JP2009153514A - Cardiomyocyte differentiation-inducing promotor and method for using the same - Google Patents
Cardiomyocyte differentiation-inducing promotor and method for using the same Download PDFInfo
- Publication number
- JP2009153514A JP2009153514A JP2008266699A JP2008266699A JP2009153514A JP 2009153514 A JP2009153514 A JP 2009153514A JP 2008266699 A JP2008266699 A JP 2008266699A JP 2008266699 A JP2008266699 A JP 2008266699A JP 2009153514 A JP2009153514 A JP 2009153514A
- Authority
- JP
- Japan
- Prior art keywords
- mesenchymal stem
- stem cells
- pioglitazone
- cells
- cardiomyocytes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
本発明は、心筋細胞分化誘導促進剤及びその使用方法に関する。 The present invention relates to a cardiomyocyte differentiation induction promoter and a method for using the same.
間葉系幹細胞は、骨芽細胞、骨細胞、脂肪細胞、軟骨細胞、筋肉細胞、ストローマ細胞、腱細胞等間葉系細胞への多分化能及び自己増殖能を有しているため、骨や軟骨、筋肉等の再生医療への応用が期待されている。 Mesenchymal stem cells have multipotency and self-proliferation ability to mesenchymal cells such as osteoblasts, bone cells, adipocytes, chondrocytes, muscle cells, stromal cells, tendon cells, etc. Application to regenerative medicine such as cartilage and muscle is expected.
現在までに、心筋細胞に分化する能力を有する細胞として、子宮内膜、月経血、臍帯血、又は胎児付属臓器から単離された間葉系幹細胞が同定されている。この間葉系幹細胞は、フィーダー細胞との共培養により、心筋細胞に分化することが分かっている(例えば、特許文献1参照)。しかしながら、間葉系幹細胞を心筋細胞へ高い効率で分化誘導させる方法は、未だ開発されていない。
本発明は、心筋細胞分化誘導促進剤、及びその使用方法を提供することを目的とする。 An object of the present invention is to provide a cardiomyocyte differentiation induction promoter and a method for using the same.
本発明者らは、以下の実施例に示すように、間葉系幹細胞をフィーダー細胞と共培養して心筋細胞に分化誘導させる際、予めピオグリタゾン存在下で間葉系幹細胞を前処理することによって、間葉系幹細胞の心筋細胞への分化誘導を促進できることを明らかにし、本発明を完成するに至った。 As shown in the following examples, the present inventors pre-treat mesenchymal stem cells in the presence of pioglitazone in advance when co-culturing mesenchymal stem cells with feeder cells to induce differentiation into cardiomyocytes. Thus, it was clarified that differentiation induction of mesenchymal stem cells into cardiomyocytes can be promoted, and the present invention has been completed.
すなわち、本発明にかかる心筋細胞分化誘導促進剤は、間葉系幹細胞の心筋細胞への分化誘導を促進する促進剤であって、ピオグリタゾン(pioglitazone)を有効成分として含有する。ここで、前記間葉系幹細胞としては、例えば、骨髄、臍帯血、又は胎盤由来の間葉系幹細胞等が挙げられる。 That is, the cardiomyocyte differentiation induction promoter according to the present invention is a promoter that promotes differentiation induction of mesenchymal stem cells into cardiomyocytes, and contains pioglitazone as an active ingredient. Here, examples of the mesenchymal stem cells include bone marrow, umbilical cord blood, or placenta-derived mesenchymal stem cells.
本発明にかかる心筋細胞分化誘導促進方法は、間葉系幹細胞の心筋細胞への分化誘導を促進する方法であって、ピオグリタゾン存在下において間葉系幹細胞を培養することを特徴とする。ここで、前記間葉系幹細胞としては、例えば、骨髄、臍帯血、又は胎盤由来の間葉系幹細胞等が挙げられる。また、前記フィーダー細胞は、哺乳類胎仔由来の心筋細胞であることが好ましい。さらに、前記心筋細胞分化誘導促進方法においては、ピオグリタゾン存在下において、2週間以上間葉系幹細胞を培養することが好ましい。 The cardiomyocyte differentiation induction promoting method according to the present invention is a method for promoting differentiation induction of mesenchymal stem cells into cardiomyocytes, characterized by culturing mesenchymal stem cells in the presence of pioglitazone. Here, examples of the mesenchymal stem cells include bone marrow, umbilical cord blood, or placenta-derived mesenchymal stem cells. The feeder cells are preferably cardiomyocytes derived from a mammalian fetus. Further, in the cardiomyocyte differentiation induction promoting method, it is preferable to culture the mesenchymal stem cells for 2 weeks or more in the presence of pioglitazone.
本発明にかかる間葉系幹細胞は、心筋細胞へ分化する能力を有する間葉系幹細胞であって、前記間葉系幹細胞は、ピオグリタゾンで処理されたことを特徴とする。ここで、前記間葉系幹細胞は、例えば、骨髄、臍帯血、又は胎盤由来の間葉系幹細胞等が挙げられる。また、前記間葉系幹細胞は、ピオグリタゾン存在下において2週間以上培養されたことが好ましい。 The mesenchymal stem cell according to the present invention is a mesenchymal stem cell capable of differentiating into a cardiomyocyte, wherein the mesenchymal stem cell is treated with pioglitazone. Here, examples of the mesenchymal stem cells include bone marrow, umbilical cord blood, or placenta-derived mesenchymal stem cells. The mesenchymal stem cells are preferably cultured for 2 weeks or more in the presence of pioglitazone.
本発明にかかる医薬組成物は、上記いずれかの間葉系幹細胞を含有する。特に、心筋梗塞、心筋炎、又は心筋症の治療に用いられることが好ましい。 The pharmaceutical composition according to the present invention contains any one of the above mesenchymal stem cells. In particular, it is preferably used for the treatment of myocardial infarction, myocarditis, or cardiomyopathy.
本発明にかかる分化誘導方法は、間葉系幹細胞を心筋細胞へ分化させる分化誘導方法であって、前記間葉系細胞をピオグリタゾンで処理する工程と、ピオグリタゾンで処理した前記間葉系細胞をフィーダー細胞上で培養する工程と、を含有することを特徴とする。ここで、前記間葉系幹細胞は、例えば、骨髄、臍帯血、又は胎盤由来の間葉系幹細胞等が挙げられる。前記フィーダー細胞は、哺乳類胎仔由来の心筋細胞であることが好ましい。また、前記分化誘導方法においては、間葉系幹細胞が、ピオグリタゾン存在下において、2週間以上培養されることが好ましい。 The differentiation induction method according to the present invention is a differentiation induction method for differentiating mesenchymal stem cells into cardiomyocytes, the step of treating the mesenchymal cells with pioglitazone, and feeding the mesenchymal cells treated with pioglitazone into a feeder And culturing on the cells. Here, examples of the mesenchymal stem cells include bone marrow, umbilical cord blood, or placenta-derived mesenchymal stem cells. The feeder cells are preferably cardiomyocytes derived from a mammalian fetus. In the differentiation induction method, the mesenchymal stem cells are preferably cultured for 2 weeks or more in the presence of pioglitazone.
本発明によって、心筋細胞分化誘導促進剤及びその使用方法を提供することができるようになった。 According to the present invention, a cardiomyocyte differentiation induction promoter and a method for using the same can be provided.
以下に、本発明の実施の形態において実施例を挙げながら具体的かつ詳細に説明するが、本発明はこれらに限定されるものではない。
市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
Hereinafter, the present invention will be described specifically and in detail with reference to examples, but the present invention is not limited thereto.
When using commercially available reagent kits and measuring devices, unless otherwise explained, the protocols attached to them are used.
なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。 The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention and are shown for illustration or explanation, and the present invention is not limited to them. It is not limited. It will be apparent to those skilled in the art that various modifications can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.
(1)薬理作用
ピオグリタゾン(pioglitazone)存在下において骨髄由来の間葉系幹細胞を培養し、この培養後の間葉系幹細胞をフィーダー細胞である哺乳類胎仔由来の心筋細胞と共培養すると、間葉系幹細胞の心筋細胞への分化を促進することができる。このことから、ピオグリタゾンは、分化誘導前の間葉系幹細胞に作用することによって、その間葉系幹細胞の分化状態を心筋細胞の方向へ進めると考えられる。
ここで、間葉系幹細胞としては、心筋細胞へ分化する能力を有する間葉系幹細胞であればよく、例えば、骨髄、末梢血、G−CSF投与後の末梢血、臍帯血、又は胎盤付属臓器由来の間葉系幹細胞等が挙げられるが、これらに限定されない。
(1) Pharmacological action When mesenchymal stem cells derived from bone marrow are cultured in the presence of pioglitazone, and the cultured mesenchymal stem cells are co-cultured with mammalian fetal cardiomyocytes as feeder cells, the mesenchymal system Differentiation of stem cells into cardiomyocytes can be promoted. From this, it is considered that pioglitazone acts on the mesenchymal stem cells before induction of differentiation to advance the differentiated state of the mesenchymal stem cells in the direction of cardiomyocytes.
