JP2009154910A - Packaging body of hollow fiber membrane filter element - Google Patents

Packaging body of hollow fiber membrane filter element Download PDF

Info

Publication number
JP2009154910A
JP2009154910A JP2007334216A JP2007334216A JP2009154910A JP 2009154910 A JP2009154910 A JP 2009154910A JP 2007334216 A JP2007334216 A JP 2007334216A JP 2007334216 A JP2007334216 A JP 2007334216A JP 2009154910 A JP2009154910 A JP 2009154910A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
filtration element
film
membrane filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007334216A
Other languages
Japanese (ja)
Inventor
Yuzuru Ishibashi
譲 石橋
Akihiro Watanabe
昭広 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007334216A priority Critical patent/JP2009154910A/en
Publication of JP2009154910A publication Critical patent/JP2009154910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0097Storing or preservation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Buffer Packaging (AREA)
  • Packages (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact package of a soaking type hollow fiber membrane filter element in which the hollow fiber membrane filter element can be transported, handled or stored without damage. <P>SOLUTION: The package of the hollow fiber membrane filter element is obtained by enveloping the soaking type hollow fiber membrane filter element in a film (for example a gas barrier film 10 and a protective film 11), the hollow fiber membrane filter element having at least one end-fixed part where the end part of a hollow fiber membrane bundle composed of a plurality of the hollow fiber membranes is fixed with a casting agent, wherein a shock-absorbing material 9 is disposed at least at one end-fixed part to keep the film sealed with the film and at least a part of the hollow fiber membrane tightly adhering to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中空糸膜ろ過素子の包装体に関する。特に、膜分離活性汚泥法等で使用される浸漬型中空糸膜ろ過素子の包装体に関する。本発明では、浸漬型中空糸膜ろ過素子とは、ハウジングを有さず中空糸膜が露出したタイプの中空糸膜ろ過素子のことをいう。   The present invention relates to a package for a hollow fiber membrane filtration element. In particular, the present invention relates to a package for a submerged hollow fiber membrane filtration element used in a membrane separation activated sludge method or the like. In the present invention, the submerged hollow fiber membrane filtration element refers to a hollow fiber membrane filtration element of a type that does not have a housing and the hollow fiber membrane is exposed.

一般に中空糸膜ろ過素子には、中空糸膜がハウジングに収納されているタイプとハウジングを有さず膜が露出したタイプがある。前者は、配管に接続して加圧してろ過する方法で使用される。一方後者は、ろ過の対象水中に浸漬した状態で吸引してろ過する方法で使用される。   Generally, the hollow fiber membrane filtration element includes a type in which the hollow fiber membrane is housed in a housing and a type in which the membrane is exposed without the housing. The former is used by a method of connecting to a pipe and pressurizing and filtering. On the other hand, the latter is used in a method of suctioning and filtering while immersed in the water to be filtered.

後者の中空糸膜ろ過素子の適用例として、活性汚泥槽に膜ろ過素子を浸漬し、ろ過により活性汚泥を分離する膜分離活性汚泥法がある。この方法は活性汚泥濃度(MLSS:Mixed Liquor Suspended Solid)を5000から20000mg/lと極めて高くしてろ過処理を行うことができる。このため、活性汚泥槽の容積を小さくできたり、あるいは活性汚泥槽内での反応時間を短縮できるという利点を有する。また、膜によってろ過を行うため、処理水中から浮遊物質(SS:Suspended Solid) を取り除くための最終沈殿槽が不要である。さらに、活性汚泥の沈降性の良否を問わずろ過ができるため、活性汚泥の沈降性が悪い場合にも、特別な対策をとる必要がない。このように、膜分離法は沈殿法と比較して多くのメリットがあり、近年急速に普及しつつある。   As an application example of the latter hollow fiber membrane filtration element, there is a membrane separation activated sludge method in which a membrane filtration element is immersed in an activated sludge tank and the activated sludge is separated by filtration. In this method, the activated sludge concentration (MLSS: Mixed Liquor Suspended Solid) can be very high from 5000 to 20000 mg / l, and the filtration treatment can be performed. For this reason, it has the advantage that the volume of the activated sludge tank can be reduced or the reaction time in the activated sludge tank can be shortened. In addition, since filtration is performed with a membrane, there is no need for a final sedimentation tank for removing suspended solids (SS) from the treated water. Furthermore, since it can filter regardless of the quality of activated sludge sedimentation, it is not necessary to take special measures even when the activated sludge sedimentation is poor. As described above, the membrane separation method has many merits as compared with the precipitation method, and has been rapidly spreading in recent years.

通常、中空糸膜ろ過素子の保管や輸送に際しては、ポリエチレン製等のフィルムに包装された状態になっている。この際、中空糸膜が乾燥状態である場合もあるし、湿潤状態であって中空糸膜の乾燥防止や凍結防止、防菌防黴のために水又は各種水溶液を保存液として封入した状態にされている場合もある。   Usually, when the hollow fiber membrane filtration element is stored or transported, it is packaged in a film made of polyethylene or the like. At this time, the hollow fiber membrane may be in a dry state or in a wet state in which water or various aqueous solutions are enclosed as a preservation solution for preventing the hollow fiber membrane from drying, preventing freezing, and preventing bacteria. Sometimes it is.

中空糸膜がハウジングに収納されているタイプの中空糸膜ろ過素子では、中空糸膜が強固なハウジングで覆われているために、保管中や輸送中に中空糸膜の乾燥や膜の切断が起こることは通常無い。特許文献1には、中空糸膜の乾燥を防止することを目的として、PVDC、EVOH、ナイロンの少なくとも1種を含むフィルムで包装することが開示されている。   In hollow fiber membrane filtration elements where the hollow fiber membrane is housed in a housing, the hollow fiber membrane is covered with a strong housing, so that the hollow fiber membrane can be dried or cut during storage or transportation. It usually doesn't happen. Patent Document 1 discloses packaging with a film containing at least one of PVDC, EVOH, and nylon for the purpose of preventing the hollow fiber membrane from drying.

一方、ハウジングを有さず膜が露出したタイプの中空糸膜ろ過素子すなわち本発明でいう浸漬型中空糸膜ろ過素子においては、輸送中やハンドリング中の振動によって中空糸膜が揺れ動くため、膜表面が損傷したり、場合によっては膜の切断を起こす場合があった。そこで、中空糸膜ろ過素子を筒状容器に入れ、水等の保存液を封入した状態で包装したりしていたが、包装体の体積が増大し、かつ、重量が大きいという問題があった。
特開平6−246138号公報
On the other hand, in the hollow fiber membrane filtration element of the type that does not have a housing and the membrane is exposed, that is, the immersion type hollow fiber membrane filtration element referred to in the present invention, the hollow fiber membrane swings due to vibration during transportation or handling. May be damaged, or in some cases, the membrane may be cut. Therefore, the hollow fiber membrane filtration element was put in a cylindrical container and packaged in a state in which a storage solution such as water was sealed, but there was a problem that the volume of the package increased and the weight was large. .
JP-A-6-246138

本発明は、浸漬型中空糸膜ろ過素子において、輸送やハンドリング中或いは保管中に中空糸膜が損傷することが無くコンパクトな中空糸膜ろ過素子の包装体を提供すること、更には、中空糸膜が保存液で湿潤されている場合においては、中空糸膜が損傷することが無くコンパクトであって、かつ、性能低下を起こさない中空糸膜ろ過素子の包装体を提供することを目的とする。   The present invention provides a compact hollow fiber membrane filtration element package in a submerged hollow fiber membrane filtration element, in which the hollow fiber membrane is not damaged during transportation, handling or storage. An object of the present invention is to provide a hollow fiber membrane filtration element package that is compact without causing damage to the hollow fiber membrane when the membrane is wetted with a preservative solution, and that does not cause performance degradation. .

本発明者らは鋭意検討の結果、包装フィルム内を減圧にして該フィルムを中空糸膜に密着させた状態で密閉することにより上記の問題を解決できることを見出し、本発明に至った。即ち、本発明は以下の通りである。   As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by reducing the pressure inside the packaging film and sealing the film in close contact with the hollow fiber membrane, resulting in the present invention. That is, the present invention is as follows.

(1)複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を少なくとも1つのフィルムで包み込んだ包装体であって、少なくとも1つの端部固定部において、フィルムと中空糸膜の少なくとも一部とが密着した状態でフィルムが密封されていることを特徴とする中空糸膜ろ過素子の包装体。
(2)少なくとも1つの端部固定部において、フィルムと中空糸膜ろ過素子との間に中空糸膜の損傷が避けられるように該緩衝材が配置されていることを特徴とする(1)に記載の中空糸膜ろ過素子の包装体。
(3)少なくとも1つの端部固定部と中空糸膜との境界部分の外周に端部固定部又は端部固定部囲繞部材とフィルムとの間に中空糸膜の損傷が避けられるように緩衝材が配置されていることを特徴とする(1)に記載の中空糸膜ろ過素子の包装体。
(4)緩衝材が独立空間内包構造を有する緩衝材であることを特徴とする(1)又は(2)に記載の中空糸膜ろ過素子の包装体。
(5)緩衝材が発泡シート或いは気泡シートから成ることを特徴とする(2)又は(3)に記載の中空糸膜ろ過素子の包装体。
(6)中空糸膜ろ過素子を包み込むフィルムが複数存在し、該フィルムの少なくとも1つがガス遮断性フィルムを含むことを特徴とする(1)〜(5)のいずれかに記載の中空糸膜ろ過素子の包装体。
(7)中空糸膜ろ過素子を包み込むフィルムが複数存在し、該フィルムがガス遮断性フィルムと保護フィルムとを含み、ガス遮断性フィルムと中空糸膜とが密着し、更にガス遮断性フィルムと保護フィルムとが密着していることを特徴とする(1)〜(5)のいずれかに記載の中空糸膜ろ過素子の包装体。
(8)ガス遮断性フィルムの厚みが0.03〜0.1mmであることを特徴とする(6)に記載の中空糸膜ろ過素子の包装体。
(9)ガス遮断性フィルムが少なくともガス遮断性層と熱融着層とを含む多層フィルムであることを特徴とする(6)〜(8)のいずれかに記載の中空糸膜ろ過素子の包装体。
(10)保護フィルムの厚みが0.1〜0.3mmである、(7)〜(9)のいずれかに記載の中空糸膜ろ過素子の包装体。
(11)密封されたフィルム内が減圧状態であることを特徴とする(1)〜(10)のいずれかに記載の中空糸膜ろ過素子の包装体。
(12)中空糸膜ろ過素子が、中空糸膜内の細孔部に水又は水溶液を含有した中空糸膜ろ過素子であることを特徴とする(1)〜(11)のいずれかに記載の中空糸膜ろ過素子の包装体。
(13)水又は水溶液の含有容積が中空糸膜の保有可能容積の0.8〜1.5倍であることを特徴とする(12)に記載の中空糸膜ろ過素子の包装体。
(14)両方の端部固定部が10〜300束の小束として固定されていることを特徴とする(1)〜(14)のいずれかに記載の中空糸膜ろ過素子の包装体。
(15)複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を包装するに際して、中空糸膜ろ過素子をフィルム内に収納する工程及びフィルム内の空気を除去して中空糸膜とフィルムとが密着した状態にし、その状態を保持しつつ密封する工程、を含むことを特徴とする請求項1記載の中空糸膜ろ過素子包装体の製造方法。
(16)複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を包装するに際して、(A)中空糸膜ろ過素子の少なくとも片方の端部固定部と中空糸膜との境界部分の外周を緩衝材で囲む工程、(B)中空糸膜ろ過素子をガス遮断性フィルム内に収納する工程、(C)中空糸膜ろ過素子を保護フィルム内に収納する工程、(D)フィルム内の空気を除去して中空糸膜とフィルムとが密着した状態にし、その状態を保持しつつ密封する工程、を含むことを特徴とする(2)又は(3)に記載の中空糸膜ろ過素子包装体の製造方法。
(17)前記(A)〜(D)の工程に先立って(E)中空糸膜ろ過素子に水又は水溶液を含有させる工程を含み、かつ、該水又は水溶液の含有容積が中空糸膜の保有可能容積の0.8〜1.5倍になるように中空糸膜ろ過素子に水又は水溶液を含有させることを特徴とする(16)に記載の中空糸膜ろ過素子包装体の製造方法。
(1) A package in which an immersion type hollow fiber membrane filtration element having an end fixing portion in which at least one end portion of a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes is fixed with a casting agent is wrapped with at least one film. A package of a hollow fiber membrane filtration element, wherein the film is sealed in a state where the film and at least a part of the hollow fiber membrane are in close contact with each other at at least one end fixing portion.
(2) In (1), the cushioning material is disposed between at least one end fixing portion between the film and the hollow fiber membrane filtration element so as to avoid damage to the hollow fiber membrane. A package of the hollow fiber membrane filtration element described.
(3) Buffer material so that damage to the hollow fiber membrane is avoided between the end fixing portion or the end fixing portion surrounding member and the film on the outer periphery of the boundary portion between at least one end fixing portion and the hollow fiber membrane The package of hollow fiber membrane filtration elements according to (1), wherein
(4) The packaging body for a hollow fiber membrane filtration element according to (1) or (2), wherein the cushioning material is a cushioning material having an independent space inclusion structure.
(5) The package of the hollow fiber membrane filtration element according to (2) or (3), wherein the cushioning material comprises a foam sheet or a bubble sheet.
(6) The hollow fiber membrane filtration according to any one of (1) to (5), wherein there are a plurality of films surrounding the hollow fiber membrane filtration element, and at least one of the films includes a gas barrier film. Element packaging.
(7) There are a plurality of films surrounding the hollow fiber membrane filtration element, the film includes a gas barrier film and a protective film, the gas barrier film and the hollow fiber membrane are in close contact, and further the gas barrier film and the protection The package of the hollow fiber membrane filtration element according to any one of (1) to (5), wherein the film is in close contact with the film.
(8) The package of the hollow fiber membrane filtration element according to (6), wherein the gas barrier film has a thickness of 0.03 to 0.1 mm.
(9) The packaging of the hollow fiber membrane filtration element according to any one of (6) to (8), wherein the gas barrier film is a multilayer film including at least a gas barrier layer and a heat-sealing layer. body.
(10) The package of the hollow fiber membrane filtration element according to any one of (7) to (9), wherein the protective film has a thickness of 0.1 to 0.3 mm.
(11) The package of the hollow fiber membrane filtration element according to any one of (1) to (10), wherein the sealed film is in a reduced pressure state.
(12) The hollow fiber membrane filtration element is a hollow fiber membrane filtration element containing water or an aqueous solution in the pores in the hollow fiber membrane, according to any one of (1) to (11), A package of hollow fiber membrane filtration elements.
(13) The packaged body for a hollow fiber membrane filtration element according to (12), wherein the content volume of water or an aqueous solution is 0.8 to 1.5 times the volume that can be held by the hollow fiber membrane.
(14) The package of the hollow fiber membrane filtration element according to any one of (1) to (14), wherein both end fixing portions are fixed as small bundles of 10 to 300 bundles.
(15) When packaging a submerged hollow fiber membrane filtration element having an end fixing part in which at least one end part of a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes is fixed with a casting agent, the hollow fiber membrane filtration element The method according to claim 1, further comprising: a step of housing the film in a film; and a step of removing air in the film to bring the hollow fiber membrane and the film into close contact with each other and sealing the state while maintaining the state. A method for producing a hollow fiber membrane filter element packaging.
(16) When packaging a submerged hollow fiber membrane filtration element having an end fixing portion in which at least one end of a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes is fixed with a casting agent, (A) hollow fiber A step of surrounding an outer periphery of a boundary portion between at least one end fixing portion of the membrane filtration element and the hollow fiber membrane with a buffer material, (B) a step of housing the hollow fiber membrane filtration element in the gas barrier film, (C) Including a step of housing the hollow fiber membrane filtration element in a protective film, and (D) removing the air in the film to bring the hollow fiber membrane and the film into close contact with each other and sealing the state while maintaining the state. (2) The manufacturing method of the hollow fiber membrane filtration element packaging body as described in (3) characterized by these.
(17) Prior to the steps (A) to (D), the step (E) includes a step of causing the hollow fiber membrane filtration element to contain water or an aqueous solution, and the content volume of the water or aqueous solution is retained in the hollow fiber membrane. The method for producing a hollow fiber membrane filtration element package according to (16), wherein the hollow fiber membrane filtration element contains water or an aqueous solution so as to be 0.8 to 1.5 times the possible volume.

