JP2009152177A - Bipolar metal separator for fuel cell and its manufacturing method - Google Patents

Bipolar metal separator for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2009152177A
JP2009152177A JP2008256993A JP2008256993A JP2009152177A JP 2009152177 A JP2009152177 A JP 2009152177A JP 2008256993 A JP2008256993 A JP 2008256993A JP 2008256993 A JP2008256993 A JP 2008256993A JP 2009152177 A JP2009152177 A JP 2009152177A
Authority
JP
Japan
Prior art keywords
substrate
thin film
metal
film layer
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008256993A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Takeo Hisada
建男 久田
Shinichi Yagi
伸一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008256993A priority Critical patent/JP2009152177A/en
Priority to US12/292,785 priority patent/US20090136824A1/en
Priority to EP08020570A priority patent/EP2063480B1/en
Priority to DE602008002530T priority patent/DE602008002530D1/en
Priority to CA002645532A priority patent/CA2645532A1/en
Publication of JP2009152177A publication Critical patent/JP2009152177A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bipolar metal separator for a fuel cell, which is made of stainless steel or the like and has adjacent metal separators firmly and surely jointed, and to provide its manufacturing method. <P>SOLUTION: The method for manufacturing a bipolar metal separator P3 of a fuel cell includes: a step S1 of cleaning front and back surfaces 4, 5 of a base board 1 on a steel plate P0 of a thickness of approximately 0.1 mm made of the stainless steel (SUS316L), including degreasing of them; a step S2 of removing a passivated film 2 by applying acid treatment on the degreased and cleaned front and back surfaces 4, 5 of the base board 1; a step S3 of manufacturing a blank plate P1 for a metal separator by coating an Au layer (a thin film layer of noble metal) 3 at a thickness of 0.5-60 nm by electrolytic plating on the front and back surfaces 4, 5 where the passivated film 2 of the base board 1 is removed; a step S4 of obtaining the metal separator P2 by press-forming a passage 6 of a reactant gas on the surface 4 of the blank plate P1; and a step of blazing thin film layers 3, 3 of the back surfaces 5 where a pair of metal separators P2 face each other and are adjacent to each other, via a blazing material such as solder. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、隣接する一対の金属セパレータ同士を強固且つ確実に接合した燃料電池用金属バイポーラ金属セパレータおよびその製造方法に関する。   The present invention relates to a metal bipolar metal separator for a fuel cell in which a pair of adjacent metal separators are joined firmly and reliably, and a method for manufacturing the same.

一般に、単位セルの燃料電池は、固体高分子膜およびその両面に触媒層を介して形成されたガス拡散層からなる膜電極接合体と、その両面に配置され且つ反応ガス流路を有する一対のセパレータとから構成されている。係るセパレータには、プレス成形性に優れた金属セパレータが検討されおり、例えば、耐食性に優れたステンレス鋼板をプレス成形したものが有力視されている。
例えば、スタック型燃料電池の気密性を高めるため、互いに隣接する単位燃料電池のアノードセパレータとカソードセパレータとを、両者の周縁部ごとの表面に予め窒化層を形成した後、係る周縁部同士間をレーザ溶接して、前記窒化層を平滑化する燃料電池スタック、および燃料電池用セパレータの製造方法が提案されている(例えば、特許文献1参照)。
In general, a unit cell fuel cell includes a membrane electrode assembly comprising a solid polymer membrane and a gas diffusion layer formed on both sides of the unit via a catalyst layer, and a pair of reaction gas channels disposed on both sides thereof. And a separator. As such a separator, a metal separator excellent in press formability has been studied. For example, a stainless steel plate excellent in corrosion resistance is press-formed.
For example, in order to increase the airtightness of the stack type fuel cell, the anode separator and the cathode separator of the unit fuel cells adjacent to each other are previously formed with a nitride layer on the surface of each peripheral portion, and then the gap between the peripheral portions is determined. A fuel cell stack for smoothing the nitride layer by laser welding and a method for manufacturing a fuel cell separator have been proposed (see, for example, Patent Document 1).

特開2007−73422号公報(第1〜28頁、図3,4)JP 2007-73422 A (pages 1 to 28, FIGS. 3 and 4)

しかしながら、ステンレス鋼からなる金属セパレータ同士をレーザ溶接する場合、予めそれらの表面にCr酸化物(例えば、Cr、Cr(OH)など)からなる極く薄い不動態皮膜が生成されているため、形成される溶接部にCr炭化物が析出することなどに起因して、隣接する金属セパレータ同士を接合した場合、接合前の耐食性を十分に維持することができない。更に、上記溶接部付近の耐食性が低下すると共に、レーザ溶接時の高熱によって、各金属セパレータに反りが生じ易くなる。しかも、係る反りを防ぐため、溶接カ所および溶接面積を増やすと、更に耐食性が低下すると共に、製作コストおよび時間が増加する、という問題もあった。 However, when metal separators made of stainless steel are laser-welded to each other, a very thin passive film made of Cr oxide (for example, Cr 2 O 3 , Cr (OH) 3, etc.) is formed on the surfaces in advance. Therefore, when adjacent metal separators are joined to each other due to precipitation of Cr carbide in the formed welded portion, the corrosion resistance before joining cannot be sufficiently maintained. Further, the corrosion resistance in the vicinity of the welded portion is lowered, and warpage is likely to occur in each metal separator due to high heat during laser welding. In addition, when the welding point and the welding area are increased in order to prevent such warpage, there is a problem that the corrosion resistance is further lowered and the manufacturing cost and time are increased.

本発明は、背景技術において説明した問題点を解決し、ステンレス鋼、Fe−Ni系合金、またはNi基合金からなり且つ隣接し合う一対の金属セパレータ同士を強固且つ確実に接合でき、安価に製造できる燃料電池用金属バイポーラ金属セパレータおよびにその製造方法を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and can be manufactured at low cost by firmly and reliably joining a pair of adjacent metal separators made of stainless steel, Fe-Ni alloy, or Ni-base alloy. An object of the present invention is to provide a metal bipolar metal separator for a fuel cell and a method for producing the same.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、発明者らによる鋭意研究および実験などに基づいて得られたもので、ステンレス鋼などからなり且つ隣接し合う一対の金属セパレータ同士の接合を、前記不動態皮膜がなく且つ極薄の貴金属の薄膜層を被覆した表面同士間においてロウ付けする、ことに着想して成されたものである。
即ち、本発明の燃料電池用バイポーラ金属セパレータ素板(請求項1)は、ステンレス鋼、Fe−Ni系合金、またはNi基合金からなり、表面および裏面を有し、且つ表面に反応ガスの流路が形成された基板において、表面の全体または少なくとも該表面における反応ガスの流路同士間の凸部の一部に貴金属の薄膜層が被覆され、裏面の全体または少なくとも該裏面におけるロウ付け部分を含む一部に、厚みが0.5〜60nmである貴金属の薄膜層が被覆された一対の燃料電池用金属セパレータと、該一対の燃料電池用金属セパレータが対向する裏面同士を接合するロウ付け部分と、を備え、係るロウ付け部分におけるロウ材の直下には、上記貴金属の薄膜層がなく、且つ係るロウ材と上記基板の表層とが直に接合された接合部分が含まれている、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention was obtained based on earnest studies and experiments by the inventors, and made of the passive state between a pair of adjacent metal separators made of stainless steel or the like. The idea is to braze between surfaces coated with a thin film layer of a noble metal having no coating and an extremely thin thickness.
That is, the bipolar metal separator base plate for a fuel cell according to the present invention (Claim 1) is made of stainless steel, Fe-Ni alloy, or Ni-base alloy, has a front surface and a back surface, and a flow of reaction gas on the surface. In the substrate on which the path is formed, the entire surface or at least a part of the convex portion between the reaction gas flow paths on the surface is covered with the noble metal thin film layer, and the entire back surface or at least the brazed portion on the back surface is formed. A pair of fuel cell metal separators coated with a thin film layer of a noble metal having a thickness of 0.5 to 60 nm, and a brazed part that joins the back surfaces of the pair of fuel cell metal separators facing each other And the brazing part directly below the brazing material is free of the noble metal thin film layer and includes a joining part in which the brazing material and the surface layer of the substrate are joined directly. And which is characterized in that.

これによれば、表面に反応ガスの流路が形成され且つ該表面側に必要な導電性を付与された一対の前記金属セパレータの裏面同士を隣接させて、ハンダ付けなどのロウ付けする際に、前記極く薄い貴金属の薄膜層同士を対向させ、これらの間にロウ材を挟んでロウ付けすることで、一対の金属セパレータの基板を強固且つ確実に接合できる。従って、燃料電池に用いられるバイポーラ金属セパレータを容易且つ安価に提供可能となる。
前記金属セパレータの裏面に被覆する薄膜層の厚みを0.5nm未満とすると、実用的な表面処理技術では、厚みがバラ付くおそれが生じ、且つ部分的には不動態皮膜の生成を抑止できなくなるおそれがある。一方、上記薄膜層の厚みを60nm超とすると、後述するロウ付け時に、ロウ材中に貴金属の薄膜層が厚さ全体において拡散できず、基板の裏面に一部の薄膜層が残留して、接合強度にバラツキが生じる。そのため、裏面側における貴金属の薄膜層の厚みを前記範囲とした。
According to this, when the flow path of the reactive gas is formed on the surface and the back surfaces of the pair of metal separators provided with the necessary conductivity on the surface side are adjacent to each other and soldering or the like is performed The substrates of the pair of metal separators can be bonded firmly and reliably by making the thin film layers of the noble metal facing each other and brazing with a brazing material between them. Therefore, the bipolar metal separator used for the fuel cell can be provided easily and inexpensively.
If the thickness of the thin film layer coated on the back surface of the metal separator is less than 0.5 nm, a practical surface treatment technique may cause the thickness to vary, and the generation of a passive film cannot be partially suppressed. There is a fear. On the other hand, if the thickness of the thin film layer exceeds 60 nm, the thin film layer of the noble metal cannot be diffused in the entire thickness in the brazing material when brazing described later, and a part of the thin film layer remains on the back surface of the substrate. Variations in bonding strength occur. Therefore, the thickness of the thin film layer of the noble metal on the back side is set to the above range.