Here, the mesenchymal stem cell may be a mesenchymal stem cell having the ability to differentiate into cardiomyocytes, for example, bone marrow, peripheral blood, peripheral blood after administration of G-CSF, umbilical cord blood, or placenta accessory organ Examples include, but are not limited to, derived mesenchymal stem cells.
(2)ピオグリタゾンを含有する薬剤の有用性
前述の通り、ピオグリタゾンは、分化誘導前の間葉系幹細胞に作用することによって、その間葉系幹細胞の心筋細胞への分化誘導を促進することができる。従って、ピオグリタゾン(pioglitazone)を有効成分として含有する薬剤は、間葉系幹細胞の心筋細胞への分化誘導を促進するのに有用である。
間葉系幹細胞は、それ自身、自己複製能、自己増殖能、及び多分化能を有するため、この薬剤を用いることによって、間葉系幹細胞から多量の心筋細胞を産生することが可能になる。
現在、新薬の開発において、薬物スクリーニング試験、毒性試験、安全性薬理試験等に用いることが可能な心筋細胞の供給が求められているので、本発明の心筋細胞分化誘導方法を用いれば、このような試験の実施に合わせて、十分な量の心筋細胞を確保することが可能になる。
(2) Usefulness of Drugs Containing Pioglitazone As described above, pioglitazone acts on mesenchymal stem cells before differentiation induction, thereby promoting differentiation induction of the mesenchymal stem cells into cardiomyocytes. Therefore, a drug containing pioglitazone as an active ingredient is useful for promoting differentiation induction of mesenchymal stem cells into cardiomyocytes.
Since mesenchymal stem cells themselves have self-replicating ability, self-proliferating ability, and pluripotency, a large amount of cardiomyocytes can be produced from mesenchymal stem cells by using this drug.
Currently, in the development of new drugs, there is a demand for the supply of cardiomyocytes that can be used in drug screening tests, toxicity tests, safety pharmacology tests, and the like. It is possible to secure a sufficient amount of cardiomyocytes in accordance with the implementation of such tests.
(3)上記薬剤の製造
本発明のピオグリタゾンを有効成分として含有する薬剤としては、例えば、ピオグリタゾン塩酸塩((±)-5-[4-[2(5-ethyl-2-pyridyl) ethoxy]-benzyl] thiazolidine-2, 4-dione monohydrochloride)等が挙げられる。本発明の薬剤は、当業者に公知の技術を用いて合成してもよいし、市販のものを用いてもよい。
(3) Manufacture of the above drug As a drug containing the pioglitazone of the present invention as an active ingredient, for example, pioglitazone hydrochloride ((±) -5- [4- [2 (5-ethyl-2-pyridyl) ethoxy]- benzyl] thiazolidine-2, 4-dione monohydrochloride). The agent of the present invention may be synthesized using techniques known to those skilled in the art, or commercially available products may be used.
(4)間葉系幹細胞の心筋細胞への分化誘導方法
間葉系幹細胞を心筋細胞へ分化誘導する方法としては、フィーダー細胞(例えば、心筋細胞)との共培養、5-アザシチジン、DMSO、又はオキシトシンの投与等が挙げられる。
(4) Method for inducing differentiation of mesenchymal stem cells into cardiomyocytes As a method for inducing differentiation of mesenchymal stem cells into cardiomyocytes, co-culture with feeder cells (for example, cardiomyocytes), 5-azacytidine, DMSO, or Examples include administration of oxytocin.
以下、間葉系幹細胞を心筋細胞へ分化誘導する方法の一例として、間葉系幹細胞とフィーダー細胞を共培養することにより、間葉系幹細胞を心筋細胞へ分化誘導する方法について述べる。 Hereinafter, as an example of a method for inducing differentiation of mesenchymal stem cells into cardiomyocytes, a method for inducing differentiation of mesenchymal stem cells into cardiomyocytes by co-culturing mesenchymal stem cells and feeder cells will be described.
(i)間葉系幹細胞の調製及び前処理
間葉系幹細胞は、骨髄、末梢血、G−CSF投与後の末梢血、臍帯血、又は胎盤付属臓器等から採取することができる。なお、骨髄の採取部位は特に限定されないが、例えば、脊椎、胸骨、腸骨等の骨髄を用いることができる。
これらの材料から間葉系幹細胞を調製する際、例えば骨髄、胎盤付属臓器のように、この材料が間葉系幹細胞を巻き込んだ細胞塊になっている場合には、含まれている細胞を解離するために、材料に対してピペッティング等による物理的処理や、酵素等による化学的処理を行えばよい。酵素としては、トリプシン、コラゲナーゼ等、常法で用いられている酵素が挙げられる。また、例えば、末梢血、臍帯血等の血液から間葉系幹細胞を調製する際は、低張溶液(例えば、水等)で処理することにより、赤血球を溶血しておくことが好ましい。このように、用いる材料に対して適切な処理を行って、間葉系幹細胞を調製する。
(I) Preparation and pretreatment of mesenchymal stem cells Mesenchymal stem cells can be collected from bone marrow, peripheral blood, peripheral blood after administration of G-CSF, umbilical cord blood, or placenta-associated organ. In addition, although the collection | recovery site | part of a bone marrow is not specifically limited, For example, bone marrows, such as a spine, a sternum, and an iliac bone, can be used.
When preparing mesenchymal stem cells from these materials, if the material is a cell mass involving mesenchymal stem cells, such as bone marrow and placenta, for example, dissociate the contained cells. For this purpose, the material may be subjected to a physical treatment such as pipetting or a chemical treatment such as an enzyme. Examples of the enzyme include enzymes conventionally used, such as trypsin and collagenase. For example, when preparing mesenchymal stem cells from blood such as peripheral blood and umbilical cord blood, it is preferable to lyse erythrocytes by treatment with a hypotonic solution (for example, water). Thus, mesenchymal stem cells are prepared by appropriately treating the material to be used.
次に、上記手法によって調製した間葉系肝細胞を遠心分離(500〜2000rpm、3〜10分)し、沈殿物に培地を入れて細胞浮遊液を調製する。ここで、培地は、間葉系幹細胞が培養することができる培地であれば特に限定されず、例えば、α−MEM(α-minimum essential medium)、DMEM(Dulbecco’s modified Eagle’s medium)、IMDM(Isocove’s modified Dulbecco’s medium)等が挙げられる。また、培地は、5〜10%ウシ胎仔血清(FCS)を含んでいることが好ましく、ペニシリン、ストレプトマイシン等の抗生物質を含んでいてもよい。細胞浮遊液を培養皿に入れて、37℃、5%CO2インキュベーターで培養する。 Next, the mesenchymal hepatocytes prepared by the above method are centrifuged (500 to 2000 rpm, 3 to 10 minutes), and a medium is added to the precipitate to prepare a cell suspension. Here, the medium is not particularly limited as long as it is a medium in which mesenchymal stem cells can be cultured. For example, α-MEM (α-minimum essential medium), DMEM (Dulbecco's modified Eagle's medium), IMDM (Isocove's modified) Dulbecco's medium). The medium preferably contains 5 to 10% fetal calf serum (FCS), and may contain antibiotics such as penicillin and streptomycin. Place the cell suspension in a culture dish and incubate at 37 ° C in a 5% CO 2 incubator.
次に、上記培養皿にピオグリタゾンを添加する。ここで、添加するピオグリタゾンの濃度は、0.1〜1μMの濃度であることが好ましく、0.1μMの濃度であることが特に好ましい。なお、ピオグリタゾンは脂溶性の化合物であるため、所定の濃度のピオグリタゾンを作製する際は、DMSO(dimethylsulfoxide)又はメタノール等の有機溶媒で希釈すればよい。このような条件下において、5日以上、好ましくは2週以上、最も好ましくは2〜3週間、37℃、5%CO2インキュベーターで培養する。 Next, pioglitazone is added to the culture dish. Here, the concentration of pioglitazone to be added is preferably 0.1 to 1 μM, and particularly preferably 0.1 μM. In addition, since pioglitazone is a fat-soluble compound, when producing pioglitazone having a predetermined concentration, it may be diluted with an organic solvent such as DMSO (dimethylsulfoxide) or methanol. Under such conditions, the cells are cultured in a 5% CO 2 incubator at 37 ° C. for 5 days or longer, preferably 2 weeks or longer, most preferably 2-3 weeks.
このような条件下で培養した結果、培養皿に付着した細胞を、以下の実験に用いる間葉系幹細胞とする。 As a result of culturing under such conditions, the cells attached to the culture dish are defined as mesenchymal stem cells used in the following experiments.
(ii)フィーダー細胞の調製
フィーダー細胞は、間葉系幹細胞の分化誘導を起こさせることができる細胞であれば特に限定されないが、心筋細胞の初代培養細胞等が挙げられる。なお、フィーダー細胞として培養細胞を用いる場合、細胞の増殖を防ぐために、用いる培養細胞に対して、γ線照射やマイトマイシン等による処理を予め施しておいてもよい。ここでは、哺乳類胎仔由来の心筋細胞を用いたフィーダー細胞の調製方法の一例について述べる(The Journal of Gene Medicine, 6, 833-845 (2004)を参照のこと)。
(Ii) Preparation of feeder cells The feeder cells are not particularly limited as long as they can induce differentiation of mesenchymal stem cells, and examples include primary cultured cells of cardiomyocytes. In addition, when using a cultured cell as a feeder cell, in order to prevent the proliferation of a cell, you may give the process by a gamma irradiation, mitomycin, etc. previously to the cultured cell to be used. Here, an example of a method for preparing feeder cells using mammalian fetal cardiomyocytes will be described (see The Journal of Gene Medicine, 6, 833-845 (2004)).