本発明の包装体は、浸漬型中空糸膜ろ過素子において、輸送やハンドリング中或いは保管中に中空糸膜が損傷することが無い。更には、中空糸膜が保存液で湿潤されている場合においては、中空糸膜が損傷することが無く、かつ、性能低下を起こさない。また、フィルムが中空糸膜に密着しているため中空糸膜ろ過素子全体が剛直になるので取り扱い性が向上して運搬が容易になると共に、体積が小さくなるので運送費用も安価になる。
また、本発明の製造方法によれば、前記の包装体を容易に、かつ、確実に得ることができる。
The package of the present invention does not damage the hollow fiber membrane during transportation, handling or storage in the submerged hollow fiber membrane filtration element. Furthermore, when the hollow fiber membrane is moistened with a preservation solution, the hollow fiber membrane is not damaged and the performance is not deteriorated. In addition, since the film is in close contact with the hollow fiber membrane, the entire hollow fiber membrane filtration element becomes rigid, so that handling is improved and transportation is facilitated, and the volume is reduced, so that the transportation cost is reduced.
Moreover, according to the manufacturing method of this invention, the said package can be obtained easily and reliably.

本発明の包装体を構成する中空糸膜ろ過素子は、複数本の中空糸膜の片方又は両方の端部が固定されたものであって、少なくとも一方の中空糸膜端面において中空部が開口している。具体的な態様としては、(A)中空糸膜の両方の端部が固定されたものであって、片端の中空部が開口し、他端の中空部が閉塞している片端集水方式の中空糸膜ろ過素子、(B)中空糸膜の両方の端部が固定されたものであって、両方の端部の中空部が開口している両端集水方式の中空糸膜ろ過素子、(C)中空糸膜がU字状に束ねられ、中空糸膜の両端が中空糸膜ろ過素子の一方に纏められた状態で固定されており、中空部が開口している片端集水方式の中空糸膜ろ過素子が挙げられる。   The hollow fiber membrane filtration element constituting the package of the present invention is one in which one or both ends of a plurality of hollow fiber membranes are fixed, and at least one hollow fiber membrane end face has a hollow portion opened. ing. As a specific aspect, (A) one end water collecting system in which both ends of the hollow fiber membrane are fixed, the hollow portion at one end is open and the hollow portion at the other end is closed. Hollow fiber membrane filtration element, (B) Both ends of the hollow fiber membrane are fixed, and both ends of the hollow fiber membrane filtration element with a water collecting system in which the hollow part is open, ( C) The hollow fiber membrane is bundled in a U-shape, and both ends of the hollow fiber membrane are fixed in a state where the hollow fiber membranes are gathered together in one of the hollow fiber membrane filtration elements, and the hollow of the one-end water collection system in which the hollow part is open Examples thereof include a thread membrane filtration element.

該中空糸膜ろ過素子は、該開口端面に濾過装置の配管と接続して原水を取り出すための部品が接続された状態で、外圧ろ過法などのろ過処理に用いられる。
図1に外圧ろ過法で使用される中空糸膜ろ過素子の一例を示す。該中空糸膜ろ過素子は、複数本の中空糸膜からなる中空糸膜束1と、中空糸膜束1の両端に端部固定部囲繞部材の一種である上部ヘッド2および下部リング3とを有し、上部ヘッド側端部固定部4、及び下部リング側端部固定部5で中空糸膜を固定している。上部ヘッド側の中空糸膜は中空部が開口しており、下部リング側の中空糸膜は中空部が閉塞している。下部リング3は、その中央部が複数の貫通穴6’を有する仕切り板で区切られ、この部分に端部固定部5が形成されている。下部リング側端部固定部5には貫通穴6が形成されており、下部リングの仕切り板に設けられた貫通穴6’と連通している。該下部リング3において、端部固定部5の反対側には、空気溜り部7が設けられている。上部ヘッド2と下部リング3は支柱8により連結されている。支柱8の両端は、上部ヘッド側端部固定部4と下部リング側端部固定部5の内部に挿入されて固定されている。
The hollow fiber membrane filtration element is used for a filtration process such as an external pressure filtration method in a state where a part for connecting to a pipe of a filtration device and taking out raw water is connected to the opening end face.
FIG. 1 shows an example of a hollow fiber membrane filtration element used in the external pressure filtration method. The hollow fiber membrane filtration element includes a hollow fiber membrane bundle 1 composed of a plurality of hollow fiber membranes, and an upper head 2 and a lower ring 3 which are a kind of end fixing portion surrounding members at both ends of the hollow fiber membrane bundle 1. The hollow fiber membrane is fixed by the upper head side end fixing portion 4 and the lower ring side end fixing portion 5. The hollow fiber membrane on the upper head side is open at the hollow portion, and the hollow fiber membrane on the lower ring side is closed at the hollow portion. The lower ring 3 is partitioned at its center by a partition plate having a plurality of through holes 6 ′, and an end fixing portion 5 is formed at this portion. A through hole 6 is formed in the lower ring side end fixing portion 5 and communicates with a through hole 6 ′ provided in the partition plate of the lower ring. In the lower ring 3, an air reservoir 7 is provided on the side opposite to the end fixing portion 5. The upper head 2 and the lower ring 3 are connected by a column 8. Both ends of the column 8 are inserted and fixed inside the upper head side end fixing portion 4 and the lower ring side end fixing portion 5.

中空糸膜としては、逆浸透膜、限外ろ過膜、精密ろ過膜などが適用できる。また、中空糸膜の素材は特に限定されず、公知の素材が中空糸膜に適用できる。例えば、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、ポリ−4メチルペンテン、セルロース、酢酸セルロース、ポリフッ化ビニリデン、ポリエチレン−テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン等やこれらの複合素材が挙げられる。好ましくはポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリルを使用できる。また、内径50μm〜3000μmで、内/外径比が0.3〜0.8の範囲の膜が好適に適用できる。   As the hollow fiber membrane, a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane or the like can be applied. Moreover, the raw material of a hollow fiber membrane is not specifically limited, A well-known raw material can be applied to a hollow fiber membrane. For example, polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, poly-4methylpentene, cellulose, cellulose acetate, polyvinylidene fluoride, polyethylene-tetra Examples thereof include fluoroethylene copolymers, polytetrafluoroethylene, and composite materials thereof. Preferably, polyvinylidene fluoride, polysulfone, polyethersulfone, and polyacrylonitrile can be used. A film having an inner diameter of 50 μm to 3000 μm and an inner / outer diameter ratio of 0.3 to 0.8 can be suitably applied.

端部固定部は、たとえば注型剤等の固定するための材料によって固定される。ここで注型剤とは、中空糸膜同士を接着及び/又は固定して固定部を形成するための樹脂であって、通常、2液混合型硬化性樹脂や熱可塑性樹脂が用いられる。2液混合型硬化性樹脂としては、反応性を有する複数の化合物を混合することによって硬化する樹脂であり、一般に2液型接着剤(two−component adhesive)、2液型注型剤(two−component casting resin)とも言われているもので、主剤と硬化剤と呼称する2液を使用時に混合して硬化させるものである。   The end fixing portion is fixed by a material for fixing such as a casting agent. Here, the casting agent is a resin for bonding and / or fixing the hollow fiber membranes to form a fixed part, and usually a two-component mixed curable resin or a thermoplastic resin is used. The two-component mixed curable resin is a resin that is cured by mixing a plurality of reactive compounds. Generally, the two-component adhesive (two-component adhesive), the two-component type casting agent (two- It is also referred to as “component casting resin”, and two liquids called a main agent and a curing agent are mixed and cured at the time of use.

本発明においては、反応性基としてイソシアネートを含有する主剤と活性水素含有有機化合物を含有する硬化剤とから成るウレタン樹脂、反応性基としてエポキシ基を含有する主剤と活性水素含有有機化合物や有機酸無水物を含有する硬化剤とから成るエポキシ樹脂、ビニル基含有ポリシロキサンとヒドロシリル基含有ポリシロキサンとから成るシリコン樹脂などが好適に使用される。また、熱可塑性樹脂としては、該樹脂の融点が中空糸膜を構成するポリマーの融点よりも低く、かつ、ろ過対象原水に対して物理的及び化学的に安定である樹脂が望ましい。具体的には、ポリウレタンやポリエステル、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂や、ワックス類等が挙げられる。   In the present invention, a urethane resin comprising a main agent containing isocyanate as a reactive group and a curing agent containing an active hydrogen-containing organic compound, a main agent containing an epoxy group as a reactive group, an active hydrogen-containing organic compound or an organic acid. An epoxy resin composed of a curing agent containing an anhydride, a silicon resin composed of a vinyl group-containing polysiloxane and a hydrosilyl group-containing polysiloxane, and the like are preferably used. The thermoplastic resin is preferably a resin whose melting point is lower than that of the polymer constituting the hollow fiber membrane and that is physically and chemically stable to the raw water to be filtered. Specific examples include thermoplastic resins such as polyurethane, polyester, polyethylene, and polypropylene, and waxes.

中空糸膜ろ過素子では、通常少なくとも一方の中空糸膜端部固定部における中空糸膜束の外径が長さ方向の中央部における中空糸膜束の外径よりも大きくなる。このような中空糸膜ろ過素子をフィルムで包んだ上で減圧にしてフィルムを中空糸膜に密着させた場合、端部固定部の境界部分において束外周付近の中空糸膜が束中心側に押し付けられるために外周付近の中空糸膜が損傷し易くなる。特に、端部固定部において中空糸膜が小束を形成して密集した状態である場合には、フィルムを密着させても切断に至ることは少ないものの、中空糸膜1本1本が分散した状態の場合には、切断してしまう傾向が強くなる。なお本願明細書で言う端部固定部の境界部分とは境界部及びその近傍部分を含めた領域をいう。   In the hollow fiber membrane filtration element, the outer diameter of the hollow fiber membrane bundle in the at least one hollow fiber membrane end fixing portion is usually larger than the outer diameter of the hollow fiber membrane bundle in the central portion in the length direction. When such a hollow fiber membrane filtration element is wrapped with a film and then the pressure is reduced and the film is brought into close contact with the hollow fiber membrane, the hollow fiber membrane near the outer periphery of the bundle is pressed against the bundle center at the boundary of the end fixing portion. Therefore, the hollow fiber membrane near the outer periphery is easily damaged. In particular, when the hollow fiber membranes are densely formed in a small bundle at the end fixing portion, the hollow fiber membranes are dispersed one by one although the film is less likely to be cut even if they are brought into close contact with each other. In the case of a state, the tendency to cut | disconnect becomes strong. In addition, the boundary part of an edge part fixing part said in this specification means the area | region including a boundary part and its vicinity part.

本発明の包装体では、このような端部固定部の境界部分における中空糸膜の損傷を避けられるように、緩衝材を配置するのが好ましい。緩衝材の配置としては、端部固定部と中空糸膜との境界部又は端部固定部囲繞部材と中空糸膜との境界部分の外周に配置した態様や端部固定部の境界部より中央側において中空糸膜束外周に配置した態様、端部固定部の境界部より中央側において中空糸膜束内部に緩衝材を挿入した態様が採用できる。中でも端部固定部と中空糸膜との境界部分又は端部固定部囲繞部材と中空糸膜との境界部分の外周が緩衝材で囲まれていると最も好ましい。即ち、中空糸膜端部固定部が端部固定部囲繞部材を使用しないで構成されている場合には、該端部固定部の境界部分において該端部固定部と中空糸膜との境界部分の外周が緩衝材で囲まれている。また、中空糸膜端部固定部が端部固定部囲繞部材を使用して構成されている場合には、該端部固定部と中空糸膜との境界部分の外周において端部固定部囲繞部材と中空糸膜束の周囲が緩衝材で囲まれている。以下、端部固定部と中空糸膜との境界部を端部固定部の境界面ということがある。   In the package of the present invention, it is preferable to dispose a cushioning material so as to avoid the damage of the hollow fiber membrane at the boundary portion of the end fixing portion. As the arrangement of the cushioning material, a mode in which the buffer is disposed at the outer periphery of the boundary part between the end fixing part and the hollow fiber membrane or the boundary part between the end fixing part surrounding member and the hollow fiber membrane, A mode in which the cushioning material is inserted into the hollow fiber membrane bundle on the center side from the boundary part of the end fixing part can be adopted. In particular, it is most preferable that the outer periphery of the boundary portion between the end fixing portion and the hollow fiber membrane or the boundary portion between the end fixing portion surrounding member and the hollow fiber membrane is surrounded by a cushioning material. That is, when the hollow fiber membrane end fixing portion is configured without using the end fixing portion surrounding member, the boundary portion between the end fixing portion and the hollow fiber membrane at the boundary portion of the end fixing portion. Is surrounded by cushioning material. Further, when the hollow fiber membrane end fixing portion is configured using an end fixing portion surrounding member, an end fixing portion surrounding member is provided at the outer periphery of the boundary portion between the end fixing portion and the hollow fiber membrane. The hollow fiber membrane bundle is surrounded by a buffer material. Hereinafter, a boundary portion between the end fixing portion and the hollow fiber membrane may be referred to as a boundary surface of the end fixing portion.

緩衝材で囲む端部固定部の境界部分の領域としては、すくなくとも前記の境界面からろ過素子中央側へ+10mmから−10mmの範囲である。中空糸膜束の全長と端部固定部全体の範囲を囲んでもよく、+50mmから−50mmの範囲が好ましく、+300mmから端部固定部全体の範囲であることが、緩衝材による保護の確実性と経済性の観点から特に好ましい。この範囲を緩衝材で囲むことによって、フィルムで包んだ上で減圧にしてフィルムを中空糸膜に密着させたときに中空糸膜が損傷したり切断したりすることをより効果的に防止できる。   The region of the boundary portion of the end fixing portion surrounded by the buffer material is at least in the range of +10 mm to −10 mm from the boundary surface to the center of the filtration element. The entire length of the hollow fiber membrane bundle and the range of the entire end fixing portion may be enclosed, and the range of +50 mm to −50 mm is preferable, and the range of +300 mm to the entire end fixing portion is the certainty of protection by the cushioning material. This is particularly preferable from the viewpoint of economy. By enclosing this range with a cushioning material, it is possible to more effectively prevent the hollow fiber membrane from being damaged or cut when it is wrapped with the film and then the pressure is reduced to bring the film into close contact with the hollow fiber membrane.

該緩衝材は、輸送やハンドリング中に発生する振動等による外部から加わる力を吸収する機能を持つ。これによって、中空糸膜が外部から加わった力によって損傷することを防止できる。また、端部固定部又は端部固定部囲繞部材の外周が緩衝材で囲まれている場合には、端部固定部又は端部固定部囲繞部材のエッジ部とフィルムが擦れてフィルムが損傷したりすることを防止できる。   The cushioning material has a function of absorbing a force applied from the outside due to vibrations generated during transportation and handling. This can prevent the hollow fiber membrane from being damaged by the force applied from the outside. In addition, when the outer periphery of the end fixing portion or the end fixing portion surrounding member is surrounded by the cushioning material, the edge portion of the end fixing portion or the end fixing portion surrounding member and the film are rubbed to damage the film. Can be prevented.

該緩衝材としては、柔軟で軽量である多孔質材料が好ましく、スポンジ状の連続気孔構造を有するものや独立空間内包構造を有するものが好ましい。中でも、独立空間内包構造を有するものが特に好ましい。ここで独立空間内包構造とは、固体部分、および空間とから構成された三次元構造体であって、固体の部分で形づくられた構造体内部に空間を有するものである。該空間は密閉されていて外部の空間とは連通していない。また該空間は、複数に区切られていてもよい。該空間には気体および/または液体で満たされている。緩衝材が独立空間内包構造であることによって、包装用フィルムの内部が減圧された状態においても該緩衝材が容積を減じること無く、柔軟性を損なって緩衝機能を失うことが無い。これに対して、スポンジ構造のような内部空間と外部空間とが連通した連続気孔構造の緩衝材では、減圧された状態では容積が減少してしまい、柔軟性を損なって緩衝機能を失ってしまう場合がある。   The cushioning material is preferably a flexible and lightweight porous material, and preferably has a sponge-like continuous pore structure or an independent space inclusion structure. Especially, what has an independent space inclusion structure is especially preferable. The independent space inclusion structure is a three-dimensional structure composed of a solid part and a space, and has a space inside the structure formed by the solid part. The space is sealed and does not communicate with the outside space. The space may be divided into a plurality of spaces. The space is filled with gas and / or liquid. Since the cushioning material has an independent space inclusion structure, even when the inside of the packaging film is depressurized, the cushioning material does not reduce its volume and does not lose its flexibility and lose its cushioning function. On the other hand, in the shock absorbing material having a continuous pore structure in which the internal space and the external space communicate with each other like a sponge structure, the volume is reduced in a decompressed state, the flexibility is lost and the buffer function is lost. There is a case.

