JP2009151439A - Coordinate input device and driving method - Google Patents

Coordinate input device and driving method Download PDF

Info

Publication number
JP2009151439A
JP2009151439A JP2007327225A JP2007327225A JP2009151439A JP 2009151439 A JP2009151439 A JP 2009151439A JP 2007327225 A JP2007327225 A JP 2007327225A JP 2007327225 A JP2007327225 A JP 2007327225A JP 2009151439 A JP2009151439 A JP 2009151439A
Authority
JP
Japan
Prior art keywords
value
coordinate input
input device
pressing point
resistance film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007327225A
Other languages
Japanese (ja)
Inventor
Takahiro Kashiwakawa
貴弘 柏川
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007327225A priority Critical patent/JP2009151439A/en
Publication of JP2009151439A publication Critical patent/JP2009151439A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage of a resistive film which occurs when pressing is started in a coordinate input device using the resistive film. <P>SOLUTION: The coordinate input device includes a first substrate which supports a first resistive film, and a second substrate which supports a second resistive film and is disposed so that the second resistive film is opposed to the first resistive film through a space, in which one of the first and second substrate is pressed at a pressing point, and respective parts corresponding to the pressing point of the first and second resistive films are brought into contact with each other to read the coordinate of the pressing point. The coordinate input device further includes a drive circuit for supplying a current to flow between the first resistive film and the second resistive film. The drive circuit continuously increases, when the pressing point is pressed, the value of the current flowing between the first resistive film and the second resistive film at the pressing point from a first value to a second value larger than the first value in accordance with an increase in the contact area between the first resistive film and the second resistive film at the pressing point. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は一般に座標入力装置に係り、特に抵抗膜を有する座標入力装置およびその駆動方法に関する。   The present invention generally relates to a coordinate input device, and more particularly to a coordinate input device having a resistance film and a driving method thereof.

近年の携帯型情報機器の普及および進展に伴い、電子手帳やPDA(Personal Digital Assistants)、さらに携帯電話、PHS、電卓、時計、GPS(Global Positioning System, 全地球位置情報システム)などの携帯型あるいは移動式情報処理装置において、また銀行ATMシステムや自動販売機、POS(Point Of Sales)システムなど、固定式情報処理装置においても、データ入力を、画面をペンないし指で押圧することにより行う座標入力装置の、マン−マシンインターフェースへの採用が拡がっている。   With the spread and progress of portable information devices in recent years, electronic notebooks, PDAs (Personal Digital Assistants), mobile phones, PHS, calculators, watches, GPS (Global Positioning System, Global Positioning System, etc.) Coordinate input that is performed by pressing a screen with a pen or a finger in a mobile information processing apparatus, or in a fixed information processing apparatus such as a bank ATM system, a vending machine, or a POS (Point Of Sales) system. The adoption of equipment for man-machine interfaces is expanding.

これらの高機能情報処理装置では、半導体技術の進歩により、装置の小型化および多機能化が進んでおり、特に、携帯電話やPDA、ノートパソコンなどの携帯情報端末では、その入力装置または表示装置の、筐体中に占める割合が増加している。   In these high-function information processing devices, the miniaturization and multi-functionalization of the devices are progressing due to the advancement of semiconductor technology. The percentage of the housing is increasing.

このような座標入力装置として、第1の方向に対向する電極対を形成した第1の抵抗膜と、前記第1の方向に直交する第2の方向に対向する電極対を形成した第2の抵抗膜とを微少距離だけ離間して配設し、前記第1の抵抗膜と第2の抵抗膜を、入力面上の一点においてペンなどの押圧ツール、あるいは指などで押圧して接触させ、かかる接触点のX座標およびY座標を、前記第1の抵抗膜の抵抗値、および前記第2の抵抗膜の抵抗値を測定することで算出する構成の座標入力装置(座標入力装置)が提案されている。
特開2002−109998号公報
As such a coordinate input device, a first resistive film in which an electrode pair opposed in the first direction is formed, and a second electrode pair formed in a second direction orthogonal to the first direction are formed. A resistance film and a small distance away from each other, and the first resistance film and the second resistance film are brought into contact with each other by pressing with a pressing tool such as a pen or a finger at one point on the input surface; A coordinate input device (coordinate input device) configured to calculate the X coordinate and the Y coordinate of the contact point by measuring the resistance value of the first resistance film and the resistance value of the second resistance film is proposed. Has been.
JP 2002-109998 A

このような抵抗膜を使った座標入力装置は、液晶表示装置などの表示装置の上に配設されることが多いため、一般に抵抗膜としてInとSnを蒸着して得られるITO(In23・SnO2)膜やZnO膜などの無機導電膜を透明電極として用いているが、ITO膜やZnO膜などの無機導電膜の形成には真空プロセスが必要であり、また原料も高価で、製造コストが高い問題を有している。またITO膜を使った座標入力装置では、連続的な筆記により抵抗膜の抵抗が変化しやすく、座標位置の読み取り精度が低下する問題がある。 Since such a coordinate input device using a resistance film is often disposed on a display device such as a liquid crystal display device, ITO (In 2 O) generally obtained by vapor-depositing In and Sn as a resistance film. 3 · SnO 2 ) film or ZnO film or other inorganic conductive film is used as the transparent electrode, but the formation of the inorganic conductive film such as ITO film or ZnO film requires a vacuum process, and the raw material is expensive. There is a problem of high manufacturing cost. In addition, in the coordinate input device using the ITO film, there is a problem that the resistance of the resistance film is easily changed by continuous writing, and the reading accuracy of the coordinate position is lowered.