尚、前記基板となるステンレス鋼には、オーステナイト系、オーステナイト・フェライト系、析出硬化系のステンレス鋼が含まれ、オーステナイト系のステンレス鋼は、例えば、SUS316L、SUS304、SUS321などである。
一方、前記基板となるFe−Ni系合金には、Fe−43質量%Ni−23質量%Cr−2.7質量%Mo(例えば、INCOLOY825)などが含まれる。更に、前記Ni基合金には、61.6質量%Ni−21.9質量%Cr−8.9質量%Mo−3.8質量%Fe−3.6質量%Nb(例えば、INCONEL625)などが含まれる。
また、前記貴金属には、Au、Pt、Pd、またはRuの何れか、あるいはこれらの何れかをベースとする合金が含まれる。
更に、前記薄膜層には、電解メッキによるメッキ層、あるいはスパッタリングによるスパッタ層などが含まれる。
The stainless steel used as the substrate includes austenitic, austenitic / ferrite, and precipitation hardened stainless steel. Examples of the austenitic stainless steel include SUS316L, SUS304, and SUS321.
On the other hand, the Fe—Ni alloy used as the substrate includes Fe-43 mass% Ni-23 mass% Cr-2.7 mass% Mo (for example, INCOLOY 825). Further, the Ni-based alloy includes 61.6 mass% Ni-21.9 mass% Cr-8.9 mass% Mo-3.8 mass% Fe-3.6 mass% Nb (for example, INCONEL625). included.
The noble metal includes any one of Au, Pt, Pd, and Ru, or an alloy based on any of these.
Further, the thin film layer includes a plated layer by electrolytic plating, a sputtered layer by sputtering, or the like.

また、前記基板の表面の一部とは、追って電極と接触する反応ガスの流路間の凸部の頂面全体、あるいは該凸部の頂面の一部分で且つ導電性が確保される面積を有する部分を指す。
更に、前記基板の裏面の一部とは、ロウ付けされた前記接合部を含む裏面の一部分を指す。
また、前記接合部分は、ロウ付け後のロウ材と基板との界面全体(100%)のほか、係るロウ付けされた界面のうち、少なくとも面積率で30%以上、望ましくは40%以上、より望ましくは50%以上でロウ材と基板とが直に接合されている部位を指す。
更に、前記バイポーラ金属セパレータにおいて、ロウ付けされた一対の基板の裏面には、前記ロウ付けされた接合部分以外の全面またはその一部に貴金属の薄膜層が被覆(残留)していても良い。
加えて、前記一対の金属セパレータ間に挟まれ且つそれらの裏面側の前記接合部を含む凸部間の凹部同士からなる空間は、追って形成されるスタック型燃料電池における冷却水などの循環路に活用される。
Further, a part of the surface of the substrate means an entire area of the top surface of the convex portion between the flow paths of the reaction gas that will be in contact with the electrode later, or a part of the top surface of the convex portion, and an area where conductivity is ensured. The part which has.
Furthermore, a part of the back surface of the substrate refers to a part of the back surface including the brazed joint portion.
In addition to the entire interface (100%) between the brazing material and the substrate after brazing, the joint portion is at least 30% or more in area ratio, preferably 40% or more, of the brazed interface. Desirably, it refers to a portion where the brazing material and the substrate are directly joined at 50% or more.
Further, in the bipolar metal separator, a thin film layer of a noble metal may be coated (residual) on the entire surface or a part of the back surface of the pair of brazed substrates other than the joined portion.
In addition, a space between the pair of metal separators and including the concave portions between the convex portions including the joint portion on the back side thereof is a circulation path such as cooling water in the stack type fuel cell formed later. Be utilized.

また、本発明には、前記基板の裏面に被覆される貴金属の薄膜層の厚みは、1〜20nmである、燃料電池用バイポーラ金属セパレータ(請求項2)も含まれる。
これによれば、前記金属セパレータの基板の裏面に安定した厚みの薄膜層として被覆できると共に、ロウ付け時に当該ロウ材中に、貴金属の薄膜層を厚み全体において確実に拡散させることが可能となる。
The present invention also includes a bipolar metal separator for fuel cells (Claim 2), wherein the noble metal thin film layer coated on the back surface of the substrate has a thickness of 1 to 20 nm.
According to this, it is possible to coat the back surface of the substrate of the metal separator as a thin film layer having a stable thickness, and it is possible to reliably diffuse the thin film layer of the noble metal throughout the thickness in the brazing material at the time of brazing. .

更に、本発明には、前記ロウ付け部分のロウ材と前記基板の表層とが直に接合された接合部分は、前記ロウ材と基板との界面における面積の少なくとも30%以上である、燃料電池用バイポーラ金属セパレータ素板(請求項3)も含まれる。
これによれば、基板の裏面の表層とロウ材との界面のうち、少なくとも30%以上の面積率で両者が直にロウ付けにて接合され、残部には貴金属の薄膜層が存在している。即ち、一対の金属セパレータを、それぞれの貴金属の薄膜層同士を臨接して配置し、これらの間に挟んだロウ材でロウ付けした際に、例えば、Auメッキ層からなる極薄の薄膜層のAu原子がロウ材中にほとんど拡散される部分が生じると共に、当該ロウ材と各基板とを直にロウ付けできる。従って、一対の金属セパレータが強固にロウ付けされたバイポーラ金属セパレータを、確実且つ安価に提供することが可能となる。
尚、前記基板とロウ材とが直にロウ付けされる接合部分は、望ましくは両者の界面の40%以上、より望ましくは50%以上である。
Furthermore, the present invention provides a fuel cell in which the brazed portion where the brazing material of the brazing portion and the surface layer of the substrate are directly joined is at least 30% or more of the area at the interface between the brazing material and the substrate. A bipolar metal separator base plate (claim 3) is also included.
According to this, at the interface between the surface layer on the back surface of the substrate and the brazing material, both are directly joined by brazing at an area ratio of at least 30%, and a thin film layer of noble metal exists in the remainder. . That is, when a pair of metal separators are arranged adjacent to each other and the noble metal thin film layers are brazed with a brazing material sandwiched between them, for example, an ultrathin thin film layer made of an Au plating layer A portion in which the Au atoms are almost diffused in the brazing material is generated, and the brazing material and each substrate can be brazed directly. Therefore, a bipolar metal separator in which a pair of metal separators are firmly brazed can be provided reliably and inexpensively.
Note that the joint portion where the substrate and the brazing material are directly brazed is preferably 40% or more, more preferably 50% or more of the interface between the two.

一方、本発明による第1の燃料電池用バイポーラ金属セパレータの製造方法(請求項4)は、ステンレス鋼、Fe−Ni系合金、またはNi基合金からなる基板において、追って反応ガスの流路が形成される表面の全体またはその一部、および追って前記反応ガスの流路が形成されない裏面の全体またはその一部を洗浄する工程と、上記基板の洗浄された表・裏面の全体またはこれらの一部を酸処理して、不動態皮膜を除去する工程と、上記基板の不動態皮膜が除去された表・裏面の全体またはこれらの一部に対し、貴金属の薄膜層を上記基板に直に被覆する工程と、上記貴金属の薄膜層が被覆された基板をプレス成形して、係る基板の表面に反応ガスの流路を形成する燃料電池用金属セパレータを成形する工程と、一対の前記燃料電池用金属セパレータの裏面同士を対向させ、係る裏面間で隣接する貴金属の薄膜層を含む部分同士間にロウ材を配置する工程と、係るロウ材をその融点よりも高い温度に加熱して、該ロウ材に接する貴金属の薄膜層を拡散吸収し、且つ当該ロウ材と隣接する一対の基板とを直にロウ付けする工程と、を含む、ことを特徴とする。   On the other hand, according to the first method for producing a bipolar separator for a fuel cell according to the present invention (claim 4), a reaction gas flow path is formed later on a substrate made of stainless steel, an Fe-Ni alloy, or a Ni-based alloy. Cleaning the entire surface or a part thereof, and the entire back surface or a part thereof where the flow path of the reaction gas is not formed, and the cleaned front and back surfaces of the substrate or a part thereof. The substrate is directly coated with a noble metal thin film layer on the whole or a part of the front and back surfaces of the substrate from which the passive film has been removed. A step of pressing a substrate coated with the noble metal thin film layer to form a fuel cell metal separator for forming a reaction gas flow path on the surface of the substrate, and a pair of the fuel cell gold A process of disposing the brazing material between the portions including the noble metal thin film layers adjacent to each other between the back surfaces of the separator, and heating the brazing material to a temperature higher than its melting point; And a step of diffusing and absorbing the noble metal thin film layer in contact with the substrate and directly brazing the brazing material and a pair of adjacent substrates.

これによれば、前記基板における裏面側の表層と貴金属の薄膜層との間には、前記不動態皮膜がなく、上記基板と薄膜層とが直に接する部分が含まれている。このため、プレス成形された一対の金属セパレータをロウ付けする際に、反応ガス流路が形成されていない裏面に被覆された極く薄い貴金属の薄膜層同士を隣接させ、これらの間にロウ材を挟み、比較的低温度でロウ付けすることで、金属セパレータ同士を強固且つ確実に接合できる。従って、燃料電池に用いられ、反りが少ないバイポーラ金属セパレータを容易且つ安価に提供することが可能となる。
尚、前記洗浄には、脱脂処理も含まれている。また、前記不動態皮膜は、Cr酸化物(例えば、Cr、Cr(OH)など)である。更に、前記基板の裏面側に被覆する貴金属の薄膜層の厚みは、望ましくは0.5〜60nm、より望ましくは1〜20nm、更に望ましくは3〜10nmである。また、前記ロウ付けには、ハンダ(半田)付けも含まれる。
加えて、前記洗浄、酸処理、および貴金属の薄膜層を被覆する3つの工程と、プレスする工程とは、後者を先に行った後で、前者を行う順序としても良い。
According to this, there is no passive film between the surface layer on the back side of the substrate and the noble metal thin film layer, and a portion where the substrate and the thin film layer are in direct contact is included. Therefore, when brazing a pair of press-molded metal separators, extremely thin noble metal thin film layers coated on the back surface where no reaction gas flow path is formed are adjacent to each other, and a brazing material is interposed between them. By sandwiching and brazing at a relatively low temperature, the metal separators can be joined firmly and reliably. Accordingly, it is possible to easily and inexpensively provide a bipolar metal separator that is used in a fuel cell and has less warpage.
The cleaning includes a degreasing process. The passive film is a Cr oxide (for example, Cr 2 O 3 , Cr (OH) 3, etc.). Furthermore, the thickness of the thin film layer of the noble metal coated on the back side of the substrate is preferably 0.5 to 60 nm, more preferably 1 to 20 nm, and further preferably 3 to 10 nm. The brazing includes soldering (soldering).
In addition, the washing, acid treatment, and the three steps of coating the noble metal thin film layer and the pressing step may be performed in the order in which the former is performed after the latter is performed first.