独立空間内包構造を有する緩衝材としては、独立気泡状に発泡させて成形した所謂独立気泡型発泡体、多数の区画に空気を内包した状態で密封した所謂気泡シート状物、チューブに空気を封入した風船状物等が挙げられる。具体的は、梱包用資材として市販されている発泡ポリエチレンシートや気泡シート、ゴムチューブに空気を封入したもの等が好適な例として挙げられる。また、発泡体や発泡性ビーズを金型などで成形したものも好適に用いられる。   The cushioning material with a closed-space inclusion structure is a so-called closed-cell foam that is molded by foaming into closed cells, a so-called bubble sheet that is sealed in a state where air is contained in many compartments, and air is enclosed in a tube Balloons and the like. Specific examples include a foamed polyethylene sheet, a bubble sheet, and a rubber tube in which air is sealed as a packing material. Moreover, what shape | molded the foam and the expandable bead with the metal mold | die etc. is used suitably.

緩衝材の形状は特に制限されないが、端部固定部の外部形状に適合させることができる形状であることが好ましい。このような形状としては、0.5〜5mmの厚みのシート状であることが特に好ましい。また、予め金型などで端部固定部の外部形状に合わせて成形しておくことも特に好適である。   The shape of the cushioning material is not particularly limited, but is preferably a shape that can be adapted to the external shape of the end fixing portion. Such a shape is particularly preferably a sheet having a thickness of 0.5 to 5 mm. In addition, it is particularly suitable to mold in advance according to the external shape of the end fixing portion with a mold or the like.

該緩衝材を構成する材料は特に限定されないが、比較的柔軟な材料であることが好ましい。例えば、引張弾性率が2,500MPa以下の熱可塑性樹脂やゴムなどが好適に用いられる。このような材料で構成された場合には、中空糸膜やフィルムと接触したときに損傷させる懸念がない。   Although the material which comprises this buffer material is not specifically limited, It is preferable that it is a comparatively flexible material. For example, a thermoplastic resin or rubber having a tensile elastic modulus of 2,500 MPa or less is preferably used. When comprised with such a material, there is no fear of damaging when contacting with a hollow fiber membrane or film.

本発明の中空糸膜ろ過素子の包装体はフィルムで包まれており、該フィルムは中空糸膜と密着した状態で密封されている必要がある。密着した状態とは、中空糸膜長さ方向の50%以上の領域において中空糸膜束の最外周に存在する中空糸膜が、該中空糸膜外表面の少なくとも一部においてフィルム或いは緩衝材と接触して拘束された状態を意味する。このような状態であるとき、外部から振動を与えても該フィルム内で中空糸膜全体が揺動できない。このよう状態にすることによって、輸送やハンドリング中に生じる振動等によって中空糸膜が揺動して損傷してしまうことを防止できる。   The package of the hollow fiber membrane filtration element of the present invention is wrapped with a film, and the film needs to be sealed in close contact with the hollow fiber membrane. The close contact state means that the hollow fiber membrane present on the outermost periphery of the bundle of hollow fiber membranes in a region of 50% or more in the length direction of the hollow fiber membrane is a film or a buffer material on at least a part of the outer surface of the hollow fiber membrane It means a state of contact and restraint. In such a state, the entire hollow fiber membrane cannot be swung within the film even if vibration is applied from the outside. By adopting such a state, it is possible to prevent the hollow fiber membrane from being swung and damaged by vibrations or the like generated during transportation or handling.

また、前記の緩衝材はフィルムと密着しているのが好ましい。このような状態にすることによって、緩衝材が固定されるため、輸送やハンドリング中の振動等によって緩衝材の位置が移動してしまいその効果を損なうことを防止することができる。密着した状態は、後記のようにフィルム内の空気を除去し、その状態で密封することによって実現し保持することができる。   The buffer material is preferably in close contact with the film. In such a state, since the buffer material is fixed, it is possible to prevent the position of the buffer material from being moved due to vibration during transportation or handling and the like to impair the effect. The close contact state can be realized and maintained by removing air in the film and sealing in that state as described later.

また、中空糸膜が湿潤状態である場合には、保管中に温度変化が繰り返し起こると細孔内の液体が蒸発してフィルム内で凝縮する現象が生じ、結果的に細孔中の液体が失われてしまって性能低下等の問題が起こることがある。これに対して、フィルムと中空糸膜とが密着した状態にした場合には、包装体内の空間が少なくなって蒸発分を微量にできるため前記のような問題が生じることを防止できる。   In addition, when the hollow fiber membrane is in a wet state, if a temperature change repeatedly occurs during storage, the liquid in the pores evaporates and condenses in the film. As a result, the liquid in the pores Loss may cause problems such as performance degradation. On the other hand, when the film and the hollow fiber membrane are brought into close contact with each other, the space in the package can be reduced and the amount of evaporation can be reduced to prevent the above problem from occurring.

前記のフィルムは複数を用いることが好ましく、また、少なくとも1つのフィルムがガス遮断性フィルムであることが好ましい。ガス遮断性フィルムとは、空気や水蒸気の透過性が低いフィルムであるが、水蒸気透過性を代表的な指標として用いることができる。本発明の包装体におけるガス遮断性フィルムとしては、ASTM−F1249(38℃、90%RH)の方法で測定した透湿度が10g/m・day以下であるフィルムが好ましく用いられる。このようなフィルムとしては、例えば、ポリ塩化ビニリデン製フィルム、エチレン−ビニルアルコール共重合体製フィルム、アルミニウム蒸着フィルム等が好適な例としてあげられる。なかでもガス遮断性フィルムが、少なくともガス遮断性層と熱融着層とを含む多層フィルムであることが特に好ましい。 A plurality of the above films are preferably used, and at least one film is preferably a gas barrier film. A gas barrier film is a film having low permeability to air or water vapor, but water vapor permeability can be used as a representative index. As the gas barrier film in the package of the present invention, a film having a moisture permeability measured by the method of ASTM-F1249 (38 ° C., 90% RH) of 10 g / m 2 · day or less is preferably used. Suitable examples of such films include polyvinylidene chloride films, ethylene-vinyl alcohol copolymer films, and aluminum vapor deposited films. In particular, the gas barrier film is particularly preferably a multilayer film including at least a gas barrier layer and a heat-sealing layer.

ガス遮断性フィルムは、その厚みが0.03〜0.1mmであることが好ましい。このような厚みのフィルムは柔軟であり、減圧状態にしたときに中空糸膜ろ過素子の形状に沿って密着し易い。すなわち、0.03mm以上であれば強度があるため破れにくく、0.1mm以下であれば柔軟性があるため中空糸膜ろ過素子の形状に沿って密着し易くなる。   The gas barrier film preferably has a thickness of 0.03 to 0.1 mm. The film having such a thickness is flexible and easily adheres along the shape of the hollow fiber membrane filtration element when the pressure is reduced. That is, if it is 0.03 mm or more, it is strong and difficult to break, and if it is 0.1 mm or less, it is flexible and easily adheres along the shape of the hollow fiber membrane filtration element.

前記のガス遮断性フィルムの他に保護フィルムを使用することが好ましい。
保護フィルムは、ガス遮断性フィルムの破損及び/又は中空糸膜表面の損傷を防止する機能を担う。具体的には、低密度ポリエチレン製フィルムや表面に低密度ポリエチレン層を有する多層フィルム、ポリエステル製フィルム等が好適な例として挙げられる。これらの中でもポリエチレン製フィルムや表面に低密度ポリエチレン層を有する多層フィルムが、容易に熱融着させて密閉することができるので特に好ましい。保護フィルムは、ガス遮断性フィルムを外部からの衝撃等を保護する目的でガス遮断性フィルムの外側に配置することができる。また、ガス遮断性フィルムが中空糸膜ろ過素子の構成部材のエッジ等で損傷することを防止する目的でガス遮断性フィルムの内側に配置することもできる。
It is preferable to use a protective film in addition to the gas barrier film.
The protective film has a function of preventing breakage of the gas barrier film and / or damage of the hollow fiber membrane surface. Specifically, a low density polyethylene film, a multilayer film having a low density polyethylene layer on the surface, a polyester film, and the like are preferable examples. Among these, a polyethylene film and a multilayer film having a low density polyethylene layer on the surface are particularly preferable because they can be easily heat-sealed and sealed. The protective film can be disposed outside the gas barrier film for the purpose of protecting the gas barrier film from external impacts and the like. Moreover, it can also arrange | position inside a gas barrier film for the purpose of preventing that a gas barrier film damages with the edge of the structural member of a hollow fiber membrane filtration element, etc.

保護フィルムは、その厚みが0.1〜0.3mmであることが好ましい。0.1mm以上であれば強度があるため保護効果が維持できる。また、0.3mm以下であれば柔軟性があるためガス遮断性フィルム或いは中空糸膜表面に密着させ易くなる。なお、ガス遮断性フィルムと保護フィルムの機能を合わせもった多層フィルムも本発明の包装体に使用できるが、フィルムの総厚みが同じ場合で比較した場合、ガス遮断性フィルムと保護フィルムの複数のフィルムを使用した方が、中空糸膜とフィルムとを密着させ易いのでより好適である。   The protective film preferably has a thickness of 0.1 to 0.3 mm. Since the strength is 0.1 mm or more, the protective effect can be maintained. Moreover, since it will be flexible if it is 0.3 mm or less, it will become easy to adhere | attach on the gas barrier film or the hollow fiber membrane surface. In addition, a multilayer film having the functions of a gas barrier film and a protective film can also be used for the packaging of the present invention, but when compared with the case where the total thickness of the film is the same, a plurality of gas barrier films and protective films can be used. It is more preferable to use a film because the hollow fiber membrane and the film are easily adhered to each other.

ガス遮断性フィルムと保護フィルムとを別体として用いた場合には、遮断性フィルムの傷付きを保護フィルムによって防止できるので以下の効果がある。
(1)膜性能を確実に維持できる。
(2)厚みが薄いガス遮断性フィルムを用いることができる。厚みが薄いガス遮断性フィルムは高い柔軟性を有するので中空糸膜束への密着性が良い。即ち、保護フィルムをガス遮断性フィルムと別体にしておくことによって、良好なフィルムの密着性とガス遮断機能を確実に保持することを同時に実現することができる。
複数のフィルムを使用する場合、少なくとも最内層のフィルムが前記のように中空糸膜と緩衝材とに密着している必要がある。更に各々のフィルムが密着した状態であると、包装体がより剛直になってハンドリング性が格段によくなるので特に好ましい。
When the gas barrier film and the protective film are used as separate bodies, the barrier film can be prevented from being damaged by the protective film, so that the following effects are obtained.
(1) The membrane performance can be reliably maintained.
(2) A gas barrier film having a small thickness can be used. Since the gas barrier film having a small thickness has high flexibility, the adhesion to the hollow fiber membrane bundle is good. That is, by keeping the protective film separate from the gas barrier film, it is possible to simultaneously realize the good film adhesion and the gas barrier function.
When using a plurality of films, it is necessary that at least the innermost film is in close contact with the hollow fiber membrane and the buffer material as described above. Further, it is particularly preferable that the respective films are in close contact with each other because the package becomes more rigid and the handling property is remarkably improved.

中空糸膜ろ過素子の中空糸膜は、乾燥した状態であってもよく、また、中空糸膜の細孔内が液で満たされた状態(以後、湿潤状態と略す)であってもよい。中空糸膜ろ過素子を包装する段階で湿潤状態にしておいた方が、ろ過装置で使用する際に直ちにろ過運転を開始できるので好ましい。この場合、保存期間や保存や輸送の環境条件によって適宜保存液を封入しておくことが好ましい。保存液としては、その目的によって公知の溶液が使用できる。例えば、保存期間が短く、かつ、25℃前後で温度変化も少ない場合には、純水であってもよい。保存期間が長く、かつ、零度以下の温度になる場合には、グリセリン水溶液や塩化カルシウム水溶液等の無機塩水溶液を使用するのが良い。本発明では細孔とは、中空糸膜の内表面と外表面との間(肉厚部)に存在する微細な孔のことをいう。   The hollow fiber membrane of the hollow fiber membrane filtration element may be in a dry state, or may be in a state where the pores of the hollow fiber membrane are filled with a liquid (hereinafter abbreviated as a wet state). It is preferable that the hollow fiber membrane filtration element is kept wet at the stage of packaging because the filtration operation can be started immediately when used in the filtration device. In this case, it is preferable to enclose a storage solution as appropriate depending on the storage period and the environmental conditions of storage and transportation. As a preservation solution, a known solution can be used depending on the purpose. For example, pure water may be used when the storage period is short and the temperature change is small at around 25 ° C. When the storage period is long and the temperature is less than or equal to zero degrees, an inorganic salt aqueous solution such as a glycerin aqueous solution or a calcium chloride aqueous solution is preferably used. In the present invention, the pore refers to a fine pore existing between the inner surface and the outer surface (thick part) of the hollow fiber membrane.

前記の保存液を封入するのに際しては、中空糸膜ろ過素子における水又は水溶液の含有容積が、中空糸膜の保有可能容積の0.8〜1.5倍にしておくことが好ましい。より好ましくは、0.9〜1.2倍の範囲である。0.8倍以上であれば、保存や輸送の間に中空糸膜の細孔内から液が失われた結果として膜性能が低下するという傾向が出るのを防止できる。1.5倍以下であれば、包装体内に液が溜まることがなく、中空糸膜とフィルムとの密着性を低下させてしまう恐れもない。ここで水又は水溶液の含有容積とは、包装体内に保有されている全ての液の容積である。   When enclosing the preservation solution, it is preferable that the volume of water or aqueous solution in the hollow fiber membrane filtration element is 0.8 to 1.5 times the volume that the hollow fiber membrane can hold. More preferably, it is the range of 0.9 to 1.2 times. If it is 0.8 times or more, it is possible to prevent the tendency of the membrane performance from deteriorating as a result of the liquid being lost from the pores of the hollow fiber membrane during storage and transportation. If it is 1.5 times or less, the liquid does not accumulate in the package, and there is no possibility of reducing the adhesion between the hollow fiber membrane and the film. Here, the content volume of water or an aqueous solution is the volume of all liquids held in the package.

即ち、(A)中空糸膜の細孔内に存在している液、(B)中空糸膜の中空部に存在する液、(C)中空糸膜外表面やろ過素子の構成部材に付着している液、(D)フィルム内に溜まっている液の全容積である。前記(D)の値は、フィルム内に溜まっている液を回収して容積を直接測定することによって知ることができる。前記(A)、(B)、(C)の容積の合計値は、以下のような方法で知ることができる。先ず、(a)湿潤状態の中空糸膜ろ過素子の重量Waを測定する。次いで(b)中空糸膜ろ過素子を水中に浸漬して保存液を水で置換した後、中空糸膜ろ過素子を乾燥する。その後、(c)乾燥した中空糸膜ろ過素子の重量Wcを測定する。(d)保存液の密度をρとしたとき、次式で計算される値が前記(A)、(B)、(C)の容積の合計値である。
(Wa−Wc)/ρ
That is, (A) the liquid present in the pores of the hollow fiber membrane, (B) the liquid present in the hollow portion of the hollow fiber membrane, (C) the outer surface of the hollow fiber membrane and the constituent elements of the filtration element. (D) The total volume of the liquid accumulated in the film. The value of (D) can be known by collecting the liquid accumulated in the film and directly measuring the volume. The total value of the volumes (A), (B), and (C) can be known by the following method. First, (a) the weight Wa of the wet state hollow fiber membrane filtration element is measured. Next, (b) the hollow fiber membrane filtration element is immersed in water to replace the preservation solution with water, and then the hollow fiber membrane filtration element is dried. Thereafter, (c) the weight Wc of the dried hollow fiber membrane filtration element is measured. (D) When the density of the preservation solution is ρ, the value calculated by the following equation is the total value of the volumes (A), (B), and (C).
(Wa-Wc) / ρ

また、中空糸膜の保有可能容積とは、中空糸膜の中空部(lumen)の容積と細孔(pore)の容積の合計容積であって、次式で計算される値である。
(内径×π/4*中空部長さ)+((外径−内径)*π/4*膜有効長*細孔率)
ここで、内径、外径は、中空糸膜の内径と外径であり、膜有効長は中空糸膜のろ過部分の長さであって、通常2つの端部固定部間の長さである。また、中空部長さは、中空部が開口している側の端部固定部の長さと膜有効長との合計である。さらに、細孔率は、中空糸膜肉厚部の見掛けの容積に対する中空糸膜の細孔容積が占める割合である。
The volume that can be held by the hollow fiber membrane is the total volume of the volume of the hollow portion (lumen) and the volume of the pores of the hollow fiber membrane, and is a value calculated by the following equation.
(Inner diameter 2 × π / 4 * hollow part length) + ((outer diameter 2 −inner diameter 2 ) * π / 4 * effective membrane length * porosity)
Here, the inner diameter and outer diameter are the inner diameter and outer diameter of the hollow fiber membrane, and the effective membrane length is the length of the filtration portion of the hollow fiber membrane, usually the length between the two end fixing portions. . The hollow portion length is the sum of the length of the end fixing portion on the side where the hollow portion is open and the effective membrane length. Furthermore, the porosity is the ratio of the pore volume of the hollow fiber membrane to the apparent volume of the thick portion of the hollow fiber membrane.

