測定法により求められる仮比重が0.5〜0.9g/cm3である粒状の多孔質火薬であって、本発明の製造方法により得られる多孔質火薬。
The present invention provides the following inventions as means for solving the problems.
1. Preparing a lacquer containing an explosive component, an organic solvent, nitrate and / or sulfate;
A step of preparing a granulated aqueous solution having a specific gravity (20 ° C.) of 1.0 to 1.1,
After adding the lacquer to the granulated aqueous solution, the temperature-raising step of raising the temperature of the granulated aqueous solution to a temperature exceeding the boiling point of the organic solvent while stirring.
A method for producing a granular porous explosive.
In the temperature raising step, the granulated aqueous solution may be further heated to 85 ° C. or higher (up to about 85 to 95 ° C.) to further reduce the organic solvent and moisture in the porous explosive.
2. Furthermore, the manufacturing method of the porous explosive of Claim 1 which has a pressing process which makes a porous explosive flat by a rolling means. A granular porous explosive may be rolled with water, and a rolling roll etc. may be used as a rolling means.
3. Furthermore, the manufacturing method of the porous explosive of Claim 1 which has the surface process which coat | covers the surface of a porous explosive with a coating agent.
4). The method for producing a porous explosive according to any one of claims 1 to 3, wherein the organic solvent is a combination of a good solvent and a poor solvent for the explosive component.
5. The manufacturing method of the porous explosive of any one of Claims 1-4 whose content of the nitrate contained in the said lacquer and / or sulfate is 1-70 mass parts with respect to 100 mass parts of explosive components.
6). The manufacturing method of the porous explosive of any one of Claims 1-5 whose specific gravity (20 degreeC) of the said granulated aqueous solution is 1.005 to 1.05.
7). A porous explosive having a temporary specific gravity of 0.5 to 0.9 g / cm3 determined by the following measurement method, which is obtained by the production method of the present invention.

(仮比重の測定法)
一端が閉塞され、他端が開口されたガラス製の円筒容器(内径65.8mm、高さ155.9mm、容積530cm)に、前記円筒容器を満たす量の火薬を注ぎ込んだときの前記火薬量(g)を測定し、前記円筒容器の容積(cm)に対する前記火薬量(g)の比率を仮比重(g/cm)としてを求める。
8.前記多孔質火薬のガス発生速度(DP/DT)が、150〜500bar/msecである多孔質火薬。
(前記ガス発生速度の測定法)
MIL-STD-286C METHOD 801.1.2 QUICKNESS AND FORCEMEASURMENT OF PROPELLANT に記載の試験方法による。但し、火薬の装填密度が0.05になるように容積200cmの密閉容器を使用し、粒状の火薬10gを燃焼させたときの前記密閉容器内の圧力を計測し、ガス発生速度(DP/DT)は、最大圧力の0.3、0.4、0.5、0.6、0.7倍の圧力におけるの5点の値の平均値とする。
9.前記多孔質火薬が小銃用の発射薬である多孔質火薬。
(Measurement method of provisional specific gravity)
One end is closed and the other end opening glass-made cylindrical vessel (inner diameter 65.8Mm, height 155.9Mm, volume 530 cm 3), the said quantity of explosive when poured gunpowder amount satisfying the cylindrical container (G) is measured, and the ratio of the explosive amount (g) to the volume (cm 3 ) of the cylindrical container is determined as a temporary specific gravity (g / cm 3 ).
8). The porous explosive whose gas generation rate (DP / DT) of the said porous explosive is 150-500 bar / msec.
(Measurement method of the gas generation rate)
MIL-STD-286C METHOD 801.1.2 According to the test method described in QUICKNESS AND FORCEMEASURMENT OF PROPELLANT. However, a closed container with a capacity of 200 cm 3 was used so that the loading density of the explosive was 0.05, the pressure in the closed container when 10 g of granular explosive was burned was measured, and the gas generation rate (DP / DT) is an average value of five values at pressures 0.3, 0.4, 0.5, 0.6, and 0.7 times the maximum pressure.
9. A porous explosive in which the porous explosive is a rifle propellant.

本発明の多孔質火薬の製造方法は、造粒と多孔質化を一つの工程で処理できるため、圧伸方法に比べて生産性が高い。また本発明の製造方法により得られた発射薬粒子は、切断時に生じる表面のバリ等がないので流動性が良く、また多孔質であり、燃焼表面積が増加されているので、燃焼時のガス発生速度が高められている。   Since the method for producing a porous explosive according to the present invention can process granulation and porosification in one step, the productivity is higher than the drawing method. In addition, the propellant particles obtained by the production method of the present invention have good fluidity because there are no surface burrs or the like generated during cutting, and are porous and have an increased combustion surface area. The speed has been increased.

本発明の製造方法を工程ごとに説明するが、各工程の順序は制限されるものではない。また、本発明の製造方法では、1つの工程を2以上に分けることもできるし、2つ以上の工程を1つにすることもできる。   Although the manufacturing method of this invention is demonstrated for every process, the order of each process is not restrict | limited. Moreover, in the manufacturing method of this invention, one process can also be divided into two or more, and two or more processes can also be made into one.