更に、本発明による第2の燃料電池用バイポーラ金属セパレータの製造方法(請求項5)は、ステンレス鋼、Fe−Ni系合金、またはNi基合金からなる基板において、追って反応ガスの流路が形成される表面の全体またはその一部、および追って前記反応ガスの流路が形成されない裏面の全体またはその一部を洗浄する工程と、上記基板の洗浄された表・裏面の全体またはこれらの一部に対しイオンビームを照射して不動皮態膜を除去する工程と、上記基板の不動皮態膜が除去された表・裏面の全体またはこれらの一部に対し、貴金属をスパッタリングして、上記基板に直に貴金属の薄膜層を被覆する工程と、上記貴金属の薄膜層が被覆された基板をプレス成形して、係る基板の表面に反応ガスの流路を形成する燃料電池用金属セパレータを成形する工程と、一対の上記燃料電池用金属セパレータの裏面同士を対向させ、係る裏面間で隣接する貴金属の薄膜層を含む部分同士間にロウ材を配置する工程と、上記ロウ材をその融点よりも高い温度に加熱して、該ロウ材に接する貴金属の薄膜層を拡散吸収し、且つ当該ロウ材と隣接する一対の基板とを直にロウ付けする工程と、を含む、ことを特徴とする。   Further, according to the second method for producing a bipolar metal separator for a fuel cell according to the present invention (Claim 5), a reaction gas flow path is formed later on a substrate made of stainless steel, Fe-Ni alloy, or Ni-based alloy. Cleaning the entire surface or a part thereof, and the entire back surface or a part thereof where the flow path of the reaction gas is not formed, and the cleaned front and back surfaces of the substrate or a part thereof. Irradiating the substrate with an ion beam to remove the immobile skin film, sputtering the noble metal to the whole or a part of the front and back surfaces from which the immobile skin film has been removed, and A step of directly coating a noble metal thin film layer, and a metal separator for a fuel cell, wherein a substrate coated with the noble metal thin film layer is press-molded to form a reaction gas flow path on the surface of the substrate. Forming a brazing material, a step of disposing a brazing material between portions including the noble metal thin film layer adjacent to each other between the back surfaces of the pair of fuel cell metal separators, Heating to a temperature higher than the melting point, diffusing and absorbing the thin film layer of the noble metal in contact with the brazing material, and directly brazing the pair of substrates adjacent to the brazing material. And

これによれば、前記基板における裏面側の表層と貴金属の薄膜層との間には、前記不動態皮膜がなく、上記基板と薄膜層とが直に接する部分が含まれている。このため、プレス成形して得られる一対の金属セパレータを隣接させ且つロウ付けする際に、前記貴金属の薄膜同士を対向・接近させ、これらの間にロウ材を挟み、比較的低温度でロウ付けすることで、係るロウ材を介して金属セパレータ同士を強固且つ確実にロウ付けできる。しかも、前記イオンビームを照射するドライエッチング工程とスパッタリング工程とは、同じスパッタ装置内で連続して行えるので、前記第1の製造方法よりも実質的少ない工程により、燃料電池に用いるバイポーラ金属セパレータを反りを少なくして容易且つ安価に製造することが可能となる。
尚、前記洗浄、ドライエッチング、およびスパッタリングの3工程と、プレスする工程とは、プレスを先に行った後で、上記3工程を行う順序としても良い。
According to this, there is no passive film between the surface layer on the back side of the substrate and the noble metal thin film layer, and a portion where the substrate and the thin film layer are in direct contact is included. For this reason, when a pair of metal separators obtained by press molding are placed adjacent to each other and brazed, the noble metal thin films are made to face and approach each other, and a brazing material is sandwiched between them to braze at a relatively low temperature. By doing so, metal separators can be brazed firmly and reliably via the brazing material. In addition, since the dry etching process and the sputtering process for irradiating the ion beam can be performed continuously in the same sputtering apparatus, the bipolar metal separator used in the fuel cell can be formed by substantially fewer processes than the first manufacturing method. It becomes possible to manufacture easily and inexpensively with less warping.
The three steps of cleaning, dry etching, and sputtering and the step of pressing may be performed in the order in which the above three steps are performed after pressing.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明の燃料電池用バイポーラ金属セパレータに用いる一形態の燃料電池用金属セパレータP2を示し、その表面4と直交する視覚に沿った正面図である。図2は、図1中のX−X線の矢視に沿った断面図、図3は、図1中のY−Y線の矢視に沿った断面図である。
燃料電池用金属セパレータ(以下、単に金属セパレータと言う)P2は、例えば、オーステナイト系ステンレス鋼(例えば、SUS316L)からなり板厚が約0.1mmの薄板をプレス成形したもので、図1〜図3に示すように、ほぼ正方形を呈する基板1と、その表面4と、裏面5と、を備えている。尚、係るセパレータP2の素材は、Fe−Ni系合金あるいはNi基合金でも良い。
金属セパレータP2の表面4におけるほぼ中央部には、複数の反応ガスの流路6、これらの間を区画する複数の凸部7、各流路6の両端に位置してほぼ長方形に凹んだ一対のヘッダー部10,11、一方のヘッダー部10の一端に連通し且つ中央に供給孔13を開設したガス供給部12、および他方のヘッダー部11の一端に連通し且つ中央に排出孔15を開設したガス排出部14が設けられている。
一方、金属セパレータP2の裏面5におけるほぼ中央部には、前記各凸部7および各流路6の裏返し部分である複数の凹部8および凸部9が位置している。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 shows a fuel cell metal separator P2 used in the bipolar metal separator for fuel cells of the present invention, and is a front view along the line of sight orthogonal to the surface 4 thereof. 2 is a cross-sectional view taken along line XX in FIG. 1, and FIG. 3 is a cross-sectional view taken along line YY in FIG.
The fuel cell metal separator (hereinafter simply referred to as a metal separator) P2 is formed by press-molding a thin plate made of, for example, austenitic stainless steel (eg, SUS316L) and having a thickness of about 0.1 mm. As shown in FIG. 3, a substrate 1 having a substantially square shape, a front surface 4 and a back surface 5 are provided. The material of the separator P2 may be an Fe—Ni alloy or a Ni base alloy.
In the substantially central portion of the surface 4 of the metal separator P2, there are a plurality of reaction gas flow paths 6, a plurality of projections 7 partitioning between them, and a pair of recesses that are substantially rectangular and located at both ends of each flow path 6. The header portions 10 and 11 are connected to one end of one header portion 10 and the gas supply portion 12 is provided with a supply hole 13 in the center, and the discharge portion 15 is connected to one end of the other header portion 11 and is provided in the center. The gas discharge unit 14 is provided.
On the other hand, a plurality of concave portions 8 and convex portions 9, which are inverted portions of the respective convex portions 7 and the respective flow paths 6, are located at a substantially central portion on the back surface 5 of the metal separator P <b> 2.

図1〜図3に示すように、金属セパレータP2の表面4における外周側には、幅の狭い周縁18、その内側の全周に沿って隣接する凹部17、およびその内側の全周に沿って隣接する幅の広い凸部16が形成され、係る凸部16に囲まれて、前記流路6、凸部7、ヘッダー部10,11、ガス供給部12、およびガス排出部14が位置している。
一方、金属セパレータP2の裏面5における外周側には、前記周縁18と、前記凹部17および凸部16の裏返し部分である凸部および凹部が形成され、これらに囲まれて、前記凹部8および凸部9などが位置している。
図1,図2に示すように、個々の反応ガスの流路6は、平面視でほぼ細長いN字形を呈し、その両側に位置する凸部7は、それぞれ平面視が逆向きのほぼ細長いN字形を呈している。また、各流路6の中間には、平面視がほぼU字形である一対のUターン部uが位置している。尚、上記流路6を流れる反応ガスは、水素などの燃料ガス、または空気などの酸化剤ガスである。
As shown in FIGS. 1 to 3, on the outer peripheral side of the surface 4 of the metal separator P <b> 2, a narrow peripheral edge 18, an adjacent recess 17 along the entire inner periphery thereof, and an entire inner periphery thereof. An adjacent wide convex portion 16 is formed, and surrounded by the convex portion 16, the flow path 6, the convex portion 7, the header portions 10 and 11, the gas supply portion 12, and the gas discharge portion 14 are located. Yes.
On the other hand, on the outer peripheral side of the back surface 5 of the metal separator P2, there are formed the peripheral edge 18, and convex portions and concave portions which are the inverted portions of the concave portion 17 and the convex portion 16, and are surrounded by the concave portion 8 and the convex portion. The part 9 and the like are located.
As shown in FIGS. 1 and 2, each reaction gas flow path 6 has a substantially elongated N shape in a plan view, and convex portions 7 located on both sides thereof have a substantially elongated N shape in opposite directions in the plan view. It has a letter shape. In addition, a pair of U-turn portions u that are substantially U-shaped in plan view are located in the middle of each flow path 6. The reaction gas flowing through the flow path 6 is a fuel gas such as hydrogen or an oxidant gas such as air.

図1中の一点鎖線部分および図2中の一点鎖線部分Z1の模式的な部分拡大断面図で示すように、金属セパレータP2の表面4全体および裏面5全体には、前記ステンレス鋼またはFe−Ni系合金からなる基板1の両面全体に、それぞれ0.5〜60nmの厚みでAu層(貴金属の薄膜層)3が被覆されている。図2中で示すように、基板1と各Au層3との間には、通常、ステンレス鋼材などの表面に生成されるCr酸化物からなる不動態皮膜がなく、基板1と各Au層3とが直に接触している。
尚、図2中の一点鎖線部分Z2の模式的な部分拡大断面図で示すように、Au層3は、金属セパレータP2の表面4において、少なくとも、前記反応ガスの流路6を区画する凸部7の頂面全体のみ(表面の一部)、あるいは係る頂面の一部分のみ(表面の一部)に被覆した形態とし、裏面5のうち、各流路6の反対側に位置する凸部9の頂面全体のみ(裏面の一部)としたり、係る頂面で且つ後述するロウ付け部を含む一部分(裏面の一部)のみに被覆した形態としても良い。係る一部に被覆する形態の場合、Au層3が被覆された面では、該Au層3と基板1とが直に接触しているが、それ以外の面では基板1の表層に次述する不動態皮膜が生成されている。
As shown in the schematic partial enlarged sectional view of the alternate long and short dash line portion in FIG. 1 and the alternate long and short dash line portion Z1 in FIG. 2, the entire surface 4 and the entire back surface 5 of the metal separator P2 are made of stainless steel or Fe—Ni. An Au layer (a noble metal thin film layer) 3 is coated with a thickness of 0.5 to 60 nm on both surfaces of the substrate 1 made of an alloy. As shown in FIG. 2, there is usually no passive film made of Cr oxide formed on the surface of a stainless steel material or the like between the substrate 1 and each Au layer 3, and the substrate 1 and each Au layer 3 And are in direct contact.
As shown in the schematic partial enlarged cross-sectional view of the alternate long and short dash line portion Z2 in FIG. 2, the Au layer 3 is at least a convex portion that divides the reaction gas flow path 6 on the surface 4 of the metal separator P2. 7 has a form in which only the whole top surface (a part of the surface) or only a part of the top surface (a part of the surface) is covered, and the convex part 9 located on the opposite side of each flow path 6 in the back surface 5. It is good also as a form which covered only the whole top surface (a part of back surface), or only a part (a part of back surface) including the brazing part mentioned later which is the top surface concerned. In the case of such a form covering a part, the Au layer 3 and the substrate 1 are in direct contact with each other on the surface coated with the Au layer 3. A passive film is produced.