本発明の中空糸膜ろ過素子の包装体は、以下の方法によって製造することができる。
中空糸膜ろ過素子を製造した後に、(A)中空糸膜ろ過素子の端部固定部と中空糸膜との境界部分の外周を緩衝材で囲む工程、(B)中空糸膜ろ過素子をガス遮断性フィルム内に収納する工程、(C)中空糸膜ろ過素子を保護フィルム内に収納する工程、(D)フィルム内の空気を除去してフィルムと中空糸膜とを密着させた状態で密封する工程、を含む必要がある。更に、中空糸膜が湿潤状態にされている中空糸膜ろ過素子の包装体の場合には、(E)中空糸膜を湿潤状態にする工程が必要である。
The package of the hollow fiber membrane filtration element of the present invention can be produced by the following method.
After manufacturing the hollow fiber membrane filtration element, (A) a step of surrounding the outer periphery of the boundary portion between the end fixing portion of the hollow fiber membrane filtration element and the hollow fiber membrane with a buffer material, and (B) the hollow fiber membrane filtration element gas The step of storing in the barrier film, (C) the step of storing the hollow fiber membrane filtration element in the protective film, and (D) removing the air in the film and sealing the film and the hollow fiber membrane in close contact with each other It is necessary to include the process to do. Furthermore, in the case of a package of hollow fiber membrane filtration elements in which the hollow fiber membrane is in a wet state, (E) a step of making the hollow fiber membrane in a wet state is necessary.

先ず、中空糸膜ろ過素子の端部固定部の境界部分を緩衝材で囲む工程を説明する。
この工程は、シート状の緩衝材を端部固定部と中空糸膜束の周囲に巻き付ける方法、或いは、予め端部固定部の形状に適合するように成形された緩衝材を用意してそれを装着する方法等によって実現できる。該工程は、中空糸膜ろ過素子を製造した後、後記のフィルム内に収納する工程の前に実施するか、又は、収納する途中で実施することができる。即ち、中空糸膜ろ過素子に緩衝材を装着した後にフィルム内に収納する方法、或いは、中空糸膜ろ過素子をフィルム内に収納した後、密封する前に緩衝材を装着する方法、が実施できる。前者の方が作業性が良いので好ましい。
First, the process of surrounding the boundary portion of the end fixing portion of the hollow fiber membrane filtration element with a buffer material will be described.
In this process, a sheet-like cushioning material is wound around the end fixing portion and the hollow fiber membrane bundle, or a cushioning material previously formed so as to conform to the shape of the end fixing portion is prepared and used. This can be realized by a method of mounting. This process can be implemented after manufacturing a hollow fiber membrane filtration element, and before the process of accommodating in the film of a postscript, or can be implemented in the middle of accommodating. That is, a method of storing the cushioning material in the hollow fiber membrane filtration element and then storing it in the film, or a method of installing the cushioning material after sealing the hollow fiber membrane filtration element in the film and sealing it can be performed. . The former is preferable because of its good workability.

次に、フィルム内に収納する工程を説明する。予めフィルムを袋状にしたものを用意し、この袋の中に中空糸膜ろ過素子を挿入する方法でもよいし、フィルムでろ過素子を包み込む方法でもよい。複数のフィルムを用いる場合には、適宜順番に挿入、若しくは包み込む操作を行う。例えば、ガス遮断性フィルムと保護フィルムを用いる場合、先ずガス遮断性フィルムに収納し、次いで保護フィルムに収納するのが好ましい。   Next, the process of accommodating in a film is demonstrated. A method in which a film is formed in a bag shape in advance and a hollow fiber membrane filter element is inserted into the bag may be used, or a filter element may be wrapped with a film. When a plurality of films are used, an operation of inserting or wrapping them in order is performed as appropriate. For example, when using a gas barrier film and a protective film, it is preferable to first store in a gas barrier film and then store in a protective film.

次に、フィルムと中空糸膜を密着させる工程を説明する。この工程は、フィルム内の空気を除去することによって行うことができる。先ず、空気を除去し易いようにフィルムの一部のみが開口した状態にする。これは、フィルムの外周の一部を除いて周囲を接着或いは融着する方法で実施できるが、前記のように中空糸膜ろ過素子を収納する前に予め周囲を接着或いは融着して袋状にしておくことが特に好ましい。フィルム内の空気を除去する方法としては、開口部から空気を吸引して除去する方法や中空糸膜ろ過素子をそれを収納しているフィルムごと水中に沈め、水圧によってフィルム内の空気をフィルム外へ押して除去する方法が挙げられる。   Next, the process of closely attaching the film and the hollow fiber membrane will be described. This step can be performed by removing air in the film. First, a part of the film is opened so that air can be easily removed. This can be carried out by adhering or fusing the periphery except for a part of the outer periphery of the film. However, before storing the hollow fiber membrane filtration element as described above, adhering or fusing the periphery in advance to form a bag It is particularly preferable that As a method for removing air in the film, a method of removing air by sucking air from the opening or submerging the hollow fiber membrane filter element together with the film in which it is stored, and the air in the film is removed from the film by water pressure. The method of pushing to remove is mentioned.

後者の方法では、フィルムの開口部以外の部分を水中に沈め、開口部は大気中に開放しておくようにし、空気は開口部から出ることができ、かつ、水はフィルム内に入らないようにする。また、前者の方法において吸引して減圧する際には、絶対圧力95kPa以下にするが、40kPa〜90kPaの範囲が好ましく、70kPa〜90kPaの範囲が特に好ましい。絶対圧力95kPa以下であればフィルムと中空糸膜を密着させて本発明の効果を発揮することができ、特に90kPa以下であればより確実に密着させることができると同時に仮に長期保存中にガスの滲入が多少あったとしても密着状態を維持することができる。40kPa以上であれば、フィルムが圧力によって塑性変形して強度低下を起こすことが無く、長期にわたって良好な状態を維持できる。また、70kPa以上であれば、中空糸膜が湿潤状態にされている場合に、中空糸膜中の湿潤液が気化してしまって膜の性能低下を起こすことがない。   In the latter method, the film other than the opening is submerged in water, the opening is kept open to the atmosphere, air can exit from the opening, and water cannot enter the film. To. When the pressure is reduced by suction in the former method, the absolute pressure is 95 kPa or less, preferably in the range of 40 kPa to 90 kPa, and particularly preferably in the range of 70 kPa to 90 kPa. If the absolute pressure is 95 kPa or less, the film and the hollow fiber membrane can be brought into close contact with each other, and the effect of the present invention can be exerted. Even if there is some infiltration, the close contact state can be maintained. If it is 40 kPa or more, the film will not be plastically deformed by pressure to cause a decrease in strength, and a good state can be maintained over a long period of time. Moreover, if it is 70 kPa or more, when the hollow fiber membrane is in a wet state, the wetting liquid in the hollow fiber membrane is not vaporized and the performance of the membrane is not deteriorated.

前記のようにしてフィルム内の空気を除去して中空糸膜とフィルムとが密着した状態になった後、その状態を保持しつつフィルムを密封する。密封するに際しては、フィルム内の空気を除去する操作を継続しながら密封作業を行うと中空糸膜とフィルムとが密着した状態を保持したまま密封することができるので好適である。密封する方法としては、フィルムがポリエチレン等の熱融着性の素材で構成されている場合、フィルムの開口部を加熱し、かつ、加圧することによって融着させる方法(以後、ヒートシール法と略す)が特に好適な方法としてあげられる。また他の方法として、フィルムの開口部を接着剤で接着する方法を採ることもできる。   After the air in the film is removed as described above to bring the hollow fiber membrane and the film into close contact with each other, the film is sealed while maintaining the state. In sealing, if the sealing operation is performed while continuing the operation of removing air in the film, it is preferable that the sealing can be performed while the hollow fiber membrane and the film are kept in close contact with each other. As a sealing method, when the film is made of a heat-sealable material such as polyethylene, the film is heated and pressurized to be fused (hereinafter abbreviated as heat seal method). ) Is a particularly preferred method. As another method, a method of adhering the opening of the film with an adhesive can be employed.

複数のフィルムに収納して密封する場合、(a)各フィルムに収納する毎に密封する操作を行う方法、或いは、(b)複数のフィルムに収納した後に数枚をまとめて密封する操作を行う方法、(c)複数のフィルムに収納した後に全てのフィルムをまとめて密封する操作を行う方法が採用できる。(a)の方法は、中空糸膜とフィルム、および、複数のフィルム同士をより確実に密着させることができるので特に好適である。   When storing and sealing in a plurality of films, (a) a method of performing a sealing operation every time each film is stored, or (b) performing a sealing operation for several sheets after storing in a plurality of films. Method (c) A method of performing an operation of sealing all films together after being accommodated in a plurality of films can be adopted. The method (a) is particularly suitable because the hollow fiber membrane and the film and the plurality of films can be brought into close contact with each other more reliably.

中空糸膜を湿潤状態にする工程は、以下のとおりである。
中空糸膜の素材が親水性材料から成る場合には、中空糸膜を水中に浸漬する等、単に水と接触することによって湿潤状態にすることができる。一方、中空糸膜の素材が疎水性材料から成る場合には、中空糸膜をアルコール等の界面張力が低い液体と接触させて細孔中に該液体を浸入させ、次いで、水と接触させて細孔中の液体を水で置換することにより湿潤状態にすることができる。また、中空糸膜ろ過素子を水中に浸漬し、中空糸膜に高圧を印加して細孔内に水を浸入させることにより湿潤状態にすることもできる。
更に保存液を封入する場合には、中空糸膜の細孔内に保存液を含浸させておくのが良い。保存液を含浸させる方法は、前記の湿潤状態にする方法において水に替えて保存液を用いる方法や、前記の方法で湿潤状態にした後に保存液と接触させて水と置換する方法を用いることができる。
The step of bringing the hollow fiber membrane into a wet state is as follows.
When the material of the hollow fiber membrane is made of a hydrophilic material, the hollow fiber membrane can be brought into a wet state by simply contacting with water, such as by immersing the hollow fiber membrane in water. On the other hand, when the hollow fiber membrane is made of a hydrophobic material, the hollow fiber membrane is brought into contact with a liquid having a low interfacial tension, such as alcohol, so that the liquid penetrates into the pores, and is then brought into contact with water. The liquid in the pores can be wetted by replacing with water. Alternatively, the hollow fiber membrane filtration element can be immersed in water, and a wet state can be obtained by applying high pressure to the hollow fiber membrane and allowing water to enter the pores.
Furthermore, when enclosing the preservation solution, it is preferable to impregnate the preservation solution in the pores of the hollow fiber membrane. As a method of impregnating the storage solution, a method of using the storage solution instead of water in the above-mentioned wet state method or a method of replacing the water with the storage solution after being wetted by the above method is used. Can do.

上記のようにして中空糸膜を湿潤状態にした後、該中空糸膜ろ過素子に付着している余分な液を流出させる。付着水を流出させる方法は特に限定されないが、細孔内に含浸されている液体を流出させない方法・条件を選択した方がよい。例えば、(a)空気中で静置して重力の作用によって付着液を流出させる方法、(b)中空糸膜ろ過素子を回転させて遠心力の作用によって付着液を流出させる方法、(c)高湿度空気を中空糸膜ろ過素子に吹き付けて風力の作用によって付着液を流出させる方法等が挙げられる。このときの条件を選択することによって、好適な含有量に調整することができる。   After the hollow fiber membrane is wetted as described above, excess liquid adhering to the hollow fiber membrane filtration element is allowed to flow out. The method of causing the adhered water to flow out is not particularly limited, but it is better to select a method and conditions that do not cause the liquid impregnated in the pores to flow out. For example, (a) a method in which the adhesion liquid is allowed to flow out by the action of gravity after being left in the air, (b) a method in which the adhesion liquid is caused to flow out by the action of centrifugal force by rotating the hollow fiber membrane filtration element, (c) Examples include a method in which high-humidity air is blown onto the hollow fiber membrane filtration element to cause the adhesion liquid to flow out by the action of wind force. By selecting the conditions at this time, it can be adjusted to a suitable content.

例えば、前記(a)の方法であれば静置時間を、(b)の方法であれば回転数と回転時間を、(c)の方法であれば吹き付ける空気の流速、流量、時間を適宜選択することにより好適な含有量に調整できる。
上記の湿潤状態にする作業は、液を貯留した専用の水槽内で中空糸膜と液とを接触させる方法でも良いし、中空糸膜ろ過素子をフィルム内に収納して該フィルム内で液と接触させる方法でも良い。
For example, in the method (a), the standing time is appropriately selected, in the method (b), the number of rotations and the rotation time are appropriately selected, and in the method (c), the flow velocity, flow rate, and time of the air to be blown are appropriately selected. By doing so, it can be adjusted to a suitable content.
The operation of making the wet state may be a method of bringing the hollow fiber membrane and the liquid into contact with each other in a dedicated water tank storing the liquid, or storing the hollow fiber membrane filtration element in the film and The method of contacting may be used.

本発明の実施例を以下に説明するが、それによって本発明が限定されることはない。
《中空糸膜ろ過素子の製造》
実施例1〜9と比較例1と2で用いた中空糸膜ろ過素子は、以下のようにして製造した。
ポリフッ化ビニリデン製の細孔径0.1μmの精密ろ過膜で、外径1.2mm、内径0.6mm、長さ2160mm、空孔率70%の中空糸膜1を3300本用いた。また、中空糸膜束を固定してろ過素子とする部材として、内径155mm、高さ70mmの上部ヘッド2と内径140mm、高さ88mmの下部リング3を、該上部ヘッド2と下部リング3とを連結する支柱8として直径13mm、長さ2080mmのパイプ2本を用いた。なお、上部ヘッド2には、内径140mm、深さ35mmの注型用カップ(図示せず)が一体的に設けられている。また、下部リング内には、高さ88mmのうち高さ38mmのところを仕切り板で高さ方向に対して垂直に仕切ることにより、膜固定部を形成するための区画が設けられている。なお、該仕切り板には直径11mmの貫通穴6’が24個設けられている。
Examples of the present invention will be described below, but the present invention is not limited thereby.
<< Manufacture of hollow fiber membrane filter element >>
The hollow fiber membrane filtration elements used in Examples 1 to 9 and Comparative Examples 1 and 2 were produced as follows.
3300 hollow fiber membranes 1 made of polyvinylidene fluoride and having a pore diameter of 0.1 μm, an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, a length of 2160 mm, and a porosity of 70% were used. Further, as a member for fixing the hollow fiber membrane bundle as a filtering element, the upper head 2 having an inner diameter of 155 mm and a height of 70 mm and the lower ring 3 having an inner diameter of 140 mm and a height of 88 mm are connected to the upper head 2 and the lower ring 3. Two pipes having a diameter of 13 mm and a length of 2080 mm were used as the struts 8 to be connected. The upper head 2 is integrally provided with a casting cup (not shown) having an inner diameter of 140 mm and a depth of 35 mm. Further, in the lower ring, a partition for forming a membrane fixing portion is provided by partitioning a portion having a height of 38 mm out of a height of 88 mm perpendicular to the height direction by a partition plate. The partition plate is provided with 24 through holes 6 ′ having a diameter of 11 mm.

まず、注型冶具に上部ヘッド2、下部リング3とパイプを固定した。注型冶具は、中央部に中空糸膜束を収納するための断面がU字状で長さが1800mmの束受け部、その片端側に上部ヘッド2を固定するためのヘッド固定部、他の片端側には下部リング3を固定するためのリング固定部を有している。束受け部とヘッド固定部とリング固定部とはベース板で一体化されている。
中空糸膜束は、片端から5mm分の中空部を閉塞させたのち、各中空糸膜をバラした状態で110本ずつ30束に分けた。各束の中空部を閉塞させた側を直径17mmの穴を30個有した多孔板(直径150mm、厚み10mm)に挿入し、該多孔板を上部ヘッド2内に収容した。また、中空部が開口したままの側の端部を下部リング内に収容した。
First, the upper head 2, the lower ring 3, and the pipe were fixed to the casting jig. The casting jig has a U-shaped cross section for storing the hollow fiber membrane bundle at the center and a length of 1800 mm, a head fixing portion for fixing the upper head 2 to one end, A ring fixing portion for fixing the lower ring 3 is provided on one end side. The bundle receiving portion, the head fixing portion, and the ring fixing portion are integrated by a base plate.
The hollow fiber membrane bundles were divided into 30 bundles of 110 pieces in a state where each hollow fiber membrane was loosened after closing a hollow portion of 5 mm from one end. The side where the hollow portion of each bundle was closed was inserted into a perforated plate (diameter 150 mm, thickness 10 mm) having 30 holes with a diameter of 17 mm, and the perforated plate was accommodated in the upper head 2. Moreover, the edge part by the side with the hollow part opened was accommodated in the lower ring.

次いで、直径11mm、長さ70mmのポリエチレン製の貫通穴形成ピンを24本、下部リング3に設けられた(一部のみ図示)貫通穴6’を通して中空糸膜束内に挿入した。この際、厚み1mmの発泡ポリエチレンシートを捲回して成形した円柱状のスペーサー(外径70mm、長さ800mm)を予め下部リング側の中空糸膜束内に挿入しておき、中空糸膜が下部リング内に均等に分散するようにした。なお、該貫通穴成形ピンは、片端に直径15mm、厚み2mmのツバ部を有した棒状のものであって、ツバ部が下部リング内の仕切り板に当接するようにした。
この後、中空糸膜束の周囲を布で覆い、この布の上から注型治具の束受け部ごと帯を巻いて固定した。そして、この注型治具を遠心接着用架台にセットした。
Subsequently, 24 through-hole forming pins made of polyethylene having a diameter of 11 mm and a length of 70 mm were inserted into the hollow fiber membrane bundle through the through-hole 6 ′ provided in the lower ring 3 (only a part is shown). At this time, a cylindrical spacer (outer diameter 70 mm, length 800 mm) formed by winding a foamed polyethylene sheet having a thickness of 1 mm was previously inserted into the hollow fiber membrane bundle on the lower ring side, and the hollow fiber membrane Evenly distributed in the ring. The through-hole forming pin was a rod having a flange portion with a diameter of 15 mm and a thickness of 2 mm at one end, and the flange portion was in contact with the partition plate in the lower ring.
Thereafter, the periphery of the bundle of hollow fiber membranes was covered with a cloth, and a band was wound around the cloth receiving part of the casting jig and fixed. The casting jig was set on a centrifugal bonding mount.

上記の遠心接着用架台に設置された注型剤ポットと上部ヘッド2に設けられた注型用カップ部および下部リング3を注入ホースで接続した。この注型剤ポット内に注型剤(2液混合型ウレタン樹脂の混合物)を投入した。次いで、遠心接着用架台を177rpmの速度で回転させ、膜固定部形成領域に35Gの遠心力がかかるようにした。回転開始から90分後に回転を停止し、注型治具を遠心接着用架台から取り外した。注型用カップ部と注入ホースとの接続部分、および下部リングと注入ホースとの接続部分で切り離した。これを50℃の乾燥機内で24時間加熱した。次いで、注型用カップ部と上部ヘッド2との境目付近で切断して中空糸膜を開口させた。
その後、帯を外して注型治具から中空糸膜束が固定されたろ過素子を取り出し、下部リング側の中空糸膜束内に挿入されているスペーサーを取り除いた。また、下部リング3に挿入された全ての貫通穴形成ピンを抜いた。これにより下部リング側の端部固定部に、直径11mmの貫通穴が形成された。
The casting agent pot installed on the above-mentioned centrifugal bonding platform and the casting cup portion and the lower ring 3 provided on the upper head 2 were connected by an injection hose. A casting agent (a mixture of two-component mixed urethane resin) was put into this casting agent pot. Next, the centrifugal bonding mount was rotated at a speed of 177 rpm so that a 35 G centrifugal force was applied to the membrane fixing portion forming region. Rotation was stopped 90 minutes after the start of rotation, and the casting jig was removed from the centrifugal bonding platform. It cut | disconnected in the connection part of a casting cup part and an injection hose, and the connection part of a lower ring and an injection hose. This was heated in a dryer at 50 ° C. for 24 hours. Next, the hollow fiber membrane was opened by cutting near the boundary between the casting cup portion and the upper head 2.
Thereafter, the band was removed, the filtration element with the hollow fiber membrane bundle fixed thereto was taken out from the casting jig, and the spacer inserted in the hollow fiber membrane bundle on the lower ring side was removed. Moreover, all the through-hole formation pins inserted in the lower ring 3 were removed. As a result, a through hole having a diameter of 11 mm was formed in the end fixing portion on the lower ring side.

上記の操作によって、中空糸膜束の一方の端部が30束の小束に分割された状態で上部ヘッド2に固定され、他方の端部が中空糸膜1本ごとに分散した状態で下部リング3に固定された外圧型の中空糸膜ろ過素子が得られた。該ろ過素子は、膜有効長が2000mm、膜面積25m2 である。そして、上部ヘッドの端部固定部における中空糸膜束の外周と上部ヘッドの外周との差異が11mmであり、下部リングの端部固定部における中空糸膜束の外周と下部リングの外周との差異が5mmである。なお、該中空糸膜ろ過素子における中空糸膜の保有可能容積は、6.1リットルである。 By the above operation, one end of the hollow fiber membrane bundle is fixed to the upper head 2 in a state of being divided into 30 small bundles, and the other end is dispersed in the state where each hollow fiber membrane is dispersed. An external pressure type hollow fiber membrane filtration element fixed to the ring 3 was obtained. The filtration element has an effective membrane length of 2000 mm and a membrane area of 25 m 2 . The difference between the outer periphery of the hollow fiber membrane bundle at the end fixing portion of the upper head and the outer periphery of the upper head is 11 mm, and the outer periphery of the hollow fiber membrane bundle at the end fixing portion of the lower ring and the outer periphery of the lower ring are The difference is 5 mm. In addition, the volume which can hold | maintain the hollow fiber membrane in this hollow fiber membrane filtration element is 6.1 liters.

《中空糸膜ろ過素子の湿潤化処理》
中空糸膜ろ過素子を60重量%エタノール水溶液中に浸漬した状態で30分間吸引ろ過を行って、細孔内に該水溶液を満たした。次いで、流水中に浸漬した状態で30分間吸引して細孔内を水に置換した。
《Wetting treatment of hollow fiber membrane filter element》
Suction filtration was performed for 30 minutes in a state where the hollow fiber membrane filtration element was immersed in an aqueous 60 wt% ethanol solution, and the pores were filled with the aqueous solution. Next, the pores were sucked for 30 minutes while being immersed in running water to replace the inside of the pores with water.

《中空糸膜ろ過素子の純水透水量の測定》
中空糸膜ろ過素子を湿潤化処理した後に上部ヘッドにOリングを介してノズル付きキャップを気密的に接続し、純水を満たした水槽中に浸漬した。該ノズル部において−0.03MPa(ゲージ圧)の圧力になるように吸引して、中空糸膜を透過した水の流量を測定した。なお、測定時の水温を25℃に調整した。
前記の方法で製造した中空糸膜ろ過素子を測定したところ、3.3m/hであった。
《Measurement of pure water permeability of hollow fiber membrane filtration device》
After wet-treating the hollow fiber membrane filtration element, a cap with a nozzle was hermetically connected to the upper head via an O-ring, and immersed in a water tank filled with pure water. The nozzle portion was sucked so that the pressure was -0.03 MPa (gauge pressure), and the flow rate of water permeating through the hollow fiber membrane was measured. The water temperature at the time of measurement was adjusted to 25 ° C.
It was 3.3 m < 3 > / h when the hollow fiber membrane filtration element manufactured by the said method was measured.

《保存液の含有容積の測定》
先ず、中空糸膜ろ過素子包装体のフィルムを切断して、フィルム内に流出している保存液を回収し、その容積Vz(l)を測定した。次いで、中空糸膜ろ過素子をフィルム内から取り出して重量Wa(kg)を測定した。その後、中空糸膜ろ過素子を水中に浸漬して保存液を水で置換した後、中空糸膜ろ過素子を乾燥機中で加熱して乾燥した。次に、乾燥した中空糸膜ろ過素子の重量Wc(kg)を測定した。保存液の密度ρは、回収したフィルム内の保存液を10mlのゲーリュサック型比重びんに分取して重量を測定し、該重量を比重びんの容量で除して求めた。次式(1)によって含有容積Vt(l)を求めた。
Vt=(Wa−Wc)/ρ+Vz ・・・(1)
なお、上記の各測定は、リーク試験や外観検査の合間に適宜行った。
<Measurement of content volume of preservation solution>
First, the film of the hollow fiber membrane filtration element package was cut, the stock solution flowing into the film was collected, and the volume Vz (l) was measured. Subsequently, the hollow fiber membrane filtration element was taken out from the film, and the weight Wa (kg) was measured. Thereafter, the hollow fiber membrane filtration element was immersed in water to replace the preservation solution with water, and then the hollow fiber membrane filtration element was heated and dried in a dryer. Next, the weight Wc (kg) of the dried hollow fiber membrane filtration element was measured. The density ρ of the preservation solution was obtained by separating the collected preservation solution in the film into a 10 ml Geryusack type specific gravity bottle, measuring the weight, and dividing the weight by the specific gravity volume. The content volume Vt (l) was determined by the following formula (1).
Vt = (Wa−Wc) / ρ + Vz (1)
Each of the above measurements was appropriately performed between leak tests and appearance inspections.

《中空糸膜ろ過素子包装体の輸送試験》
中空糸膜ろ過素子包装体を横置き状態でダンボール箱に収納し、トラックで2,000km走行した。その後、中空糸膜ろ過素子を取り出して、外観検査とリーク検査を行った。
なお輸送試験は、実施例1〜10及び比較例1〜3の包装体を同じトラックに搭載して行った。
<< Transport test of hollow fiber membrane filter element packaging >>
The packaged hollow fiber membrane filter element was stored horizontally in a cardboard box and traveled on a truck for 2,000 km. Then, the hollow fiber membrane filtration element was taken out, and an appearance inspection and a leak inspection were performed.
In addition, the transport test was carried out by mounting the packaging bodies of Examples 1 to 10 and Comparative Examples 1 to 3 on the same truck.

《中空糸膜ろ過素子のリーク試験》
中空糸膜ろ過素子の上部ヘッドにOリングを介してノズル付きキャップを気密的に接続し、水中に浸漬した。中空糸膜ろ過素子が完全に水中に浸漬された状態で該ノズルから空気をゲージ圧0.1MPaで印加し、中空糸膜から気泡がでてくるかどうかを目視観察した。連続的に気泡がでてくる場合に「リーク有り」と判断した。
<< Leak test of hollow fiber membrane filtration element >>
A cap with a nozzle was hermetically connected to the upper head of the hollow fiber membrane filtration element via an O-ring and immersed in water. With the hollow fiber membrane filtration element completely immersed in water, air was applied from the nozzle at a gauge pressure of 0.1 MPa, and it was visually observed whether bubbles appeared from the hollow fiber membrane. It was judged that there was a leak when bubbles appeared continuously.

[実施例1]
厚み1.3mmの発泡ポリエチレンシートを緩衝材として用い、ポリ塩化ビニリデン層と低密度ポリエチレン層とを含む多層フィルム(旭化成製、商品名『バリアロン−S、Pタイプ』)をガス遮断性多層フィルムとして用い、厚み200μmの低密度ポリエチレン製フィルムを保護フィルムとして用いた0。該多層フィルムは、厚みが50μmであり、ASTM−F1249(38℃、90%RH)の方法で測定した透湿度が6g/(m・day)である。ガス遮断性フィルムと保護フィルムは、夫々予め2つの長辺と1つの短辺をヒートシールして袋状に成形した。
前記のようにして製造した中空糸膜ろ過素子の下部リング全外周部と下部リングから200mmまでの部分の中空糸膜束外周に緩衝材を3重に巻いてテープで固定した。
[Example 1]
A multilayer film (made by Asahi Kasei, trade name “Barrieron-S, P type”) containing a polyvinylidene chloride layer and a low-density polyethylene layer is used as a gas barrier multilayer film. A low density polyethylene film having a thickness of 200 μm was used as a protective film. The multilayer film has a thickness of 50 μm and a moisture permeability measured by the method of ASTM-F1249 (38 ° C., 90% RH) of 6 g / (m 2 · day). Each of the gas barrier film and the protective film was formed into a bag shape by heat-sealing two long sides and one short side in advance.
The cushioning material was wrapped around the outer periphery of the lower ring of the hollow fiber membrane filtration element manufactured as described above and the outer periphery of the hollow fiber membrane bundle from the lower ring to 200 mm and fixed with tape.

次いで、該中空糸膜ろ過素子を袋状にしたガス遮断性多層フィルムの中に収納し、開口部から吸引ノズルを挿入して内部の空気を吸引して該フィルムが中空糸膜束外周に密着するまで減圧した。このときの吸引ノズルにおける絶対圧力は60kPaであった。吸引ノズルを引き抜いた後直ちに該フィルムの開口側端部を10mmの幅で熱融着させて密封した。更に、該包装体を保護フィルムの中に収納し、上記と同様にして絶対圧力60kPaに減圧した後、該フィルムの開口側端部を10mmの幅で熱融着させて密封した。これによって、中空糸膜ろ過素子の包装体が得られた。   Next, the hollow fiber membrane filtration element is housed in a bag-shaped gas barrier multilayer film, and a suction nozzle is inserted from the opening to suck the air inside, and the film adheres to the outer periphery of the hollow fiber membrane bundle. The pressure was reduced until The absolute pressure in the suction nozzle at this time was 60 kPa. Immediately after pulling out the suction nozzle, the opening side end of the film was heat-sealed with a width of 10 mm and sealed. Further, the package was housed in a protective film, and after reducing the pressure to 60 kPa in the same manner as described above, the opening side end of the film was heat-sealed with a width of 10 mm and sealed. As a result, a package of hollow fiber membrane filtration elements was obtained.

該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。なお、上部ヘッド端と中空糸膜束外周との段差が大きいため、その段差部分にフィルムが追随できないために密着していない状態になったものである。
該中空糸膜ろ過素子包装体を横置き状態でダンボール箱に収納し、トラックでの輸送試験を行った。2000km走行後、リーク検査を実施したところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
該中空糸膜ろ過素子を湿潤化処理して純水透水量を測定したところ、3.2m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film. In addition, since the level | step difference between an upper head end and a hollow fiber membrane bundle outer periphery is large, since the film cannot follow the level | step-difference part, it was in the state which has not contact | adhered.
The hollow fiber membrane filter element packaging body was stored horizontally in a cardboard box, and a truck transportation test was conducted. After running 2000 km, leak inspection was conducted and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
The hollow fiber membrane filtration element was wetted and the amount of pure water permeation measured was 3.2 m 3 / h, which was not significantly different from the measured value of the hollow fiber membrane filtration element immediately after production.

[実施例2]
先ず、下部リング側を緩衝材で囲む前に前記の方法で中空糸膜ろ過素子を純水で処理して湿潤状態にした後、25℃−70%RH環境下において縦置き状態で30分間静置した。中空糸膜を湿潤状態にしたろ過素子を用い、ガス遮断性多層フィルムの中に収納した際、及び、保護フィルムの中に収納した際の各フィルム内での減圧操作における絶対圧力を85kPaに変えて包装した他は、実施例1と同様にして中空糸膜ろ過素子包装体を2本製造した。該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 2]
First, before surrounding the lower ring with a cushioning material, the hollow fiber membrane filtration element is treated with pure water by the above-described method to make it wet, and then statically placed for 30 minutes in a vertical state in a 25 ° C.-70% RH environment. I put it. Using a filter element with the hollow fiber membrane in a wet state, the absolute pressure in the decompression operation in each film when stored in a gas barrier multilayer film and when stored in a protective film is changed to 85 kPa. In the same manner as in Example 1, two hollow fiber membrane filter element packaging bodies were produced. In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
2本の内1本を開封してフィルム中の液を回収して容積Vzを測定したところ0.2リットルであった。次いで、中空糸膜ろ過素子をフィルム内から取り出して重量Waを測定したところ13.6kgであった。その後にリーク検査を実施したところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m3/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
その後に該中空糸膜ろ過素子を乾燥機内で加熱して乾燥し、乾燥状態での重量Wcを測定したところ7.0kgであった。これらの測定値と保存液(水)の密度(1.0kg/l)から前記式(1)に基づいて含有容積を求め、保有可能容積との比を計算したところ1.1倍であった。
A transport test was conducted on the two packages.
One of the two was opened, the liquid in the film was recovered, and the volume Vz was measured to be 0.2 liter. Next, the hollow fiber membrane filtration element was taken out from the film and the weight Wa was measured to find 13.6 kg. After that, when leak inspection was conducted, there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Thereafter, the hollow fiber membrane filtration element was heated and dried in a dryer, and the weight Wc in the dry state was measured to be 7.0 kg. The content volume was calculated based on the above formula (1) from these measured values and the density of the storage liquid (water) (1.0 kg / l), and the ratio with the holdable volume was calculated to be 1.1 times. .