このような事情で、製造が容易で安価な透明有機導電材料を抵抗膜(導電膜)として使った座標入力装置の開発が行われている。   Under such circumstances, a coordinate input device using a transparent organic conductive material that is easy to manufacture and inexpensive as a resistance film (conductive film) has been developed.

しかし、このような抵抗膜を使った座標入力装置では、入力面がペンなどの押圧ツールで押圧され前記第1の抵抗膜と第2の抵抗膜との間に電流が流れる際、前記第1の抵抗膜と第2の抵抗膜との接触面積が、押圧の開始時点では非常に小さいため、電流密度が非常に大きくなり、特に前記第1あるいは第2の抵抗膜の少なくとも一方に電圧耐性の低い有機導電膜を使っている場合には、前記有機導電膜が焼き切れることが発生する場合がある。また、このような押圧の開始時点では、前記第1の抵抗膜と第2の抵抗膜との接触の瞬間に大きな過渡電圧が発生し、抵抗膜の損傷が発生しやすい。   However, in the coordinate input device using such a resistance film, when the input surface is pressed by a pressing tool such as a pen and a current flows between the first resistance film and the second resistance film, the first Since the contact area between the first resistive film and the second resistive film is very small at the start of pressing, the current density becomes very large. In particular, at least one of the first and second resistive films is voltage resistant. When a low organic conductive film is used, the organic conductive film may burn out. Further, at the start of such pressing, a large transient voltage is generated at the moment of contact between the first resistance film and the second resistance film, and the resistance film is likely to be damaged.

一の側面によれば本発明は、第1の抵抗膜を担持する第1の基板と、第2の抵抗膜を担持し、前記第1の基板に対し、前記第2の抵抗膜が前記第1の抵抗膜から離間して対向するように配設された第2の基板と、を備え、前記第1および第2の基板の一方を、押圧点において押圧し、前記第1および第2の抵抗膜のうち、前記押圧点に対応するそれぞれの部分を接触させ、前記押圧点の座標を読み取る座標入力装置において、前記座標入力装置は、前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流を供給する駆動回路を備え、前記駆動回路は、前記押圧点において前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流の値を、前記押圧点における前記第1の抵抗膜と前記第2の抵抗膜の接触面積の増大に応じて、第1の値から、前記第1の値よりも大きい第2の値まで、連続的に増大させることを特徴とする座標入力装置を提供する。   According to one aspect, the present invention provides a first substrate carrying a first resistive film and a second resistive film, wherein the second resistive film is in relation to the first substrate. A second substrate disposed so as to face and separate from the first resistance film, and presses one of the first and second substrates at a pressing point, and the first and second substrates In the coordinate input device that reads the coordinates of the pressing point by contacting each portion corresponding to the pressing point in the resistive film, the coordinate input device includes the first resistive film and the second resistive film. A driving circuit for supplying a current flowing between the first resistance film and the second resistance film at the pressing point, and the driving circuit determines the value of the current flowing between the first resistance film and the second resistance film at the pressing point. From the first value according to the increase in the contact area of the second resistive film and the second resistive film, To a second value greater than the first value, to provide a coordinate input apparatus which comprises causing a continuous increase.

他の側面によれば本発明は、第1の抵抗膜を担持する第1の基板と、第2の抵抗膜を担持し、前記第1の基板に対し、前記第2の抵抗膜が前記第1の抵抗膜から離間して対向するように配設された第2の基板と、を備え、前記第1および第2の基板の一方を、押圧点において押圧し、前記第1および第2の抵抗膜のうち、前記押圧点に対応するそれぞれの部分を接触させ、前記押圧点の座標を読み取る座標入力装置の駆動方法であって、前記押圧点が押されたとき、前記押圧点において前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流の値を、前記押圧点における前記第1の抵抗膜と前記第2の抵抗膜の接触面積の増大に応じて、第1の値から、前記第1の値よりも大きい第2の値まで、連続的に増大させることを特徴とする座標入力装置の駆動方法を提供する。   According to another aspect, the present invention provides a first substrate carrying a first resistive film and a second resistive film, wherein the second resistive film is in contact with the first substrate. A second substrate disposed so as to face and separate from the first resistance film, and presses one of the first and second substrates at a pressing point, and the first and second substrates A driving method of a coordinate input device for reading the coordinates of the pressing point by contacting each part corresponding to the pressing point in the resistance film, and when the pressing point is pressed, The value of the current flowing between the first resistive film and the second resistive film is set to a first value according to an increase in the contact area between the first resistive film and the second resistive film at the pressing point. To a second value that is larger than the first value and continuously increasing the coordinate input To provide a driving method of location.

本発明によれば、有機導電膜を抵抗膜として使った座標入力装置において、入力面の押圧開始時における抵抗膜の損傷を抑制することが可能となる。   According to the present invention, in a coordinate input device using an organic conductive film as a resistance film, it is possible to suppress damage to the resistance film at the start of pressing the input surface.

図1は、従来の座標入力装置40の構成を示す。   FIG. 1 shows a configuration of a conventional coordinate input device 40.

図1を参照するに、座標入力装置40は、上面にITOよりなる透明導電膜32を担持したガラス基板21と、前記ガラス基板21にスペーサ部材23を介して対向して形成され、前記ガラス基板21に面する側に透明有機導電膜42を担持した例えばポリエチレンテレフタレート系の透明樹脂基板22とより構成され、前記透明有機導電膜42と透明導電膜32とは、前記スペーサ部材23により、例えば700μm程度の間隔を隔てて配設されている。   Referring to FIG. 1, a coordinate input device 40 includes a glass substrate 21 carrying a transparent conductive film 32 made of ITO on an upper surface, and a glass substrate 21 facing the glass substrate 21 with a spacer member 23 therebetween. For example, the transparent organic conductive film 42 having a transparent organic conductive film 42 supported on the side facing 21 is formed. The transparent organic conductive film 42 and the transparent conductive film 32 are, for example, 700 μm by the spacer member 23. They are arranged at a certain interval.

さらに前記透明導電膜32の、Y軸方向に対向する一対の縁部には、X軸方向に連続的に延在する電極パターン33A,34Aが形成され、前記電極パターン33Aは前記ガラス基板21上の配線パターン33により、前記ガラス基板21上の端子部33T,33Sに引き出される。同様に、前記電極パターン34Aは前記ガラス基板21上の配線パターン34により、前記ガラス基板21上の端子部34T,34Sに引き出される。   Further, electrode patterns 33A and 34A extending continuously in the X-axis direction are formed on a pair of edges of the transparent conductive film 32 facing in the Y-axis direction, and the electrode pattern 33A is formed on the glass substrate 21. The wiring pattern 33 leads to the terminal portions 33T and 33S on the glass substrate 21. Similarly, the electrode pattern 34 </ b> A is drawn out to the terminal portions 34 </ b> T and 34 </ b> S on the glass substrate 21 by the wiring pattern 34 on the glass substrate 21.

また前記透明有機導電膜42の、X軸方向に対向する一対の縁部には、Y軸方向に連続的に延在する電極パターン43A,44Aが形成され、前記電極パターン43Aは前記透明樹脂基板22上の配線パターン43により、前記樹脂基板22上の端子部43Tおよび43Sに引き出される。同様に、前記電極パターン44Aは前記透明樹脂基板21上の配線パターン44により、前記ガラス基板21上の端子部44Tおよび44Sに引き出される。   In addition, electrode patterns 43A and 44A that extend continuously in the Y-axis direction are formed on a pair of edges of the transparent organic conductive film 42 facing in the X-axis direction, and the electrode pattern 43A is formed on the transparent resin substrate. 22 is drawn out to the terminal portions 43T and 43S on the resin substrate 22 by the wiring pattern 43 on the resin substrate 22. Similarly, the electrode pattern 44 </ b> A is drawn out to the terminal portions 44 </ b> T and 44 </ b> S on the glass substrate 21 by the wiring pattern 44 on the transparent resin substrate 21.

さらに前記ガラス基板21上には、前記透明樹脂基板22上の端子部43T,43Sにコンタクトする配線パターン35および38が形成されており、前記配線パターン35および38は、前記透明樹脂基板42上の電極パターン43Aを、それぞれ前記ガラス基板21上の端子部35T,38Tへと、引き出す。同様に前記ガラス基板21上には、前記透明樹脂基板22上の端子部44T,44Sにコンタクトする配線パターン36,37が形成されており、前記配線パターン36,37は、前記透明樹脂基板42上の電極パターン44Aを、それぞれ前記ガラス基板21上の端子部36T,37Tへと引き出す。   Furthermore, wiring patterns 35 and 38 that contact the terminal portions 43T and 43S on the transparent resin substrate 22 are formed on the glass substrate 21, and the wiring patterns 35 and 38 are formed on the transparent resin substrate 42. The electrode pattern 43A is drawn out to the terminal portions 35T and 38T on the glass substrate 21, respectively. Similarly, wiring patterns 36 and 37 are formed on the glass substrate 21 so as to contact the terminal portions 44T and 44S on the transparent resin substrate 22, and the wiring patterns 36 and 37 are formed on the transparent resin substrate 42. The electrode pattern 44A is drawn out to the terminal portions 36T and 37T on the glass substrate 21, respectively.

図2,3は、図1の座標入力装置40の動作を示す図である。   2 and 3 are diagrams showing the operation of the coordinate input device 40 of FIG.

図2を参照するに、前記透明樹脂基板22の表面が、ある押圧点(X1,Y1)においてスタイラスペン40Pにより押圧され、これにより前記透明樹脂基板22に担持されている透明有機導電膜42が、前記ガラス基板21に担持されているITO膜32に前記押圧点(X1,Y1)においてコンタクトする。   Referring to FIG. 2, the surface of the transparent resin substrate 22 is pressed by a stylus pen 40P at a certain pressing point (X1, Y1), whereby the transparent organic conductive film 42 carried on the transparent resin substrate 22 is formed. The ITO film 32 carried on the glass substrate 21 is contacted at the pressing point (X1, Y1).

そこで図2の状態では、前記電極43Aおよび44Aの一方、図2Aの例では電極43Aに電源電圧Vccを供給し、他方を接地して、前記押圧点(X1,Y1)において抵抗分割(RX1,RX2)により生じる電圧降下を、前記透明有機導電膜42に前記押圧点(X1,Y1)においてコンタクトするITO膜32の電位Vsxを測定することにより求める。これにより、前記押圧点のX座標が求められる。   Therefore, in the state of FIG. 2, the power supply voltage Vcc is supplied to one of the electrodes 43A and 44A, and in the example of FIG. 2A, the other is grounded, and the other is grounded. The voltage drop caused by RX2) is obtained by measuring the potential Vsx of the ITO film 32 that contacts the transparent organic conductive film 42 at the pressing point (X1, Y1). Thereby, the X coordinate of the pressing point is obtained.

次に図3の状態において、前記電極33Aおよび34Aの一方、図2Bの例では電極33Aに電源電圧Vccを供給し、他方を接地して、前記押圧点(X1,Y1)において抵抗分割(RY1,RYX2)により生じる電圧降下を、前記透明有機導電膜42に前記押圧点(X1,Y1)においてコンタクトする透明有機導電膜42の電位Vsyを測定することにより求める。これにより、前記押圧点のY座標が求められる。   Next, in the state of FIG. 3, one of the electrodes 33A and 34A, in the example of FIG. 2B, the power supply voltage Vcc is supplied to the electrode 33A, the other is grounded, and resistance division (RY1) is performed at the pressing point (X1, Y1). , RYX2) is obtained by measuring the potential Vsy of the transparent organic conductive film 42 that contacts the transparent organic conductive film 42 at the pressing point (X1, Y1). Thereby, the Y coordinate of the pressing point is obtained.

図4は、前記図1の座標入力装置40において前記有機導電膜42よりなる抵抗膜の表面を、ペンで押圧した場合の、前記有機導電膜42と透明有機導電膜32との接触の様子を示す。   4 shows a state of contact between the organic conductive film 42 and the transparent organic conductive film 32 when the surface of the resistance film made of the organic conductive film 42 is pressed with a pen in the coordinate input device 40 of FIG. Show.

図4を参照するに、前記有機導電膜42は前記透明導電膜32と面積Sにおいて接しており、押圧を続けることにより、前記面積Sは図5(A)に示すように徐々に増大する。   Referring to FIG. 4, the organic conductive film 42 is in contact with the transparent conductive film 32 in the area S, and the area S gradually increases as shown in FIG.

このような有機導電膜42と透明導電膜32のコンタクトが生じると、前記有機導電膜42から透明導電膜32に、あるいは透明導電膜32から有機導電膜42に流れる電流Iは、図5(B)に示すように過渡的に大きく変化し、瞬間的に大きな電流が前記有機導電膜42に流れる場合がある。   When such contact between the organic conductive film 42 and the transparent conductive film 32 occurs, the current I flowing from the organic conductive film 42 to the transparent conductive film 32 or from the transparent conductive film 32 to the organic conductive film 42 is shown in FIG. ) As shown in FIG. 5B, there may be a case where a large current changes transiently and a large current flows through the organic conductive film 42 instantaneously.

またこのようなコンタクトの初期には、前記面積Sは非常に小さいため、前記有機導電膜42の押圧点には流れる電流Iの電流密度J(J=I/S)は、図5(C)に示すように非常に大きなものになり、有機導電膜42に特に深刻な損傷を与えるおそれがある。   In addition, since the area S is very small at the initial stage of such a contact, the current density J (J = I / S) of the current I flowing at the pressing point of the organic conductive film 42 is shown in FIG. As shown in FIG. 2, the organic conductive film 42 may be damaged particularly seriously.

図6は、上記問題点を解決するための、本発明の一実施形態による座標入力装置50の構成を示す。ただし図6中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。   FIG. 6 shows a configuration of a coordinate input device 50 according to an embodiment of the present invention for solving the above problem. However, in FIG. 6, the same reference numerals are assigned to portions corresponding to the portions described above, and the description thereof is omitted.

図6を参照するに、前記座標入力装置50は図1の座標入力装置40に、CPU54により制御される駆動回路55を設けた構成を有し、前記CPU55は、前記有機導電膜42に設けた電極44Aと43Aの一方、好ましくは前記駆動回路55に接続された電極43Aとは反対側の電極44Aと、前記透明導電膜32に設けた電極34Aと33Aの一方、好ましくは前記駆動回路55に接続された電極33Aとは反対側の電極34Aとの間に生じる電圧差ΔVをA/D変換器56を介して読み出し、前記読み出した電圧差ΔVに基づいて前記駆動回路55を、図7に示すフローチャートに従って制御し、前記透明導電膜32と前記有機導電膜42との間に流れる電流Iを、図8(A)に示す前記押圧点の面積Sの変化とともに、図8(B)に示すように変化させる。   Referring to FIG. 6, the coordinate input device 50 has a configuration in which a drive circuit 55 controlled by a CPU 54 is provided in the coordinate input device 40 of FIG. 1, and the CPU 55 is provided in the organic conductive film 42. One of the electrodes 44A and 43A, preferably the electrode 44A opposite to the electrode 43A connected to the drive circuit 55, and one of the electrodes 34A and 33A provided on the transparent conductive film 32, preferably the drive circuit 55 A voltage difference ΔV generated between the connected electrode 33A and the electrode 34A opposite to the connected electrode 33A is read out via the A / D converter 56, and the drive circuit 55 is shown in FIG. 7 based on the read voltage difference ΔV. The current I flowing between the transparent conductive film 32 and the organic conductive film 42 is controlled in accordance with the flowchart shown in FIG. 8B together with the change in the area S of the pressing point shown in FIG. Change as shown.

最初に図8(A),8(B)を参照するに、図8(A)は前記図5(A)と同様な、有機導電膜42と透明導電膜32との、前記押圧点におけるコンタクト面積Sの変化を示し、図8(B)は、図7のフローチャートにより制御される前記有機導電膜42と透明導電膜32との間を流れる電流Iの変化を示す。   First, referring to FIGS. 8A and 8B, FIG. 8A shows the contact at the pressing point between the organic conductive film 42 and the transparent conductive film 32 as in FIG. 5A. FIG. 8B shows the change of the current I flowing between the organic conductive film 42 and the transparent conductive film 32 controlled by the flowchart of FIG.

本実施形態では、図7のステップ1で示す前記座標入力装置50の待機状態において前記駆動回路55が供給する電流Iの値が、非常に小さな値の初期値IINIT、例えば1μAに設定されており、このため、前記有機導電膜52と透明導電膜32がコンタクトした初期状態においても、図5(A)〜(C)で説明したような過渡現象による電流Iの増大は生じることがない。 In the present embodiment, the value of the current I supplied by the drive circuit 55 in the standby state of the coordinate input device 50 shown in step 1 of FIG. 7 is set to a very small initial value I INIT , for example, 1 μA. For this reason, even in the initial state where the organic conductive film 52 and the transparent conductive film 32 are in contact with each other, the increase in the current I due to the transient phenomenon as described with reference to FIGS.

さらに本実施形態では、前記図7のステップ2において、前記CPU54が前記A/D変換器56を介して前記有機導電膜42と透明導電膜32の間に生じる電圧ΔVをモニタしており、この電圧ΔVの変化に基づいて、前記有機導電膜52と透明導電膜32との接触、および前記接触面積Sの変化を検知する。   Further, in this embodiment, in step 2 of FIG. 7, the CPU 54 monitors the voltage ΔV generated between the organic conductive film 42 and the transparent conductive film 32 via the A / D converter 56. Based on the change in the voltage ΔV, the contact between the organic conductive film 52 and the transparent conductive film 32 and the change in the contact area S are detected.

ここで再び前記図4を参照するに、前記電圧差ΔVは、前記有機導電膜42と透明導電膜32の接触抵抗をR、前記有機導電膜42と透明導電膜32の間を流れる電流をIとして、ΔV=RIで与えられるが、前記抵抗Rは前記接触面積Sに反比例して減少するため、コンタクトの初期においては、前記電圧ΔVは、(1/S)×IINITに比例する(ΔV=RI∝(1/S)×IINIT)。 Referring again to FIG. 4, the voltage difference ΔV indicates that the contact resistance between the organic conductive film 42 and the transparent conductive film 32 is R, and the current flowing between the organic conductive film 42 and the transparent conductive film 32 is I. ΔV = RI, but the resistance R decreases in inverse proportion to the contact area S. Therefore, in the initial stage of contact, the voltage ΔV is proportional to (1 / S) × I INIT (ΔV = RI∝ (1 / S) × I INIT ).

そこで前記図7のステップ2およびステップ3のループにおいて前記CPU54は前記ΔVの検出をモニタし、前記電圧ΔVが検出されると前記有機導電膜42と透明導電膜32がコンタクトしたと判断し、ステップ4において前記駆動回路55を制御し、図8(B)に示すように前記電流Iの値を前記初期値IINITから徐々に、かつ連続的に増大させる。 Therefore, in the loop of step 2 and step 3 in FIG. 7, the CPU 54 monitors the detection of ΔV, and when the voltage ΔV is detected, determines that the organic conductive film 42 and the transparent conductive film 32 are in contact with each other. 4, the drive circuit 55 is controlled, and the value of the current I is gradually and continuously increased from the initial value I INIT as shown in FIG. 8B.

さらに前記電流Iの値が、所定の最大値IMAX、例えば100μAに達すると、前記CPU54は前記最大値IMAXが維持されるように前記駆動回路55を制御する。 Further, when the value of the current I reaches a predetermined maximum value I MAX , for example, 100 μA, the CPU 54 controls the drive circuit 55 so that the maximum value I MAX is maintained.

その後、前記CPU54は駆動回路55をリセットし、前記ステップ1に戻り、次の押圧に向けて待機する。   Thereafter, the CPU 54 resets the drive circuit 55, returns to the step 1, and waits for the next pressing.

前記図7の制御では、前記ステップ4において前記電流Iの値を、前記電圧ΔVをもとに、前記押圧点における電流密度J(=I/S)が図8(C)に示すように一定になるように制御することも可能である。   In the control of FIG. 7, the current density J (= I / S) at the pressing point is constant as shown in FIG. 8C based on the value of the current I in step 4 and the voltage ΔV. It is also possible to control so that

より具体的には、Aを比例係数として、
ΔV=A×(1/S)×IINIT
と表されることから、前記接触面積Sは前記電圧差ΔVを使って
S=A×(1/ΔV)×IINIT
と導かれるので、式
J=I/S=I/(A×(1/ΔV)×IINIT
で与えられる電流密度Jが一定になるように、前記電流Iの値を、検出された電圧差ΔVに応じて変化させればよい。
More specifically, let A be a proportional coefficient,
ΔV = A × (1 / S) × I INIT
Therefore, the contact area S is calculated using the voltage difference ΔV as follows: S = A × (1 / ΔV) × I INIT
Therefore, the formula J = I / S = I / (A × (1 / ΔV) × I INIT )
The value of the current I may be changed in accordance with the detected voltage difference ΔV so that the current density J given by

このような制御により、本発明は、先に図5(A)〜(C)で説明した有機導電膜42の損傷の問題を回避することができる。   By such control, the present invention can avoid the problem of damage to the organic conductive film 42 described above with reference to FIGS.

図9は、前記図6の駆動回路55の例を示す。   FIG. 9 shows an example of the drive circuit 55 of FIG.

図9を参照するに、前記駆動回路55は、5Vの電源に接続され前記電極43Aに駆動電流を供給するプッシュプル接続のバイポーラトランジスタQ1,Q2を含み、また5Vの電源に接続され前記電極33Aに駆動電流を供給するプッシュプル接続のバイポーラトランジスタQ3,Q4を含む。そこで、前記バイポーラトランジスタQ1〜Q4のそれぞれのベースにCPU54より制御信号を、適当なD/A変換器(図示せず)を介して供給することにより、前記駆動回路55により、図8(B)で説明した動作をさせることが可能となる。   Referring to FIG. 9, the drive circuit 55 includes push-pull-connected bipolar transistors Q1 and Q2 connected to a 5V power supply and supplying a drive current to the electrode 43A, and connected to a 5V power supply to the electrode 33A. Includes push-pull connected bipolar transistors Q3 and Q4 for supplying a driving current. Therefore, by supplying a control signal from the CPU 54 to the respective bases of the bipolar transistors Q1 to Q4 via an appropriate D / A converter (not shown), the drive circuit 55 causes the control signal to be supplied as shown in FIG. It is possible to perform the operation described in.

なお、本実施形態では前記駆動回路55の制御をCPU54および図7のフローチャートを使った場合について説明したが、上記の構成をアナログ回路により実現することも可能である。   In this embodiment, the case where the control of the drive circuit 55 is controlled using the CPU 54 and the flowchart of FIG. 7 has been described. However, the above configuration can also be realized by an analog circuit.

本実施形態による座標入力装置50において、電源電圧は前記5Vに限定されるものではなく、1〜10Vの範囲の任意の電源電圧を使うことができる。また前記駆動回路55が供給する駆動電流Iの下限および上限も、1μAと100μAに限定されるものではなく、前記図5(A)〜(C)の問題が生じない限りにおいて他の値を使うことも可能である。   In the coordinate input device 50 according to the present embodiment, the power supply voltage is not limited to 5V, and any power supply voltage in the range of 1 to 10V can be used. Further, the lower limit and the upper limit of the drive current I supplied by the drive circuit 55 are not limited to 1 μA and 100 μA, and other values are used as long as the problems shown in FIGS. 5A to 5C do not occur. It is also possible.

なお、本実施形態による座標入力装置50では、前記透明有機導電膜42として、ポリアセチレン、ポリピロール、ポリチオフェン、ポリフェニレンビニレンおよびこれらの誘導体ポリマに代表される、チオフェン系、あるいはポリアニリン系、あるいはポリピロール系などの有機導電性ポリマを用いることが可能である。一方、本実施形態では前記透明有機導電膜42に対向する透明導電膜32としてITOなどの無機系透明導電体を使っているが、他にZnOなど、他の無機透明導電体を使うことも可能であり、さらに前記透明導電膜32を、前記透明有機導電膜42と同様な有機導電性ポリマにより形成することも可能である。   In the coordinate input device 50 according to the present embodiment, the transparent organic conductive film 42 is made of thiophene, polyaniline, or polypyrrole represented by polyacetylene, polypyrrole, polythiophene, polyphenylenevinylene, and their derivative polymers. An organic conductive polymer can be used. On the other hand, in this embodiment, an inorganic transparent conductor such as ITO is used as the transparent conductive film 32 facing the transparent organic conductive film 42, but other inorganic transparent conductors such as ZnO can also be used. Further, the transparent conductive film 32 can be formed of an organic conductive polymer similar to the transparent organic conductive film 42.

さらに前記透明有機導電膜42にフッ素系添加剤を添加することにより、前記透明有機導電膜42に撥水性を付与し、耐湿性を向上させることが可能である。   Further, by adding a fluorine-based additive to the transparent organic conductive film 42, it is possible to impart water repellency to the transparent organic conductive film 42 and improve moisture resistance.

ここで前記透明有機導電膜42に添加するフッ素系添加剤としては、四フッ化エチレン、およびポリテトラフルオロエチレン,テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体,テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体,テトラフルオロエチレン・エチレン共重合体,ポリビニリデンフルオライド,ポリクロロトリフルオロエチレン,クロロトリフルオエチレン・エチレン共重合体,フルオロカーボン,パーフルオロブチルスルホン酸塩,パーフルオロアルキル基含有カルボン酸塩,パーフルオロアルキル基含有リン酸エステルよりなる群から選ばれる一または複数の化合物よりなるフッ素樹脂、およびパーフルオロアルキル基および親水性基および/または親油性基を含有したフッ素系ディスパージョン、およびトリフロロプロピルトリクロロシランおよびリフルオロプロピルトリメトキシシランのいずれかのシリル化剤、とよりなる群から選ばれる一または複数の化合物を、単体で、もしくは複数混合して使用することが可能である。   Here, as the fluorine-based additive to be added to the transparent organic conductive film 42, tetrafluoroethylene, polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer Polymer, Tetrafluoroethylene / ethylene copolymer, Polyvinylidene fluoride, Polychlorotrifluoroethylene, Chlorotrifluoroethylene / ethylene copolymer, Fluorocarbon, Perfluorobutyl sulfonate, Perfluoroalkyl group-containing carboxylate, Per Fluororesin comprising one or more compounds selected from the group consisting of fluoroalkyl group-containing phosphates, and fluorinated diss containing perfluoroalkyl groups and hydrophilic and / or lipophilic groups And one or more compounds selected from the group consisting of silylating agent of any one of trifluoropropyltrichlorosilane and trifluoropropyltrimethoxysilane can be used alone or in combination. It is.

さらに、上記においてシランカップリング剤を併用しても良く、さらにこれに低分子量エポキシ樹脂あるいは低分子量アクリル樹脂を併用することも可能である。   Further, in the above, a silane coupling agent may be used in combination, and further, a low molecular weight epoxy resin or a low molecular weight acrylic resin may be used in combination.

前記透明有機導電膜42の成膜方法は、限定はされないが、ダイコーター、ブレードコーター、グラビアコーター、ディップコーター等を使った塗布法により実行することができる。   The method of forming the transparent organic conductive film 42 is not limited, but can be performed by a coating method using a die coater, a blade coater, a gravure coater, a dip coater, or the like.

また前記透明樹脂基板22としては、ポリエチレンテレフタレート系樹脂以外にも、ポリカーボネート系樹脂やノルボルネン系樹脂、あるいはポリシリコンメタクリル酸メチル系樹脂、さらにガラスを使うことも可能である。   In addition to the polyethylene terephthalate resin, the transparent resin substrate 22 may be made of polycarbonate resin, norbornene resin, polysilicon methyl methacrylate resin, or glass.

さらに前記透明樹脂基板22として、紫外線遮断機能を有する樹脂を使うことも可能である。   Further, as the transparent resin substrate 22, a resin having an ultraviolet blocking function can be used.

さらに前記透明有機導電膜42に、必要に応じて、前記透明有機導電膜の溶媒に可溶な染料を添加することも可能である。   Further, a dye soluble in the solvent of the transparent organic conductive film may be added to the transparent organic conductive film 42 as necessary.

以上、本発明を好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。   As mentioned above, although this invention was described about preferable embodiment, this invention is not limited to this specific embodiment, A various deformation | transformation and change are possible within the summary described in the claim.

従来の座標入力装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the conventional coordinate input device. 図1の座標入力装置の動作を説明する図である。It is a figure explaining operation | movement of the coordinate input device of FIG. 図1の座標入力装置の動作を説明する図である。It is a figure explaining operation | movement of the coordinate input device of FIG. 図1の座標入力装置における抵抗膜のコンタクトの様子を示す図である。It is a figure which shows the mode of the contact of a resistive film in the coordinate input device of FIG. 図1の座標入力装置の問題点を説明する図である。It is a figure explaining the problem of the coordinate input device of FIG. 本発明の実施形態による座標入力装置の構成を示す図である。It is a figure which shows the structure of the coordinate input device by embodiment of this invention. 図6の座標入力装置の駆動方法を示すフローチャートである。It is a flowchart which shows the drive method of the coordinate input device of FIG. 図6の座標入力装置の駆動の様子を示す図である。It is a figure which shows the mode of a drive of the coordinate input device of FIG. 図6の座標入力装置で使われる駆動回路の構成を示す図である。It is a figure which shows the structure of the drive circuit used with the coordinate input device of FIG.

符号の説明Explanation of symbols

21 ガラス基板
22 樹脂基板
23 スペーサ
32 透明導電膜
33A,34A,43A,44A 電極
33〜38,43,44 配線パターン
40,50 座標入力装置
40P スタイラスペン
42 透明有機導電膜
43S,43T,44S,44T 端子部
54 CPU
55 駆動回路
56 A/D変換器
21 Glass substrate 22 Resin substrate 23 Spacer 32 Transparent conductive film 33A, 34A, 43A, 44A Electrode 33-38, 43, 44 Wiring pattern 40, 50 Coordinate input device 40P Stylus pen 42 Transparent organic conductive film 43S, 43T, 44S, 44T Terminal section 54 CPU
55 Drive circuit 56 A / D converter

Claims (5)

第1の抵抗膜を担持する第1の基板と、
第2の抵抗膜を担持し、前記第1の基板に対し、前記第2の抵抗膜が前記第1の抵抗膜から離間して対向するように配設された第2の基板と、
を備え、
前記第1および第2の基板の一方を、押圧点において押圧し、前記第1および第2の抵抗膜のうち、前記押圧点に対応するそれぞれの部分を接触させ、前記押圧点の座標を読み取る座標入力装置において、
前記座標入力装置は、前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流を供給する駆動回路を備え、
前記駆動回路は、前記押圧点において前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流の値を、前記押圧点における前記第1の抵抗膜と前記第2の抵抗膜の接触面積の増大に応じて、第1の値から、前記第1の値よりも大きい第2の値まで、連続的に増大させることを特徴とする座標入力装置。
A first substrate carrying a first resistive film;
A second substrate carrying a second resistance film and disposed so as to face the first substrate with the second resistance film facing away from the first resistance film;
With
One of the first and second substrates is pressed at a pressing point, the portions corresponding to the pressing point in the first and second resistance films are brought into contact with each other, and the coordinates of the pressing point are read. In the coordinate input device,
The coordinate input device includes a drive circuit that supplies a current flowing between the first resistance film and the second resistance film,
The drive circuit determines the value of the current flowing between the first resistance film and the second resistance film at the pressing point, and the contact between the first resistance film and the second resistance film at the pressing point. A coordinate input device that continuously increases from a first value to a second value larger than the first value in accordance with an increase in area.
前記駆動回路は、前記接触面積の変化を、前記第1および第2の抵抗膜の間の電圧の変化として検出することを特徴とする請求項1記載の座標入力装置。   The coordinate input device according to claim 1, wherein the drive circuit detects a change in the contact area as a change in voltage between the first and second resistance films. 前記駆動回路は、前記電流の値を、前記電流の値を前記接触面積で除した電流密度の値が一定となるように制御することを特徴とする請求項1または2記載の座標入力装置。   The coordinate input device according to claim 1, wherein the drive circuit controls the current value so that a current density value obtained by dividing the current value by the contact area is constant. 前記制御回路は前記電流の値を、前記電流の値が前記第2の値に達した後は一定に制御することを特徴とする請求項1〜3のうち、いずれか一項記載の座標入力装置。   The coordinate input according to any one of claims 1 to 3, wherein the control circuit controls the current value to be constant after the current value reaches the second value. apparatus. 第1の抵抗膜を担持する第1の基板と、
第2の抵抗膜を担持し、前記第1の基板に対し、前記第2の抵抗膜が前記第1の抵抗膜から離間して対向するように配設された第2の基板と、
を備え、
前記第1および第2の基板の一方を、押圧点において押圧し、前記第1および第2の抵抗膜のうち、前記押圧点に対応するそれぞれの部分を接触させ、前記押圧点の座標を読み取る座標入力装置の駆動方法であって、
前記押圧点が押されたとき、前記押圧点において前記第1の抵抗膜と前記第2の抵抗膜の間を流れる電流の値を、前記押圧点における前記第1の抵抗膜と前記第2の抵抗膜の接触面積の増大に応じて、第1の値から、前記第1の値よりも大きい第2の値まで、連続的に増大させることを特徴とする座標入力装置の駆動方法。
A first substrate carrying a first resistive film;
A second substrate carrying a second resistance film and disposed so as to face the first substrate with the second resistance film facing away from the first resistance film;
With
One of the first and second substrates is pressed at a pressing point, the portions corresponding to the pressing point in the first and second resistance films are brought into contact with each other, and the coordinates of the pressing point are read. A driving method of a coordinate input device,
When the pressing point is pressed, the value of the current flowing between the first resistance film and the second resistance film at the pressing point is set to the value of the first resistance film and the second value at the pressing point. A driving method of a coordinate input device, wherein the first value is continuously increased from a first value to a second value larger than the first value in accordance with an increase in the contact area of the resistance film.
JP2007327225A 2007-12-19 2007-12-19 Coordinate input device and driving method Pending JP2009151439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327225A JP2009151439A (en) 2007-12-19 2007-12-19 Coordinate input device and driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327225A JP2009151439A (en) 2007-12-19 2007-12-19 Coordinate input device and driving method

Publications (1)

Publication Number Publication Date
JP2009151439A true JP2009151439A (en) 2009-07-09

Family

ID=40920552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327225A Pending JP2009151439A (en) 2007-12-19 2007-12-19 Coordinate input device and driving method

Country Status (1)

Country Link
JP (1) JP2009151439A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314633A (en) * 1987-06-17 1988-12-22 Gunze Ltd Method for detecting contact position of touch panel
JPH05150890A (en) * 1991-11-28 1993-06-18 Sharp Corp Position reader
JPH11212712A (en) * 1998-01-29 1999-08-06 Korg Inc Triaxial input device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314633A (en) * 1987-06-17 1988-12-22 Gunze Ltd Method for detecting contact position of touch panel
JPH05150890A (en) * 1991-11-28 1993-06-18 Sharp Corp Position reader
JPH11212712A (en) * 1998-01-29 1999-08-06 Korg Inc Triaxial input device

Similar Documents

Publication Publication Date Title
JP5112492B2 (en) Transparent conductive film for touch panel and manufacturing method thereof
TWI387908B (en) Device and method for detecting position of object and image display system using the same device
US9886138B2 (en) Touch panel based on triboelectrification, a display device and a controlling method therefor
JP5697923B2 (en) Touch panel and localization method of touch point
US9772735B2 (en) Touch sensor and electronic device
US20130162545A1 (en) Sensing electrode pattern of touch panel
KR20120072793A (en) Touch screen
US20120007813A1 (en) Touch screen
US20130161081A1 (en) Connecting structure of touch panel
KR20120035490A (en) Digital resistive type touch panel
KR20120089108A (en) Touch panel
US20110285642A1 (en) Touch Screen
US20120105325A1 (en) Capacitive finger navigation input device
KR20180006903A (en) Integrated display device and sensing device with force sensing
TWI441048B (en) Touch panel and a method of locating a touch point of the same
JP2011018326A (en) Conductive plate and touch panel using the same
CN106293249B (en) Touch module and touch input system
US20120062507A1 (en) Capacitive touch screen and manufacturing method thereof
US10620735B2 (en) Force touch module, manufacturing method thereof, display screen and display device
KR20140086516A (en) Conductive polymer composition and conductive film prepared from the composition
US20120017433A1 (en) Method of manufacturing touch screen
JP2012027895A (en) Touch panel and its manufacturing method
TWI412970B (en) Touch input device
JP2009151439A (en) Coordinate input device and driving method
US11494022B2 (en) Force sensing touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113