ここで、本発明の燃料電池用バイポーラ金属セパレータP3を得るための第1および第2の製造方法を、図4〜図9に沿って説明する。尚、図4,図5中の金属セパレータP2は、若干簡略化して図示されている。
図4は、第1の製造方法の前段階に関する。図4中の最上端における左右の一点鎖線の各枠内で模式的に示すように、ステンレス鋼(例えば、SUS316L)あるいはFe−Ni系合金(例えば、INCOLOY825)からなる厚みが約0.1mmの素鋼板P0は、所定量のCrおよびNiなどを含む基板1であり、その表・裏面4,5全体には、厚みが数nm程度のCr酸化物(例えば、Cr、Cr(OH)など)からなる不動態皮膜2が形成されている。
先ず、上記素鋼板P0を界面活性剤入りの洗浄水や純水中で洗浄して、表・裏面に付着した塵埃類を除去し、更に水酸化ナトリウム水溶液中、あるいはアセトンなどの有機溶液中に浸漬して、その表・裏面4,5に付着した油脂類を除去する脱脂する洗浄工程(S1)を行う。
Here, the 1st and 2nd manufacturing method for obtaining the bipolar metal separator P3 for fuel cells of this invention is demonstrated along FIGS. The metal separator P2 in FIGS. 4 and 5 is shown slightly simplified.
FIG. 4 relates to the previous stage of the first manufacturing method. As schematically shown in each frame of the left and right alternate long and short dash lines at the uppermost end in FIG. 4, the thickness made of stainless steel (for example, SUS316L) or Fe—Ni alloy (for example, INCOLOY 825) is about 0.1 mm. The base steel plate P0 is a substrate 1 containing a predetermined amount of Cr, Ni, and the like, and the entire front / back surfaces 4 and 5 have Cr oxides (for example, Cr 2 O 3 , Cr (OH) having a thickness of about several nanometers. ) 3 etc.) is formed.
First, the steel sheet P0 is washed with cleaning water or pure water containing a surfactant to remove dust adhering to the front and back surfaces, and further in an aqueous solution of sodium hydroxide or an organic solution such as acetone. A degreasing cleaning step (S1) is performed to remove the fats and oils attached to the front and back surfaces 4 and 5 by dipping.

次に、洗浄された前記素鋼板P0を、混酸(主に硫酸、硝酸、塩酸の混合液)、塩酸、または硫酸中に浸漬する酸処理を施す工程(S2)を行う。その結果、図4中の左側の枠内に示すように、表・裏面4,5の全体から不動態皮膜2が除去された基板1のみとなる。尚、図4中の右側の枠内に示すように、マスキングによる酸洗処理を施すことで、表・裏面4,5の一部から不動態皮膜2が除去された基板1としても良い。
次いで、係る基板1の表・裏面4,5全体、または一部に対し、電解Auメッキを施し、Auメッキ層(貴金属の薄膜層)3を被覆する工程(S3)を行う。その結果、図4中の一点鎖線の各枠内および一点鎖線部分U1,U2で示すように、基板1の表・裏面4,5の全体、またはそれらの一部に、厚みが0.5〜60nmのAuメッキ層3が被覆された金属セパレータ素板P1が得られる。
Next, a step (S2) of performing an acid treatment of immersing the cleaned raw steel sheet P0 in mixed acid (mainly a mixed solution of sulfuric acid, nitric acid, and hydrochloric acid), hydrochloric acid, or sulfuric acid is performed. As a result, as shown in the left frame in FIG. 4, only the substrate 1 from which the passive film 2 has been removed from the entire front and back surfaces 4 and 5 is obtained. In addition, as shown in the right side frame in FIG. 4, it is good also as the board | substrate 1 from which the passive film 2 was removed from a part of front and back, 4 and 5 by performing the pickling process by masking.
Next, electrolytic Au plating is applied to the entire front / back surfaces 4 and 5 of the substrate 1 or a part of the substrate 1 to coat the Au plating layer (noble metal thin film layer) 3 (S3). As a result, as shown in each frame of the alternate long and short dash line in FIG. 4 and the alternate long and short dash line portions U1 and U2, the thickness is 0.5 to 0.5 on the entire front and back surfaces 4 and 5 of the substrate 1, or a part thereof. The metal separator base plate P1 coated with the 60 nm Au plating layer 3 is obtained.

尚、前記酸処理の工程(S2)からAuメッキ層3を被覆する工程(S3)までの作業は、アルゴンまたは窒素などの非酸化性雰囲気中で行われる。また、前記基板1の表面4および裏面5の一部のみにAuメッキ層3を被覆する場合には、表面4および裏面5における他の面をマスキングした状態で、前記電解Auスメッキなどを行う。
更に、表・裏面4,5にAuメッキ層3が被覆された金属セパレータ素板P1を、図示しない一対のプレス型間に挿入してプレス成形する工程(S4)を行う。その結果、図4中の最下端に示すように、表面4のほぼ中央部に反応ガスの流路6、凸部7、およびUターン部uなどが形成され、裏面5のほぼ中央部に凹部8や凸部9などが形成された前記同様の金属セパレータP2が形成される。
The operations from the acid treatment step (S2) to the step (S3) for coating the Au plating layer 3 are performed in a non-oxidizing atmosphere such as argon or nitrogen. Further, when the Au plating layer 3 is covered only on a part of the front surface 4 and the back surface 5 of the substrate 1, the electrolytic Au plating is performed in a state where the other surfaces of the front surface 4 and the back surface 5 are masked.
Further, a step (S4) is performed in which the metal separator base plate P1 whose front / back surfaces 4 and 5 are coated with the Au plating layer 3 is inserted between a pair of press dies (not shown) and press-molded. As a result, as shown at the lowermost end in FIG. 4, the reaction gas flow path 6, the convex portion 7, the U-turn portion u and the like are formed in the substantially central portion of the surface 4, and the concave portion is formed in the substantially central portion of the back surface 5. The metal separator P2 similar to the above in which the 8 and the convex portion 9 are formed is formed.

図5は、本発明の燃料電池用バイポーラ金属セパレータP3を得るための第2の製造方法における前段階に関する。
図5中の最上段に示すように、素鋼板P0を、界面活性剤入り洗浄液に接触させ、更に水酸化ナトリウム水溶液、あるいはアセトン中に浸漬して、表・裏面4,5を脱脂および洗浄し、表層に付着していた汚れや油脂類などを除去する洗浄工程(S1)を行う。
次いで、表・裏面4,5が洗浄された素鋼板P0を、高真空のスパッタ装置内に搬入し、Arなどのイオンガスによるイオンビームを照射して、図5中の二段目の左右の各枠内に示すように、表・裏面4,5の全体または一部に形成されている不動態皮膜2を、所要の厚み(例えば、約20nm)で除去するドライエッチング工程(S5)を行う。
FIG. 5 relates to the previous stage in the second manufacturing method for obtaining the bipolar metal separator P3 for fuel cells of the present invention.
As shown in the uppermost row in FIG. 5, the base steel plate P0 is brought into contact with a cleaning solution containing a surfactant, and further immersed in an aqueous sodium hydroxide solution or acetone to degrease and clean the front and back surfaces 4 and 5. Then, a cleaning step (S1) for removing dirt and oils and the like adhering to the surface layer is performed.
Next, the steel sheet P0 whose front and back surfaces 4 and 5 have been cleaned is carried into a high vacuum sputtering apparatus, and irradiated with an ion beam of an ion gas such as Ar. As shown in each frame, a dry etching step (S5) is performed to remove the passive film 2 formed on all or part of the front and back surfaces 4 and 5 with a required thickness (for example, about 20 nm). .

引き続き、ドライエッチング直後の素鋼板P0の表・裏面4,5の全体、あるいはそれらの一部に対し、前記スパッタ装置内において、ターゲットとして配置したAu(貴金属)を蒸着させるスパッタリングを施す工程(S6)を行う。その結果、図5中の三段目の左右の各枠内に示すように、基板1の表・裏面4,5の全面、またはそれらの一部に、厚みが0.5〜60nmであるAuスパッタ層(貴金属の薄膜層)3が直に被覆された金属セパレータ素板P1が得られる。
そして、基板1の表・裏面4,5の全面、あるいはそれらの一部にAuスパッタ層3が被覆された金属セパレータ素板P1に対し、前記同様のプレス工程(S4)を施す。その結果、図5中の最下段に示すように、前記同様の金属セパレータP2が得られる。
Subsequently, a step of performing sputtering for depositing Au (noble metal) disposed as a target in the sputtering apparatus on the entire front / back surfaces 4 and 5 of the steel plate P0 immediately after dry etching, or a part thereof (S6). )I do. As a result, as shown in each frame on the left and right of the third stage in FIG. 5, Au having a thickness of 0.5 to 60 nm is formed on the entire front / back surfaces 4 and 5 of the substrate 1 or a part thereof. A metal separator base plate P1 directly coated with the sputter layer (a noble metal thin film layer) 3 is obtained.
Then, the same pressing step (S4) as described above is performed on the metal separator base plate P1 in which the Au sputter layer 3 is coated on the entire front / back surfaces 4 and 5 of the substrate 1 or a part thereof. As a result, as shown in the lowermost stage in FIG. 5, the same metal separator P2 as described above is obtained.

図6〜図8は、本発明の第1および第2の製造方法に共通するバイポーラ金属セパレータP3の製造方法の後段階に関する。
先ず、図6に示すように、一対の金属セパレータP2を、それらの前記流路6が形成されていない裏面5,5が対向するように接近させる。予め、一方の金属セパレータP2の裏面5における凸部9の頂面や、ヘッダー部10の裏面には、ペースト状の半田(ロウ材)Rが線状、点状、あるいは面状に塗布されている。
尚、上記半田(ロウ材)Rは、前記Au(貴金属)の薄膜層3の上に位置している。また、本発明に用いるロウ材Rには、上記半田(Pb−Sn)に替えて、Sn−Ag系、Sn−Cu系、Sn−Ag−Cu系、Sn−Ag−Bi系、Sn−Bi系、Sn−Zn−Bi系などの低融点合金からなるペースト状あるいはプリフォーム材を用いても良い。
6 to 8 relate to the latter stage of the manufacturing method of the bipolar metal separator P3 common to the first and second manufacturing methods of the present invention.
First, as shown in FIG. 6, the pair of metal separators P <b> 2 are brought close to each other so that the back surfaces 5 and 5 where the flow paths 6 are not formed face each other. A solder paste (a brazing material) R is applied in advance in a linear, dotted or planar shape on the top surface of the convex portion 9 on the back surface 5 of one metal separator P2 or the back surface of the header portion 10. Yes.
The solder (brazing material) R is located on the thin film layer 3 of Au (noble metal). Further, the brazing material R used in the present invention is replaced with the solder (Pb-Sn) described above, Sn-Ag series, Sn-Cu series, Sn-Ag-Cu series, Sn-Ag-Bi series, Sn-Bi series. Alternatively, a paste material or a preform material made of a low melting point alloy such as a Sn-Zn-Bi-based alloy may be used.

図6中の一点鎖線部分Vを拡大した図7の左側の部分拡大断面図で示すように、ペースト状の前記半田Rを、一対の金属セパレータP2における各裏面5の全体に被覆されたAuの薄膜層(Auメッキ層またはAuスパッタ層)3,3間に挟むように配置する。係る状態で、一対の金属セパレータP2を拘束し、約200℃で数秒間加熱した。
その結果、図7中で白抜きの矢印の右側に示すように、半田Rは、一旦溶融した後、凝固して圧縮される。同時に、上記加熱によってAuの薄膜層3中のAu原子が、隣接する半田R中に拡散するため、凝固後の半田Rは、一対の金属セパレータP2の各基板1と直にロウ付け(接合)された。
一方、図8の左側の部分拡大断面図で示するように、ペースト状の前記半田Rを、一対の金属セパレータP2における各裏面5の一部に被覆されたAuの薄膜層3,3間に挟んで配置しても良い。係る状態で、一対の金属セパレータP2を拘束し、約200℃で数秒間加熱した。
その結果、図8中で白抜きの矢印の右側に示すように、半田Rは、一旦溶融した後、凝固して圧縮されると同時に、上記加熱によってAuの薄膜層3中のAu原子が、隣接する半田R中に拡散するため、凝固後の半田Rは、一対の金属セパレータP2の各基板1と直にロウ付け(接合)された。
As shown in the partial enlarged cross-sectional view on the left side of FIG. 7 in which the one-dot chain line portion V in FIG. 6 is enlarged, the paste-like solder R is coated with Au on the entire back surface 5 of the pair of metal separators P2. It arrange | positions so that it may pinch | interpose between thin film layers (Au plating layer or Au sputter layer) 3,3. In this state, the pair of metal separators P2 was restrained and heated at about 200 ° C. for several seconds.
As a result, as shown on the right side of the white arrow in FIG. 7, the solder R is once melted and then solidified and compressed. At the same time, Au atoms in the Au thin film layer 3 are diffused into the adjacent solder R by the above heating, so that the solidified solder R is brazed (bonded) directly to each substrate 1 of the pair of metal separators P2. It was done.
On the other hand, as shown in the partial enlarged cross-sectional view on the left side of FIG. 8, the paste-like solder R is placed between the Au thin film layers 3 and 3 covered with a part of each back surface 5 of the pair of metal separators P2. You may arrange | position between. In this state, the pair of metal separators P2 was restrained and heated at about 200 ° C. for several seconds.
As a result, as shown on the right side of the white arrow in FIG. 8, the solder R is once melted and then solidified and compressed. At the same time, the Au atoms in the thin film layer 3 of Au are In order to diffuse into the adjacent solder R, the solidified solder R was brazed (joined) directly to each substrate 1 of the pair of metal separators P2.

前記直接ロウ付けされた接合部分は、基板1と半田(ロウ材)Rとの界面で、少なくとも30%以上、望ましくは40%以上、より望ましくは50%以上あると良い。また、前記基板1と半田Rとの直接的なロウ付けは、Auメッキ層3の厚みが0.5〜60nm、望ましくは1〜20nmという極く薄い薄膜であるため、前述した拡散を可能としたことに起因している。しかも、比較的低い加熱温度帯において一対の金属セパレータP2を強固で確実にロウ付けできる。
そして、上記半田付け(ロウ付け)によって、図9の断面図で示すように、一対の金属セパレータP2を、それらの流路6が互いに直交するように対向および接近させた裏面5,5間で、低融点の半田Rを介してロウ付けしたことで、各金属セパレータP2の表面4,4側における反応ガスの流路6などを直交するように配置したバイポーラ金属セパレータP3が得られた。
The directly brazed joint portion may be at least 30% or more, desirably 40% or more, and more desirably 50% or more at the interface between the substrate 1 and the solder (brazing material) R. Further, the direct brazing between the substrate 1 and the solder R is an extremely thin thin film having a thickness of the Au plating layer 3 of 0.5 to 60 nm, and preferably 1 to 20 nm, so that the above-described diffusion is possible. This is due to the fact that Moreover, the pair of metal separators P2 can be brazed firmly and reliably in a relatively low heating temperature zone.
Then, by the soldering (brazing), as shown in the cross-sectional view of FIG. 9, the pair of metal separators P2 are placed between the back surfaces 5 and 5 facing and approaching each other so that the flow paths 6 are orthogonal to each other. Then, by brazing via the low melting point solder R, a bipolar metal separator P3 was obtained in which the reaction gas flow paths 6 and the like on the surface 4, 4 side of each metal separator P2 were arranged orthogonally.

以上のような本発明のバイポーラ金属セパレータP3とその製造方法によれば、前記金属セパレータ素板P1をプレス成形した一対の金属セパレータP2を隣接させ、ハンダ付けなどのロウ付けする際に、極く薄いAu(貴金属)の薄膜層3,3同士を対向させ、これらの間に半田(ロウ材)Rを挟んで半田(ロウ)付けすることで、不動態皮膜2を介することなく、且つ比較的低温度で半田付けされた半田Rのみを介して、金属セパレータP2,2の基板1,1同士を強固且つ確実に接合できる。従って、反りが少なく耐食性を有する一対の金属セパレータP2を、強固に接合したバイポーラ金属セパレータP3を容易且つ安価に提供できる。   According to the bipolar metal separator P3 and the manufacturing method thereof of the present invention as described above, when the pair of metal separators P2 formed by press-molding the metal separator base plate P1 are adjacent to each other and soldering or the like is extremely performed, The thin Au (noble metal) thin film layers 3 and 3 are opposed to each other, and solder (brazing material) R is sandwiched between the thin film layers 3 and 3, so that the relatively thin film does not pass through the passive film 2. The substrates 1 and 1 of the metal separators P2 and 2 can be joined firmly and reliably only through the solder R soldered at a low temperature. Therefore, a bipolar metal separator P3 in which a pair of metal separators P2 with little warpage and corrosion resistance are firmly joined can be provided easily and inexpensively.

図10は、前記バイポーラ金属セパレータP3を用いて、単位セルの燃料電池B1を製作する工程に関する。
先ず、図10中の右側の黒い矢印で示すように、一対のバイポーラ金属セパレータP3の間に、中央の高分子膜体20と、その両側に配置する一対の電極26とを挟持する。上記高分子膜体20は、全体が前記金属セパレータP2とほぼ同じ大きさの膜材で、中央部の固体高分子膜22と、その周囲を囲む枠形の補強シール部24とからなる。また、上記一対の電極26は、一方がアノード電極で、他方がカソード電極である。係る電極26は、例えば、シート状の炭素繊維からなり、上記膜体20に接する側に主にPt微粒子を担持させたカーボン触媒を塗布したもの、あるいは、上記膜体20に接する部分にPt微粒子を担持させたカーボン触媒を塗布した上にカーボン繊維を載せたものである。
FIG. 10 relates to a process of manufacturing a unit cell fuel cell B1 using the bipolar metal separator P3.
First, as shown by a black arrow on the right side in FIG. 10, a central polymer film body 20 and a pair of electrodes 26 disposed on both sides thereof are sandwiched between a pair of bipolar metal separators P3. The polymer film body 20 is a film material having the same size as that of the metal separator P2 as a whole, and includes a solid polymer film 22 at the center and a frame-shaped reinforcing seal part 24 surrounding the periphery. One of the pair of electrodes 26 is an anode electrode, and the other is a cathode electrode. The electrode 26 is made of, for example, a sheet-like carbon fiber and is coated with a carbon catalyst mainly supporting Pt fine particles on the side in contact with the film body 20, or Pt fine particles are in contact with the film body 20. A carbon catalyst is applied on a carbon catalyst.

前記高分子膜体20の両面に電極26をそれぞれ添着し、その外側に一対のバイポーラ金属セパレータP3を接触させ、それらの周辺部間にシール材を挟み、図示しないボルトを貫通させ、且つ当該ボルトの雄ネジ部にナットを締結する。
その結果、図10中の白抜きの矢印の左側に示すように、高分子膜体20の両面に電極26およびバイポーラ金属セパレータP3を対称に固定した単位セルの燃料電池B1が得られる。
更に、図11に示すように、単位セルの上記燃料電池B1を、複数個厚み方向に沿って積層し且つ固定することで、スタック型の燃料電池B2を得ることができる。係る燃料電池B2では、互いに隣接し合う単位セルの燃料電池B1ごとにおける一方のバイポーラ金属セパレータP3を共有している。
Electrodes 26 are respectively attached to both surfaces of the polymer film body 20, a pair of bipolar metal separators P3 are brought into contact with the outside thereof, a sealing material is sandwiched between peripheral portions thereof, a bolt (not shown) is penetrated, and the bolt Fasten the nut to the male screw part.
As a result, as shown on the left side of the white arrow in FIG. 10, a unit cell fuel cell B1 in which the electrode 26 and the bipolar metal separator P3 are symmetrically fixed on both surfaces of the polymer film body 20 is obtained.
Furthermore, as shown in FIG. 11, a stack type fuel cell B2 can be obtained by laminating and fixing a plurality of the fuel cells B1 of the unit cell along the thickness direction. In such a fuel cell B2, one bipolar metal separator P3 is shared in each fuel cell B1 of unit cells adjacent to each other.

前記燃料電池B1,B2によれば、固体高分子膜22を挟む一方側の金属セパレータP3の流路6を流れる水素(燃料ガス:反応ガス)は、隣接するアノード電極26に接触して水素イオンと電子とに分解され、係る電子は、図示しない外部の回路を通過する際に発電に利用された後、他方側のカソード電極26に送られる。一方、固体高分子膜22を挟む他方側の金属セパレータP3の流路6を流れる空気(酸化剤ガス:反応ガス)は、隣接するカソード電極26に接触した際に、空気中の酸素がイオン化すると同時に、固体高分子膜22を通過した上記水素イオンと、上記電子とが反応して水が生成され、外部に排出される。
以上の作用を繰り返すことで、水素と空気とを用いて、発電を継続且つ安定して行うことが可能となる。
According to the fuel cells B1 and B2, hydrogen (fuel gas: reactive gas) flowing through the flow path 6 of the metal separator P3 on one side with the solid polymer film 22 in contact with the adjacent anode electrode 26 is hydrogen ion. The electrons are used for power generation when passing through an external circuit (not shown), and then sent to the cathode electrode 26 on the other side. On the other hand, when the air (oxidant gas: reaction gas) flowing through the flow path 6 of the metal separator P3 on the other side sandwiching the solid polymer film 22 comes into contact with the adjacent cathode electrode 26, oxygen in the air is ionized. At the same time, the hydrogen ions that have passed through the solid polymer film 22 react with the electrons to generate water, which is discharged to the outside.
By repeating the above operation, it is possible to perform power generation continuously and stably using hydrogen and air.

ここで、本発明の具体的な実施例について、以下に説明する。
予め、ステンレス鋼(SUS316L)からなり、厚さ:0.1mm、縦・横100×100mmの試験用素板を90枚用意した。これらのうち、76枚の素板の表・裏面4,5全体または表・裏面4,5の一部に対し、前記洗浄工程、酸処理工程、および電解Auメッキ(S1〜S3)工程を同じ条件にて施し、表1〜3に示すように、厚み3nm,5nm,8nm,10nm、15nm、20nm、または30nmのAuメッキ層(貴金属の薄膜層)3を被覆した。残り14枚の素板は、そのままとした。尚、表1〜3中の「両面一部」とは、少なくとも、素板の裏面に形成される凸部9の頂面となる部分にAuメッキ層3が被覆されることを示す。
Here, specific examples of the present invention will be described below.
In advance, 90 test base plates made of stainless steel (SUS316L) and having a thickness of 0.1 mm and a length and width of 100 × 100 mm were prepared. Of these, the cleaning process, the acid treatment process, and the electrolytic Au plating (S1 to S3) process are the same for the entire front / back surfaces 4 and 5 or a part of the front / back surfaces 4 and 5 of the 76 base plates. As shown in Tables 1 to 3, an Au plating layer (a noble metal thin film layer) 3 having a thickness of 3 nm, 5 nm, 8 nm, 10 nm, 15 nm, 20 nm, or 30 nm was coated. The remaining 14 base plates were left as they were. Note that “part of both surfaces” in Tables 1 to 3 indicates that the Au plating layer 3 is coated at least on the top surface of the convex portion 9 formed on the back surface of the base plate.

次に、前記90枚の試験用素板に対し、それぞれ同じプレス型を用いて、表面4に同じ寸法の複数の前記流路6、凸部7、ヘッダー部10,11などを、裏面5に凹部8および凸部9などを成形して、90枚の金属セパレータを成形した。
更に、表1〜3に示すように、上記90枚の金属セパレータから、一対のセパレータA,Bの組み合わせを行い、実施例1〜18,22〜35と比較例1〜13の組を作った。各例の組ごとに、一対のセパレータA,Bの各裏面5で対向する複数の凸部9を接近させ、これらの頂面に被覆されたAuメッキ層3,3間に、0.9×0.9mmの半田ペーストを1.8mm間隔で且つ縦横40×40mmの範囲において塗布し、更に約200℃のリフロー炉に通して半田(ロウ)付けした。
Next, using the same press die for the 90 test base plates, a plurality of the flow paths 6, convex portions 7, header portions 10 and 11 having the same dimensions on the front surface 4 are formed on the back surface 5. The concave portions 8 and the convex portions 9 were formed to form 90 metal separators.
Further, as shown in Tables 1 to 3, a pair of separators A and B were combined from the 90 metal separators, and a set of Examples 1 to 18, 22 to 35 and Comparative Examples 1 to 13 was made. . For each set of examples, a plurality of convex portions 9 facing each other on the back surfaces 5 of the pair of separators A and B are brought close to each other, and 0.9 × between the Au plating layers 3 and 3 covered on these top surfaces. A 0.9 mm solder paste was applied at 1.8 mm intervals and in a range of 40 × 40 mm in length and width, and further soldered by passing through a reflow oven at about 200 ° C.

そして、半田付けして得られた各例ごとのバイポーラ金属セパレータにおける一対の金属セパレータA,Bを平面方向に沿って離間するように、両手で引っ張った。その結果、一対のセパレータが簡単に離れるか、僅かの力で離れた例を「×」とし、強く引っ張っても離れなかった例を「○」として表1〜3に示した。
表1〜3に示すように、実施例1〜18,22〜35は、それぞれ一対の金属セパレータA,Bを強く引っ張っても何れも離れなかった。係る結果は、金属セパレータA,B共に、予め厚み3〜30nmのAuメッキ層3が半田付けする側の面に被覆されていたため、半田Rと金属セパレータA,Bの基板1とが直に接合された部分を有していたことによる、ものと推定される。
一方、表1〜3に示すように、比較例1〜13は、一対金属セパレータA,Bが簡単に離れるか、あるいは僅かの力で離れた。係る結果は、セパレータA,Bの半田付けした面にAuメッキ層3が被覆されておらず、且つCr酸化物を含む不動態皮膜2が生成されていたため、半田RとセパレータA,Bの基板1とが直に接合されなかった、ことによると推定される。
And it pulled with both hands so that a pair of metal separators A and B in the bipolar metal separator for each example obtained by soldering might be separated along the plane direction. As a result, examples where the pair of separators were separated easily or with a slight force were shown as “X”, and examples where they were not separated even when pulled strongly were shown as “◯” in Tables 1-3.
As shown in Tables 1 to 3, Examples 1 to 18 and 22 to 35 were not separated even when the pair of metal separators A and B were pulled strongly. As a result, since both the metal separators A and B were previously coated on the surface to be soldered with the Au plating layer 3 having a thickness of 3 to 30 nm, the solder R and the substrates 1 of the metal separators A and B were directly joined. It is presumed that it was due to having the portion that was made.
On the other hand, as shown in Tables 1 to 3, in Comparative Examples 1 to 13, the pair of metal separators A and B separated easily or with a slight force. As a result, since the Au plating layer 3 was not coated on the soldered surfaces of the separators A and B and the passive film 2 containing Cr oxide was generated, the substrates of the solder R and the separators A and B It is estimated that 1 was not directly joined.

Figure 2009152177
Figure 2009152177

Figure 2009152177
Figure 2009152177

Figure 2009152177
Figure 2009152177

別途に、Fe−Ni系合金(INCOLOY825)からなり、厚さ:0.1mm、縦・横100×100mmの試験用素板を32枚用意した。これらのうち、24枚の素板の両面または片面の中央部(一部)に対し、前記洗浄工程、酸処理工程、および電解Auメッキ(S1〜S3)工程を同じ条件で施し、表4に示すように、厚み3nm、10nm、または30nmのAuメッキ層(貴金属の薄膜)3を被覆した。残り8枚の素板は、そのままとした。
次に、上記32枚の試験用素板に対し、前記と同じプレス型を用いて、前記同様の前記流路6、凸部7、ヘッダー部10,11、凹部8、および凸部9などを成形して、32枚の金属セパレータを成形した。
Separately, 32 test base plates made of an Fe—Ni alloy (INCOLOY 825) and having a thickness of 0.1 mm and a length and width of 100 × 100 mm were prepared. Among these, the cleaning step, the acid treatment step, and the electrolytic Au plating (S1 to S3) step are performed under the same conditions on both surfaces or a central portion (part) of 24 base plates. As shown, an Au plating layer (a noble metal thin film) 3 having a thickness of 3 nm, 10 nm, or 30 nm was coated. The remaining 8 base plates were left as they were.
Next, with respect to the 32 test base plates, the same flow path 6, the convex portion 7, the header portions 10 and 11, the concave portion 8, the convex portion 9 and the like are used by using the same press die as described above. Molded to form 32 metal separators.

次いで、表4に示すように、上記32枚の金属セパレータから、一対のセパレータA,Bの組み合わせを行い、実施例36〜44と比較例14〜20の組を作った。各例の組ごとに、一対のセパレータA,Bの各裏面5で対向する複数の凸部9を隣接させ、これらの頂面に被覆されたAuメッキ層3,3間に、0.9×0.9mmのPbフリー半田(Sn−Ag−Cu系合金)のペーストを1.8mm間隔で且つ縦横40×40mmの範囲において塗布し、更に約240℃のリフロー炉に通してロウ(半田)付けした。
得られた各例ごとのバイポーラ金属セパレータの一対の金属セパレータA,Bを前記同様に引っ張り、一対の素板が簡単に離れるか、僅かの力で離れた例を「×」とし、強く引っ張っても離れなかった例を「○」として、表4に示した。
Next, as shown in Table 4, a pair of separators A and B was combined from the 32 metal separators described above, and pairs of Examples 36 to 44 and Comparative Examples 14 to 20 were made. For each set of examples, a plurality of convex portions 9 facing each other on the back surfaces 5 of the pair of separators A and B are adjacent to each other, and 0.9 × between the Au plating layers 3 and 3 covered on the top surfaces thereof. 0.9mm Pb-free solder (Sn-Ag-Cu alloy) paste is applied at 1.8mm intervals and in the range of 40x40mm in length and width, and then passed through a reflow oven at about 240 ° C for soldering did.
Pull the pair of metal separators A and B of the bipolar metal separator obtained for each example in the same manner as described above, and the pair of base plates can be separated easily or with a slight force as “X” and pulled strongly. Table 4 shows an example in which the distance was not left as “◯”.

表4に示すように、実施例36〜44は、それぞれ一対の金属セパレータA,Bを強く引っ張っても何れも離れなかった。係る結果は、金属セパレータA,B共に、予め厚み3〜30nmのAuメッキ層3がロウ付けする側の面に被覆されていたため、半田Rと金属セパレータA,Bの基板1とが直に接合された部分を有していたことによる、ものと推定される。
一方、表4に示すように、比較例14〜20は、一対金属セパレータA,Bが簡単に離れるか、あるいは僅かの力で離れた。係る結果は、セパレータA,Bのロウ付けした面にAuメッキ層3が被覆されておらず、且つCr酸化物を含む不動態皮膜が生成されていたため、前記半田RとセパレータA,Bの基板1とが直に接合されなかったことによる、ものと推定される。
As shown in Table 4, Examples 36 to 44 were not separated even when the pair of metal separators A and B were pulled strongly. As a result, since both the metal separators A and B were previously coated on the surface to be brazed with the Au plating layer 3 having a thickness of 3 to 30 nm, the solder R and the substrates 1 of the metal separators A and B were directly joined. It is presumed that it was due to having the portion that was made.
On the other hand, as shown in Table 4, in Comparative Examples 14 to 20, the pair of metal separators A and B separated easily or with a slight force. As a result, since the Au plating layer 3 was not coated on the brazed surfaces of the separators A and B, and a passive film containing Cr oxide was generated, the solder R and the substrates of the separators A and B It is presumed that 1 was not joined directly.

Figure 2009152177
Figure 2009152177

更に、ステンレス鋼(SUS316L)からなり、厚さ:0.1mm、縦・横100×100mmの試験用素板を30枚用意し、そのうち、24枚の素板の表・裏面4,5全体または表・裏面4,5の一部に対し、前記洗浄工程、ドライエッチング工程、およびAuスパッタリング(S1,S5,S6)工程を同じ条件にて施し、表5に示すように、厚み10nm,30nm,または100nmのAuスパッタ層(貴金属の薄膜層)3を被覆した。残り6枚の素板は、そのままとした。
次に、上記30枚の試験用素板に対し、前記と同じプレス型を用いて、前記同様の金属セパレータを成形した。
次いで、表5に示すように、上記30枚の金属セパレータから、一対のセパレータA,Bの組み合わせを行い、実施例45〜50と比較例21〜29の組を作った。各例の組ごとに、一対のセパレータA,Bの各裏面5で対向する複数の凸部9を隣接させ、これらの頂面に被覆されたAuスパッタ層3,3間に、前記同様の半田ペーストを塗布した後、約200℃のリフロー炉に通して半田(ロウ)付けした。
得られた各例ごとのバイポーラ金属セパレータの一対の金属セパレータA,Bを前記同様に引っ張り、簡単に離れるか、僅かの力で離れた例を「×」とし、強く引っ張っても離れなかった例を「○」として、表5に示した。
Furthermore, 30 test base plates made of stainless steel (SUS316L) and having a thickness of 0.1 mm and a length and width of 100 × 100 mm are prepared. The cleaning process, the dry etching process, and the Au sputtering (S1, S5, S6) process are performed on the front and back surfaces 4 and 5 under the same conditions. As shown in Table 5, the thickness is 10 nm, 30 nm, Alternatively, a 100 nm Au sputter layer (a noble metal thin film layer) 3 was coated. The remaining 6 base plates were left as they were.
Next, the same metal separator as described above was formed on the 30 test base plates using the same press die as described above.
Next, as shown in Table 5, a pair of separators A and B was combined from the 30 metal separators described above, and a set of Examples 45 to 50 and Comparative Examples 21 to 29 was formed. For each set of examples, a plurality of convex portions 9 facing each other on the back surfaces 5 of the pair of separators A and B are adjacent to each other, and between the Au sputtered layers 3 and 3 covered on the top surfaces, the same solder as described above. After applying the paste, it was passed through a reflow oven at about 200 ° C. and soldered.
Example of the pair of metal separators A and B of the bipolar metal separator obtained for each example was pulled in the same manner as described above, and was easily separated or separated by a slight force as “X”, and even when pulled strongly, the example was not separated Is shown in Table 5.

Figure 2009152177
Figure 2009152177

表5に示すように、実施例45〜50は、それぞれ一対の金属セパレータA,Bを強く引っ張っても何れも離れなかった。係る結果は、金属セパレータA,B共に、予め厚み10〜30nmのAuスパッタ層3がロウ付けする側の面に被覆されていたため、半田Rと金属セパレータA,Bの基板1とが直に接合された部分を有していたことによる、ものと推定される。
一方、表5に示すように、比較例21〜29は、一対の金属セパレータA,Bが簡単に離れるか、あるいは僅かの力で離れた。このうち、比較例21〜24,28,29は、セパレータA,Bのロウ付けした面にAuスパッタ層3が被覆されておらず、且つCr酸化物を含む不動態皮膜が生成されていたため、前記半田RとセパレータA,Bの基板1とが直に接合されなかったことによる、ものと推定される。更に、※印を付けた比較例25〜27は、ロウ付けはできたが、金属セパレータA,Bを強く引っぱった際に簡単に離れた。該剥離した界面を観察した結果、半田Rが基板1にまで達していず、残っていたAuスパッタ層3を介して半田付け(ロウ付け)されていたことによる、ものと推定された。
前記のような実施例1〜18,22〜50によって、本発明のバイポーラ金属セパレータP3の効果が裏付けられた。
As shown in Table 5, in Examples 45 to 50, none of them separated from each other even when the pair of metal separators A and B were pulled strongly. As a result, since both the metal separators A and B were previously coated on the surface to be brazed with the Au sputter layer 3 having a thickness of 10 to 30 nm, the solder R and the substrates 1 of the metal separators A and B were directly bonded. It is presumed that it was due to having the portion that was made.
On the other hand, as shown in Table 5, in Comparative Examples 21 to 29, the pair of metal separators A and B separated easily or with a slight force. Among these, since Comparative Examples 21-24, 28, and 29 were not coated with the Au sputter layer 3 on the brazed surfaces of the separators A and B, and a passive film containing Cr oxide was generated, It is presumed that the solder R and the substrates 1 of the separators A and B were not directly joined. Furthermore, Comparative Examples 25 to 27 marked with * were brazed but were easily separated when the metal separators A and B were pulled strongly. As a result of observing the peeled interface, it was presumed that the solder R did not reach the substrate 1 and was soldered (brazed) through the remaining Au sputter layer 3.
The effects of the bipolar metal separator P3 of the present invention were supported by Examples 1 to 18 and 22 to 50 as described above.

尚、本発明は、前述した形態および実施例に限定されるものではない。
例えば、前記基板となるステンレス鋼は、オーステナイト系のステンレス鋼(例えば、SUS316L、SUS304、SUS321など)の他、オーステナイト・フェライト系、あるいは析出硬化系のステンレス鋼としても良い。
また、前記貴金属の薄膜層は、Auに限らず、Pt、Pd、またはRuの何れか、あるいはこれらをベースとする合金からなるメッキ層などとしても良い。
更に、前記金属セパレータに成形する反応ガスの流路は、対向する一対のヘッダー部の間に、互いに平行な複数の直線形状を呈して配置する形態としても良い。
加えて、一対の金属セパレータをロウ付けするロウ材は、前記半田に限らず、各種の低融点合金からなるペースト、あるいはプリフォーム材としても良い。
In addition, this invention is not limited to the form and Example which were mentioned above.
For example, the stainless steel used as the substrate may be austenitic stainless steel (for example, SUS316L, SUS304, SUS321, etc.), austenitic / ferritic, or precipitation hardening stainless steel.
The thin film layer of the noble metal is not limited to Au, and may be a plating layer made of Pt, Pd, or Ru, or an alloy based on these.
Furthermore, the flow path of the reaction gas formed on the metal separator may be arranged in a plurality of linear shapes parallel to each other between a pair of opposing header portions.
In addition, the brazing material for brazing the pair of metal separators is not limited to the solder, and may be a paste made of various low melting point alloys or a preform material.

本発明に用いる一形態の金属セパレータを示す正面図。The front view which shows the metal separator of one form used for this invention. 図1中のX−X線の矢視に沿った断面図。Sectional drawing along the arrow of the XX in FIG. 図1中のY−Y線の矢視に沿った断面図。Sectional drawing along the arrow of the YY line in FIG. 本発明のバイポーラ金属セパレータの第1の製造方法を示す流れ図。The flowchart which shows the 1st manufacturing method of the bipolar metal separator of this invention. 本発明のバイポーラ金属セパレータの第2の製造方法を示す流れ図。The flowchart which shows the 2nd manufacturing method of the bipolar metal separator of this invention. 本発明のバイポーラ金属セパレータの製造工程を示す概略断面図。The schematic sectional drawing which shows the manufacturing process of the bipolar metal separator of this invention. 図6中の一点鎖線部分Vの一形態を模式的に示す部分拡大断面図。The partial expanded sectional view which shows typically one form of the dashed-dotted line part V in FIG. 図6中の一点鎖線部分Vの異なる形態を模式的に示す部分拡大断面図。The partial expanded sectional view which shows typically the different form of the dashed-dotted line part V in FIG. 本発明の燃料電池用バイポーラ金属セパレータを示す断面図。Sectional drawing which shows the bipolar metal separator for fuel cells of this invention. 上記バイポーラ金属セパレータを用いて単位セルの燃料電池を製作する工程を示す概略図。Schematic which shows the process of manufacturing the fuel cell of a unit cell using the said bipolar metal separator. 上記バイポーラ金属セパレータを用いてスタック型の燃料電池を製作する工程を示す概略図。Schematic which shows the process of manufacturing a stack type fuel cell using the said bipolar metal separator.

符号の説明Explanation of symbols

1……基板
2……不動態皮膜
3……Auメッキ層/Auスパッタ層(貴金属の薄膜層)
4……表面
5……裏面
6……反応ガスの流路
P2…金属セパレータ
P3…バイポーラ金属セパレータ
R……半田(ロウ材)
S1…洗浄工程
S2…酸処理工程
S3…Auメッキ工程
S4…プレス工程
S5…ドライエッチング工程
S6…Auスパッタリング工程
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Passive film 3 ... Au plating layer / Au sputter layer (thin film layer of a noble metal)
4 ... Front surface 5 ... Back surface 6 ... Reactive gas flow path P2 ... Metal separator P3 ... Bipolar metal separator R ... Solder (brazing material)
S1 ... Cleaning step S2 ... Acid treatment step S3 ... Au plating step S4 ... Pressing step S5 ... Dry etching step S6 ... Au sputtering step

Claims (5)

ステンレス鋼、Fe−Ni系合金、またはNi基合金からなり、表面および裏面を有し、且つ表面に反応ガスの流路が形成された基板において、表面の全体または少なくとも該表面における反応ガスの流路同士間の凸部の一部に貴金属の薄膜層が被覆され、裏面の全体または少なくとも該裏面におけるロウ付け部分を含む一部に、厚みが0.5〜60nmである貴金属の薄膜層が被覆された一対の燃料電池用金属セパレータと、
一対の上記燃料電池用金属セパレータが対向する裏面同士を接合するロウ付け部分と、を備え、
上記ロウ付け部分におけるロウ材の直下には、上記貴金属の薄膜層がなく、且つ係るロウ材と上記基板の表層とが直に接合された接合部分が含まれている、
ことを特徴とする燃料電池用バイポーラ金属セパレータ。
In a substrate made of stainless steel, Fe-Ni alloy, or Ni-based alloy, having a front surface and a back surface, and having a reaction gas flow path formed on the surface, the entire surface or at least the flow of the reaction gas on the surface A part of the convex part between the roads is covered with a noble metal thin film layer, and the whole of the back surface or at least a part including the brazing part on the back surface is covered with a noble metal thin film layer having a thickness of 0.5 to 60 nm. A pair of metal separators for fuel cells,
A brazing part that joins the back surfaces of the pair of fuel cell metal separators facing each other, and
Immediately below the brazing material in the brazing portion, there is no thin film layer of the noble metal, and a joining portion in which the brazing material and the surface layer of the substrate are directly joined is included.
A bipolar metal separator for a fuel cell.
前記基板の裏面に被覆される貴金属の薄膜層の厚みは、1〜20nmである、
請求項1に記載の燃料電池用バイポーラ金属セパレータ。
The thickness of the noble metal thin film layer coated on the back surface of the substrate is 1 to 20 nm.
The bipolar metal separator for fuel cells according to claim 1.
前記ロウ付け部分のロウ材と前記基板の表層とが直に接合された接合部分は、前記ロウ材と基板との界面における面積の少なくとも30%以上である、
請求項1または2に記載の燃料電池用バイポーラ金属セパレータ。
The joint portion where the brazing material of the brazing portion and the surface layer of the substrate are directly joined is at least 30% or more of the area at the interface between the brazing material and the substrate.
The bipolar metal separator for fuel cells according to claim 1 or 2.
ステンレス鋼、Fe−Ni系合金、またはNi基合金からなる基板において、追って反応ガスの流路が形成される表面の全体またはその一部、および追って前記反応ガスの流路が形成されない裏面の全体またはその一部を洗浄する工程と、
上記基板の洗浄された表・裏面の全体またはこれらの一部を酸処理して、不動態皮膜を除去する工程と、
上記基板の不動態皮膜が除去された表・裏面の全体またはこれらの一部に対し、貴金属の薄膜層を上記基板に直に被覆する工程と、
上記貴金属の薄膜層が被覆された基板をプレス成形して、係る基板の表面に反応ガスの流路を形成する燃料電池用金属セパレータを成形する工程と、
一対の上記燃料電池用金属セパレータの裏面同士を対向させ、係る裏面間で隣接する貴金属の薄膜層を含む部分同士間にロウ材を配置する工程と、
上記ロウ材をその融点よりも高い温度に加熱して、該ロウ材に接する貴金属の薄膜層を拡散吸収し、且つ当該ロウ材と隣接する一対の基板とを直にロウ付けする工程と、を含む、
ことを特徴とする燃料電池用バイポーラ金属セパレータの製造方法。
In the substrate made of stainless steel, Fe-Ni alloy, or Ni-based alloy, the whole or part of the surface where the reaction gas flow path is formed later, and the whole back surface where the reaction gas flow path is not formed later. Or a step of cleaning a part thereof,
A step of removing the passive film by acid-treating all or a part of the cleaned front and back surfaces of the substrate;
Directly coating the substrate with a thin film layer of noble metal on the whole or a part of the front and back surfaces from which the passive film of the substrate has been removed,
A step of press-molding a substrate coated with the noble metal thin film layer to form a fuel cell metal separator that forms a reaction gas flow path on the surface of the substrate;
Arranging the brazing material between the portions including the noble metal thin film layer adjacent to each other between the back surfaces of the pair of fuel cell metal separators;
Heating the brazing material to a temperature higher than its melting point, diffusing and absorbing the thin film layer of the noble metal in contact with the brazing material, and directly brazing the pair of substrates adjacent to the brazing material; Including,
A method for producing a bipolar metal separator for a fuel cell.
ステンレス鋼、Fe−Ni系合金、またはNi基合金からなる基板において、追って反応ガスの流路が形成される表面の全体またはその一部、および追って前記反応ガスの流路が形成されない裏面の全体またはその一部を洗浄する工程と、
上記基板の洗浄された表・裏面の全体またはこれらの一部に対しイオンビームを照射して、不動態皮膜を除去する工程と、
上記基板の不動態皮膜が除去された表・裏面の全体またはこれらの一部に対し、貴金属をスパッタリングして、上記基板に直に貴金属の薄膜層を被覆する工程と、
上記貴金属の薄膜層が被覆された基板をプレス成形して、係る基板の表面に反応ガスの流路を形成する燃料電池用金属セパレータを成形する工程と、
一対の上記燃料電池用金属セパレータの裏面同士を対向させ、係る裏面間で隣接する貴金属の薄膜層を含む部分同士間にロウ材を配置する工程と、
上記ロウ材をその融点よりも高い温度に加熱して、該ロウ材に接する貴金属の薄膜層を拡散吸収し、且つ当該ロウ材と隣接する一対の基板とを直にロウ付けする工程と、を含む、
ことを特徴とする燃料電池用バイポーラ金属セパレータの製造方法。
In the substrate made of stainless steel, Fe-Ni alloy, or Ni-based alloy, the whole or part of the surface where the reaction gas flow path is formed later, and the whole back surface where the reaction gas flow path is not formed later. Or a step of cleaning a part thereof,
Irradiating the whole or a part of the cleaned front and back surfaces of the substrate with an ion beam to remove the passive film;
Sputtering a noble metal to the whole or a part of the front and back surfaces from which the passive film of the substrate has been removed, and directly coating the noble metal thin film layer on the substrate;
A step of press-molding a substrate coated with the noble metal thin film layer to form a fuel cell metal separator that forms a reaction gas flow path on the surface of the substrate;
Arranging the brazing material between the portions including the noble metal thin film layer adjacent to each other between the back surfaces of the pair of fuel cell metal separators;
Heating the brazing material to a temperature higher than its melting point, diffusing and absorbing the thin film layer of the noble metal in contact with the brazing material, and directly brazing the pair of substrates adjacent to the brazing material; Including,
A method for producing a bipolar metal separator for a fuel cell.
JP2008256993A 2007-11-26 2008-10-02 Bipolar metal separator for fuel cell and its manufacturing method Withdrawn JP2009152177A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008256993A JP2009152177A (en) 2007-11-26 2008-10-02 Bipolar metal separator for fuel cell and its manufacturing method
US12/292,785 US20090136824A1 (en) 2007-11-26 2008-11-26 Metallic bipolar plate for fuel cells and method for manufacturing the same
EP08020570A EP2063480B1 (en) 2007-11-26 2008-11-26 Metallic bipolar plate for fuel cells and method for manufacturing the same
DE602008002530T DE602008002530D1 (en) 2007-11-26 2008-11-26 Metallic bipolar metal plate for fuel cells and method of making same
CA002645532A CA2645532A1 (en) 2007-11-26 2008-11-26 Metallic bipolar plate for fuel cells and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007304544 2007-11-26
JP2008256993A JP2009152177A (en) 2007-11-26 2008-10-02 Bipolar metal separator for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009152177A true JP2009152177A (en) 2009-07-09

Family

ID=40921053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256993A Withdrawn JP2009152177A (en) 2007-11-26 2008-10-02 Bipolar metal separator for fuel cell and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2009152177A (en)
DE (1) DE602008002530D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018864A (en) * 2010-07-09 2012-01-26 Jx Nippon Mining & Metals Corp Separator material for fuel cell, fuel cell separator using the same, and fuel cell stack
KR101316529B1 (en) * 2011-07-06 2013-10-08 기아자동차주식회사 Fuel Cell Stack Structure
JP2019008984A (en) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018864A (en) * 2010-07-09 2012-01-26 Jx Nippon Mining & Metals Corp Separator material for fuel cell, fuel cell separator using the same, and fuel cell stack
KR101420561B1 (en) * 2010-07-09 2014-07-17 다이도 스틸 코오퍼레이션 리미티드 Separator material for fuel cell, and separator for fuel cell and fuel cell stack each comprising same
KR101316529B1 (en) * 2011-07-06 2013-10-08 기아자동차주식회사 Fuel Cell Stack Structure
JP2019008984A (en) * 2017-06-23 2019-01-17 トヨタ自動車株式会社 Manufacturing method of separator for fuel cell

Also Published As

Publication number Publication date
DE602008002530D1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5343307B2 (en) FUEL CELL STACK, FUEL CELL SEPARATOR, AND METHOD FOR PRODUCING THE SAME
JP5205814B2 (en) Metal separator for fuel cell and fuel cell using the same
EP2662179B1 (en) Aluminum bonding alloy made of an Nickel-Magnesium alloy
CN106132625B (en) The manufacturing method of metallic laminate
JP2007311081A (en) Fuel cell stack, and its manufacturing method
JP2012186147A (en) Fuel cell separator
KR20070050396A (en) Fuel cell separator and method for manufacturing the same
JP2009152177A (en) Bipolar metal separator for fuel cell and its manufacturing method
KR20140043463A (en) Separator material for fuel cells, separator for fuel cells using same, fuel cell stack using same, and method for producing separator material for fuel cells
EP2063480B1 (en) Metallic bipolar plate for fuel cells and method for manufacturing the same
JP2012212684A (en) Fuel cell stack and method of manufacturing the same
JP2012186176A (en) Fuel cell separator
JP6460160B2 (en) Electrical connection member, electrical connection structure, and method of manufacturing electrical connection member
JP2005298960A (en) Multilayer-clad stainless steel plate for separator of solid polymer type fuel cell, thick plate, material thereof and manufacturing method therefor
JP6390481B2 (en) Manufacturing method of plated power module substrate
WO2020110287A1 (en) Electrical connection member, electrical connection structure, and method for producing electrical connection member
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP2014161885A (en) Joining method of metal substrate and metal laminate
CN110603149A (en) Sheet material and method for producing sheet material
JP2010186578A (en) Fuel cell separator
JP2009238691A (en) Separator material of fuel cell, separator of fuel cell using the same, fuel cell stack, and method for manufacturing separator material of fuel cell
JP2010065257A (en) Surface treatment method for metal sheet and metal separator for fuel cell
JP2004071319A (en) Workpiece plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP5246023B2 (en) Multilayer stainless steel clad steel plate for solid polymer fuel cell separator, thick plate and materials thereof, and production method thereof
JP5070887B2 (en) Manufacturing method of plating structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206