残りの1本を6ヶ月室内で保存した後に開封してフィルム中の液を回収して容積Vzを測定したところ0.2リットルであった。次いで、中空糸膜ろ過素子をフィルム内から取り出して重量Waを測定したところ13.6kgであった。その後にリーク検査を実施したところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m/hであり、保存前の中空糸膜ろ過素子の測定値と有意差が無かった。
その後に該中空糸膜ろ過素子を乾燥機内で加熱して乾燥し、乾燥状態での重量Wcを測定したところ7.0kgであった。これらの測定値と保存液(水)の密度(1.0kg/l)から含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.1倍であった。
The remaining one was stored in the room for 6 months, then opened and the liquid in the film was collected and the volume Vz was measured. Next, the hollow fiber membrane filtration element was taken out from the film and the weight Wa was measured to find 13.6 kg. After that, when leak inspection was conducted, there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element before storage.
Thereafter, the hollow fiber membrane filtration element was heated and dried in a dryer, and the weight Wc in the dry state was measured to be 7.0 kg. The content volume was determined from these measured values and the density (1.0 kg / l) of the preservation solution (water), and the ratio with the retained volume was calculated to be 1.1 times as described above.

[実施例3]
厚み2.3mmの気泡シートを緩衝材として用い、エチレンビニルアルコール共重合体層とナイロン層と低密度ポリエチレン層とを含む多層フィルム(四国化成製、商品名『キャンズフィルム、Gタイプ』)をガス遮断性多層フィルムとして用いた。該多層フィルムは、厚みが80μmであり、ASTM−F1249(38℃、90%RH)の方法で測定した透湿度が8g/(m・day)である。なお、中空糸膜の湿潤処理は、静置時間を15分にした他は実施例2と同様にして行った。また、保護フィルムは実施例1と同じものを用いた。
ガス遮断性フィルムと保護フィルムは、夫々予め2つの長辺と1つの短辺をヒートシールして袋状に成形した。
湿潤処理した中空糸膜ろ過素子の下部リング全外周部と下部リングから200mmまでの部分の中空糸膜束外周に緩衝材を2重に巻いてテープで固定した。
[Example 3]
A multilayer film (trade name “Cans film, G type” manufactured by Shikoku Kasei Co., Ltd.) containing an ethylene vinyl alcohol copolymer layer, a nylon layer, and a low-density polyethylene layer is used as a cushioning material using a bubble sheet with a thickness of 2.3 mm. Used as a barrier multilayer film. The multilayer film has a thickness of 80 μm, and a moisture permeability measured by the method of ASTM-F1249 (38 ° C., 90% RH) is 8 g / (m 2 · day). The wet treatment of the hollow fiber membrane was performed in the same manner as in Example 2 except that the standing time was 15 minutes. Further, the same protective film as in Example 1 was used.
Each of the gas barrier film and the protective film was formed into a bag shape by heat-sealing two long sides and one short side in advance.
A buffer material was wound twice around the entire outer periphery of the lower ring of the hollow fiber membrane filtration element subjected to the wet treatment and the outer periphery of the hollow fiber membrane bundle from the lower ring to 200 mm and fixed with tape.

次いで、該中空糸膜ろ過素子を袋状にしたガス遮断性多層フィルムの中に収納し、さらに、保護フィルムの中に収納した。ガス遮断性多層フィルムの開口部から吸引ノズルを挿入して内部の空気を吸引して該フィルムが中空糸膜束外周に密着するまで減圧した。このときの吸引ノズルにおける絶対圧力は85kPaであった。吸引ノズルを引き抜いた後直ちにガス遮断性多層フィルムの開口側端部を10mmの幅で熱融着させて密封した。その後、保護フィルムの開口部から吸引ノズルを挿入して内部の空気を吸引して該フィルムがガス遮断性フィルムに密着するまで減圧した。このときの吸引ノズルにおける絶対圧力は85kPaであった。吸引ノズルを引き抜いた後直ちに保護フィルムの開口側端部を10mmの幅で熱融着させて密封した。このような方法よって、中空糸膜ろ過素子の包装体を2本製造した。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約50mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
Next, the hollow fiber membrane filtration element was accommodated in a gas barrier multilayer film in the form of a bag, and further accommodated in a protective film. A suction nozzle was inserted from the opening of the gas barrier multilayer film to suck the air inside, and the pressure was reduced until the film was in close contact with the outer periphery of the hollow fiber membrane bundle. The absolute pressure in the suction nozzle at this time was 85 kPa. Immediately after pulling out the suction nozzle, the opening side end of the gas barrier multilayer film was heat-sealed with a width of 10 mm and sealed. Thereafter, a suction nozzle was inserted through the opening of the protective film to suck the air inside, and the pressure was reduced until the film was in close contact with the gas barrier film. The absolute pressure in the suction nozzle at this time was 85 kPa. Immediately after pulling out the suction nozzle, the opening side end of the protective film was heat-sealed with a width of 10 mm and sealed. Two packages of hollow fiber membrane filtration elements were produced by such a method.
In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the 50 mm region, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、13.9kg、7.0kgであった。これらの値と保存液(水)の密度(1.0kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.2倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.2m3/hであり、保存前の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、13.9kg、7.0kgであった。これらの値と保存液(水)の密度(1.0kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.2倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 13.9 kg, and 7.0 kg, respectively. When the content volume of the liquid was measured from these values and the density (1.0 kg / l) of the storage liquid (water) and the ratio with the volume that can be held was calculated, it was 1.2 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no abnormality such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.2 m3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 13.9 kg, and 7.0 kg, respectively. From these values and the density of the storage liquid (water) (1.0 kg / l), the volume of the liquid was determined and the ratio with the volume that could be held was calculated to be 1.2 times as described above.

[実施例4]
保存液として65重量%のグリセリン水溶液を用い、各フィルム内での減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 4]
Two packaging bodies were produced in the same manner as in Example 2, except that a 65% by weight aqueous glycerin solution was used as a preservation solution and the absolute pressure in the decompression operation in each film was changed to 80 kPa. In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m/hであり、製造直後の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m/hであり、保存前の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.5倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m 3 / h, which was the same as the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the recovered storage solution (glycerin aqueous solution), the content volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 1.5 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no abnormality such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m 3 / h, and there was no significant difference from the measured value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the collected preservation solution (glycerin aqueous solution), the content volume of the solution was calculated and the ratio with the holdable volume was calculated to be 1.5 times as described above. .

[実施例5]
保存液として30重量%の塩化カルシウム水溶液を用いて25℃−湿度40%RHの環境下で4時間静置して湿潤化処理を行い、各フィルム内の減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 5]
Using a 30 wt% aqueous solution of calcium chloride as a preservative solution, the mixture was left to stand for 4 hours in an environment of 25 ° C. and a humidity of 40% RH, and wet treatment was performed, and the absolute pressure in the decompression operation in each film was changed to 80 kPa. The other two packages were produced in the same manner as in Example 2. In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.2m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.1リットル、13.3kg、7.0kgであった。これらの値と回収した保存液(塩化カルシウム水溶液)の密度(1.30kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ0.8倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.2m/hであり、保存前の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.1リットル、13.3kg、7.0kgであった。これらの値と回収した保存液(塩化カルシウム水溶液)の密度(1.30kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に0.8倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.2 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured in the same manner as in Example 2, they were 0.1 liter, 13.3 kg, and 7.0 kg, respectively. From these values and the density (1.30 kg / l) of the collected storage solution (calcium chloride aqueous solution), the volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 0.8 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no abnormality such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.2 m 3 / h, which was the same as the measured value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured in the same manner as in Example 2, they were 0.1 liter, 13.3 kg, and 7.0 kg, respectively. From these values and the density (1.30 kg / l) of the collected storage solution (calcium chloride aqueous solution), the content volume of the solution was calculated, and the ratio with the volume that can be held was calculated. It was.

[実施例6]
ガス遮断性フィルムとして、6−ナイロン層と低密度ポリエチレン層とを含む多層フィルム(オザキ軽化学社製、商品名『トリプルナイロン』)を用い、保護フィルムを用いなかった。該多層フィルムは、厚みが100μmであり、ASTM−F1249(38℃、90%RH)の方法で測定した透湿度が8g/(m・day)である。該多層フィルムからなるガス遮断性フィルムは、チューブ状の開口端の片側を予めヒートシールして袋状に成形した。
ガス遮断性フィルム内での減圧操作における圧力を50kPaとした他は、実施例1と同様にして包装体を得た。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の80%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 6]
As the gas barrier film, a multilayer film (trade name “Triple Nylon” manufactured by Ozaki Light Chemical Co., Ltd.) including a 6-nylon layer and a low density polyethylene layer was used, and no protective film was used. The multilayer film has a thickness of 100 μm, and a moisture permeability of 8 g / (m 2 · day) measured by the method of ASTM-F1249 (38 ° C., 90% RH). The gas barrier film composed of the multilayer film was formed into a bag shape by heat-sealing one side of the tube-shaped opening end in advance.
A package was obtained in the same manner as in Example 1 except that the pressure in the pressure reducing operation in the gas barrier film was 50 kPa.
The hollow fiber membrane filtration element package has a hollow fiber membrane bundle outer peripheral portion and a gas barrier film or cushioning material in close contact with each other in an area of 80% or more in the length direction of the hollow fiber membrane, and is approximately about the upper head end. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該中空糸膜ろ過素子包装体について実施例1と同様にしてトラックでの輸送試験を行った。2000km走行後、リーク検査を実施したところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
該中空糸膜ろ過素子を湿潤化処理して純水透水量を測定したところ、3.2m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
The hollow fiber membrane filter element package was subjected to a truck transport test in the same manner as in Example 1. After running 2000 km, leak inspection was conducted and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
The hollow fiber membrane filtration element was wetted and the amount of pure water permeation measured was 3.2 m 3 / h, which was not significantly different from the measured value of the hollow fiber membrane filtration element immediately after production.

[実施例7]
厚み5mmの連続気泡構造を有するスポンジシートを緩衝材として用いた例を示す。
保存液として65重量%のグリセリン水溶液を用いた他は、実施例2と同様にして中空糸膜ろ過素子の湿潤化処理を行った。該中空糸膜ろ過素子の下部リング全外周部と下部リングから200mmまでの部分の中空糸膜束外周に前記の緩衝材を3重に巻いてテープで固定した。次いで、各フィルム内での減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルム或いは緩衝材とが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 7]
An example in which a sponge sheet having an open cell structure with a thickness of 5 mm is used as a cushioning material is shown.
The hollow fiber membrane filtration element was wetted in the same manner as in Example 2 except that a 65 wt% aqueous glycerin solution was used as the storage solution. The cushioning material was wrapped around the hollow fiber membrane bundle outer periphery of the lower ring of the hollow fiber membrane filtration element and a portion of the lower ring from the lower ring to 200 mm, and fixed with tape. Subsequently, two packaging bodies were produced in the same manner as in Example 2 except that the absolute pressure in the decompression operation in each film was changed to 80 kPa.
In the hollow fiber membrane filtration element package, the hollow fiber membrane bundle outer peripheral portion and the gas barrier film or cushioning material are in close contact with each other in an area of 95% or more in the length direction of the hollow fiber membrane. In the region of 30 mm, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ傷は全くなく、部分的に軽微な凹みが生じていただけであり、実用上問題ないと推定される状態であった。なお、包装体から取り出した後の緩衝材は、塑性変形して厚みが薄くなっていた。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m/hであり、保存前の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.5倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the recovered storage solution (glycerin aqueous solution), the content volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 1.5 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no flaw at all, and only a slight dent was produced, and it was estimated that there was no practical problem. In addition, the buffer material after taking out from the package body was plastically deformed and thinned.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m 3 / h, which was the same as the measured value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the collected preservation solution (glycerin aqueous solution), the content volume of the solution was calculated and the ratio with the holdable volume was calculated to be 1.5 times as described above. .

[実施例8]
発泡ポリエチレン製の成形体を緩衝材として用い、中空糸膜束の外周に配置した例を示す。該成形体は、内径120mm、外径150mm、長さ300mmの円筒を長さ方向に半割りしたものであり、2個を相対させることによって円筒を呈する。
保存液として65重量%のグリセリン水溶液を用いた他は、実施例2と同様にして中空糸膜ろ過素子の湿潤化処理を行った。該中空糸膜ろ過素子の下部リング側端部固定部の境界面から50mm離れた位置から350mmまでの部分の中空糸膜束外周に前記の成形体2個を被せ、形成された円筒内に中空糸膜束を収容した後、2個の緩衝材をテープで固定した。このとき、2個の成形体の合わせ目のところに支柱8が位置するようにした。次いで、各フィルム内での減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の70%以上の領域において中空糸膜束外周部とガス遮断性フィルムとが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 8]
An example in which a molded product made of polyethylene foam is used as a cushioning material and arranged on the outer periphery of a hollow fiber membrane bundle is shown. The molded body is a cylinder having an inner diameter of 120 mm, an outer diameter of 150 mm, and a length of 300 mm, divided in half in the length direction.
The hollow fiber membrane filtration element was wetted in the same manner as in Example 2 except that a 65 wt% aqueous glycerin solution was used as the storage solution. Cover the outer periphery of the hollow fiber membrane bundle from the position 50 mm away from the boundary surface of the lower ring side end fixing portion of the hollow fiber membrane filtration element to the outer periphery of the hollow fiber membrane bundle and place the hollow body in the formed cylinder. After accommodating the thread membrane bundle, two cushioning materials were fixed with tape. At this time, the support column 8 was positioned at the joint of the two molded bodies. Subsequently, two packaging bodies were produced in the same manner as in Example 2 except that the absolute pressure in the decompression operation in each film was changed to 80 kPa.
In the hollow fiber membrane filtration element package, the outer periphery of the hollow fiber membrane bundle and the gas barrier film are in close contact with each other in a region of 70% or more in the length direction of the hollow fiber membrane, and the region of about 30 mm from the upper head end. In Fig. 1, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m/hであり、製造直後の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。前記と同様に中空糸膜の外観を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m3/hであり、保存前の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.5倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m 3 / h, which was the same as the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the recovered storage solution (glycerin aqueous solution), the content volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 1.5 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. When the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no abnormality such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m3 / h, which was the same as the measurement value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the collected preservation solution (glycerin aqueous solution), the content volume of the solution was calculated and the ratio with the holdable volume was calculated to be 1.5 times as described above. .

[実施例9]
発泡ポリエチレン製の外径70mm、全長500mmに成形したものを緩衝材として用い、中空糸膜束の内部に配置した例を示す。該成形体は、両端が外径70mmの半球状を呈している円柱状であって約80gと極軽いものである。
保存液として65重量%のグリセリン水溶液を用いた他は、実施例2と同様にして中空糸膜ろ過素子の湿潤化処理を行った。該中空糸膜ろ過素子の下部リング側端部固定部の境界面から50mm離れた位置に前記の成形体の端部が在るようにして中空糸膜束の中央部に前記の成形体を挿入した。挿入の際には、中空糸膜を引っ掛けて傷つけてしまわないように注意して行った。次いで、各フィルム内での減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルムとが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
[Example 9]
An example in which a foamed polyethylene molded product having an outer diameter of 70 mm and a total length of 500 mm is used as a cushioning material and is arranged inside a hollow fiber membrane bundle is shown. The molded body has a cylindrical shape with both ends exhibiting a hemispherical shape with an outer diameter of 70 mm, and is extremely light at about 80 g.
The hollow fiber membrane filtration element was wetted in the same manner as in Example 2 except that a 65 wt% aqueous glycerin solution was used as the storage solution. The molded body is inserted into the center of the hollow fiber membrane bundle so that the end of the molded body is located 50 mm away from the boundary surface of the lower ring side end fixing portion of the hollow fiber membrane filtration element. did. At the time of insertion, care was taken so that the hollow fiber membrane was not caught and damaged. Subsequently, two packaging bodies were produced in the same manner as in Example 2 except that the absolute pressure in the decompression operation in each film was changed to 80 kPa.
In the hollow fiber membrane filtration element package, the outer periphery of the hollow fiber membrane bundle and the gas barrier film are in close contact with each other in a region of 95% or more in the length direction of the hollow fiber membrane, and the region of about 30 mm from the upper head end. In Fig. 1, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、中空糸膜束の外周にある中空糸膜を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.3m/hであり、製造直後の中空糸膜ろ過素子の測定値と同じであった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。前記と同様に中空糸膜の外観を詳細に観察したところ部分的な凹みや傷等の異常も全く無かった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m/hであり、保存前の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.2kg、7.0kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.5倍であった。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were observed in detail, there were no abnormalities such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.3 m 3 / h, which was the same as the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the recovered storage solution (glycerin aqueous solution), the content volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 1.5 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. When the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no abnormality such as partial dents and scratches.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m 3 / h, and there was no significant difference from the measured value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.2 kg, and 7.0 kg, respectively. From these values and the density (1.16 kg / l) of the collected preservation solution (glycerin aqueous solution), the content volume of the solution was calculated and the ratio with the holdable volume was calculated to be 1.5 times as described above. .

[実施例10]
緩衝材を用いず中空糸膜とフィルムとを密着させて包装した例を示す。
先ず、以下のようにして中空糸膜ろ過素子を製造した。
ポリフッ化ビニリデン製の細孔径0.1μmの精密ろ過膜で、外径1.2mm、内径0.6mm、長さ2160mm、細孔率70%の中空糸膜1を3300本用いた。また、中空糸膜束を固定してろ過素子とする部材として、内径155mm、高さ70mmの上部ヘッド2と内径150mm、高さ88mmの下部リング3を、該上部ヘッド2と下部リング3とを連結する支柱8として直径13mm、長さ2080mmのパイプ2本を用いた。なお、上部ヘッド2には、内径150mm、深さ35mmの注型用カップ(図示せず)が一体的に設けられている。また、下部リング内には、高さ88mmのうち高さ38mmのところを仕切り板で高さ方向に対して垂直に仕切ることにより、膜固定部を形成するための区画が設けられている。なお、該仕切り板には直径11mmの貫通穴6’が中心間距離15〜20mmの間隔で19個設けられている。
[Example 10]
An example in which a hollow fiber membrane and a film are in close contact with each other without using a cushioning material is shown.
First, a hollow fiber membrane filtration element was produced as follows.
3300 hollow fiber membranes 1 made of polyvinylidene fluoride and having a pore size of 0.1 μm, an outer diameter of 1.2 mm, an inner diameter of 0.6 mm, a length of 2160 mm, and a porosity of 70% were used. Further, as a member for fixing the hollow fiber membrane bundle as a filtration element, an upper head 2 having an inner diameter of 155 mm and a height of 70 mm, a lower ring 3 having an inner diameter of 150 mm and a height of 88 mm, and the upper head 2 and the lower ring 3 are combined. Two pipes having a diameter of 13 mm and a length of 2080 mm were used as the struts 8 to be connected. The upper head 2 is integrally provided with a casting cup (not shown) having an inner diameter of 150 mm and a depth of 35 mm. Further, in the lower ring, a partition for forming a membrane fixing portion is provided by partitioning a portion having a height of 38 mm out of a height of 88 mm perpendicular to the height direction by a partition plate. The partition plate is provided with 19 through-holes 6 ′ having a diameter of 11 mm at intervals of 15 to 20 mm between the centers.

まず、実施例1〜9の中空糸膜ろ過素子の製造で用いた注型冶具に上部ヘッド2、下部リング3とパイプを固定した。下部リング3に設けられた貫通穴6’を通して直径11mm、長さ70mmのポリエチレン製の貫通穴形成ピンを19本挿入した。なお、該貫通穴成形ピンは、実施例1〜9の中空糸膜ろ過素子の製造で用いたものと同様であり、ツバ部が下部リング内の仕切り板に当接するようにした。
中空糸膜束は、片端から5mm分の中空部を閉塞させたのち、各中空糸膜をバラした状態で110本ずつ30束に分け、その端部を幅5mmのテープで固定した。各束の中空部を閉塞させた側を直径17mmの穴を30個有した多孔板(直径150mm、厚み10mm)に挿入し、該多孔板を上部ヘッド2内に収容した。
次いで、110本の小束の中空部が開口した側を下部リング3の貫通穴形成ピンの間に挿入し、30束が下部リング内に略均等に分散するように配置した。この際、厚み1mmの発泡ポリエチレンシートを捲回して成形した円柱状のスペーサー(外径70mm、長さ800mm)を予め下部リング側の中空糸膜束内に挿入しておいた。
この後、実施例1〜9の中空糸膜ろ過素子の製造と同様にして中空糸膜ろ過素子を作製した。
First, the upper head 2, the lower ring 3, and the pipe were fixed to the casting jig used in the manufacture of the hollow fiber membrane filtration elements of Examples 1-9. Nineteen through-hole forming pins made of polyethylene having a diameter of 11 mm and a length of 70 mm were inserted through a through-hole 6 ′ provided in the lower ring 3. In addition, this through-hole shaping | molding pin was the same as that used by manufacture of the hollow fiber membrane filtration element of Examples 1-9, and the collar part was made to contact | abut to the partition plate in a lower ring.
The hollow fiber membrane bundle was closed at a hollow portion of 5 mm from one end, and then divided into 30 bundles of 110 pieces in a state where each hollow fiber membrane was separated, and the end portion was fixed with a tape having a width of 5 mm. The side where the hollow portion of each bundle was closed was inserted into a perforated plate (diameter 150 mm, thickness 10 mm) having 30 holes with a diameter of 17 mm, and the perforated plate was accommodated in the upper head 2.
Next, the side where the hollow portions of the 110 small bundles were opened was inserted between the through-hole forming pins of the lower ring 3, and the 30 bundles were arranged so as to be substantially evenly distributed in the lower ring. At this time, a cylindrical spacer (outer diameter 70 mm, length 800 mm) formed by winding a foamed polyethylene sheet having a thickness of 1 mm was previously inserted into the hollow fiber membrane bundle on the lower ring side.
Then, the hollow fiber membrane filtration element was produced similarly to manufacture of the hollow fiber membrane filtration element of Examples 1-9.

上記の操作によって、中空糸膜束の一方の端部が30束の小束に分割された状態で上部ヘッド2に固定され、他方の端部が同様に30束の小束に分割された状態で下部リング3に固定された外圧型の中空糸膜ろ過素子が得られた。該ろ過素子は、膜有効長が2000mm、膜面積25m2 である。そして、上部ヘッドの端部固定部における中空糸膜束の外周と上部ヘッドの外周との差異が11mmであり、下部リングの端部固定部における中空糸膜束の外周と下部リングの外周との差異が5mmである。なお、該中空糸膜ろ過素子における中空糸膜の保有可能容積は、6.1リットルである。 By the above operation, one end of the hollow fiber membrane bundle is fixed to the upper head 2 in a state of being divided into 30 small bundles, and the other end is similarly divided into 30 small bundles Thus, an external pressure type hollow fiber membrane filtration element fixed to the lower ring 3 was obtained. The filtration element has an effective membrane length of 2000 mm and a membrane area of 25 m 2 . The difference between the outer periphery of the hollow fiber membrane bundle at the end fixing portion of the upper head and the outer periphery of the upper head is 11 mm, and the outer periphery of the hollow fiber membrane bundle at the end fixing portion of the lower ring and the outer periphery of the lower ring are The difference is 5 mm. In addition, the volume which can hold | maintain the hollow fiber membrane in this hollow fiber membrane filtration element is 6.1 liters.

次いで、保存液として65重量%のグリセリン水溶液を用いた他は、実施例2と同様にして中空糸膜ろ過素子の湿潤化処理を行った。
その後、該中空糸膜ろ過素子を実施例2と同じ2種類のフィルムに収納し、各フィルム内での減圧操作における絶対圧力を80kPaに変えた他は、実施例2と同様にして包装体を2本製造した。なお、該包装体では緩衝材を使用していない。
該中空糸膜ろ過素子包装体は、中空糸膜の長さ方向の95%以上の領域において中空糸膜束外周部とガス遮断性フィルムとが密着しており、上部ヘッド端から約30mmの領域において中空糸膜束外周がガス遮断性フィルムと密着していない状態であった。
Subsequently, the hollow fiber membrane filtration element was wetted in the same manner as in Example 2 except that a 65% by weight glycerin aqueous solution was used as a preservation solution.
Thereafter, the hollow fiber membrane filtration element was housed in the same two types of films as in Example 2, and the package was prepared in the same manner as in Example 2 except that the absolute pressure in the decompression operation in each film was changed to 80 kPa. Two were produced. The package does not use a cushioning material.
In the hollow fiber membrane filtration element package, the outer periphery of the hollow fiber membrane bundle and the gas barrier film are in close contact with each other in a region of 95% or more in the length direction of the hollow fiber membrane, and the region of about 30 mm from the upper head end. In Fig. 1, the outer periphery of the hollow fiber membrane bundle was not in close contact with the gas barrier film.

該包装体2本について輸送試験を行った。
1本について実施例2と同様にして輸送試験後直後のリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ傷は全くなく、部分的に軽微な凹みが生じていただけであり、実用上問題ないと推定される状態であった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.4m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.3kg、7.1kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を測定し、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところリークは無かった。また、前記と同様に中空糸膜の外観を詳細に観察したところ傷は全くなく、部分的に軽微な凹みが生じていただけであり、実用上問題ないと推定される状態であった。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.2m/hであり、保存前の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.3kg、7.1kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ前記と同様に1.5倍であった。
本実施例のように中空糸膜が小束状態で固定されている場合には、緩衝材を用いなくてもよい。通常は10本〜300本、好ましくは20本〜150本の小束とするのが良い。
A transport test was conducted on the two packages.
A leak test was conducted immediately after the transportation test in the same manner as in Example 2 for one, and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no flaw at all, and only a slight dent was produced, and it was estimated that there was no practical problem.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.4 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.3 kg, and 7.1 kg, respectively. From these values and the density (1.16 kg / l) of the recovered storage solution (glycerin aqueous solution), the content volume of the solution was measured, and the ratio with the volume that could be held was calculated to be 1.5 times.
Further, the remaining one was stored at the same time as Example 2 for 6 months. A leak test was conducted after storage and there was no leak. Further, when the appearance of the hollow fiber membrane was observed in detail in the same manner as described above, there was no flaw at all, and only a slight dent was produced, and it was estimated that there was no practical problem.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.2 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element before storage.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.5 liter, 17.3 kg, and 7.1 kg, respectively. From these values and the density (1.16 kg / l) of the collected preservation solution (glycerin aqueous solution), the content volume of the solution was calculated and the ratio with the holdable volume was calculated to be 1.5 times as described above. .
When the hollow fiber membrane is fixed in a small bundle as in this embodiment, the cushioning material need not be used. Usually, a small bundle of 10 to 300, preferably 20 to 150 is preferable.

[比較例1]
緩衝材とガス遮断性フィルムを用いず、フィルム内の空気を除去する操作を行わずに密封した他は、実施例1と同様にして包装体を1本製造した。該包装体内では、中空糸膜とフィルムとが密着しておらず、中空糸膜が容易に移動できる状態であった。
該包装体について輸送試験を行った。
実施例1と同様にしてリーク試験を行ったところ、4ヶ所でリークが確認された。該リーク個所を観察したところ、中空糸膜束外周の中空糸膜4本が下部リング端において切断していた。また、中空糸膜外周の中空糸膜において、凹んでいる部分が15か所確認された。
[Comparative Example 1]
A package was produced in the same manner as in Example 1 except that the cushioning material and the gas barrier film were not used and the film was sealed without the operation of removing the air in the film. In the package, the hollow fiber membrane and the film were not in close contact with each other, and the hollow fiber membrane was easily movable.
The package was subjected to a transportation test.
When a leak test was conducted in the same manner as in Example 1, leaks were confirmed at four locations. When the leak portion was observed, four hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were cut at the lower ring end. In addition, 15 hollow portions were confirmed in the hollow fiber membrane on the outer periphery of the hollow fiber membrane.

[比較例2]
ガス遮断性フィルムを用いず、フィルム内の空気を除去する操作を行わずに密封した他は、実施例2と同様にして包装体を2本製造した。該包装体内では、中空糸膜とフィルムとが密着しておらず、中空糸膜が容易に移動できる状態であった。
該包装体について輸送試験を行った。
1本について実施例2と同様にしてリーク試験を行ったところリークは無かった。中空糸膜の外観を詳細に観察したところ、凹んでいる部分が7か所確認された。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ3.2m/hであり、製造直後の中空糸膜ろ過素子の測定値と有意差が無かった。
また、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.2リットル、13.6kg、7.0kgであった。これらの値と回収した保存液(水)の密度(1.0kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ1.1倍であった。
[Comparative Example 2]
Two packaging bodies were produced in the same manner as in Example 2 except that the gas barrier film was not used and the film was sealed without the operation of removing air in the film. In the package, the hollow fiber membrane and the film were not in close contact with each other, and the hollow fiber membrane was easily movable.
The package was subjected to a transportation test.
When one leak test was conducted in the same manner as in Example 2, there was no leak. When the appearance of the hollow fiber membrane was observed in detail, seven concave portions were confirmed.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 3.2 m 3 / h, which was not significantly different from the measurement value of the hollow fiber membrane filtration element immediately after production.
Moreover, when Vz, Wa, and Wc were measured similarly to Example 2, they were 0.2 liter, 13.6 kg, and 7.0 kg, respectively. The content volume of the liquid was determined from these values and the density (1.0 kg / l) of the collected storage liquid (water), and the ratio with the holdable volume was calculated to be 1.1 times.

さらに、残1本について実施例2と同時に6ヶ月保存した。保存後にリーク試験を行ったところ、中空糸膜の多数個所(数え切れなかった)から気泡が連続的に発生した。中空糸膜を観察したところ、特に切断している部位は見つからなかったが、凹んでいる部分が7か所確認された。
次いで、該中空糸膜ろ過素子の純水透水量を測定したところ2.2m/hであり、保存前の中空糸膜ろ過素子の測定値に比べて著しく低下していた。
該中空糸膜ろ過素子を60重量%エタノール水溶液に浸漬して湿潤処理を行った後に、再度リーク試験を行ったところ、気泡の発生は全く無かった。この結果と純水透水量の測定結果とから、前記のリーク試験時に発生した気泡は、細孔内の液が失われてしまったための現象であると判断された。即ち、6ヶ月の保存中に中空糸膜が乾いてしまったと判断された。
Further, the remaining one was stored at the same time as Example 2 for 6 months. When a leak test was performed after storage, bubbles were continuously generated from a large number of hollow fiber membranes (not counted). When the hollow fiber membrane was observed, no particularly cut portions were found, but seven recessed portions were confirmed.
Subsequently, when the pure water permeation amount of the hollow fiber membrane filtration element was measured, it was 2.2 m 3 / h, which was significantly lower than the measured value of the hollow fiber membrane filtration element before storage.
When the hollow fiber membrane filtration element was immersed in a 60% by weight aqueous ethanol solution for wet treatment and then subjected to a leak test again, no bubbles were generated. From this result and the measurement result of the pure water permeation amount, it was determined that the bubbles generated during the leak test were a phenomenon caused by the loss of the liquid in the pores. That is, it was judged that the hollow fiber membrane was dried during storage for 6 months.