まず、胎生14〜16日目の哺乳類(例えば、マウス等)の胎仔の心臓を切除し、5〜10%ウシ胎仔血清含有DMEM培地、又は5〜10%ウシ胎仔血清含有DMEM/F−12培地に入れ、眼科用ハサミを用いて細かく切る。次に、心筋組織から心筋細胞を解離するために、組織の間質を消化するトリプシンなどの酵素を上記培養皿に入れて、37℃で5分間インキュベートする。 First, excision of the fetal heart of a mammal (for example, mouse, etc.) on the 14th to 16th day of gestation, DMEM medium containing 5 to 10% fetal calf serum, or DMEM / F-12 medium containing 5 to 10% fetal calf serum And cut into pieces using ophthalmic scissors. Next, in order to dissociate cardiomyocytes from the myocardial tissue, an enzyme such as trypsin that digests the stroma of the tissue is placed in the culture dish and incubated at 37 ° C. for 5 minutes.
酵素処理後、上記手法によって調製した細胞を遠心分離(500〜2000rpm、3〜10分)し、沈殿物にDMEMなどの培地を入れて細胞浮遊液を調製する。また、培地は、5〜10%ウシ胎仔血清(FCS)を含んでいることが好ましく、ペニシリン、ストレプトマイシン等の抗生物質を含んでいてもよい。細胞浮遊液を培養皿に入れて、37℃、5%CO2インキュベーターで培養する。培養後、培養上清を吸引によって除去し、培養皿に付着した細胞を、以下の実験に用いるフィーダー細胞とする。 After enzyme treatment, the cells prepared by the above method are centrifuged (500 to 2000 rpm, 3 to 10 minutes), and a medium such as DMEM is added to the precipitate to prepare a cell suspension. The medium preferably contains 5 to 10% fetal calf serum (FCS), and may contain antibiotics such as penicillin and streptomycin. Place the cell suspension in a culture dish and incubate at 37 ° C in a 5% CO 2 incubator. After culture, the culture supernatant is removed by aspiration, and the cells attached to the culture dish are used as feeder cells for the following experiments.
(iii)間葉系幹細胞の心筋細胞への分化誘導
「(ii)フィーダー細胞の調製」に従って調製したフィーダー細胞上に、「(i)間葉系幹細胞の調製及び前処理」に従って調製した間葉系幹細胞を、1×101〜1×102/cm2の濃度になるように添加し、37℃、5%CO2インキュベーターで培養する。
なお、フィーダー細胞と間葉系幹細胞とを区別するために、間葉系幹細胞を予め標識しておいてもよい。標識方法としては、例えば、GFP遺伝子を間葉系幹細胞に遺伝子導入して標識したり、細胞に無害な色素を微細注入することにより標識したりする方法等が挙げられる(The Journal of Gene Medicine, 6, 833-845 (2004)を参照のこと)。
(Iii) Induction of differentiation of mesenchymal stem cells into cardiomyocytes On the feeder cells prepared according to “(ii) Preparation of feeder cells”, mesenchyme prepared according to “(i) Preparation and pretreatment of mesenchymal stem cells” Stem cells are added to a concentration of 1 × 10 1 to 1 × 10 2 / cm 2 and cultured in a 37 ° C., 5% CO 2 incubator.
In order to distinguish between feeder cells and mesenchymal stem cells, the mesenchymal stem cells may be labeled in advance. Examples of the labeling method include a method of introducing a GFP gene into a mesenchymal stem cell and labeling, or a method of labeling by microinjecting a harmless dye into cells (The Journal of Gene Medicine, 6, 833-845 (2004)).
(iv)分化誘導された心筋細胞の同定
分化誘導された心筋細胞は、一つ一つの細胞の辺縁が細胞の中心方向に集合するように拍動し、収縮時に細胞質が厚くなるため、間葉系幹細胞を予めGFP等で蛍光標識しておけば、心筋細胞を細胞レベルで同定することができ、容易に心筋細胞を観察できるようになる。また、複数の細胞の拍動が同期化して、一群の細胞で拍動を打つようになることもある。分化誘導された心筋細胞はこのような特徴を有するので、顕微鏡下において、容易に同定することができる。
(Iv) Identification of differentiation-induced cardiomyocytes Differentiation-induced cardiomyocytes pulsate so that the edges of each cell gather toward the center of the cell, and the cytoplasm becomes thicker during contraction. If the leaf stem cells are fluorescently labeled with GFP or the like in advance, the cardiomyocytes can be identified at the cell level, and the cardiomyocytes can be easily observed. In addition, the pulsation of a plurality of cells may be synchronized, and the pulsation may occur with a group of cells. Differentiated cardiomyocytes have such characteristics and can be easily identified under a microscope.
あるいは、心筋細胞に特異的なマーカーを用いて、分化誘導した心筋細胞数を測定してもよい。例えば、in situ hybridization法や免疫染色法などにより、心筋細胞に特異的なmRNAやタンパク質の発現を検出することができる。心筋細胞に特異的なマーカーとしては、例えば、Nkx2.5/Csx、GATA4、TEF-1、MEF-2C、MEF-2D、MEF-2A、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、α−ミオシン重鎖(α-MHC)、β−ミオシン重鎖(β-MHC)、ミオシン軽鎖−2a(MLC-2a)、ミオシン軽鎖−2v(MLC-2v)、α−心筋アクチン、心筋Troponin T、connexin43(Cnx43)等が挙げられる(J. Clin. Invest., 103, 697-705 (1999)を参照のこと)が、これらに限定されない。 Alternatively, the number of cardiomyocytes induced to differentiate may be measured using a marker specific for cardiomyocytes. For example, the expression of mRNA or protein specific to cardiomyocytes can be detected by in situ hybridization or immunostaining. Examples of markers specific to cardiomyocytes include Nkx2.5 / Csx, GATA4, TEF-1, MEF-2C, MEF-2D, MEF-2A, atrial natriuretic peptide (ANP), brain natriuretic peptide ( BNP), α-myosin heavy chain (α-MHC), β-myosin heavy chain (β-MHC), myosin light chain-2a (MLC-2a), myosin light chain-2v (MLC-2v), α-myocardium Examples include, but are not limited to, actin, myocardial Troponin T, connexin 43 (Cnx43) and the like (see J. Clin. Invest., 103, 697-705 (1999)).
(5)ピオグリタゾンで処理した間葉系細胞を含有する医薬組成物
本発明に従いピオグリタゾンで処理すると、間葉系幹細胞の心筋細胞への分化を促進することができる。従って、予めピオグリタゾンで処理した間葉系細胞を、心筋細胞の変性や壊死を起こしている部位に移植することにより、間葉系幹細胞の心筋細胞への分化を促進して心筋細胞を効率的に再生することができる。特に、患者から単離した間葉系細胞をピオグリタゾンで処理し、自家移植することにより、移植による拒絶反応の問題が無くなるとともに、再生医療におけるドナー不足等の問題を解消することができる。具体例としては、ピオグリタゾンで処理した間葉系細胞を含有した医薬組成物は、心筋梗塞、心筋炎、心筋症等の心筋細胞の変性や壊死を有する疾患の治療薬を製造するのに有用である。
(5) Pharmaceutical composition containing mesenchymal cells treated with pioglitazone When treated with pioglitazone according to the present invention, differentiation of mesenchymal stem cells into cardiomyocytes can be promoted. Therefore, by transplanting the mesenchymal cells previously treated with pioglitazone into a site where cardiomyocyte degeneration or necrosis occurs, the differentiation of mesenchymal stem cells into cardiomyocytes is promoted and the cardiomyocytes are efficiently Can be played. In particular, by treating mesenchymal cells isolated from a patient with pioglitazone and autotransplanting, the problem of rejection due to transplantation can be eliminated, and problems such as donor shortage in regenerative medicine can be solved. As a specific example, a pharmaceutical composition containing mesenchymal cells treated with pioglitazone is useful for producing a therapeutic agent for a disease having degeneration or necrosis of myocardial cells such as myocardial infarction, myocarditis, cardiomyopathy. is there.
以下、実施例を用いて、以上に説明した実施態様を具体的に説明するが、これは例示であって、本発明をこの実施例に限定するものではない。これらの実施例より、間葉系幹細胞の心筋細胞への分化誘導を促進するためには、ピオグリタゾン存在下において間葉系幹細胞を予め培養しておくことが有効であることが示される。 Hereinafter, although the embodiment described above will be specifically described using examples, this is an exemplification, and the present invention is not limited to these examples. These examples show that in order to promote differentiation induction of mesenchymal stem cells into cardiomyocytes, it is effective to pre-cultivate mesenchymal stem cells in the presence of pioglitazone.