まず、最初の工程で火薬成分、有機溶媒、硝酸塩及び/又は硫酸塩を含むラッカーを調製する。本工程で用いる火薬成分は、特許文献1〜4等に記載の公知のものであり、火薬のほか、必要に応じて、可塑剤、安定剤、酸化剤、バインダー等を含むものである。なお、火薬成分中、ニトロセルロースの含有量が最大であり、50質量%以上であることが好ましく、火薬成分は使用目的に応じて適宜選択できる。   First, a lacquer containing an explosive component, an organic solvent, nitrate and / or sulfate is prepared in the first step. The explosive component used in this step is a known component described in Patent Documents 1 to 4 and the like, and includes a plasticizer, a stabilizer, an oxidizing agent, a binder, and the like as necessary in addition to the explosive. In addition, in the explosive component, the content of nitrocellulose is the largest and is preferably 50% by mass or more, and the explosive component can be appropriately selected according to the purpose of use.

有機溶媒は、火薬成分を溶解できるもので、沸点が100℃未満のものであり、例えば酢酸エチル、酢酸ブチル、メチルエチルケトン、アセトン等から選ばれる1種又は2種以上組み合わせて用いることができる。2種以上の有機溶媒を組み合わせて用いるときは、沸点が近似したものを組み合わせて用いることが望ましい。   The organic solvent can dissolve the explosive component and has a boiling point of less than 100 ° C., and can be used, for example, one or a combination of two or more selected from ethyl acetate, butyl acetate, methyl ethyl ketone, acetone and the like. When two or more organic solvents are used in combination, it is desirable to use a combination of solvents having similar boiling points.

また前記有機溶媒は、発射薬の形状に応じて、ニトロセルロースに対する溶解度が異なるものを使用することができる。例えば、ニトロセルロースに対する溶解度が大きい有機溶媒(良溶媒)を使用すると発射薬粒子が球状になりやすく、前記溶解度が小さい有機溶媒(貧溶媒)を使用すると球状になり難くなる。前記良溶媒としては、酢酸エチル、酢酸ブチル、メチルエチルケトン、アセトン等を用いることができ、水に対する溶解度が小さいものが好ましい。前記貧溶媒としては、エチルアルコールやイソプロピルアルコール等のアルコール類等を用いることができる。   Moreover, the said organic solvent can use what differs in the solubility with respect to a nitrocellulose according to the shape of a propellant. For example, if an organic solvent (good solvent) having a high solubility in nitrocellulose is used, the propellant particles are likely to be spherical, and if an organic solvent (poor solvent) having a low solubility is used, it is difficult to be spherical. As the good solvent, ethyl acetate, butyl acetate, methyl ethyl ketone, acetone and the like can be used, and those having low solubility in water are preferable. As the poor solvent, alcohols such as ethyl alcohol and isopropyl alcohol can be used.

本発明の製造方法では、有機溶媒として前記の良溶媒と貧溶媒を組み合わせ用いることが好ましく、酢酸エチルとエチルアルコールの組合せが好適である。貧溶媒を併用することで、ラッカーはニトロセルロースの未溶解成分(セルロース成分等)を含み、多孔質形成過程(昇温工程)においてラッカー(又は火薬)の多孔質を維持しやすくなる。良溶媒と貧溶媒を組み合わせるときの比率(容量比)は、火薬成分に応じて適宜選択できるが、例えば貧溶媒/良溶媒の重量比は100/10〜100/100が好ましく、100/30〜100/70がより好ましい。貧溶媒の重量比が大きくなると、ラッカー中の未溶解成分が多くなり、得られる多孔質火薬の表面が凸凹になりやすくなる。   In the production method of the present invention, the above-mentioned good solvent and poor solvent are preferably used in combination as the organic solvent, and a combination of ethyl acetate and ethyl alcohol is preferred. By using a poor solvent in combination, the lacquer contains nitrocellulose undissolved components (cellulose component and the like), and it becomes easy to maintain the porosity of the lacquer (or explosive) in the porous formation process (temperature raising step). The ratio (volume ratio) when combining the good solvent and the poor solvent can be appropriately selected according to the explosive component. For example, the weight ratio of the poor solvent / good solvent is preferably 100/10 to 100/100, and preferably 100/30 to 100/70 is more preferable. When the weight ratio of the poor solvent increases, the amount of undissolved components in the lacquer increases, and the surface of the resulting porous explosive tends to be uneven.

ラッカーに含まれる有機溶媒の量は、火薬成分100質量部に対して100〜1000質量部が好ましく、200〜400質量部がより好ましい。   100-1000 mass parts is preferable with respect to 100 mass parts of explosives components, and, as for the quantity of the organic solvent contained in a lacquer, 200-400 mass parts is more preferable.

硝酸塩及び/又は硫酸塩は、造粒水溶液に溶出して発射薬粒子を多孔化するための助剤となる成分であり、硝酸カリウム、硝酸ナトリウム、硝酸バリウム、硫酸カリウム等を挙げることができる。   Nitrate and / or sulfate is a component that dissolves in the granulated aqueous solution and becomes an auxiliary agent for making the propellant particles porous, and examples thereof include potassium nitrate, sodium nitrate, barium nitrate, and potassium sulfate.

ラッカーに含まれる硝酸塩及び/又は硫酸塩の含有量は、火薬成分100質量部に対して1〜70質量部が好ましく、5〜50質量部がより好ましく、10〜30質量部が更に好ましい。前記範囲にすることにより、目的とする多孔質状態(仮比重等)を調節することができる。   The content of nitrate and / or sulfate contained in the lacquer is preferably 1 to 70 parts by mass, more preferably 5 to 50 parts by mass, and still more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the explosive component. By setting it as the above range, the target porous state (such as provisional specific gravity) can be adjusted.