[比較例3]
各フィルム内の空気を除去する操作を行わずに密封した他は、実施例10と同様にして包装体を2本製造した。該包装体内では、中空糸膜とフィルムとが密着しておらず、中空糸膜が容易に移動できる状態であった。
該包装体について輸送試験を行った。
1本について実施例2と同様にしてリーク試験を行ったところ、1ヶ所でリークが確認された。中空糸膜の外観を詳細に観察したところ、中空糸膜束外周の中空糸膜1本が下部リング端において切断していた。また、中空糸膜外周の中空糸膜において、凹んでいる部分が8か所確認された。なお、実施例2と同様にしてVz、Wa、Wcを測定したところ、各々、0.5リットル、17.3kg、7.1kgであった。これらの値と回収した保存液(グリセリン水溶液)の密度(1.16kg/l)から液の含有容積を求め、保有可能容積との比を計算したところ1.5倍であった。
さらに、残1本についても同様にしてリーク試験を行ったところ、2ヶ所でリークが確認された。中空糸膜の外観を詳細に観察したところ、中空糸膜束外周の中空糸膜2本が下部リング端において切断していた。また、中空糸膜外周の中空糸膜において、凹んでいる部分が10か所確認された。
[Comparative Example 3]
Two packages were produced in the same manner as in Example 10 except that the film was sealed without removing the air in each film. In the package, the hollow fiber membrane and the film were not in close contact with each other, and the hollow fiber membrane was easily movable.
The package was subjected to a transportation test.
When one was subjected to a leak test in the same manner as in Example 2, a leak was confirmed at one location. When the appearance of the hollow fiber membrane was observed in detail, one hollow fiber membrane on the outer periphery of the hollow fiber membrane bundle was cut at the lower ring end. Further, in the hollow fiber membrane on the outer periphery of the hollow fiber membrane, 8 recessed portions were confirmed. When Vz, Wa, and Wc were measured in the same manner as in Example 2, they were 0.5 liter, 17.3 kg, and 7.1 kg, respectively. The content volume of the liquid was determined from these values and the density (1.16 kg / l) of the collected storage liquid (glycerin aqueous solution), and the ratio with the holdable volume was calculated to be 1.5 times.
Further, when the leak test was performed on the remaining one in the same manner, leaks were confirmed at two locations. When the appearance of the hollow fiber membrane was observed in detail, two hollow fiber membranes on the outer periphery of the hollow fiber membrane bundle were cut at the lower ring end. In addition, in the hollow fiber membrane on the outer periphery of the hollow fiber membrane, ten recessed portions were confirmed.

本発明の包装体は、輸送やハンドリング中或いは保管中に中空糸膜が損傷することが無く、更に中空糸膜が保存液で湿潤されている場合においては、中空糸膜が損傷することが無く、かつ、性能低下を起こさないので、特に膜分離活性汚泥法に用いる中空糸膜ろ過素子のような浸漬型中空糸膜ろ過素子の包装体として有用である。   In the package of the present invention, the hollow fiber membrane is not damaged during transportation, handling or storage, and when the hollow fiber membrane is wetted with a storage solution, the hollow fiber membrane is not damaged. And since it does not cause performance degradation, it is particularly useful as a package for a submerged hollow fiber membrane filtration element such as a hollow fiber membrane filtration element used in a membrane separation activated sludge method.

中空糸膜ろ過素子の一例を示す説明図である。It is explanatory drawing which shows an example of a hollow fiber membrane filtration element. 中空糸膜ろ過素子の包装体の一例を示す説明図である。It is explanatory drawing which shows an example of the package body of a hollow fiber membrane filtration element.

符号の説明Explanation of symbols

1 :中空糸膜束
2 :上部ヘッド
3 :下部リング
4 :上部ヘッド側端部固定部
5 :下部リング側端部固定部
6 :貫通穴(下部リング側端部固定部に設けられた貫通穴)
6’ :貫通穴(下部リング内の仕切り板に設けられた貫通穴)
7 :空気溜まり部
8 :支柱
9 :緩衝材
10 :ガス遮断性フィルム
11 :保護フィルム
1: Hollow fiber membrane bundle 2: Upper head 3: Lower ring 4: Upper head side end fixing part 5: Lower ring side end fixing part 6: Through hole (through hole provided in lower ring side end fixing part )
6 ': Through hole (through hole provided in the partition plate in the lower ring)
7: Air reservoir
8: Strut 9: Buffer material 10: Gas barrier film
11: Protective film

Claims (17)

複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を少なくとも1つのフィルムで包み込んだ包装体であって、少なくとも1つの端部固定部において、フィルムと中空糸膜の少なくとも一部とが密着した状態でフィルムが密封されていることを特徴とする中空糸膜ろ過素子の包装体。   A package in which an immersion type hollow fiber membrane filtration element having an end fixing portion in which at least one end portion of a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes is fixed with a casting agent is wrapped with at least one film. The package of a hollow fiber membrane filtration element, wherein the film is sealed in a state where the film and at least a part of the hollow fiber membrane are in close contact with each other at at least one end fixing portion. 少なくとも1つの端部固定部において、フィルムと中空糸膜ろ過素子との間に中空糸膜の損傷が避けられるように緩衝材が配置されていることを特徴とする請求項1記載の中空糸膜ろ過素子の包装体。   The hollow fiber membrane according to claim 1, wherein a buffer material is disposed between the film and the hollow fiber membrane filtration element so that damage to the hollow fiber membrane is avoided in at least one end fixing portion. A filter element package. 少なくとも1つの端部固定部と中空糸膜との境界部分の外周に端部固定部又は端部固定部囲繞部材とフィルムとの間に中空糸膜の損傷が避けられるように緩衝材が配置されていることを特徴とする請求項1記載の中空糸膜ろ過素子の包装体。   A cushioning material is disposed on the outer periphery of the boundary portion between at least one end fixing portion and the hollow fiber membrane so as to avoid damage to the hollow fiber membrane between the end fixing portion or the end fixing portion surrounding member and the film. The package of the hollow fiber membrane filtration element according to claim 1, wherein 緩衝材が独立空間内包構造を有する緩衝材であることを特徴とする請求項2又は3に記載の中空糸膜ろ過素子の包装体。   The package of a hollow fiber membrane filtration element according to claim 2 or 3, wherein the cushioning material is a cushioning material having an independent space inclusion structure. 緩衝材が発泡シート或いは気泡シートから成ることを特徴とする請求項2又は3に記載の中空糸膜ろ過素子の包装体。   The package of a hollow fiber membrane filtration element according to claim 2 or 3, wherein the cushioning material comprises a foam sheet or a bubble sheet. 中空糸膜ろ過素子を包み込むフィルムが複数存在し、該フィルムの少なくとも1つがガス遮断性フィルムを含むことを特徴とする請求項1〜5のいずれかに記載の中空糸膜ろ過素子の包装体。   The package of hollow fiber membrane filtration elements according to any one of claims 1 to 5, wherein there are a plurality of films enclosing the hollow fiber membrane filtration elements, and at least one of the films includes a gas barrier film. 中空糸膜ろ過素子を包み込むフィルムが複数存在し、該フィルムがガス遮断性フィルムと保護フィルムとを含み、ガス遮断性フィルムと中空糸膜とが密着し、更にガス遮断性フィルムと保護フィルムとが密着していることを特徴とする請求項1〜5のいずれかに記載の中空糸膜ろ過素子の包装体。   There are a plurality of films that enclose the hollow fiber membrane filtration element, the film includes a gas barrier film and a protective film, the gas barrier film and the hollow fiber membrane are in close contact, and the gas barrier film and the protective film further The package of the hollow fiber membrane filtration element according to any one of claims 1 to 5, wherein the package is in close contact. ガス遮断性フィルムの厚みが0.03〜0.1mmであることを特徴とする請求項6又は7に記載の中空糸膜ろ過素子の包装体。   The package of a hollow fiber membrane filtration element according to claim 6 or 7, wherein the gas barrier film has a thickness of 0.03 to 0.1 mm. ガス遮断性フィルムが少なくともガス遮断性層と熱融着層とを含む多層フィルムであることを特徴とする請求項6〜8のいずれかに記載の中空糸膜ろ過素子の包装体。   The package of a hollow fiber membrane filtration element according to any one of claims 6 to 8, wherein the gas barrier film is a multilayer film including at least a gas barrier layer and a heat-sealing layer. 保護フィルムの厚みが0.1〜0.3mmである、請求項7〜9のいずれかに記載の中空糸膜ろ過素子の包装体。   The package of the hollow fiber membrane filtration element according to any one of claims 7 to 9, wherein the protective film has a thickness of 0.1 to 0.3 mm. 密封されたフィルム内が減圧状態であることを特徴とする請求項1〜10のいずれかに記載の中空糸膜ろ過素子の包装体。   The sealed body of the hollow fiber membrane filtration element according to any one of claims 1 to 10, wherein the sealed film is in a reduced pressure state. 中空糸膜ろ過素子が、中空糸膜内の細孔部に水又は水溶液を含有した中空糸膜ろ過素子であることを特徴とする請求項1〜11のいずれかに記載の中空糸膜ろ過素子の包装体。   The hollow fiber membrane filtration element according to any one of claims 1 to 11, wherein the hollow fiber membrane filtration element is a hollow fiber membrane filtration element containing water or an aqueous solution in pores in the hollow fiber membrane. Packaging. 水又は水溶液の含有容積が中空糸膜の保有可能容積の0.8〜1.5倍であることを特徴とする請求項12に記載の中空糸膜ろ過素子の包装体。   The package of the hollow fiber membrane filtration element according to claim 12, wherein the volume of water or aqueous solution is 0.8 to 1.5 times the volume that can be held by the hollow fiber membrane. 両方の端部固定部が10〜300束の小束として固定されていることを特徴とする請求項1〜13のいずれかに記載の中空糸膜ろ過素子の包装体。 The package body of the hollow fiber membrane filtration element according to any one of claims 1 to 13, wherein both end fixing portions are fixed as small bundles of 10 to 300 bundles. 複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を包装するに際して、中空糸膜ろ過素子をフィルム内に収納する工程及びフィルム内の空気を除去して中空糸膜とフィルムとが密着した状態にし、その状態を保持しつつ密封する工程、を含むことを特徴とする請求項1記載の中空糸膜ろ過素子包装体の製造方法。   When packaging a submerged hollow fiber membrane filtration element having an end fixing portion in which at least one end of a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes is fixed with a casting agent, the hollow fiber membrane filtration element is placed in the film. 2. The hollow fiber membrane according to claim 1, further comprising: a step of housing in a film; and a step of removing air in the film so that the hollow fiber membrane and the film are in close contact with each other and sealing while maintaining the state. A method for producing a filter element package. 複数本の中空糸膜からなる中空糸膜束の少なくとも一端部が注型剤で固定された端部固定部を有する浸漬型中空糸膜ろ過素子を包装するに際して、(A)中空糸膜ろ過素子の少なくとも片方の端部固定部と中空糸膜との境界部分の外周を緩衝材で囲む工程、(B)中空糸膜ろ過素子をガス遮断性フィルム内に収納する工程、(C)中空糸膜ろ過素子を保護フィルム内に収納する工程、(D)フィルム内の空気を除去して中空糸膜とフィルムとが密着した状態にし、その状態を保持しつつ密封する工程、を含むことを特徴とする請求項2又は3に記載の中空糸膜ろ過素子包装体の製造方法。   When packaging a submerged hollow fiber membrane filtration element having an end fixing part in which at least one end part of a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes is fixed with a casting agent, (A) hollow fiber membrane filtration element A step of surrounding an outer periphery of a boundary portion between at least one end fixing portion and the hollow fiber membrane with a buffer material, (B) a step of housing the hollow fiber membrane filtration element in a gas barrier film, and (C) a hollow fiber membrane. And (D) removing the air in the film to bring the hollow fiber membrane and the film into close contact with each other, and sealing while maintaining the state. The manufacturing method of the hollow fiber membrane filtration element packaging body of Claim 2 or 3 to do. 前記(A)〜(D)の工程に先立って(E)中空糸膜ろ過素子に水又は水溶液を含有させる工程を含み、かつ、該水又は水溶液の含有容積が中空糸膜の保有可能容積の0.8〜1.5倍になるように中空糸膜ろ過素子に水又は水溶液を含有させることを特徴とする請求項16に記載の中空糸膜ろ過素子包装体の製造方法。   Prior to the steps (A) to (D), the step (E) includes a step of causing the hollow fiber membrane filtration element to contain water or an aqueous solution, and the content volume of the water or aqueous solution is the volume that can be held by the hollow fiber membrane. The method for producing a hollow fiber membrane filtration element package according to claim 16, wherein the hollow fiber membrane filtration element contains water or an aqueous solution so as to be 0.8 to 1.5 times.
JP2007334216A 2007-12-26 2007-12-26 Packaging body of hollow fiber membrane filter element Pending JP2009154910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334216A JP2009154910A (en) 2007-12-26 2007-12-26 Packaging body of hollow fiber membrane filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334216A JP2009154910A (en) 2007-12-26 2007-12-26 Packaging body of hollow fiber membrane filter element

Publications (1)

Publication Number Publication Date
JP2009154910A true JP2009154910A (en) 2009-07-16

Family

ID=40959356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334216A Pending JP2009154910A (en) 2007-12-26 2007-12-26 Packaging body of hollow fiber membrane filter element

Country Status (1)

Country Link
JP (1) JP2009154910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040026A (en) * 2014-08-12 2016-03-24 オルガノ株式会社 Reverse osmosis membrane module and method for storage of reverse osmosis membrane
CN111542478A (en) * 2017-12-28 2020-08-14 纳诺斯通沃特公司 Transport unit for a filter module and method for transporting a filter module
CN113663523A (en) * 2020-05-15 2021-11-19 三达膜科技(厦门)有限公司 Preparation method of hollow fiber membrane component
JP2022501191A (en) * 2018-09-04 2022-01-06 ガンブロ ルンディア アー・ベー How to make a filtration and / or diffuser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850473U (en) * 1971-10-14 1973-07-02
JPS5247089U (en) * 1975-09-26 1977-04-02
JPS57207503A (en) * 1981-06-15 1982-12-20 Toray Ind Inc Preservation method for semipermeable composite membrane
JPH06246138A (en) * 1992-12-28 1994-09-06 Asahi Chem Ind Co Ltd Method for preserving membrance module
JP2005254222A (en) * 2004-03-12 2005-09-22 Daicen Membrane Systems Ltd Membrane cartridge and membrane module
JP2006321511A (en) * 2005-05-17 2006-11-30 Max Co Ltd Transfer container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850473U (en) * 1971-10-14 1973-07-02
JPS5247089U (en) * 1975-09-26 1977-04-02
JPS57207503A (en) * 1981-06-15 1982-12-20 Toray Ind Inc Preservation method for semipermeable composite membrane
JPH06246138A (en) * 1992-12-28 1994-09-06 Asahi Chem Ind Co Ltd Method for preserving membrance module
JP2005254222A (en) * 2004-03-12 2005-09-22 Daicen Membrane Systems Ltd Membrane cartridge and membrane module
JP2006321511A (en) * 2005-05-17 2006-11-30 Max Co Ltd Transfer container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040026A (en) * 2014-08-12 2016-03-24 オルガノ株式会社 Reverse osmosis membrane module and method for storage of reverse osmosis membrane
CN111542478A (en) * 2017-12-28 2020-08-14 纳诺斯通沃特公司 Transport unit for a filter module and method for transporting a filter module
JP2022501191A (en) * 2018-09-04 2022-01-06 ガンブロ ルンディア アー・ベー How to make a filtration and / or diffuser
JP7213982B2 (en) 2018-09-04 2023-01-27 ガンブロ ルンディア アー・ベー Method of manufacturing a filtration and/or diffusion device
CN113663523A (en) * 2020-05-15 2021-11-19 三达膜科技(厦门)有限公司 Preparation method of hollow fiber membrane component

Similar Documents

Publication Publication Date Title
AU2015302650B2 (en) Forward osmosis membrane and forward osmosis treatment system
US20180000689A1 (en) Anaerobic Blood Storage Containers
US9724647B2 (en) Acidic gas separation module, acidic gas separation device, and telescope prevention plate
EP2959957A1 (en) Complex for acid gas separation, module for acid gas separation, and method for manufacturing module for acid gas separation
WO2017106540A1 (en) Selectively permeable graphene oxide membrane
CN107074429A (en) Sorbent material for extending agricultural product (produce) storage life
JP2009154910A (en) Packaging body of hollow fiber membrane filter element
JP5367368B2 (en) Method for producing hollow fiber membrane bundle
JP4032025B2 (en) Packaging assembly for piperazine-based membrane
JP6202473B2 (en) Stock solution for porous membrane
JP2015134310A (en) Acidic gas separation module
CN101480580B (en) Packaging body of hollow fiber film filtering element
CN103842058B (en) The hydrophilization methods of hollow fiber film assembly
JP2004195380A (en) Package of liquid separation membrane module, method for manufacturing the package and method for preserving the module
JP4919718B2 (en) Packaging method for hollow fiber membrane cartridge
JP2007210642A (en) Package and packing method for hollow fiber
JP6917155B2 (en) Packaging method for accelerated transport membrane
JP3270184B2 (en) How to save the membrane module
US20230302414A1 (en) Devices for purifying a liquid, and related systems and methods
JP2015054696A (en) Separation membrane roll package and packaging method of separation membrane roll
JP2020069443A (en) Separation membrane module and method for producing the same
JPH057743A (en) Hollow yarn membrane module
JP2019177340A (en) Composite semipermeable membrane
JP2008137001A (en) Immersion-type membrane module storage method and removing method
JP2003210948A (en) Method for producing hollow fiber membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120607