<実施例1:ヒト骨髄由来の間葉系幹細胞の心筋細胞への分化誘導>
本実施例では、ヒト骨髄由来の間葉系幹細胞を用い、ピオグリタゾン存在下における心筋細胞への分化能について検討した。
<Example 1: Differentiation induction of human bone marrow-derived mesenchymal stem cells into cardiomyocytes>
In this example, mesenchymal stem cells derived from human bone marrow were used and examined for their ability to differentiate into cardiomyocytes in the presence of pioglitazone.
(1)間葉系幹細胞の調製
当施設倫理委員会で承認されたプロトコールに従って、インフォームドコンセントを行ったボランティアに対して、骨髄液の採取を行った。
まず、骨髄提供者を臥位にし、腸骨周囲を消毒した後、無菌操作下で局所麻酔を行った。麻酔にて無痛となった事を確認した後、局所麻酔下にて骨髄穿刺針を骨髄腔まで刺入し、10ccシリンジにて骨髄液を15ccから30cc採取した。
このようにして採取した骨髄液を10%FCS(牛胎仔血清)含有α−MEM培地に懸濁した。この骨髄液を、50〜100μl/cm2の濃度になるように培養皿に播種し、37℃、5%CO2インキュベーターで培養した。培養開始2日後に、赤血球を除去するために、培地交換を行った。細胞がコンフルエントに達した後、今度は5×104cells/cm2の濃度になるように10%FCS含有DMEM培地で調製し、6cm培養皿にトランスファーした。翌日、GFP遺伝子が発現するように組み込まれたアデノウイルスをこれらの細胞に感染させ(J. Gene Med., 6, 833-845 (2004))、数日間培養した後、蛍光共焦点顕微鏡を用いて、GFPの発現を確認した。
(1) Preparation of Mesenchymal Stem Cells According to a protocol approved by the Institutional Ethics Committee, bone marrow fluid was collected from volunteers who gave informed consent.
First, the bone marrow donor was placed in the supine position, and the area around the iliac was disinfected, and then local anesthesia was performed under aseptic operation. After confirming that it became painless by anesthesia, a bone marrow puncture needle was inserted into the bone marrow cavity under local anesthesia, and bone marrow fluid was collected from 15 cc to 30 cc with a 10 cc syringe.
The bone marrow fluid collected in this manner was suspended in α-MEM medium containing 10% FCS (fetal calf serum). This bone marrow fluid was seeded on a culture dish to a concentration of 50 to 100 μl / cm 2 and cultured in a 37 ° C., 5% CO 2 incubator. Two days after the start of the culture, the medium was changed to remove red blood cells. After the cells reached confluence, this was prepared in DMEM medium containing 10% FCS to a concentration of 5 × 10 4 cells / cm 2 and transferred to a 6 cm culture dish. The next day, these cells were infected with adenovirus integrated to express the GFP gene (J. Gene Med., 6, 833-845 (2004)), cultured for several days, and then using a confocal microscope. The expression of GFP was confirmed.
(2)ピオグリタゾンによる前処置
ピオグリタゾンを用いて、以下の処置を行なった。なお、予め、DMSO又はメタノールを用いて、1mMのピオグリタゾンストック溶液を作製し、DMSO及びメタノールが間葉系幹細胞の心筋細胞への分化誘導に影響がないことを確認した。
まず、GFP発現間葉系幹細胞を、0.1μMピオグリタゾン及び10%FCS含有DMEM培地を用いて、37℃、5%CO2インキュベーターで2週間培養した。なお、コントロールとして、0.1μMピオグリタゾンを含有しない10%FCS含有DMEM培地を培地に用いて、同様の実験を行った。
(2) Pretreatment with pioglitazone The following treatment was performed using pioglitazone. In addition, a 1 mM pioglitazone stock solution was prepared in advance using DMSO or methanol, and it was confirmed that DMSO and methanol had no effect on the induction of differentiation of mesenchymal stem cells into cardiomyocytes.
First, GFP-expressing mesenchymal stem cells were cultured in a DMEM medium containing 0.1 μM pioglitazone and 10% FCS for 2 weeks in a 37 ° C., 5% CO 2 incubator. As a control, a similar experiment was performed using 10% FCS-containing DMEM medium not containing 0.1 μM pioglitazone as the medium.
(3)フィーダー細胞の調製
フィーダー細胞としては、マウス胎仔由来の心筋細胞を用いた。その調製は以下のようにして行った。
まず、胎生14〜16日目の心臓を切除し、10%ウシ胎仔血清含有DMEM培地中で、眼科用ハサミを用いて、細かく切った。心筋組織から心筋細胞を解離させるために、組織の間質を消化するタンパク質分解酵素(0.05%トリプシン及び0.25mmol/L EDTA含有PBS)を培地に添加し、37℃5分間インキュベートした。
酵素処理後、遠心分離(1500rpm、3分)し、沈殿した細胞を10%ウシ胎仔血清含有DMEM培地に懸濁して細胞浮遊液を調製し、培養皿に播種して37℃でインキュベートした。30分〜3時間後、培養上清を吸引によって除去し、培養皿に付着した細胞を、以下の実験に用いた。
(3) Preparation of feeder cells As feeder cells, mouse embryonic cardiomyocytes were used. The preparation was performed as follows.
First, the hearts of embryonic day 14-16 were excised and finely cut in a DMEM medium containing 10% fetal bovine serum using scissors for ophthalmology. In order to dissociate cardiomyocytes from the myocardial tissue, a proteolytic enzyme (PBS containing 0.05% trypsin and 0.25 mmol / L EDTA) that digests the stroma of the tissue was added to the medium and incubated at 37 ° C. for 5 minutes.
After enzyme treatment, the mixture was centrifuged (1500 rpm, 3 minutes), and the precipitated cells were suspended in DMEM medium containing 10% fetal bovine serum to prepare a cell suspension, seeded on a culture dish, and incubated at 37 ° C. After 30 minutes to 3 hours, the culture supernatant was removed by aspiration, and the cells attached to the culture dish were used for the following experiments.
(4)ヒト骨髄由来の間葉系幹細胞の心筋細胞への分化誘導
ピオグリタゾンで前処置した間葉系幹細胞を、5×104cells/cm2の濃度になるように0.1μMピオグリタゾン及び10%FCS含有DMEM培地で調製した。この間葉系幹細胞を、予め5×103cells/cm2の濃度になるように培養皿に播種したマウス胎仔由来の心筋細胞の上に重層し、37℃、5%CO2インキュベーターで培養した(J. Gene Med., 6, 833-845 (2004))。
(4) Induction of differentiation of mesenchymal stem cells derived from human bone marrow into cardiomyocytes Mesenchymal stem cells pretreated with pioglitazone are 0.1 μM pioglitazone and 10% FCS so that the concentration becomes 5 × 10 4 cells / cm 2. Prepared with containing DMEM medium. The mesenchymal stem cells were layered on mouse embryonic cardiomyocytes previously seeded in a culture dish to a concentration of 5 × 10 3 cells / cm 2 and cultured in a 37 ° C., 5% CO 2 incubator ( J. Gene Med., 6, 833-845 (2004)).
(5)分化誘導した心筋細胞の評価
本実施例では、Troponin I発現を心筋細胞の分化マーカーとして用い、分化誘導率として、免疫染色によってTroponin Iを発現している細胞の頻度を算出し(Exp Cell Res., 15, 313 (12), 2550-62 (2007 Jul))(図において「誘導率」ともいう)、間葉系幹細胞の心筋細胞への分化誘導を評価した。
(5) Evaluation of differentiation-induced cardiomyocytes In this example, Troponin I expression was used as a differentiation marker for cardiomyocytes, and the frequency of cells expressing Troponin I by immunostaining was calculated as the differentiation induction rate (Exp Cell Res., 15, 313 (12), 2550-62 (2007 Jul)) (also referred to as “induction rate” in the figure), and the differentiation induction of mesenchymal stem cells into cardiomyocytes was evaluated.
(i)免疫染色法を用いた評価方法
間葉系幹細胞とフィーダー細胞である心筋細胞を共培養してから1週間後、培養皿に存在する細胞に対して、ヒト心筋細胞に特異的なタンパク質であるTroponin Iに対する抗体(Monoclonal mouse anti-cardiac Troponin I for human Catalogue#4T21, Hytest社)を用いて、免疫染色を行った。
(I) Evaluation method using immunostaining method One week after co-culture of mesenchymal stem cells and feeder cardiomyocytes, a protein specific for human cardiomyocytes against cells present in the culture dish Immunostaining was performed using an antibody against Troponin I (Monoclonal mouse anti-cardiac Troponin I for human Catalog # 4T21, Hytest).