次の工程にて、比重(20℃)が1.0〜1.1の造粒水溶液を調製する。この工程は、ラッカーの調製工程の前に行ってもよいし、ラッカーの調製工程と並行してもよい。   In the next step, a granulated aqueous solution having a specific gravity (20 ° C.) of 1.0 to 1.1 is prepared. This step may be performed before the lacquer preparation step or in parallel with the lacquer preparation step.

造粒水溶液は、水又は水に比重調整剤を添加することで所定の比重範囲にしたもので、前記比重(20℃)は、より好ましくは1.005〜1.05、さらに好ましくは1.005〜1.02である。比重が小さいほど多孔質火薬は多孔質になりやすが、球状にはなりにくくなり、また比重が大きいほど球状になりやすいが多孔質状態になりにくくなる。   The granulated aqueous solution is made to have a specific gravity range by adding a specific gravity adjusting agent to water or water, and the specific gravity (20 ° C.) is more preferably from 1.005 to 1.05, still more preferably 1. 005 to 1.02. The smaller the specific gravity, the more easily the porous explosives become porous, but the more difficult it becomes to be spherical, and the larger the specific gravity, the more likely to become spherical, but it becomes difficult to become porous.

比重調整剤としては、硝酸カリウム、硫酸ナトリウム、炭酸カルシウム等の無機塩等を挙げることができる。   Specific gravity adjusting agents include inorganic salts such as potassium nitrate, sodium sulfate, and calcium carbonate.

また造粒水溶液に、澱粉、アラビアゴム、カルボキシメチルセルロース等の保護コロイドを添加することで、粒状の発射薬を造粒水溶液に安定して分散させることができる。保護コロイドの添加量は、好ましくは水100質量部に対して0.1〜2質量部である。   Further, by adding a protective colloid such as starch, gum arabic or carboxymethylcellulose to the granulated aqueous solution, the granular propellant can be stably dispersed in the granulated aqueous solution. The addition amount of the protective colloid is preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of water.

造粒水溶液は、水に比重調整剤及び保護コロイド剤を添加した後、必要に応じて加温・攪拌して調製する。なお、調製後は、ラッカーを添加する前に、常温〜50℃程度まで調整する。   The granulated aqueous solution is prepared by adding a specific gravity adjusting agent and a protective colloid agent to water and then heating and stirring as necessary. In addition, after preparation, before adding lacquer, it adjusts to normal temperature-about 50 degreeC.

造粒水溶液には、さらにラッカーに用いている有機溶媒の良溶媒を、当該良溶媒の造粒水溶液に対する溶解度相当の量を添加してもよい。これによって、ラッカー表面付近の良溶媒が造粒水溶液に溶出するのを抑制して、得られる粒状の多孔質火薬表面のざらつき(微小な凹凸)を軽減できる。   In the granulated aqueous solution, a good solvent of the organic solvent used in the lacquer may be added in an amount corresponding to the solubility of the good solvent in the granulated aqueous solution. As a result, it is possible to suppress the good solvent near the lacquer surface from eluting into the granulated aqueous solution, and to reduce the roughness (small irregularities) on the surface of the obtained granular porous explosive.

次の工程にて、造粒水溶液に前記ラッカーを添加した後、当該造粒水溶液を攪拌しながら徐々に昇温させ、好ましくは85℃付近まで、より好ましくは90℃付近まで、さらに好ましく95℃付近まで昇温させる。   In the next step, after adding the lacquer to the granulated aqueous solution, the granulated aqueous solution is gradually heated while being stirred, preferably up to about 85 ° C, more preferably up to about 90 ° C, and even more preferably about 95 ° C. Raise the temperature to near.

造粒水溶液とラッカーの比率は、造粒水溶液100質量部に対してラッカーが0.5〜0.6質量部となる量が好ましい。   The ratio of the granulated aqueous solution to the lacquer is preferably such that the lacquer is 0.5 to 0.6 parts by mass with respect to 100 parts by mass of the granulated aqueous solution.

昇温工程での造粒水溶液の攪拌速度は造粒水溶液にラッカーが均一に分散される速度であればよい。   The stirring speed of the granulated aqueous solution in the heating step may be a speed at which the lacquer is uniformly dispersed in the granulated aqueous solution.

昇温工程での造粒水溶液の昇温速度は、ラッカーに含まれる有機溶媒の蒸発や当該有機溶媒の蒸発に伴うラッカーの固化等に影響し、造粒される発射薬の形状(球状)や多孔質状態に影響する。ラッカーに含まれる有機溶媒の沸点付近において、昇温速度が遅いと球状になりやすいが多孔質になりにくくなり、また昇温速度が速いと多孔質になりやすいが球状になりにくくなる。   The temperature increase rate of the granulated aqueous solution in the temperature increasing step affects the evaporation of the organic solvent contained in the lacquer and the solidification of the lacquer accompanying the evaporation of the organic solvent, and the shape of the propellant to be granulated (spherical) Affects the porous state. In the vicinity of the boiling point of the organic solvent contained in the lacquer, if the rate of temperature rise is slow, it tends to be spherical but difficult to become porous, and if the rate of temperature rise is fast, it tends to become porous but difficult to be spherical.

