JP2009152031A - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
JP2009152031A
JP2009152031A JP2007328354A JP2007328354A JP2009152031A JP 2009152031 A JP2009152031 A JP 2009152031A JP 2007328354 A JP2007328354 A JP 2007328354A JP 2007328354 A JP2007328354 A JP 2007328354A JP 2009152031 A JP2009152031 A JP 2009152031A
Authority
JP
Japan
Prior art keywords
battery case
sealing
battery
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007328354A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
康弘 鈴木
Toshiyuki Shimizu
▲敏▼之 清水
Hiromasa Hiramatsu
宏正 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007328354A priority Critical patent/JP2009152031A/en
Publication of JP2009152031A publication Critical patent/JP2009152031A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical battery of which the open port of a battery case is sealed by an insulative packing and in which a liquid leak resistance at a high temperature use is improved. <P>SOLUTION: In the cylindrical battery, a sealing material of a butyl rubber base is formed between an insulative packing and an battery case and between the insulative packing and a sealing plate so that a curvature radius continuing from a highest point of the battery case after sealing to an open port end portion of the battery case may be equal or less than a curvature radius continuing from the highest point of the battery case after sealing to an upper rising-up portion of a stepped portion, and as a result, the liquid leak resistance at a high temperature use is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は円筒形電池に関するものである。   The present invention relates to a cylindrical battery.

金属リチウムあるいはリチウム合金を負極活物質とし、二酸化マンガンを正極活物質とする二酸化マンガンリチウム電池は、高電圧および高エネルギー密度を有するとともに自己放電が少なく、しかも、極めて長い貯蔵寿命を有するなどの他の一次電池にない種々の特長を備えていることから、近年において急速に需要が拡大して、多くの電子機器に使用されている。二酸化マンガンリチウム電池の使用温度域は60℃から−40℃まで幅が広いことから主にフィルム式のカメラ用電池として広く用いられている。最近では優れた性能を活かして、自動車、産業機器等で85℃から−40℃まで幅広い使用温度域を必要とする用途への利用が要望されている。   A lithium manganese dioxide battery using metallic lithium or a lithium alloy as a negative electrode active material and manganese dioxide as a positive electrode active material has high voltage and high energy density, low self-discharge, and extremely long shelf life. In recent years, demand has expanded rapidly and has been used in many electronic devices. The operating temperature range of the lithium manganese dioxide battery is wide from 60 ° C. to −40 ° C., so that it is widely used mainly as a film-type camera battery. Recently, taking advantage of excellent performance, there is a demand for use in automobiles, industrial equipment and the like that require a wide use temperature range from 85 ° C. to −40 ° C.

従来のこの種の円筒形電池は、発電要素を充填した有底円筒状の電池ケースの開口部近傍を内側に突出させて環状の段部を形成し、封口板を絶縁パッキングの内縁部で挟持した組立封口体を電池ケースの段部に載置し、電池ケースの開口端部を内側に折り曲げることにより、絶縁パッキングを前記電池ケースの段部と折り曲げられたケースの開口部との間に挟持された封口板との間で上下方向に圧縮して封口する構造のものが知られている。   In this type of conventional cylindrical battery, an annular step is formed by projecting the vicinity of the opening of a bottomed cylindrical battery case filled with a power generation element to the inside, and the sealing plate is sandwiched between the inner edges of the insulating packing The assembled sealing body is placed on the step of the battery case, and the opening end of the battery case is folded inward so that the insulating packing is sandwiched between the step of the battery case and the opening of the folded case. The thing of the structure of compressing and sealing up and down between the made sealing plates is known.

特許文献1には、絶縁パッキングと電池ケース間の封止効果を高めるために、アスファルト系やオレフィン系の封止剤を使用すると効果があることが開示されており、高温使用時にはアスファルトが軟化するために、オレフィン系のブチルゴムなどの封止剤が優れていると考えられている。
特開2000−200590号公報
Patent Document 1 discloses that it is effective to use an asphalt-based or olefin-based sealant to enhance the sealing effect between the insulating packing and the battery case, and the asphalt softens when used at high temperatures. Therefore, it is considered that sealants such as olefin-based butyl rubber are excellent.
Japanese Patent Laid-Open No. 2000-200590

そこで、特許文献1に示されているブチルゴム系の封止剤を使用して円筒形電池を作製したところ、85℃の高温域では十分な封止効果が得られず、封止剤のみならず封口構造が重要であることがわかった。その対策として、封口後の前記電池ケースの段部の上方の立ち上がり部から開口端部に連なる曲率半径を小さくすることで、絶縁パッキングの反発弾性力を向上させ、封止効果を高めることが考えられるが、上記の方法では封口した後の前記電池ケース高さの最大点から段部の上方の立ち上がり部に連なる部分において、絶縁パッキングを圧縮する面積が減少し、絶縁パッキングと電池ケース間に隙間が生じ、密閉性が損なわれるという課題がある。   Then, when the cylindrical battery was produced using the butyl rubber type sealing agent shown by patent document 1, sufficient sealing effect was not acquired in the high temperature range of 85 degreeC, but not only sealing agent. The sealing structure was found to be important. As a countermeasure, it is considered that the rebound elastic force of the insulating packing is improved and the sealing effect is enhanced by reducing the radius of curvature that continues from the rising portion above the stepped portion of the battery case after sealing to the opening end. However, in the above method, the area for compressing the insulation packing is reduced in the portion that continues from the maximum point of the battery case height after sealing to the rising portion above the stepped portion, and there is a gap between the insulation packing and the battery case. There arises a problem that the sealing performance is impaired.

本発明は上記従来の課題を解決するもので、密閉性が高く、耐漏液性が改善された円筒形電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a cylindrical battery having high sealing performance and improved leakage resistance.

前記課題を解決するために本発明は、発電要素を充填した円筒形電池ケースの開口部近傍を内側に突出させて環状の段部を形成し、封口板を絶縁パッキングの内縁部で挟持した組立封口体を前記電池ケースの段部に載置し、前記電池ケースの開口端部を内側に折り曲げて封口してなる円筒形電池において、前記絶縁パッキングと前記電池ケースの間、および前記絶縁パッキングと前記封口板の間にブチルゴム系の封止剤が形成されており、封口後の前記電池ケース高さの最大点から前記電池ケースの開口端部に連なる曲率半径が、封口後の前記電池ケース高さの最大点から段部の上方の立ち上がり部に連なる曲率半径以下で形成されていることを特徴とするものである。   In order to solve the above-described problems, the present invention provides an assembly in which a cylindrical battery case filled with a power generation element is protruded inward to form an annular stepped portion, and a sealing plate is sandwiched between inner edges of the insulating packing. In a cylindrical battery in which a sealing body is placed on the step of the battery case, and the opening end of the battery case is folded inward and sealed, between the insulating packing and the battery case, and the insulating packing A butyl rubber-based sealant is formed between the sealing plates, and the radius of curvature that continues from the maximum point of the battery case height after sealing to the opening end of the battery case is equal to the height of the battery case after sealing. It is characterized by being formed with a radius of curvature equal to or less than the radius of curvature that extends from the maximum point to the rising portion above the stepped portion.

本発明によると、封口した後の電池ケース高さの最大点から電池ケースの開口端部に連なる曲率半径が、封口した後の前記電池ケース高さの最大点から段部の上方の立ち上がり部に連なる曲率半径以下で形成されることで、絶縁パッキングの反発弾性力を向上させると共に圧縮する面積を増加させ、より優れた封止効果が得られる。   According to the present invention, the radius of curvature that continues from the maximum point of the battery case height after sealing to the opening end of the battery case is from the maximum point of the battery case height after sealing to the rising portion above the stepped portion. By being formed with a continuous radius of curvature or less, the impact resilience of the insulating packing is improved and the area to be compressed is increased, and a more excellent sealing effect is obtained.

封口した後の前記電池ケース高さの最大点から開口端部に連なる曲率半径を小さくすることで、電池ケースの開口端部の絶縁パッキングを上下方向に強く圧縮し反発弾性力を向上させることができる。また、封口した後の電池ケース高さの最大点から段部の上方の立ち上がり部に連なる曲率半径を大きくすることで、絶縁パッキングを圧縮する面積を増加させ、上下方向のみならず左右方向にも絶縁パッキングを圧縮できる。また、85℃保存においても封止力の高いブチルゴム系の封止剤を併用することで、さらに耐漏液性を向上させることができる。   By reducing the radius of curvature connected to the opening end from the maximum height of the battery case after sealing, the insulating packing at the opening end of the battery case is strongly compressed in the vertical direction to improve the resilience elastic force. it can. Also, by increasing the radius of curvature that continues from the maximum height of the battery case after sealing to the rising part above the step part, the area for compressing the insulation packing is increased, so that not only in the vertical direction but also in the horizontal direction Can compress the insulation packing. In addition, even when stored at 85 ° C., leakage resistance can be further improved by using a butyl rubber-based sealant having a high sealing power.

本発明によると、耐漏液性に優れた円筒型電池を提供することができる。   According to the present invention, a cylindrical battery excellent in leakage resistance can be provided.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の円筒形非水電解液電池の一実施例を示す断面図である。図1において、負極端子を兼ねるニッケルメッキ鋼板の電池ケース1には、二酸化マンガンと黒鉛を主成分とする正極2と、リチウム金属を主成分とする負極3とをポリプロピレン製のセパレータ4を介して渦巻き状に巻き回した発電要素が挿入されている。発電要素を電池ケース1に挿入した後、電池ケース1の開口部近傍を内側に突出させて環状の段部7を形成した。環状の段部7の上方にはブチルゴム系の封止剤を塗布した。5はSUS444製の封口板、6は電池ケース1の開口部を閉塞するポリプロピレン製の絶縁パッキングである。この絶縁パッキング6の内縁部には、ブチルゴム系の封止剤を介し封口板5が挟持されている。電池ケース1にプロピレンカーボネートと1.2−ジメトキシエタンとの1:1混合溶媒に、溶質としてトリフルオロメタンスルホン酸リチウムを1モル/l溶解した電解液を注液した後、絶縁パッキング6を電池ケース1の開口部近傍を内側に突出させて形成した環状の段部7に載置し、電池ケース1の開口端部を内側に折り曲げることにより封口した。   FIG. 1 is a cross-sectional view showing an embodiment of a cylindrical non-aqueous electrolyte battery of the present invention. In FIG. 1, a nickel-plated steel plate battery case 1 also serving as a negative electrode terminal includes a positive electrode 2 mainly composed of manganese dioxide and graphite, and a negative electrode 3 mainly composed of lithium metal via a polypropylene separator 4. A power generation element wound in a spiral is inserted. After inserting the power generation element into the battery case 1, the annular step 7 was formed by projecting the vicinity of the opening of the battery case 1 inward. A butyl rubber sealant was applied above the annular step 7. 5 is a sealing plate made of SUS444, and 6 is an insulating packing made of polypropylene that closes the opening of the battery case 1. A sealing plate 5 is sandwiched between inner edges of the insulating packing 6 via a butyl rubber-based sealant. After injecting an electrolytic solution in which 1 mol / l of lithium trifluoromethanesulfonate as a solute was dissolved in a 1: 1 mixed solvent of propylene carbonate and 1.2-dimethoxyethane into the battery case 1, the insulating packing 6 was attached to the battery case. 1 was placed on an annular step 7 formed by projecting the vicinity of the opening 1 inward, and the opening end of the battery case 1 was folded inward to seal it.

封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径をR1とし、封口した後の前記電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径をR2とする。   The radius of curvature that continues from the maximum point of the battery case height after sealing to the opening end 8 of the battery case is R1, and from the maximum point of the battery case height after sealing to the rising portion 9 above the step portion 7. Let R2 be the continuous radius of curvature.

図2は本発明の円筒形電池の封口後の電池ケース上部を示したものである。   FIG. 2 shows the upper part of the battery case after sealing the cylindrical battery of the present invention.

封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1及び封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2が共に小さい場合、電池ケースの開口端部8において絶縁パッキング6を上下方向に強く圧縮し絶縁パッキングの反発弾性力が向上するが、電池ケース高さの最大点から段部7の上方の立ち上がり部9において、絶縁パッキングを圧縮する面積が減少するため、封止の効果が低減する。   A radius of curvature R1 continuous from the maximum point of the battery case height after sealing to the open end 8 of the battery case and a radius of curvature continuous from the maximum point of the battery case height after sealing to the rising portion 9 above the stepped portion 7 When both R2 are small, the insulating packing 6 is strongly compressed in the vertical direction at the opening end 8 of the battery case to improve the resilience elastic force of the insulating packing, but rises above the stepped portion 7 from the maximum point of the battery case height. Since the area for compressing the insulating packing is reduced in the portion 9, the sealing effect is reduced.

一方、封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1及び封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2が共に大きい場合、電池ケース高さの最大点から段部7の上方の立ち上がり部9において、絶縁パッキングを圧縮する面積が増加するが、電池ケースの開口端部8において絶縁パッキング6を上下方向に強く圧縮することができず、反発弾性力が低下するため、封止の効果が低減する。   On the other hand, the radius of curvature R1 continuous from the maximum point of the battery case height after sealing to the open end 8 of the battery case and the rising point 9 above the stepped portion 7 from the maximum point of the battery case height after sealing. When both the curvature radii R2 are large, the area for compressing the insulation packing increases from the maximum point of the battery case height at the rising portion 9 above the stepped portion 7, but the insulation packing 6 is provided at the opening end 8 of the battery case. Since it cannot be compressed strongly in the vertical direction and the rebound resilience is reduced, the sealing effect is reduced.

さらに、封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を大きく、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を小さくした場合、電池ケースの開口端部8において絶縁パッキング6を上下方向に強く圧縮することができず反発弾性力が低下する上に、電池ケース高さの最大点から段部7の上方の立ち上がり部9において、絶縁パッキング6を圧縮する面積が減少するため、封止の効果が低減する。   Furthermore, the radius of curvature R1 connected to the opening end 8 of the battery case is increased from the maximum point of the battery case height after sealing, and the rising portion 9 above the step 7 from the maximum point of the battery case height after sealing. When the radius of curvature R2 is reduced, the insulating packing 6 cannot be strongly compressed in the vertical direction at the opening end 8 of the battery case, the rebound resilience is reduced, and the step from the maximum point of the battery case height is reduced. Since the area for compressing the insulating packing 6 is reduced at the rising portion 9 above the portion 7, the sealing effect is reduced.

そこで、封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を小さく、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を大きくした場合、電池ケースの開口端部8の絶縁パッキング6を上下方向に強く圧縮し反発弾性力が向上する上に、電池ケース高さの最大点から段部7の上方の立ち上がり部9において、絶縁パッキングを圧縮する面積が増加するため、封止力向上の効果がある。   Therefore, the radius of curvature R1 connected to the opening end 8 of the battery case is reduced from the maximum point of the battery case height after sealing, and the rising portion 9 above the step 7 from the maximum point of the battery case height after sealing. When the radius of curvature R2 is increased, the insulating packing 6 at the opening end 8 of the battery case is strongly compressed in the vertical direction to improve the rebound resilience, and the upper portion of the step 7 from the maximum point of the battery case height. Since the area for compressing the insulating packing is increased at the rising portion 9, there is an effect of improving the sealing force.

次に本発明の円筒形電池の封口方法について具体的に説明する。ニッケルメッキ鋼板を用いた電池ケース1の内部に、発電要素を挿入した後、ローラにより、図3のように電池ケース1の開口部近傍に、内側に突出させた環状の段部7を形成した。   Next, the method for sealing a cylindrical battery of the present invention will be specifically described. After inserting the power generation element into the inside of the battery case 1 using a nickel-plated steel plate, an annular step 7 that protrudes inward is formed near the opening of the battery case 1 by a roller as shown in FIG. .

次いで電池ケース1の段部7とその上方の立ち上がり部9の内面側に封止剤10を塗布し、電池ケース1に電解液を注液した後、封口板5を挿入した絶縁パッキング6を電池ケース1の段部7に載置した。   Next, a sealing agent 10 is applied to the inner surface side of the stepped portion 7 of the battery case 1 and the rising portion 9 thereabove, an electrolyte solution is injected into the battery case 1, and the insulating packing 6 into which the sealing plate 5 is inserted is then connected to the battery. It was placed on the step 7 of the case 1.

次に曲率半径を持つ封口用金型の上下動によって、電池ケース1の開口端部8を内側に折り曲げて封口し、図1に示すCR2サイズの円筒形電池を作製した。   Next, the opening end 8 of the battery case 1 was folded inward by the vertical movement of the sealing mold having a radius of curvature, and the CR2 size cylindrical battery shown in FIG. 1 was manufactured.

(実施例1)
封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を0.8mmとし、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を1.2mmで作製し、封止剤10にブチルゴム系を使用した円筒形電池を電池Aとした。
Example 1
The curvature radius R1 connected to the opening end 8 of the battery case from the maximum point of the battery case height after sealing is set to 0.8 mm, and the rising portion above the stepped portion 7 from the maximum point of the battery case height after sealing. A cylindrical battery having a curvature radius R2 continuous to 9 at 1.2 mm and using a butyl rubber system as the sealant 10 was designated as battery A.

(比較例1)
封止剤10にアスファルト系を使用した以外は、実施例1の電池と同様にして電池を作製した。この電池を電池Bとした。
(Comparative Example 1)
A battery was fabricated in the same manner as the battery of Example 1 except that asphalt was used as the sealant 10. This battery was designated as battery B.

(比較例2)
封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を0.8mmとし、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を0.8mmで作製する以外は、実施例1の電池と同様にして電池を作製した。この電池を電池Cとした。
(Comparative Example 2)
The curvature radius R1 connected to the opening end 8 of the battery case from the maximum point of the battery case height after sealing is set to 0.8 mm, and the rising portion above the stepped portion 7 from the maximum point of the battery case height after sealing. A battery was made in the same manner as the battery of Example 1, except that the radius of curvature R2 continuous to 9 was 0.8 mm. This battery was designated as battery C.

(比較例3)
封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を1.2mmとし、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を0.8mmで作製する以外は、実施例1の電池と同様にして電池を作製した。この電池を電池Dとした。
(Comparative Example 3)
The curvature radius R1 connected to the opening end 8 of the battery case from the maximum point of the battery case height after sealing is set to 1.2 mm, and the rising portion above the stepped portion 7 from the maximum point of the battery case height after sealing. A battery was made in the same manner as the battery of Example 1, except that the radius of curvature R2 continuous to 9 was 0.8 mm. This battery was designated as battery D.

(比較例4)
封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を1.2mmとし、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を1.2mmで作製する以外は、実施例1の電池と同様にして電池を作製した。この電池を電池Eとした。
(Comparative Example 4)
The curvature radius R1 connected to the opening end 8 of the battery case from the maximum point of the battery case height after sealing is set to 1.2 mm, and the rising portion above the stepped portion 7 from the maximum point of the battery case height after sealing. A battery was made in the same manner as the battery of Example 1 except that the radius of curvature R2 continued to 9 was made 1.2 mm. This battery was designated as battery E.

(電池の評価)
以上の電池A〜電池Eについて、85℃30分、−40℃30分を1サイクルとするヒートショック試験を行った場合の漏液の発生率を表1に示す。なお、試験数は各々100個とし、サイクル数500サイクルとした。
(Battery evaluation)
About the above battery A-battery E, the incidence rate of the liquid leakage at the time of performing the heat shock test which makes 85 degreeC 30 minutes and -40 degreeC 30 minutes 1 cycle is shown in Table 1. The number of tests was 100 each, and the number of cycles was 500.

Figure 2009152031
Figure 2009152031

表1からわかるように、本発明の実施例にかかる電池Aは封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を小さく、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を大きくすることで、電池ケースの開口端部8の絶縁パッキング6を上下方向に強く圧縮し反発弾性力が向上する上に、電池ケース高さの最大点から段部7の上方の立ち上がり部9において、絶縁パッキング6を圧縮する面積が増加するため、上下方向のみならず左右方向にも絶縁パッキング6を圧縮することができ、封止力の向上の効果があったものと考えられる。   As can be seen from Table 1, the battery A according to the embodiment of the present invention has a small radius of curvature R1 connected to the open end 8 of the battery case from the maximum point of the battery case height after sealing, and the battery case after sealing. By increasing the radius of curvature R2 connected to the rising portion 9 above the step 7 from the maximum height point, the insulating packing 6 at the opening end 8 of the battery case is strongly compressed in the vertical direction, and the resilience elastic force is improved. Furthermore, since the area for compressing the insulating packing 6 increases at the rising portion 9 above the stepped portion 7 from the maximum point of the battery case height, the insulating packing 6 is compressed not only in the vertical direction but also in the horizontal direction. It is considered that there was an effect of improving the sealing force.

また、電池Aと電池Bを比較するとアスファルト系よりブチルゴム系の封止剤10の方が、封止力が強いことがわかった。以上の点から、封口した後の電池ケース高さの最大点から電池ケースの開口端部8に連なる曲率半径R1を小さく、封口した後の電池ケース高さの最大点から段部7の上方の立ち上がり部9に連なる曲率半径R2を大きくし、ブチルゴム系の封止剤10を併用することにより高温域で使用する場合の耐漏液性を向上させることができる。   Further, when the battery A and the battery B were compared, it was found that the sealing power of the butyl rubber-based sealant 10 was stronger than that of the asphalt-based. From the above points, the radius of curvature R1 connected to the opening end 8 of the battery case is reduced from the maximum point of the battery case height after sealing, and the point above the step 7 from the maximum point of the battery case height after sealing. By increasing the curvature radius R2 connected to the rising portion 9 and using the butyl rubber-based sealant 10 in combination, the leakage resistance when used in a high temperature range can be improved.

本発明の円筒形電池は、自動車,産業機器等において高温域で使用される用途に用いられる電池として有用である。   The cylindrical battery of the present invention is useful as a battery for use in a high temperature range in automobiles, industrial equipment and the like.

本発明の実施例にかかる円筒形電池の断面図Sectional drawing of the cylindrical battery concerning the Example of this invention 本発明の円筒形電池の封口後の電池ケース上部の断面図Sectional drawing of the battery case upper part after sealing of the cylindrical battery of this invention 開口部近傍に環状の段部を形成した電池ケースの断面図Sectional view of a battery case with an annular step formed near the opening

符号の説明Explanation of symbols

1 電池ケース
2 正極
3 負極
4 セパレータ
5 封口板
6 絶縁パッキング
7 段部
8 開口端部
9 立ち上がり部
10 封止剤
DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode 3 Negative electrode 4 Separator 5 Sealing plate 6 Insulation packing 7 Step part 8 Open end part 9 Standing part 10 Sealant

Claims (1)

発電要素を充填した円筒形電池ケースの開口部近傍を内側に突出させて環状の段部を形成し、封口板を絶縁パッキングの内縁部で挟持した組立封口体を前記電池ケースの段部に載置し、前記電池ケースの開口端部を内側に折り曲げて封口してなる円筒形電池において、前記絶縁パッキングと前記電池ケースの間、および前記絶縁パッキングと前記封口板の間にブチルゴム系の封止剤が形成されており、封口後の前記電池ケース高さの最大点から前記電池ケースの開口端部に連なる曲率半径が、封口後の前記電池ケース高さの最大点から段部の上方の立ち上がり部に連なる曲率半径以下で形成されていることを特徴とする円筒形電池。 A cylindrical battery case filled with a power generation element protrudes in the vicinity of the opening to form an annular stepped portion, and an assembly sealing body in which the sealing plate is sandwiched between the inner edges of the insulating packing is mounted on the stepped portion of the battery case. In the cylindrical battery formed by opening and sealing the opening end of the battery case inward, a butyl rubber-based sealant is provided between the insulating packing and the battery case and between the insulating packing and the sealing plate. The radius of curvature formed from the maximum point of the battery case height after sealing to the open end of the battery case is from the maximum point of the battery case height after sealing to the rising portion above the stepped portion. A cylindrical battery characterized by being formed with a continuous radius of curvature or less.
JP2007328354A 2007-12-20 2007-12-20 Cylindrical battery Pending JP2009152031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328354A JP2009152031A (en) 2007-12-20 2007-12-20 Cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328354A JP2009152031A (en) 2007-12-20 2007-12-20 Cylindrical battery

Publications (1)

Publication Number Publication Date
JP2009152031A true JP2009152031A (en) 2009-07-09

Family

ID=40920938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328354A Pending JP2009152031A (en) 2007-12-20 2007-12-20 Cylindrical battery

Country Status (1)

Country Link
JP (1) JP2009152031A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241610A1 (en) 2019-05-31 2020-12-03 三洋電機株式会社 Cylindrical battery
WO2021193133A1 (en) 2020-03-25 2021-09-30 三洋電機株式会社 Cylindrical battery
WO2022107716A1 (en) 2020-11-19 2022-05-27 三洋電機株式会社 Cylindrical battery
WO2022107712A1 (en) 2020-11-19 2022-05-27 三洋電機株式会社 Cylindrical battery
WO2024181423A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530148A (en) * 1978-08-23 1980-03-03 Japan Storage Battery Co Ltd Organic electrolyte cell
JPS59112565A (en) * 1982-12-17 1984-06-29 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPS6413665U (en) * 1987-07-16 1989-01-24
JPH06251758A (en) * 1993-02-24 1994-09-09 A T Battery:Kk High capacity cylindrical battery
JP2000138042A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530148A (en) * 1978-08-23 1980-03-03 Japan Storage Battery Co Ltd Organic electrolyte cell
JPS59112565A (en) * 1982-12-17 1984-06-29 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPS6413665U (en) * 1987-07-16 1989-01-24
JPH06251758A (en) * 1993-02-24 1994-09-09 A T Battery:Kk High capacity cylindrical battery
JP2000138042A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241610A1 (en) 2019-05-31 2020-12-03 三洋電機株式会社 Cylindrical battery
WO2021193133A1 (en) 2020-03-25 2021-09-30 三洋電機株式会社 Cylindrical battery
WO2022107716A1 (en) 2020-11-19 2022-05-27 三洋電機株式会社 Cylindrical battery
WO2022107712A1 (en) 2020-11-19 2022-05-27 三洋電機株式会社 Cylindrical battery
WO2024181423A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Power storage device

Similar Documents

Publication Publication Date Title
KR101313325B1 (en) Cylindrical-type secondary battery
KR100882916B1 (en) Secondary battery
JP4459429B2 (en) Secondary battery having a cap assembly
JP4493623B2 (en) Secondary battery
JP4963609B2 (en) Secondary battery
JP5807164B2 (en) Coin battery
KR102275421B1 (en) MANUFACTURING METHOD FOR SECONDARY BATTERY and SECONDARY BATTERY USING THE SAME
KR101111073B1 (en) Cap Assembly for Secondary Battery
JP4611843B2 (en) Lithium secondary battery
KR100886570B1 (en) Secondary Battery Having Gas Exhaust Part of Shape Memory Alloy and Elastic Member
KR101054748B1 (en) Secondary battery cap assembly with excellent electrolyte sealing
JP2008103324A (en) Secondary battery and its manufacturing method
JP2009152031A (en) Cylindrical battery
KR20060111838A (en) Cylindrical li secondary battery and method of fabricating the same
KR101464964B1 (en) Cylindrical Battery
KR20150086797A (en) Secondary battery
KR102331123B1 (en) Cap Assembly for Cylindrical Battery Cell Comprising Elastic Member
KR100659886B1 (en) Lithium Ion Secondary Battery
JP4824271B2 (en) Gasket for electrochemical cell and electrochemical cell
JPWO2018154841A1 (en) Coin type battery
KR101279408B1 (en) Method for manufacturing secondary battery
KR100646541B1 (en) Can type secondary battery
KR100822193B1 (en) Cap assembly and secondary battery applying the same
JP2012178229A (en) Sealed battery
KR100561307B1 (en) Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312