まず、1%HCL含有70%エタノールで洗浄したスライドグラスに、10倍希釈したPoly-L-Lysine溶液 (P8920, Sigma社)を上層し、室温で5分間放置した後、Poly-L-Lysine溶液を除去し、スライドグラスを十分乾燥することによって、免疫染色を行うスライドグラスをリジンコートした。次に、間葉系幹細胞とフィーダー細胞である心筋細胞を共培養した後の細胞を0.25mmol/L EDTA含有PBSで剥がし、遠心分離(1500rpm、3分)し、沈殿した細胞を10%ウシ胎仔血清含有DMEM培地に入れて細胞浮遊液を調製した。この細胞浮遊液を、リジンコートしたスライドグラスの上にのせて1時間放置し、スライドグラスに細胞を接着させた後、4%ホルムアルデヒド溶液を用いて細胞を固定し、0.02% Triton-X含有PBS溶液に20分間浸して、細胞膜を破壊した。一次抗体として、抗ヒト心筋Troponin I抗体(#4T21 Lot 98/10-T21-C2 HyTest, Euro, Finland、HyTest社、400倍希釈)を上層し、保湿しながら冷蔵庫内で1日反応させた後、PBSで洗浄し、次に、二次抗体として、TRITC結合抗マウスIgG抗体(Sigma社、200倍希釈)を上層し、保湿しながら室温で30分反応させた。細胞をPBSで洗浄後、共焦点レーザー顕微鏡(FV1000, Olympus社)を用いて観察した。 First, a 10-fold diluted Poly-L-Lysine solution (P8920, Sigma) was overlaid on a glass slide washed with 70% ethanol containing 1% HCL, allowed to stand at room temperature for 5 minutes, and then the Poly-L-Lysine solution. The slide glass to be immunostained was lysine-coated by removing the sample and sufficiently drying the slide glass. Next, the cells after co-cultured with mesenchymal stem cells and feeder cardiomyocytes were peeled off with PBS containing 0.25 mmol / L EDTA, centrifuged (1500 rpm, 3 minutes), and the precipitated cells were 10% fetal bovine A cell suspension was prepared in serum-containing DMEM medium. Place this cell suspension on a slide glass coated with lysine for 1 hour, attach the cells to the slide glass, fix the cells with 4% formaldehyde solution, and then add 0.02% Triton-X in PBS. The cell membrane was broken by soaking in the solution for 20 minutes. After anti-human myocardial Troponin I antibody (# 4T21 Lot 98 / 10-T21-C2 HyTest, Euro, Finland, HyTest, diluted 400 times) as the primary antibody, let it react in the refrigerator for 1 day while moisturizing Then, it was washed with PBS, and then, as a secondary antibody, a TRITC-conjugated anti-mouse IgG antibody (Sigma, diluted 200-fold) was overlayered and reacted at room temperature for 30 minutes while moisturizing. The cells were washed with PBS and then observed using a confocal laser microscope (FV1000, Olympus).
(ii)結果
図1に示す通り、ピオグリタゾン存在下において間葉系幹細胞を培養した群(ピオグリタゾン(PPAR)+DMSO)では、23.61%のヒト骨髄由来の間葉系幹細胞にTroponin-Iが発現していた。一方、ピオグリタゾン非存在下で培養したコントロールでは0.57%であった。
このように、ピオグリタゾン処理によって、ヒト骨髄由来の間葉系幹細胞の、心筋細胞への分化誘導率は41.42倍増加した。
(Ii) Results As shown in FIG. 1, in the group in which mesenchymal stem cells were cultured in the presence of pioglitazone (pioglitazone (PPAR) + DMSO), Troponin-I was expressed in 23.61% of human bone marrow-derived mesenchymal stem cells. It was. On the other hand, it was 0.57% in the control cultured in the absence of pioglitazone.
Thus, pioglitazone treatment increased the rate of induction of differentiation of human bone marrow-derived mesenchymal stem cells into cardiomyocytes by 41.42 times.
<実施例2:ヒト臍帯由来の間葉系幹細胞の心筋細胞への分化誘導>
本実施例では、ヒト臍帯由来の間葉系幹細胞を用い、ピオグリタゾン存在下における心筋細胞への分化能について検討した。
<Example 2: Differentiation induction of human umbilical cord-derived mesenchymal stem cells into cardiomyocytes>
In this example, mesenchymal stem cells derived from human umbilical cord were used and examined for their ability to differentiate into cardiomyocytes in the presence of pioglitazone.
(1)間葉系幹細胞の調製
出産時に子宮から脱落した臍帯を採取し、20mlのDMEM培地(1% FCS、100U/mlペニシリン・100ng/mlストレプトマイシン、及び500U/L heparin含有)を入れた50mlポリプロピレンチューブに移した。チューブ内で臍帯を軽く洗浄した後、10cm培養皿に移した。眼科用鋏を用いて、臍帯を約1〜5mm3大に細かく切り、数分間静置した後、血液細胞が含まれる上清を除去し、再び、DMEMで洗浄した。この操作を3〜4回繰り返し、最終的に、切断された臍帯組織を10%FCS含有α−MEM培地に入れ、この組織が3〜5個/cm2の濃度になるように培養皿に静置し、37℃、5%CO2インキュベーターで培養した。その後、組織から自然に遊走してきた間葉系幹細胞を用い、実施例1と同様にGFPで標識し、ピオグリタゾン存在下で培養することによって、心筋細胞へ分化誘導させた。
(1) Preparation of mesenchymal stem cells 50 ml of umbilical cord dropped from the uterus at birth and containing 20 ml of DMEM medium (containing 1% FCS, 100 U / ml penicillin, 100 ng / ml streptomycin, and 500 U / L heparin) Transfer to a polypropylene tube. The umbilical cord was gently washed in the tube and then transferred to a 10 cm culture dish. Using an ophthalmic scissor, the umbilical cord was cut into about 1 to 5 mm 3 and allowed to stand for several minutes, and then the supernatant containing blood cells was removed and washed again with DMEM. This operation is repeated 3 to 4 times. Finally, the cut umbilical cord tissue is placed in α-MEM medium containing 10% FCS, and the tissue is placed on a culture dish so that the tissue has a concentration of 3 to 5 cells / cm 2. And incubated in a 37 ° C., 5% CO 2 incubator. Thereafter, mesenchymal stem cells that migrated spontaneously from the tissue were labeled with GFP in the same manner as in Example 1 and cultured in the presence of pioglitazone to induce differentiation into cardiomyocytes.
(2)分化誘導した心筋細胞の評価
本実施例では、実施例1に記載のTroponin I発現を分化マーカーとして用い、間葉系幹細胞の心筋細胞への分化誘導を評価した。
(2) Evaluation of differentiation-induced cardiomyocytes In this example, the differentiation induction of mesenchymal stem cells into cardiomyocytes was evaluated using the expression of Troponin I described in Example 1 as a differentiation marker.
(i)免疫染色法を用いた評価方法
実施例1に記載の方法と同様に、GFP陽性細胞中のTroponin I発現細胞の割合を分化誘導率として算出した。
(I) Evaluation Method Using Immunostaining Method Similar to the method described in Example 1, the ratio of Troponin I expressing cells in GFP positive cells was calculated as the differentiation induction rate.
(ii)結果
図2に示す通り、ピオグリタゾン存在下において間葉系幹細胞を培養した群では、ピオグリタゾン+DMSOの場合は9.58%のヒト臍帯由来間葉系幹細胞にTroponin-Iが発現しており、ピオグリタゾン+メタノールの場合は5.03%のヒト臍帯由来間葉系幹細胞にTroponin-Iが発現していた。一方、ピオグリタゾン非存在下で培養したコントロールでは1.37%であった。このように、ヒト臍帯由来の間葉系幹細胞の、心筋細胞への分化誘導率は3.67〜6.99倍増加した。
また、図3に示す通り、ピオグリタゾン存在下において間葉系幹細胞を培養した群では、ピオグリタゾン+DMSOの場合は18.69%のヒト臍帯由来間葉系幹細胞にTroponin-Iが発現しており、ピオグリタゾン+メタノールの場合は22.69%のヒト臍帯由来間葉系幹細胞にTroponin-Iが発現していた。一方、ピオグリタゾン非存在下で培養したコントロールでは4.60%であった。このように、ヒト臍帯由来の間葉系幹細胞の、心筋細胞への分化誘導率は4.06〜4.93倍増加した。
(Ii) Results As shown in FIG. 2, in the group in which mesenchymal stem cells were cultured in the presence of pioglitazone, Troponin-I was expressed in 9.58% of human umbilical cord-derived mesenchymal stem cells in the case of pioglitazone + DMSO. In the case of pioglitazone + methanol, Troponin-I was expressed in 5.03% of human umbilical cord-derived mesenchymal stem cells. On the other hand, it was 1.37% in the control cultured in the absence of pioglitazone. Thus, the differentiation induction rate of human umbilical cord-derived mesenchymal stem cells into cardiomyocytes increased by 3.67 to 6.99 times.
Moreover, as shown in FIG. 3, in the group in which mesenchymal stem cells were cultured in the presence of pioglitazone, Troponin-I was expressed in 18.69% of human umbilical cord-derived mesenchymal stem cells in the case of pioglitazone + DMSO, and pioglitazone + In the case of methanol, Troponin-I was expressed in 22.69% of human umbilical cord-derived mesenchymal stem cells. On the other hand, it was 4.60% in the control cultured in the absence of pioglitazone. Thus, the differentiation induction rate of human umbilical cord-derived mesenchymal stem cells into cardiomyocytes increased by 4.06 to 4.93 times.