昇温速度は、前記影響を考慮して1段階又は多段階に制御することができる。例えば昇温工程を、攪拌開始温からラッカーを粒状に分散させる第1段階、前記第1段階後からラッカーに含まれる有機溶媒の沸点温度付近(沸点又は沸点から±2℃程度)までの第2段階、前記第2段階後から85℃付近までの第3段階、及び前記第3段階後から95℃付近までの第4段階に区分して、それぞれの段階で昇温速度を異ならせてもよいし、同程度にしてもよい。   The temperature increase rate can be controlled in one stage or multiple stages in consideration of the influence. For example, in the temperature raising step, the first stage in which the lacquer is dispersed in a granular form from the stirring start temperature, the second stage from the first stage to the vicinity of the boiling temperature of the organic solvent contained in the lacquer (boiling point or about ± 2 ° C. from the boiling point). The temperature rising rate may be different in each stage, divided into a stage, a third stage from the second stage to around 85 ° C., and a fourth stage from the third stage to around 95 ° C. However, it may be the same level.

前記第1段階は、攪拌初期の温度からラッカーに含まれている有機溶媒が気化しない温度(例えば有機溶媒の沸点から−10℃程度の温度)までの温度範囲であって、15〜30℃/min程度の昇温速度で昇温させることができる。前記第2段階及び前記第3段階は、ラッカーに含まれる有機溶媒の沸点温度付近前後の温度範囲であって、徐々に昇温させ、好ましくは3〜15℃/min、より好ましくは5〜10℃/minで昇温させる。   The first stage is a temperature range from the initial stirring temperature to a temperature at which the organic solvent contained in the lacquer does not vaporize (for example, a temperature of about −10 ° C. from the boiling point of the organic solvent). The temperature can be increased at a temperature increase rate of about min. The second stage and the third stage are a temperature range around the boiling point temperature of the organic solvent contained in the lacquer, and the temperature is gradually raised, preferably 3 to 15 ° C./min, more preferably 5 to 10 The temperature is raised at ° C / min.

前記第4段階は、多孔質火薬中の有機溶剤及び水分をさらに除去する段階であって、好ましくは5〜15℃/min、より好ましくは5〜10℃/minで昇温させる。   The fourth step is a step of further removing the organic solvent and moisture in the porous explosive, and the temperature is preferably raised at 5 to 15 ° C./min, more preferably at 5 to 10 ° C./min.

このような攪拌・昇温により、ラッカーが粒状に分散されると共に、ラッカーの分散過程乃至は分散した粒状のラッカーから硝酸塩や硫酸塩が造粒水溶液中に溶出し、更に有機溶媒が揮発除去されることから、分散状態の前記ラッカーは内部にに空孔が形成されて固化し、粒状の多孔質火薬となる。   By such agitation and temperature increase, the lacquer is dispersed in a granular form, and nitrate and sulfate are eluted in the granulated aqueous solution from the dispersion process of the lacquer or the dispersed granular lacquer, and the organic solvent is further volatilized and removed. Therefore, the lacquer in a dispersed state is solidified by forming pores therein and becomes a granular porous explosive.

また、上記のように昇温状態を適切に制御することにより、表面が平滑でバリ等がない、断面が球状乃至楕円形及びそれに近似した形状の粒状で多孔質な火薬が形成され易くなる。   In addition, by appropriately controlling the temperature rising state as described above, it becomes easy to form a granular and porous explosive having a smooth surface, no burrs, etc., and a spherical or elliptical cross section and a shape similar thereto.

更に、最終的に95℃まで昇温することで、残留する有機溶媒濃度を0.1質量%程度まで減少させることができる。有機溶媒の残留濃度が高すぎると、多孔質火薬のガス発生速度が小さくなる場合があるので好ましくない。   Further, by finally raising the temperature to 95 ° C., the concentration of the remaining organic solvent can be reduced to about 0.1% by mass. If the residual concentration of the organic solvent is too high, the gas generation rate of the porous explosive may be reduced, which is not preferable.

その後、造粒水溶液中で生成された粒状の多孔質火薬を取り出して、冷風や温風を吹き付ける等して乾燥させる。また、本発明の製造方法では、更に必要に応じて、
(1)粒状多孔質火薬の粒度を揃えるための篩い分け工程、
(2)粒状多孔質火薬を水と共に圧延ロールを通して圧力を加えて、扁平状にする圧扁工程、
(3)粒状多孔質火薬又はそれを圧扁した多孔質火薬に表面に燃焼抑制剤(例えば、ジニトロトルエン、ジブチルフタレート、樟脳、ジフェニルアミン、エチルセントラリット又はこれらの混合物)を付着又は含浸させることで、着火初期の燃焼速度を小さくするための表膠工程、
(4)粒状火薬又はそれを圧扁した多孔質火薬の表面に硝酸カリウムを付着させ、燃焼時に銃口から発生する燃焼ガスが再燃焼しないようにするための消炎処理工程、
(5)粒状多孔質火薬の表面に黒鉛をまぶし、擦り合わせて付着させる帯電防止処理(流動性向上処理)工程、
の各工程を付加することができる。
Thereafter, the granular porous explosive produced in the granulated aqueous solution is taken out and dried by blowing cold air or hot air. In the production method of the present invention, if necessary,
(1) sieving process to equalize the granular porous powder
(2) A crushing process in which a granular porous powder is flattened by applying pressure through a rolling roll together with water,
(3) By adhering or impregnating the surface of a granular porous explosive or a porous explosive collapsed with a combustion inhibitor (for example, dinitrotoluene, dibutylphthalate, camphor, diphenylamine, ethyl central or a mixture thereof) , Surface process to reduce the burning rate at the beginning of ignition,
(4) A flame extinguishing treatment process for attaching potassium nitrate to the surface of granular gunpowder or a porous gunpowder that has been collapsed so that the combustion gas generated from the muzzle during combustion does not re-burn,
(5) Antistatic treatment (fluidity improving treatment) process in which graphite is sprayed on the surface of the granular porous explosive and rubbed together.
These steps can be added.