<実施例3:ヒト胎盤由来の間葉系幹細胞の心筋細胞への分化誘導>
本実施例では、ヒト胎盤由来の間葉系幹細胞を用い、ピオグリタゾン存在下における心筋細胞への分化能について検討した。
<Example 3: Differentiation induction of mesenchymal stem cells derived from human placenta into cardiomyocytes>
In this example, mesenchymal stem cells derived from human placenta were used and examined for their ability to differentiate into cardiomyocytes in the presence of pioglitazone.
(1)間葉系幹細胞の調製
出産時に子宮から脱落した胎盤を採取し、20mlのDMEM培地(1% FCS、100ng/mlストレプトマイシン、100U/mlペニシリン、及び500U/l heparin含有)を入れた50mlポリプロピレンチューブに入れた。チューブ内で胎盤を軽く洗浄した後、10cm培養皿に移した。眼科用鋏を用いて、胎盤を約1〜5mm3大に細かく切り、数分間静置した後、血液細胞が含まれる上清を除去し、再び、DMEMで洗浄した。この操作を3〜4回繰り返し、最終的に、細かく切断された胎盤組織を10%FCS含有α−MEM (α-modified MEM)培地に浸した状態で、3〜5個/cm2の密度になるように培養皿に静置し、37℃、5%CO2インキュベーターで培養した。その後、組織から自然に遊走してきた間葉系幹細胞を用い、実施例1と同様にGFPで標識し、ピオグリタゾン存在下で培養することによって、心筋細胞へ分化誘導させた。
(1) Preparation of mesenchymal stem cells The placenta dropped from the uterus at birth was collected and 50 ml containing 20 ml of DMEM medium (containing 1% FCS, 100 ng / ml streptomycin, 100 U / ml penicillin, and 500 U / l heparin). Placed in polypropylene tube. The placenta was gently washed in the tube and then transferred to a 10 cm culture dish. Using an ophthalmic scissor, the placenta was cut into small pieces of about 1 to 5 mm 3 and allowed to stand for several minutes, and then the supernatant containing blood cells was removed and washed again with DMEM. This operation is repeated 3 to 4 times, and finally the finely cut placental tissue is immersed in 10% FCS-containing α-MEM (α-modified MEM) medium to a density of 3 to 5 cells / cm 2 . Then, it was placed in a culture dish and cultured in a 37 ° C., 5% CO 2 incubator. Thereafter, mesenchymal stem cells that migrated spontaneously from the tissue were labeled with GFP in the same manner as in Example 1 and cultured in the presence of pioglitazone to induce differentiation into cardiomyocytes.
(2)分化誘導した心筋細胞の評価
本実施例では、自己拍動性を心筋細胞の分化マーカーとして用い、分化誘導率として、顕微鏡下で分化した細胞の頻度をスコア化し(図において、「簡易誘導効率」ともいう)、間葉系幹細胞の心筋細胞への分化誘導を評価した。また、実施例1に記載のTroponin I発現を分化マーカーとして用い、間葉系幹細胞の心筋細胞への分化誘導も評価した。
(2) Evaluation of differentiated cardiomyocytes In this example, self-pulsation was used as a differentiation marker for cardiomyocytes, and the frequency of differentiated cells under a microscope was scored as the differentiation induction rate (in the figure, “simple The induction of differentiation of mesenchymal stem cells into cardiomyocytes was also evaluated. In addition, using the Troponin I expression described in Example 1 as a differentiation marker, differentiation induction of mesenchymal stem cells into cardiomyocytes was also evaluated.
(i)肉眼的手法を用いた評価方法及び結果
間葉系幹細胞とフィーダー細胞である心筋細胞を共培養してから1週間後、培養皿に存在する細胞を蛍光顕微鏡下において観察した。そして、自己拍動している細胞を同定して以下のスコアを計算し、間葉系幹細胞の心筋細胞への誘導率とした。ここで、「自己拍動している細胞」とは、分化誘導された細胞の周囲辺縁が中心方向へ集合していること、GFPの発光が収縮期に強くなること、明視野において、収縮の中心部はGFPを発光しない細胞を含まないこと(フィーダー細胞を含まないこと)の全ての条件を満たす細胞のことをいう。
(I) Evaluation method and result using macroscopic technique One week after co-culturing the mesenchymal stem cells and cardiomyocytes as feeder cells, the cells present in the culture dish were observed under a fluorescence microscope. Then, the self-pulsating cells were identified and the following score was calculated, which was used as the induction rate of mesenchymal stem cells into cardiomyocytes. Here, “self-pulsating cells” means that the peripheral edges of differentiation-induced cells are gathered in the center direction, luminescence of GFP becomes stronger in the systole, and contraction in the bright field The central part of the cell means a cell that does not contain cells that do not emit GFP (does not contain feeder cells) and satisfies all the conditions.
スコア0:顕微鏡下(倍率:10×4)において、培養皿に拍動性を有する細胞が認められない場合
スコア1:顕微鏡下(倍率: 10×4)において、拍動性を有する細胞が培養皿全体で数個認められるが、同期化していない場合
スコア2:顕微鏡下(倍率: 10×4)において、拍動性を有する細胞が培養皿全体で数個認められ、これらの細胞が同期化している場合(なお、全部の細胞が同期化していなくても、島状に配列した数個の細胞が同期化していれば同期化していると判断する)
スコア3:顕微鏡下(倍率:10×20)において、ランダムにある視野を観察した場合、その視野の中に必ず一つ以上の拍動性を有する細胞が認められる場合
スコア4:顕微鏡下(倍率:10×20)において、ほとんどすべての細胞に拍動性が認められる場合
図4に示す通り、ピオグリタゾン存在下において間葉系幹細胞を培養した群(ピオグリタゾン+DMSO)では、5サンプルの平均スコアが3.80になり、コントロール(平均スコア:0.2)と比べて、心筋細胞への分化誘導率が19倍増加していた。
Score 0: When there are no pulsatile cells in the culture dish under the microscope (magnification: 10 × 4) Score 1: Cells with pulsatile cells are cultured under the microscope (magnification: 10 × 4) When several plates are observed but not synchronized Score 2: Under the microscope (magnification: 10x4), several pulsatile cells are observed throughout the culture plate, and these cells are synchronized. (Note that even if not all cells are synchronized, if several cells arranged in islands are synchronized, it is determined that they are synchronized)
Score 3: When a random visual field is observed under a microscope (magnification: 10 × 20), there must be at least one pulsatile cell in the visual field. Score 4: Under the microscope (magnification) : 10 × 20) When almost all cells have pulsatility As shown in FIG. 4, in the group in which mesenchymal stem cells were cultured in the presence of pioglitazone (pioglitazone + DMSO), the average score of 5 samples was The rate of differentiation induction into cardiomyocytes was increased 19-fold compared to the control (average score: 0.2).
(ii)免疫染色法を用いた評価方法及び結果
実施例1に記載の方法と同様に、GFP陽性細胞中のTroponin I発現細胞の割合を分化誘導率として算出した。
図5に示す通り、ピオグリタゾン存在下において間葉系幹細胞を培養した群では、ピオグリタゾン+DMSOの場合49.90%のヒト胎盤由来の間葉系幹細胞にTroponin-Iが発現しており、ピオグリタゾン+メタノールの場合41.83%のヒト胎盤由来の間葉系幹細胞にTroponin-Iが発現していた。一方、ピオグリタゾン非存在下で培養したコントロールでは20.39%であった。このように、ヒト胎盤由来の間葉系幹細胞の、心筋細胞への分化誘導率は2.05〜2.45倍増加した。
(Ii) Evaluation Method and Result Using Immunostaining Method Similar to the method described in Example 1, the ratio of Troponin I expressing cells in GFP positive cells was calculated as the differentiation induction rate.
As shown in FIG. 5, in the group in which mesenchymal stem cells were cultured in the presence of pioglitazone, 49.90% of human placenta-derived mesenchymal stem cells expressed Troponin-I in the case of pioglitazone + DMSO, and pioglitazone + methanol In 41.83% of human placenta-derived mesenchymal stem cells, Troponin-I was expressed. On the other hand, it was 20.39% in the control cultured in the absence of pioglitazone. Thus, the differentiation induction rate of human placenta-derived mesenchymal stem cells into cardiomyocytes increased by 2.05 to 2.45 times.
<実施例4:ヒト骨髄由来の間葉系幹細胞の心筋梗塞モデルラットへの移植>
本実施例では、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットへ移植し、そのラットの心筋梗塞が改善することを組織学的に確認した。
<Example 4: Transplantation of human bone marrow-derived mesenchymal stem cells into a rat model of myocardial infarction>
In this example, mesenchymal stem cells derived from human bone marrow pretreated with pioglitazone were transplanted into a myocardial infarction model rat, and histologically confirmed that the myocardial infarction of the rat was improved.
(1)間葉系幹細胞の調製
実施例1に記載の方法を用いて、間葉系幹細胞を調製した。
(1) Preparation of Mesenchymal Stem Cells Using the method described in Example 1, mesenchymal stem cells were prepared.
(2)ピオグリタゾンによる前処置
実施例1に記載の方法を用いて、ピオグリタゾンによる前処置を行った。
(2) Pretreatment with pioglitazone Pretreatment with pioglitazone was performed using the method described in Example 1.
(3)ヒト骨髄由来の間葉系幹細胞の心筋梗塞モデルラットへの移植
まず、ピオグリタゾンで2週間前処置した間葉系幹細胞を、5×104cells/cm2の濃度になるように0.1μMピオグリタゾン及び10%FCS含有DMEM培地で調製した。
次に、心筋梗塞モデルラット(Crl:NIH-Foxn1nu (Nude Rat)、日本チャールズリバー株式会社)の胸部を切開し、心臓の心筋梗塞部に上述の方法によって調製した間葉系幹細胞を1〜2×106cells移植した(BM+PPAR群、n=30)。
なお、コントロールとして、正常ラットにおいて開胸のみを行った群(Sham群、n=14)と、心筋梗塞モデルラットにおいて開胸のみを行い間葉系幹細胞を移植しない群(Control MI群、n=15)と、心筋梗塞モデルラットに対しピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM群、n=17)とを同様に作製した。
(3) Transplantation of human bone marrow-derived mesenchymal stem cells into myocardial infarction model rats First, 0.1 μM of mesenchymal stem cells pretreated for 2 weeks with pioglitazone to a concentration of 5 × 10 4 cells / cm 2 Prepared with DMEM medium containing pioglitazone and 10% FCS.
Next, an incision was made in the chest of a myocardial infarction model rat (Crl: NIH-Foxn1 nu (Nude Rat), Charles River Japan Co., Ltd.), and 1 to 2 mesenchymal stem cells prepared by the above-described method were applied to the myocardial infarction of the heart. 2 × 10 6 cells were transplanted (BM + PPAR group, n = 30).
In addition, as a control, a group in which only a thoracotomy was performed in normal rats (Sham group, n = 14) and a group in which only a thoracotomy was performed in a myocardial infarction model rat and no mesenchymal stem cells were transplanted (Control MI group, n = 15) and a group (BM group, n = 17) in which mesenchymal stem cells not pretreated with pioglitazone were transplanted into myocardial infarction model rats were prepared in the same manner.
(4)心筋梗塞の評価
一般に、心筋梗塞を発症すると、心筋組織において、筋線維から膠原線維に置き換わることが知られている。そこで、本実施例では、マッソントリクローム染色によって、心筋組織における膠原線維の割合を算出し(以下、「左心室線維化率」という)、左心室線維化率の減少を心筋梗塞の改善として評価した。
(4) Evaluation of Myocardial Infarction Generally, it is known that when a myocardial infarction develops, muscle fibers are replaced with collagen fibers in the myocardial tissue. Therefore, in this example, the ratio of collagen fibers in the myocardial tissue is calculated by Masson trichrome staining (hereinafter referred to as “left ventricular fibrosis rate”), and the decrease in the left ventricular fibrosis rate is evaluated as improvement of myocardial infarction. did.
(i)組織染色法を用いた評価方法
間葉系幹細胞を心筋梗塞部位へ移植してから2週間後、摘出した心臓組織に対して、マッソントリクローム染色を行った。なお、マッソントリクローム染色は当業者に周知の方法を用いて行った。
(I) Evaluation Method Using Tissue Staining Method Two weeks after transplanting the mesenchymal stem cells to the myocardial infarction site, Masson trichrome staining was performed on the extracted heart tissue. Masson trichrome staining was performed using a method well known to those skilled in the art.
(ii)結果
図6に示す通り、ピオグリタゾンで前処置した間葉系幹細胞を移植した群(BM+PPAR)の左心室線維化率は9.4%であるのに対し、ピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM)の左心室線維化率は15.7%であった。
このように、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットに移植すると、左心室線維化率が減少した。これより、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットに移植すると、心筋梗塞が改善することが示された。
(Ii) Results As shown in FIG. 6, the left ventricular fibrosis rate in the group transplanted with mesenchymal stem cells pretreated with pioglitazone (BM + PPAR) was 9.4%, but not pretreated with pioglitazone The left ventricular fibrosis rate in the group (BM) transplanted with mesenchymal stem cells was 15.7%.
Thus, transplantation of human bone marrow-derived mesenchymal stem cells pretreated with pioglitazone into myocardial infarction model rats decreased the rate of left ventricular fibrosis. Thus, it was shown that myocardial infarction improves when mesenchymal stem cells derived from human bone marrow pretreated with pioglitazone are transplanted into a myocardial infarction model rat.
<実施例5:ヒト骨髄由来の間葉系幹細胞の心筋梗塞モデルラットへの移植>
本実施例では、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットへ移植し、そのラットの心機能が改善することを機能的に確認した。
<Example 5: Transplantation of human bone marrow-derived mesenchymal stem cells into a rat model of myocardial infarction>
In this example, human bone marrow-derived mesenchymal stem cells pretreated with pioglitazone were transplanted into a myocardial infarction model rat, and it was functionally confirmed that the cardiac function of the rat was improved.
(1)間葉系幹細胞の調製
実施例1に記載の方法を用いて、間葉系幹細胞を調製した。
(1) Preparation of Mesenchymal Stem Cells Using the method described in Example 1, mesenchymal stem cells were prepared.
(2)ピオグリタゾンによる前処置
実施例1に記載の方法を用いて、ピオグリタゾンによる前処置を行った。
(2) Pretreatment with pioglitazone Pretreatment with pioglitazone was performed using the method described in Example 1.
(3)ヒト骨髄由来の間葉系幹細胞の心筋梗塞モデルラットへの移植
まず、ピオグリタゾンで2週間前処置した間葉系幹細胞を、5×104cells/cm2の濃度になるように0.1μMピオグリタゾン及び10%FCS含有DMEM培地で調製した。
次に、心筋梗塞モデルラット(Crl:NIH-Foxn1nu (Nude Rat)、日本チャールズリバー株式会社)の胸部を切開し、心臓の心筋梗塞部位部に上述の方法によって調製した間葉系幹細胞を1〜2×106cells移植した(BM+PPAR群、n=30)。
なお、コントロールとして、正常ラットにおいて開胸のみを行った群(Sham群、n=14)と、心筋梗塞モデルラットにおいて、開胸のみを行い間葉系幹細胞を移植しない群(Control MI群、n=15)と、心筋梗塞モデルラットに対し、ピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM群、n=17)とを同様に作製した。
(3) Transplantation of human bone marrow-derived mesenchymal stem cells into myocardial infarction model rats First, 0.1 μM of mesenchymal stem cells pretreated for 2 weeks with pioglitazone to a concentration of 5 × 10 4 cells / cm 2 Prepared with DMEM medium containing pioglitazone and 10% FCS.
Next, an incision was made in the chest of a myocardial infarction model rat (Crl: NIH-Foxn1 nu (Nude Rat), Charles River Japan Co., Ltd.), and 1 mesenchymal stem cell prepared by the above method was applied to the myocardial infarction site of the heart. ˜2 × 10 6 cells were transplanted (BM + PPAR group, n = 30).
In addition, as a control, a group in which only thoracotomy was performed in normal rats (Sham group, n = 14) and a group in which myocardial infarction model rats were subjected only to thoracotomy without transplanting mesenchymal stem cells (Control MI group, n = 15) and a group (BM group, n = 17) in which mesenchymal stem cells not pretreated with pioglitazone were transplanted into myocardial infarction model rats.
(4)心機能の評価
(i)評価方法
本実施例では、左室収縮期内圧、左室内圧最大時間微分値、及び左室駆出率を測定又は算出し、左室収縮期内圧、左室内圧最大時間微分値、及び左室駆出率の増加を心機能の改善として評価した。なお、左室収縮期内圧は、左心室内に刺入した22Gサーフロー針に接続した圧トランスデューサーを用いて測定し、左室内圧最大時間微分値は左心室内圧の変化の時間微分を用いて算出し、左室駆出率は、心臓超音波検査から求めた左室内径からシンプソン法を用いて算出した。
(4) Evaluation of cardiac function (i) Evaluation method In this example, the left ventricular systolic pressure, the left ventricular pressure maximum time differential value, and the left ventricular ejection fraction were measured or calculated, and the left ventricular systolic pressure, left The increase in the room pressure maximum time differential value and the left ventricular ejection fraction were evaluated as improvement of cardiac function. The left ventricular systolic pressure is measured using a pressure transducer connected to a 22G surf flow needle inserted into the left ventricle, and the left ventricular pressure maximum time derivative is calculated using the time derivative of the change in left ventricular pressure. The left ventricular ejection fraction was calculated using the Simpson method from the left ventricular diameter obtained from cardiac ultrasonography.