本発明では、昇温工程で得られた粒状の多孔質火薬を圧扁工程において圧扁処理することにより、扁平状の多孔質火薬に成形することでガス発生速度を高めることができ、表膠工程において表膠処理することにより、ガス発生速度を調整することができる。なお、圧扁工程と表膠工程の順序は制限されず、圧扁工程を設けずに表膠工程のみを設けてもよいし、表膠工程を設けずに圧扁工程のみを設けてもよい。   In the present invention, the granular porous explosive obtained in the temperature raising step is subjected to a pressing treatment in the pressing step, thereby forming a flat porous gunpowder to increase the gas generation rate. The gas generation rate can be adjusted by performing the surface treatment in the process. Note that the order of the crushing step and the surface step is not limited, and only the surface step may be provided without providing the surface step, or only the surface step may be provided without providing the surface step. .

本発明の製造方法で得られた多孔質火薬は、その断面が円形又は楕円形及びそれらに近似した形状であり、平均粒径が300〜1000μm、好ましくは400〜600μmであり、それを圧扁して扁平形状にしたものであってもよい。   The porous explosive obtained by the production method of the present invention has a circular or elliptical cross section and a shape similar to them, and has an average particle size of 300 to 1000 μm, preferably 400 to 600 μm. Then, it may be a flat shape.

扁平形状とは、厚さと厚さに対して垂直方向の長さの比が1/10〜6/10、好ましくは2/10〜4/10のものである。前記多孔質火薬は、例えば厚さが、0.1〜0.8mm、好ましくは0.2〜0.4mmであり、平均長さが0.5〜1.5mm、好ましくは0.6〜1.0mmのものをいう。   The flat shape has a thickness to thickness ratio of 1/10 to 10/10, preferably 2/10 to 4/10. The porous explosive has, for example, a thickness of 0.1 to 0.8 mm, preferably 0.2 to 0.4 mm, and an average length of 0.5 to 1.5 mm, preferably 0.6 to 1. 0 mm.

本発明の製造方法で得られた多孔質火薬は、仮比重が0.5〜0.9g/cm、好ましくは0.6〜0.8g/cmであり、またガス発生速度(DP/DT)が150〜500bar/msec、好ましくは200〜460bar/msecである。 The porous explosive obtained by the production method of the present invention has a temporary specific gravity of 0.5 to 0.9 g / cm 3 , preferably 0.6 to 0.8 g / cm 3 , and a gas generation rate (DP / DT) is 150 to 500 bar / msec, preferably 200 to 460 bar / msec.

本発明の製造方法で得られた多孔質火薬は、特に小銃用の発射薬(発射薬粒子)として好適に用いられる。   The porous explosive obtained by the production method of the present invention is particularly suitably used as a rifle propellant (propellant particle).

(1)平均粒径(μm)
粒状火薬(発射薬粒子)の粒径(外寸)をマイクロメーターで測定し、20個の粒状火薬の粒径を算術平均して平均粒径(μm)を求めた。
(1) Average particle size (μm)
The particle size (outside dimension) of the granular explosive (propellant particles) was measured with a micrometer, and the average particle size (μm) was obtained by arithmetically averaging the particle sizes of the 20 granular explosives.

(2)仮比重(g/cm
一端が閉塞され、他端が開口されたガラス製の円筒容器(内径65.8mm、高さ約155.93mm、容積530cm)に、前記円筒容器を満たす量の粒状火薬(発射薬粒子)を注ぎ込んだときの前記火薬量(g)を測定し、前記円筒容器の容積(cm)に対する前記火薬量(g)の比率を仮比重として求めた。
(2) Temporary specific gravity (g / cm 3 )
A cylindrical powder container (inner diameter: 65.8 mm, height: about 155.93 mm, volume: 530 cm 3 ) with one end closed and the other end opened is filled with granular powder (propellant particles) that fills the cylinder container. The amount (g) of the explosive at the time of pouring was measured, and the ratio of the amount (g) of the explosive to the volume (cm 3 ) of the cylindrical container was obtained as a temporary specific gravity.

(3)外観及び内部構造
粒状火薬(発射薬粒子)の外観及び断面を、SEMを用いて拡大して観察し、その写真を撮影した。これにより粒状火薬の外観(形状と表面状態)と内部構造(空孔の有無による多孔質状態)を評価した。
(3) Appearance and internal structure The appearance and cross section of the granular explosive (propellant particles) were enlarged and observed using an SEM, and the photograph was taken. This evaluated the external appearance (shape and surface state) and internal structure (porous state with or without pores) of the granular explosive.

(4)厚み(mm)及び外径(mm)
圧扁された粒状火薬20個について、厚みと厚みに対する長さ(外径)をノギスで測定し、それぞれの平均値(mm)を求めた。
(4) Thickness (mm) and outer diameter (mm)
About 20 pressed granular powders, the thickness (length) with respect to the thickness (outer diameter) was measured with calipers, and the average value (mm) of each was determined.

(5)ガス発生速度(DP/DT)
MIL-STD-286C METHOD 801.1.2 QUICKNESS AND FORCEMEASURMENT OF PROPELLANT に示された試験方法で測定した。但し、装填密度が0.05になるように容積200cmの密閉容器を使用し、粒状火薬(発射薬粒子)10gを燃焼させたときの前記密閉容器内の圧力を計測した。ガス発生速度(DP/DT)は、最大圧力の0.3、0.4、0.5、0.6、0.7倍の圧力におけるの5点の値の平均値とした。
(5) Gas generation rate (DP / DT)
MIL-STD-286C METHOD 801.1.2 Measured by the test method shown in QUICKNESS AND FORCEMEASURMENT OF PROPELLANT. However, a sealed container having a volume of 200 cm 3 was used so that the loading density was 0.05, and the pressure in the sealed container when 10 g of granular explosive (propellant particles) was burned was measured. The gas generation rate (DP / DT) was an average value of five values at pressures 0.3, 0.4, 0.5, 0.6, and 0.7 times the maximum pressure.

実施例1〜8、比較例1
(ラッカーの調製工程)
表1に示す組成の各成分を溶解機に入れ、常温で5時間溶解して、ラッカーを得た。火薬成分は質量%表示で合計100質量%、他は火薬100質量部に対する質量部表示である。
Examples 1-8, Comparative Example 1
(Lacquer preparation process)
Each component having the composition shown in Table 1 was put in a dissolver and dissolved at room temperature for 5 hours to obtain a lacquer. The explosive component is 100% by mass in total in terms of mass%, and the other is mass part indication for 100 parts by mass of explosive.

(造粒水溶液の調製)
水100質量部に対して表1に示す量(質量部)の硫酸ナトリウムを添加した後、95℃で2時間保持して溶解させた。その後、前記95℃に保持した液に、表1に示す量(質量部)の炭酸カルシウムと澱粉を添加して、更に95℃で1時間保持した後、冷却して、造粒水溶液を得た。
(Preparation of granulated aqueous solution)
After adding sodium sulfate in an amount (parts by mass) shown in Table 1 to 100 parts by mass of water, the mixture was held at 95 ° C. for 2 hours for dissolution. Thereafter, calcium carbonate and starch in the amounts (parts by mass) shown in Table 1 were added to the liquid maintained at 95 ° C., and further maintained at 95 ° C. for 1 hour, followed by cooling to obtain a granulated aqueous solution. .

(攪拌・昇温工程)
攪拌しながら50℃に維持した造粒水溶液100質量部に対して、造粒助剤として酢酸エチルを0.06質量部添加して、更に同温度で攪拌した。次に、ラッカーを造粒水溶液中に少しずつ投入し、攪拌・分散しながら、表1に示す昇温パターン(図1〜図3)で造粒水溶液を昇温させ、最終的には5時間かけて95℃にした。その後、加温を停止して、50℃になるまで自然冷却して、粒状の多孔質火薬を生成させた。
(Stirring / heating process)
To 100 parts by mass of the granulated aqueous solution maintained at 50 ° C. while stirring, 0.06 parts by mass of ethyl acetate was added as a granulation aid, and further stirred at the same temperature. Next, the lacquer is gradually added to the granulated aqueous solution, and while stirring and dispersing, the granulated aqueous solution is heated according to the heating pattern shown in Table 1 (FIGS. 1 to 3), and finally, 5 hours. Over 95 ° C. Thereafter, the heating was stopped and the mixture was naturally cooled to 50 ° C. to produce a granular porous explosive.

次に、造粒水溶液から粒状の多孔質火薬を取り出し、50℃の温風を吹き付けて乾燥させて粒状火薬(造粒品又は発射薬粒子)を得た。なお、得られた粒状火薬は、当該火薬100質量部に対して0.2質量部の黒鉛を添加し、混同機により火薬表面に黒鉛を付着させて帯電防止処理(流動性向上処理)をした。以下の実施例においても同様に帯電防止処理をした。   Next, a granular porous explosive was taken out from the granulated aqueous solution, blown with hot air of 50 ° C. and dried to obtain a granular explosive (granulated product or propellant particles). The obtained granular explosive was subjected to antistatic treatment (fluidity improving treatment) by adding 0.2 part by weight of graphite to 100 parts by weight of the explosive and attaching the graphite to the surface of the explosive by a mixing machine. . In the following examples, the antistatic treatment was similarly performed.

実施例1〜8及び比較例1で得られた粒状火薬(造粒品又は発射薬粒子)について、表1に示す各評価を行った。実施例1で得られた粒状火薬のSEM写真(外観写真と断面写真)を図4に示し、比較例1で得られた粒状火薬のSEM写真(外観写真と断面写真)を図5に示す。   Each evaluation shown in Table 1 was performed for the granular explosives (granulated products or propellant particles) obtained in Examples 1 to 8 and Comparative Example 1. An SEM photograph (appearance photograph and sectional photograph) of the granular explosive obtained in Example 1 is shown in FIG. 4, and an SEM photograph (appearance photograph and sectional photograph) of the granular explosive obtained in Comparative Example 1 is shown in FIG.

図4、図5から明らかなとおり、実施例1の粒状火薬は多孔質であったが、比較例1の粒状火薬は空孔が認められなかった。実施例1の粒状火薬のガス発生速度は202bar/msecであり、比較例1の粒状火薬のガス発生速度は71bar/msecであり、実施例1の粒状火薬は比較例1の粒状火薬に比べてガス発生速度は大幅に向上している。   As apparent from FIGS. 4 and 5, the granular explosive of Example 1 was porous, but the granular explosive of Comparative Example 1 did not have pores. The gas generation rate of the granular explosive of Example 1 is 202 bar / msec, the gas generation rate of the granular explosive of Comparative Example 1 is 71 bar / msec, and the granular explosive of Example 1 is compared with the granular explosive of Comparative Example 1. The gas generation rate is greatly improved.

実施例2〜8で得られた粒状火薬は、断面を観察すると、いずれも円形又は楕円形及びそれに近似した形状であり、内部に空孔が見れら多孔質であった。   When the cross-section was observed, the granular explosives obtained in Examples 2 to 8 were all circular or elliptical and shapes similar thereto, and were porous with vacancies inside.

実施例9〜16,比較例2
実施例1〜8及び比較例1で得られた各粒状火薬(発射薬粒子)をそれぞれ実施例9〜16及び比較例2に供し、表2に示す条件で圧扁して圧扁品を得た。得られた圧扁品について、表2に示す各測定を行った。それぞれのSEM写真(各圧扁品の外観と断面の拡大写真)を図6〜図14に示す。
Examples 9 to 16, Comparative Example 2
Each granular explosive (propellant particle) obtained in Examples 1 to 8 and Comparative Example 1 was subjected to Examples 9 to 16 and Comparative Example 2, respectively, and pressed to obtain a pressed product under the conditions shown in Table 2. It was. Each measurement shown in Table 2 was performed on the obtained pressed product. Each SEM photograph (appearance of each pressed flat product and enlarged photograph of the cross section) is shown in FIGS.

実施例9と表1の実施例1の粒状火薬を比較すると、圧扁することにより、仮比重はやや小さくなり、ガス発生速度は大きくなっている。   When comparing the granular explosives of Example 9 and Example 1 of Table 1, the provisional specific gravity is slightly reduced and the gas generation rate is increased by the compression.

実施例17〜19
表3に示す表膠液中に、表3に示す条件で実施例10の圧扁品を浸漬して、表膠処理品を得た。得られた表膠処理品について、表3に示した各測定を行った。
Examples 17-19
In the surface glue liquid shown in Table 3, the pressed product of Example 10 was immersed under the conditions shown in Table 3 to obtain a surface glue treated product. Each measurement shown in Table 3 was performed on the obtained surface treated product.

実施例17〜19と表2の実施例10の粒状火薬を比較すると、表膠処理することによりガス発生速度は小さくなり調整されている。   When comparing the granular explosives of Examples 17 to 19 and Example 10 of Table 2, the gas generation rate is decreased and adjusted by the surface treatment.

昇温工程における昇温パターンを示す図。The figure which shows the temperature rising pattern in a temperature rising process. 昇温工程における別の昇温パターンを示す図。The figure which shows another temperature rising pattern in a temperature rising process. 昇温工程における別の昇温パターンを示す図。The figure which shows another temperature rising pattern in a temperature rising process. 実施例1で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 1. 比較例1で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Comparative Example 1. 実施例9で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 9. 実施例10で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 10. 実施例11で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 11. 実施例12で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 12. 実施例13で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 13. 実施例14で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 14. 実施例15で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 15. 実施例16で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Example 16. 比較例2で得られた粒状火薬の外観及び断面のSEM写真。The SEM photograph of the external appearance and cross section of the granular explosive obtained in Comparative Example 2.

Claims (9)

火薬成分、有機溶媒、硝酸塩及び/又は硫酸塩を含むラッカーを調製する工程、
比重(20℃)が1.0〜1.1の造粒水溶液を調製する工程、
前記造粒水溶液に前記ラッカーを添加した後、当該造粒水溶液を、攪拌しながら、前記有機溶媒の沸点を超える温度まで昇温させる昇温工程、
を有している、粒状の多孔質火薬の製造方法。
Preparing a lacquer containing an explosive component, an organic solvent, nitrate and / or sulfate;
A step of preparing a granulated aqueous solution having a specific gravity (20 ° C.) of 1.0 to 1.1,
After adding the lacquer to the granulated aqueous solution, the temperature-raising step of raising the temperature of the granulated aqueous solution to a temperature exceeding the boiling point of the organic solvent while stirring.
A method for producing a granular porous explosive.
さらに多孔質火薬を圧延手段により扁平状にする圧扁工程を有している、請求項1記載の多孔質火薬の製造方法。   Furthermore, the manufacturing method of the porous explosive of Claim 1 which has a pressing process which makes a porous explosive flat by a rolling means. さらに多孔質火薬の表面を被覆剤で被覆する表膠工程を有している、請求項1記載の多孔質火薬の製造方法。   Furthermore, the manufacturing method of the porous explosive of Claim 1 which has the surface process which coat | covers the surface of a porous explosive with a coating agent. 前記有機溶媒が、火薬成分に対する良溶媒と貧溶媒の組み合わせである、請求項1〜3のいずれか1項記載の多孔質火薬の製造方法。   The method for producing a porous explosive according to any one of claims 1 to 3, wherein the organic solvent is a combination of a good solvent and a poor solvent for the explosive component. 前記ラッカーに含まれる硝酸塩及び/又は硫酸塩の含有量が火薬成分100質量部に対して1〜70質量部である、請求項1〜4のいずれか1項記載の多孔質火薬の製造方法。   The manufacturing method of the porous explosive of any one of Claims 1-4 whose content of the nitrate contained in the said lacquer and / or sulfate is 1-70 mass parts with respect to 100 mass parts of explosive components. 前記造粒水溶液の比重(20℃)が1.005〜1.05である、請求項1〜5のいずれか1項記載の多孔質火薬の製造方法。   The manufacturing method of the porous explosive of any one of Claims 1-5 whose specific gravity (20 degreeC) of the said granulated aqueous solution is 1.005 to 1.05. 下記測定法により求められる仮比重が0.5〜0.9g/cmである粒状の多孔質火薬であって、請求項1記載の製造方法により得られる多孔質火薬。
(仮比重の測定法)
一端が閉塞され、他端が開口されたガラス製の円筒容器(内径65.8mm、高さ155.9mm、容積530cm)に、前記円筒容器を満たす量の粒状の多孔質火薬を注ぎ込んだときの前記火薬量(g)を測定し、前記円筒容器の容積(cm)に対する前記火薬量(g)の比率を仮比重(g/cm)として求める。
It is a granular porous explosive whose temporary specific gravity calculated | required by the following measuring method is 0.5-0.9 g / cm < 3 >, Comprising: The porous explosive obtained by the manufacturing method of Claim 1.
(Measurement method of provisional specific gravity)
When a cylindrical porous explosive in an amount that fills the cylindrical container is poured into a glass cylindrical container (inner diameter 65.8 mm, height 155.9 mm, volume 530 cm 3 ) with one end closed and the other end opened. The explosive amount (g) is measured, and the ratio of the explosive amount (g) to the volume (cm 3 ) of the cylindrical container is determined as a provisional specific gravity (g / cm 3 ).
多孔質火薬のガス発生速度(DP/DT)が、150〜500bar/msecである請求項7記載の多孔質火薬。   The porous explosive according to claim 7, wherein a gas generation rate (DP / DT) of the porous explosive is 150 to 500 bar / msec. 多孔質火薬が小銃用の発射薬である請求項7又は8に記載の多孔質火薬。   The porous explosive according to claim 7 or 8, wherein the porous explosive is a rifle propellant.
JP2007334686A 2007-12-26 2007-12-26 Porous explosive and method for producing the same Active JP5268348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334686A JP5268348B2 (en) 2007-12-26 2007-12-26 Porous explosive and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334686A JP5268348B2 (en) 2007-12-26 2007-12-26 Porous explosive and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009155153A true JP2009155153A (en) 2009-07-16
JP5268348B2 JP5268348B2 (en) 2013-08-21

Family

ID=40959561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334686A Active JP5268348B2 (en) 2007-12-26 2007-12-26 Porous explosive and method for producing the same

Country Status (1)

Country Link
JP (1) JP5268348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160401A (en) * 2012-02-02 2013-08-19 Nof Corp Flame suppressing material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121291A (en) * 1998-10-16 2000-04-28 Tech Res & Dev Inst Of Japan Def Agency Lid plug
JP2004256365A (en) * 2003-02-27 2004-09-16 Sumitomo Chem Co Ltd Method of manufacturing porous granular ammonium nitrate
JP2005350276A (en) * 2004-06-08 2005-12-22 Sumitomo Chemical Co Ltd Method for producing porous granular ammonium nitrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121291A (en) * 1998-10-16 2000-04-28 Tech Res & Dev Inst Of Japan Def Agency Lid plug
JP2004256365A (en) * 2003-02-27 2004-09-16 Sumitomo Chem Co Ltd Method of manufacturing porous granular ammonium nitrate
JP2005350276A (en) * 2004-06-08 2005-12-22 Sumitomo Chemical Co Ltd Method for producing porous granular ammonium nitrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160401A (en) * 2012-02-02 2013-08-19 Nof Corp Flame suppressing material

Also Published As

Publication number Publication date
JP5268348B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US2417090A (en) Manufacture of propellent explosives
JP6429948B2 (en) Use of solid materials to produce propellants
CN106748589B (en) Emulsion Compound sensitizer containing energy and preparation method thereof
KR20000048472A (en) Core Compositions and Articles with Improved Performance for Use in Castings for Gas Turbine Applications
JP2014523386A5 (en)
GB2472648A (en) Pyrotechnic composition and device
JP5526939B2 (en) Method for producing porous aluminum sintered body
JP5268348B2 (en) Porous explosive and method for producing the same
AU2003259670B2 (en) Clay composition for shaping noble metal and method for production of sinter of noble metal
JP4986259B2 (en) Mixed raw material for the production of porous metal sintered bodies with high foaming speed
JPS6021891A (en) Explosive composition
JP2007085632A (en) Coated propellant
Paguio et al. Improving the wall uniformity of resorcinol formaldehyde foam shells by modifying emulsion components
WO2009116305A1 (en) Precursor, foamed metallic molding, and processes for producing these
CN110452480B (en) Preparation method of ultra-light heat-insulating flexible aerogel
CA1156468A (en) Cap-sensitive powdered explosive composition
WO2012169259A1 (en) Method for producing molybdenum carbide granulated powder and molybdenum carbide granulated powder
JP3395211B2 (en) Method for producing thin hollow metal article
JP2004292894A (en) Silver clay for forming porous sintered compact
JP4006835B2 (en) Ignition composition
CN110681856B (en) Water atomization soft magnetic alloy powder spheroidizing method
KR100255996B1 (en) Clayish composition for molding shaped article of noble metal and method for production of sintered article of noble metal
EP3075468A1 (en) Clay-like molded body for forming noble metal sintered compact
JP4681396B2 (en) Rapid molding process for ceramic molds.
JPH04248269A (en) Manufacture of sintered substrate for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R151 Written notification of patent or utility model registration

Ref document number: 5268348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350