(ii)結果
図7に示す通り、ピオグリタゾンで前処置した間葉系幹細胞を移植した群(BM+PPAR)の左室収縮期内圧は124.8mmHgであるのに対し、ピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM)の左室収縮期内圧は107.6mmHgであった。また、図8に示す通り、ピオグリタゾンで前処置した間葉系幹細胞を移植した群(BM+PPAR)の左室内圧最大時間微分値は5260 Hg/sであるのに対し、ピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM)の左室内圧最大時間微分値は4379 Hg/sであった。さらに、図9に示す通り、ピオグリタゾンで前処置した間葉系幹細胞を移植した群(BM+PPAR)の左室駆出率は83.3%であるのに対し、ピオグリタゾンで前処置していない間葉系幹細胞を移植した群(BM)の左室駆出率は72.6%であった。
このように、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットに移植すると、左室収縮期内圧、左室内圧最大時間微分値、及び左室駆出率は増加した。これより、ピオグリタゾンで前処置したヒト骨髄由来の間葉系幹細胞を心筋梗塞モデルラットに移植すると、ラットの心機能が改善することが示された。
(Ii) Results As shown in FIG. 7, the left ventricular systolic internal pressure of the group transplanted with mesenchymal stem cells pretreated with pioglitazone (BM + PPAR) was 124.8 mmHg, but not pretreated with pioglitazone The left ventricular systolic internal pressure of the group (BM) transplanted with mesenchymal stem cells was 107.6 mmHg. In addition, as shown in FIG. 8, the left ventricular pressure maximum time differential value of the group transplanted with mesenchymal stem cells pretreated with pioglitazone (BM + PPAR) is 5260 Hg / s, whereas pretreatment with pioglitazone is performed. The left ventricular pressure maximum time derivative of the group (BM) transplanted with non-mesenchymal stem cells was 4379 Hg / s. Furthermore, as shown in FIG. 9, the left ventricular ejection fraction of the group transplanted with mesenchymal stem cells pretreated with pioglitazone (BM + PPAR) was 83.3%, whereas the mesenchyme not pretreated with pioglitazone The left ventricular ejection fraction of the group (BM) transplanted with stem cells was 72.6%.
Thus, when mesenchymal stem cells derived from human bone marrow pretreated with pioglitazone were transplanted into a myocardial infarction model rat, left ventricular systolic pressure, left ventricular pressure maximum time differential value, and left ventricular ejection fraction increased. From this, it was shown that when the mesenchymal stem cells derived from human bone marrow pretreated with pioglitazone were transplanted into a rat model of myocardial infarction, the cardiac function of the rat was improved.
Claims (15)
ピオグリタゾン(pioglitazone)を有効成分として含有する心筋細胞分化誘導促進剤。 A promoter that promotes differentiation induction of mesenchymal stem cells into cardiomyocytes,
A cardiomyocyte differentiation induction promoter containing pioglitazone as an active ingredient.
ピオグリタゾン存在下において間葉系幹細胞を培養すること、
を特徴とする心筋細胞分化誘導促進方法。 A method of promoting differentiation induction of mesenchymal stem cells into cardiomyocytes,
Culturing mesenchymal stem cells in the presence of pioglitazone,
A method for promoting the induction of cardiomyocyte differentiation.
前記間葉系幹細胞は、ピオグリタゾンで処理されたことを特徴とする間葉系幹細胞。 Mesenchymal stem cells having the ability to differentiate into cardiomyocytes,
The mesenchymal stem cell, wherein the mesenchymal stem cell is treated with pioglitazone.
前記間葉系細胞をピオグリタゾンで処理する工程と、
ピオグリタゾンで処理した前記間葉系細胞をフィーダー細胞上で培養する工程と、
を包含する分化誘導方法。 A differentiation induction method for differentiating mesenchymal stem cells into cardiomyocytes,
Treating the mesenchymal cells with pioglitazone;
Culturing the mesenchymal cells treated with pioglitazone on feeder cells;
A differentiation induction method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266699A JP5401669B2 (en) | 2007-12-06 | 2008-10-15 | Cardiomyocyte differentiation induction promotion method and differentiation induction method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007315921 | 2007-12-06 | ||
JP2007315921 | 2007-12-06 | ||
JP2008266699A JP5401669B2 (en) | 2007-12-06 | 2008-10-15 | Cardiomyocyte differentiation induction promotion method and differentiation induction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009153514A true JP2009153514A (en) | 2009-07-16 |
JP5401669B2 JP5401669B2 (en) | 2014-01-29 |
Family
ID=40958213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008266699A Expired - Fee Related JP5401669B2 (en) | 2007-12-06 | 2008-10-15 | Cardiomyocyte differentiation induction promotion method and differentiation induction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5401669B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010246476A (en) * | 2009-04-16 | 2010-11-04 | Japan Health Science Foundation | Cardiomyocyte differentiation inducing promoter and use thereof |
JP2018530992A (en) * | 2015-07-22 | 2018-10-25 | 中國醫藥大學 | Mesenchymal stem cells, clonogenic growth method, isolation method and use thereof |
US10660918B2 (en) | 2015-07-22 | 2020-05-26 | China Medical University | Method for enhancing insulin like growth factor 1 receptor expression of mesenchymal stem cell, method for isolating mesenchymal stem cell, and use of mesenchymal stem cell |
US11110129B2 (en) | 2015-07-22 | 2021-09-07 | China Medical University | Method for treating multiple sclerosis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000217576A (en) * | 1999-02-02 | 2000-08-08 | Herikkusu Kenkyusho:Kk | Induction of differentiation into adipocyte, compound which controls differentiation into adipocyte, and its screening |
JP2001048151A (en) * | 1999-08-09 | 2001-02-20 | Kao Corp | Pulp mold molding |
-
2008
- 2008-10-15 JP JP2008266699A patent/JP5401669B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000217576A (en) * | 1999-02-02 | 2000-08-08 | Herikkusu Kenkyusho:Kk | Induction of differentiation into adipocyte, compound which controls differentiation into adipocyte, and its screening |
JP2001048151A (en) * | 1999-08-09 | 2001-02-20 | Kao Corp | Pulp mold molding |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010246476A (en) * | 2009-04-16 | 2010-11-04 | Japan Health Science Foundation | Cardiomyocyte differentiation inducing promoter and use thereof |
JP2018530992A (en) * | 2015-07-22 | 2018-10-25 | 中國醫藥大學 | Mesenchymal stem cells, clonogenic growth method, isolation method and use thereof |
US10660918B2 (en) | 2015-07-22 | 2020-05-26 | China Medical University | Method for enhancing insulin like growth factor 1 receptor expression of mesenchymal stem cell, method for isolating mesenchymal stem cell, and use of mesenchymal stem cell |
US11110129B2 (en) | 2015-07-22 | 2021-09-07 | China Medical University | Method for treating multiple sclerosis |
US11529373B2 (en) | 2015-07-22 | 2022-12-20 | China Medical University | Method for enhancing expression of insulin like growth factor 1 receptor in mesenchymal stem cell, method for obtaining mesenchymal stem cell, and method for treating brain tissue damage |
Also Published As
Publication number | Publication date |
---|---|
JP5401669B2 (en) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9867854B2 (en) | Therapeutic method using cardiac tissue-derived pluripotent stem cells | |
Wang et al. | Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction | |
JP5671670B2 (en) | Cell sheet containing mesenchymal stem cells | |
JP6662777B2 (en) | Method for producing artificial heart muscle (EHM) | |
JP4336821B2 (en) | Induction of cardiomyocytes using mammalian bone marrow cells or cord blood-derived cells and adipose tissue | |
WO2007010858A1 (en) | Pluripotent stem cell cloned from single cell derived from skeletal muscle tissue | |
JP2012521780A (en) | Method for isolating mesenchymal stem cells derived from human umbilical cord blood | |
US20070282456A1 (en) | Compositions and Methods for Myogenesis of Fat-Derived Stem Cells Expressing Telomerase and Myocardin | |
RU2433172C2 (en) | Method of obtaining homogenous population of stem cells and its application | |
EP3945133A1 (en) | Mass production of human pluripotent stem cell derived cardiac stromal cell | |
JP6626245B2 (en) | Compositions and methods for making reconstructed skin | |
JP5401669B2 (en) | Cardiomyocyte differentiation induction promotion method and differentiation induction method | |
An et al. | Engineering of corpus cavernosum using vascular endothelial growth factor-expressing muscle-derived stem cells seeded on acellular corporal collagen matrices | |
US20080241111A1 (en) | Pluripotent Stem Cell Derived from Cardiac Tissue | |
Moon et al. | Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells | |
Kaynak Bayrak et al. | Construction of cardiomyoblast sheets for cardiac tissue repair: comparison of three different approaches | |
Jiang et al. | Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes | |
US7534607B1 (en) | Method of producing cardiomyocytes from mesenchymal stem cells | |
JP5564679B2 (en) | Cardiomyocyte differentiation induction promoter and method of use thereof | |
JP5453612B2 (en) | Cardiomyocyte differentiation induction promoter and method of use thereof | |
JP2006115771A (en) | Myocardial stem cell derived from skeletal muscle | |
KR20080094431A (en) | Method for differentiating, culturing and isolating neural progenitor cells from peripheral blood mononuclear cells | |
Ikäheimo | Differentiation of human pluripotent stem cells into cardiomyocytes | |
Graziano et al. | HUMAN CORD STROMA CELLS AFTER CO-CULTURE WITH HUMAN DENTAL PULP CELLS UNDERGO TO OSTEOGENIC DIFFERENTIATION THROUGH A BMP 2-MEDIATED PATHWAY | |
Dawson | Cardiac Tissue Engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5401669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |