JP2009150803A - Defect evaluation device of lens, and defect evaluation method of lens - Google Patents

Defect evaluation device of lens, and defect evaluation method of lens Download PDF

Info

Publication number
JP2009150803A
JP2009150803A JP2007329684A JP2007329684A JP2009150803A JP 2009150803 A JP2009150803 A JP 2009150803A JP 2007329684 A JP2007329684 A JP 2007329684A JP 2007329684 A JP2007329684 A JP 2007329684A JP 2009150803 A JP2009150803 A JP 2009150803A
Authority
JP
Japan
Prior art keywords
lens
light
light receiving
receiving element
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007329684A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
崇 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007329684A priority Critical patent/JP2009150803A/en
Publication of JP2009150803A publication Critical patent/JP2009150803A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect evaluation device of a lens and a defect evaluation method of a lens capable of evaluating objectively and quantitatively a defect of a lens such as a damage degree. <P>SOLUTION: This device is equipped with a light source 11 for irradiating light to a lens 100 which is an evaluation object, a light receiving element 143 for receiving transmission light irradiated from the light source 11 and transmitted through the lens 100, a measuring part 15 for measuring intensity of the transmission light received by the light receiving element 143, a rotation means 16 for rotating relatively the light receiving element 143 with respect to the lens 100, and an output means for outputting the intensity of the transmission light at each measuring angle α which is an angle formed between a measuring line A connecting a rotation center of the light receiving element 143 to the light receiving element 143 and an optical axis B of the lens 100. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レンズの欠点評価装置およびレンズの欠点評価方法に関する。   The present invention relates to a lens defect evaluation apparatus and a lens defect evaluation method.

メガネレンズ等のレンズに求められる性能としては、光学的特性、機械的強度および傷つき難さ等が挙げられる。
特に、近年主流となっているプラスチックレンズは、ガラスレンズに比べて一般的な表面硬度が劣るため、表面の傷つき難さは重要な評価項目となっている。
Examples of the performance required for a lens such as a spectacle lens include optical characteristics, mechanical strength, and scratch resistance.
In particular, since plastic lenses, which have become the mainstream in recent years, are inferior in general surface hardness to glass lenses, the difficulty of scratching the surface is an important evaluation item.

例えば、特許文献1には、保持具により保持したレンズの表面に、スチールウール等の擦傷物を一定の荷重で押し付け、この状態でレンズと擦傷物とを相対運動させて耐擦傷性を評価する試験方法が開示されている。
レンズの実際の使用状況においては、布でレンズ表面を拭く場合のように、比較的大面積で繰返し荷重がかかることが多いが、特許文献1に記載の試験方法によれば、このような実際の使用状況に近い試験を、再現性よく実施することができる。
For example, in Patent Document 1, a scratched object such as steel wool is pressed against the surface of a lens held by a holder with a constant load, and the lens and the scratched object are relatively moved in this state to evaluate the scratch resistance. A test method is disclosed.
In the actual use situation of the lens, a repeated load is often applied over a relatively large area as in the case of wiping the lens surface with a cloth. However, according to the test method described in Patent Document 1, such an actual condition is used. Tests close to the usage conditions can be performed with good reproducibility.

しかし、特許文献1に記載のような従来の試験方法においては、レンズの傷つき具合(傷の量や大きさ等)を、測定者が目視にて決定していた。このため、測定者の主観により評価にばらつきがでるおそれがあった。特に、傷が小さい場合には、ばらつきが大きくなりやすい。
このような評価のばらつきを排除し、レンズの傷つき具合を客観的に評価するため、ヘイズメータを用いる方法が知られている。
これは、一般にレンズの傷つき具合が大きいと、光の拡散が大きくなり、ヘイズが上昇することを利用する方法である。
However, in the conventional test method as described in Patent Document 1, the measurer visually determines the degree of damage (such as the amount and size of the scratch) of the lens. For this reason, there is a possibility that the evaluation varies depending on the subjectivity of the measurer. In particular, when the scratch is small, the variation tends to increase.
A method using a haze meter is known to eliminate such evaluation variation and to objectively evaluate the degree of damage to the lens.
In general, this is a method that utilizes the fact that if the degree of damage to the lens is large, the diffusion of light increases and the haze increases.

図12に、一般的なヘイズメータ2の概略構成を示す。
ヘイズメータ2は、光源21と、光源21からの光を導く光学系22と、評価対象のレンズ100を支持する支持部23と、レンズ100からの散乱光を集める積分球24と、散乱光の強度を検出する検出部25と、検出部25の検出値を演算処理する処理部26と、を備える。
光学系22は、光源21側から順に、コンデンサレンズ221と、ピンホール222と、コリメータレンズ223と、を有する。
積分球24は、光源21側に開口部241Aを有する積分球本体241と、積分球本体241の開口部241Aと反対側に設けられたトラップ242と、を有する。
FIG. 12 shows a schematic configuration of a general haze meter 2.
The haze meter 2 includes a light source 21, an optical system 22 that guides light from the light source 21, a support unit 23 that supports the lens 100 to be evaluated, an integrating sphere 24 that collects scattered light from the lens 100, and the intensity of the scattered light. And a processing unit 26 that performs arithmetic processing on the detection value of the detection unit 25.
The optical system 22 includes a condenser lens 221, a pinhole 222, and a collimator lens 223 in order from the light source 21 side.
The integrating sphere 24 has an integrating sphere main body 241 having an opening 241A on the light source 21 side, and a trap 242 provided on the opposite side of the integrating sphere main body 241 from the opening 241A.

光源21からの光は、コンデンサレンズ221によりピンホール222に集光され、コリメータレンズ223を通って平行光となり、レンズ100に入射する。
レンズ100を透過した光のうち、直進光はトラップ242によって取り除かれ、拡散光は積分球本体241により検出部25に集められる。
処理部26が、検出部25の検出値を演算処理して、レンズ100の拡散透過率を算出する。
また、トラップ242に設けられたシャッタ243を閉じると、全光線を検出部25に集めて全光線透過率を算出することができる。
こうして求めた拡散透過率と全光線透過率とから、レンズ100のヘイズが算出される。ヘイズが大きいほど、レンズ100の傷つき具合が大きいものと考えられる。
Light from the light source 21 is collected in the pinhole 222 by the condenser lens 221, becomes parallel light through the collimator lens 223, and enters the lens 100.
Of the light transmitted through the lens 100, straight light is removed by the trap 242, and diffused light is collected by the integrating sphere body 241 at the detection unit 25.
The processing unit 26 computes the detection value of the detection unit 25 and calculates the diffuse transmittance of the lens 100.
Further, when the shutter 243 provided in the trap 242 is closed, the total light transmittance can be calculated by collecting all light rays in the detection unit 25.
The haze of the lens 100 is calculated from the diffuse transmittance thus obtained and the total light transmittance. It is considered that the greater the haze, the greater the degree of damage to the lens 100.

特開2003−295131号公報JP 2003-295131 A

しかしながら、図12にβで示すように、一般的なヘイズメータで測定できる散乱光の角度は5°程度と小さい。このような狭い範囲では、傷による散乱の一部しか評価することができず、目視による評価とヘイズメータによる評価とが異なる結果となる場合も多かった。   However, as indicated by β in FIG. 12, the angle of scattered light that can be measured with a general haze meter is as small as about 5 °. In such a narrow range, only a part of scattering due to scratches can be evaluated, and visual evaluation and haze meter evaluation are often different.

本発明の目的は、上述のような問題点等を解消し、傷つき具合等のレンズの欠点を客観的かつ定量的に評価することができるレンズの欠点評価装置、および、レンズの欠点評価方法を提供することである。   An object of the present invention is to provide a lens defect evaluation apparatus and a lens defect evaluation method capable of solving the above-mentioned problems and the like, and objectively and quantitatively evaluating the defects of the lens such as scratches. Is to provide.

本発明のレンズの欠点評価装置は、評価対象とするレンズに光を照射する光源と、前記光源から照射され前記レンズを透過した透過光を受光する受光素子と、前記受光素子が受光した前記透過光の強度を測定する測定部と、前記受光素子を前記レンズに対して相対的に回転させる回転手段と、前記受光素子の回転中心と前記受光素子とを結ぶ測定線と前記レンズの光軸とのなす角である測定角ごとの前記透過光の強度を出力する出力手段と、を備えたことを特徴とする。   The lens defect evaluation apparatus of the present invention includes a light source that irradiates light to a lens to be evaluated, a light receiving element that receives transmitted light that is emitted from the light source and transmitted through the lens, and the transmission that is received by the light receiving element. A measuring unit for measuring the intensity of light, a rotating means for rotating the light receiving element relative to the lens, a measurement line connecting the rotation center of the light receiving element and the light receiving element, and an optical axis of the lens Output means for outputting the intensity of the transmitted light for each measurement angle which is an angle formed by

本発明によれば、回転手段が、受光素子をレンズに対して相対的に回転させるので、広い範囲の測定角の透過光を、受光素子で受光することができる。
これにより、従来のヘイズメータでは評価できなかった測定角の大きい透過光の強度をも測定することができ、レンズの欠点を客観的かつ定量的に評価することができる。
According to the present invention, since the rotating means rotates the light receiving element relative to the lens, transmitted light having a wide range of measurement angles can be received by the light receiving element.
Accordingly, it is possible to measure the intensity of transmitted light having a large measurement angle that cannot be evaluated with a conventional haze meter, and to objectively and quantitatively evaluate the defects of the lens.

また、出力手段が、測定角ごとの透過光の強度を出力するので、測定角に対する透過光の強度分布を評価することができる。
例えば、レンズ表面に周囲に比べ特異的に大きな傷が存在する場合、特定の測定角に通常と異なる透過光のピークが現れることがある。しかし、このような現象はヘイズメータでは測定することができない。これに対し、本発明のレンズの欠点評価装置によれば、透過光の強度分布を測定することができるので、このような特異的な傷をも正確に評価することができる。
Moreover, since the output means outputs the intensity of transmitted light for each measurement angle, the intensity distribution of transmitted light with respect to the measurement angle can be evaluated.
For example, when a specific large scratch exists on the lens surface as compared with the surrounding area, a peak of transmitted light different from normal may appear at a specific measurement angle. However, such a phenomenon cannot be measured with a haze meter. On the other hand, according to the defect evaluation apparatus for a lens of the present invention, the intensity distribution of transmitted light can be measured, and such a specific flaw can be accurately evaluated.

なお、本発明におけるレンズの欠点とは、散乱光を発生させるようなレンズの不良をいう。レンズの欠点としては、例えば、傷、はがれ、異物付着、曇り等が挙げられる。   In addition, the fault of the lens in this invention means the defect of a lens which generate | occur | produces scattered light. Examples of the defects of the lens include scratches, peeling, foreign matter adhesion, and fogging.

本発明のレンズの欠点評価装置において、前記測定角ごとの前記透過光の強度に基づいて前記レンズの欠点を評価した評価値を算出する演算部を備え、前記出力手段は、前記演算部が算出した前記評価値を出力することが好ましい。
このような構成によれば、演算部が、最終的なレンズの評価値を決定するので、測定者の主観を排除し、レンズの欠点をより客観的かつ定量的に評価することができる。
In the lens defect evaluation apparatus according to the present invention, the lens defect evaluation apparatus includes a calculation unit that calculates an evaluation value obtained by evaluating the defect of the lens based on the intensity of the transmitted light for each measurement angle, and the output unit is calculated by the calculation unit. It is preferable to output the evaluated value.
According to such a configuration, since the calculation unit determines the final evaluation value of the lens, it is possible to eliminate the subjectivity of the measurer and evaluate the defect of the lens more objectively and quantitatively.

本発明のレンズの欠点評価装置において、前記演算部は、あらかじめ設定した角度範囲にわたって前記測定角ごとの前記透過光の強度を積分し、この積分値に基づいて前記評価値を算出することが好ましい。
このような構成によれば、広い測定角範囲の透過光を反映した積分値に基づいて評価値を算出するので、レンズの欠点をより客観的かつ定量的に評価することができる。
In the lens defect evaluation apparatus of the present invention, it is preferable that the calculation unit integrates the intensity of the transmitted light for each measurement angle over a preset angle range and calculates the evaluation value based on the integration value. .
According to such a configuration, the evaluation value is calculated based on the integrated value reflecting the transmitted light in a wide measurement angle range, so that the defect of the lens can be evaluated more objectively and quantitatively.

ここで、積分をする測定角の範囲としては、例えば、−90°以上90°以下の範囲が好ましい。眼鏡をかけた時の装用者の視界が、±90°と想定されるからである。
また、例えば、−5°以上5°以下の範囲を直進光として除外してもよい。これにより、レンズの欠点と無関係の直進光を除外して、より正確な評価を実施することができる。
Here, as the range of the measurement angle for integration, for example, a range of −90 ° or more and 90 ° or less is preferable. This is because the field of view of the wearer when wearing glasses is assumed to be ± 90 °.
Further, for example, a range of −5 ° to 5 ° may be excluded as straight light. Thereby, it is possible to perform more accurate evaluation by excluding the straight light which is not related to the defect of the lens.

本発明のレンズの欠点評価装置において、前記演算部は、あらかじめ設定した特定の前記測定角における前記透過光の強度に基づいて前記評価値を算出することが好ましい。
このような構成によれば、例えば、欠点の程度により透過光の強度に差が出やすい測定角を特定しておき、その測定角のみの透過率の測定によって効率的にレンズの欠点を評価することができる。
なお、欠点の測定の場合は、測定角としては、5°以上40°以下の範囲から選択することが好ましい。このような範囲であれば、レンズの欠点の程度により透過光の強度に差が出やすいからである。
In the lens defect evaluation apparatus of the present invention, it is preferable that the calculation unit calculates the evaluation value based on the intensity of the transmitted light at a specific measurement angle set in advance.
According to such a configuration, for example, a measurement angle that tends to cause a difference in transmitted light intensity depending on the degree of the defect is specified, and the defect of the lens is efficiently evaluated by measuring the transmittance of only the measurement angle. be able to.
In the case of measurement of defects, the measurement angle is preferably selected from a range of 5 ° to 40 °. This is because within such a range, the intensity of transmitted light is likely to be different depending on the degree of defects of the lens.

本発明のレンズの欠点評価装置において、前記回転手段は、前記受光素子を回転軸が互いに直行する2つの方向に回転させることが好ましい。
本発明者らは、種々の検討の結果、受光素子を1つの方向のみへ回転した場合には観察できなかった欠点が、回転軸が直行する他の方向への回転によって観察できることを見出した。
つまり、本発明によれば、受光素子を回転軸が互いに直行する2つの方向に回転させることにより、レンズの欠点を漏れなく評価することができる。
In the lens defect evaluation apparatus of the present invention, it is preferable that the rotating means rotates the light receiving element in two directions in which the rotation axes are orthogonal to each other.
As a result of various studies, the present inventors have found that defects that cannot be observed when the light receiving element is rotated in only one direction can be observed by rotation in the other direction in which the rotation axis is orthogonal.
In other words, according to the present invention, the defect of the lens can be evaluated without omission by rotating the light receiving element in two directions in which the rotation axes are orthogonal to each other.

本発明のレンズの欠点評価方法は光源から照射されレンズを透過した透過光を受光素子で受光する受光動作、および、前記受光素子を前記レンズに対して相対的に回転させる回転動作、を交互にまたは同時に実施する回転受光過程と、前記受光素子の回転中心と前記受光素子とを結ぶ測定線と前記レンズの光軸とのなす角である測定角、および、前記受光動作で受光した前記透過光の強度、を測定する測定過程と、前記測定過程で測定した前記測定角ごとの前記透過光の強度に基づいて前記レンズの欠点を評価する評価過程と、を備えることを特徴とする。   In the lens defect evaluation method of the present invention, a light receiving operation in which transmitted light that is irradiated from a light source and transmitted through a lens is received by a light receiving element, and a rotating operation in which the light receiving element is rotated relative to the lens are alternately performed. Alternatively, a rotational light receiving process that is performed simultaneously, a measurement angle that is an angle formed by a measurement line that connects the rotation center of the light receiving element and the light receiving element, and the optical axis of the lens, and the transmitted light received by the light receiving operation. A measurement process for measuring the intensity of the lens, and an evaluation process for evaluating a defect of the lens based on the intensity of the transmitted light at each measurement angle measured in the measurement process.

本発明によれば、回転動作において、受光素子をレンズに対して相対的に回転させるので、受光動作において、従来のヘイズメータでは評価できなかった測定角の大きい透過光をも受光することができる。これにより、測定過程において、広い角度範囲の透過光を測定することができ、評価過程において、レンズの欠点を客観的かつ定量的に評価することができる。   According to the present invention, since the light receiving element is rotated relative to the lens in the rotation operation, transmitted light having a large measurement angle that cannot be evaluated by a conventional haze meter can be received in the light reception operation. Thus, transmitted light in a wide angle range can be measured in the measurement process, and the defects of the lens can be objectively and quantitatively evaluated in the evaluation process.

本発明のレンズの欠点評価装置または欠点評価方法によれば、受光素子をレンズに対して相対的に回転させるので、従来のヘイズメータでは評価できなかった測定角の大きい透過光の強度をも測定することができ、レンズの欠点を客観的かつ定量的に評価することができる。   According to the lens defect evaluation apparatus or the defect evaluation method of the present invention, since the light receiving element is rotated relative to the lens, the intensity of transmitted light having a large measurement angle that cannot be evaluated by a conventional haze meter is also measured. It is possible to objectively and quantitatively evaluate lens defects.

以下、本発明の実施形態を図面に基づいて説明する。なお、本発明のレンズの欠点評価装置およびレンズの欠点評価方法は、以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The lens defect evaluation apparatus and the lens defect evaluation method of the present invention are not limited to the following embodiments.

[欠点評価装置の構成]
図1に、本実施形態のレンズの欠点評価装置1の概略構成を示す。
本実施形態の欠点評価装置1は、図1に示すように、評価対象とするレンズ100に光を照射する光源11と、光源11からの光を導く光学系12と、レンズ100を支持する支持部13と、レンズ100を透過した透過光を受光する受光ユニット14と、受光した透過光の強度を測定する測定部15と、受光ユニット14をレンズ100に対して相対的に回転させる回転手段16と、レンズ100の欠点を評価した評価値を算出する演算部(図示省略)と、透過光の強度および評価値を出力する出力手段(図示省略)と、を備える。
[Configuration of defect evaluation device]
FIG. 1 shows a schematic configuration of a lens defect evaluation apparatus 1 according to the present embodiment.
As shown in FIG. 1, the defect evaluation apparatus 1 of the present embodiment includes a light source 11 that irradiates light to a lens 100 to be evaluated, an optical system 12 that guides light from the light source 11, and a support that supports the lens 100. Unit 13, light receiving unit 14 that receives the transmitted light that has passed through lens 100, measurement unit 15 that measures the intensity of the received transmitted light, and rotating means 16 that rotates light receiving unit 14 relative to lens 100. And an arithmetic unit (not shown) for calculating an evaluation value for evaluating the defect of the lens 100, and an output means (not shown) for outputting the intensity of the transmitted light and the evaluation value.

光源11としては、例えば、ハロゲンランプ等が使用できる。レンズ100の材質等に応じて光源11の発光波長、照射強度等を変更し、測定条件を適宜変更してもよい。
光学系12は、光源11側から順に、コンデンサレンズ121と、ピンホール122と、コリメータレンズ123と、を有する。
光源11からの光は、コンデンサレンズ121によりピンホール122に集光され、コリメータレンズ123を通って平行光となり、レンズ100に入射する。
For example, a halogen lamp can be used as the light source 11. The measurement conditions may be changed as appropriate by changing the emission wavelength, irradiation intensity, and the like of the light source 11 according to the material of the lens 100.
The optical system 12 includes a condenser lens 121, a pinhole 122, and a collimator lens 123 in order from the light source 11 side.
The light from the light source 11 is collected in the pinhole 122 by the condenser lens 121, passes through the collimator lens 123, becomes parallel light, and enters the lens 100.

受光ユニット14は、略円筒形状のユニット本体141と、ユニット本体141内に設けられた集光レンズ142および受光素子143と、を有する。
ユニット本体141のレンズ100側には、図示しない開口部が設けられており、この開口部を介して取り入れられたレンズ100からの透過光が、集光レンズ142により受光素子143に集光される。
また、受光ユニット14には、図示しない測定部15が内蔵されている。
The light receiving unit 14 includes a substantially cylindrical unit main body 141, and a condensing lens 142 and a light receiving element 143 provided in the unit main body 141.
An opening (not shown) is provided on the lens body 100 side of the unit main body 141, and the transmitted light from the lens 100 taken through the opening is condensed on the light receiving element 143 by the condenser lens 142. .
The light receiving unit 14 includes a measurement unit 15 (not shown).

測定部15は、受光素子143が受光した透過光の強度を測定する強度測定部と、受光素子143の回転中心と受光素子143とを結ぶ測定線Aと、レンズ100の光軸Bと、のなす角である測定角αを検出する測定角検出手段とを有する(図示省略)。
回転手段16は、図1に示すように、受光ユニット14をレンズ100を中心として回転させる。ここで、回転手段は、図1に示した1つの回転の方向のみならず、この方向と回転軸が直行する他の方向に、受光ユニット14を回転させることができる(後述の図2参照)。
出力手段としては、例えば、液晶等の表示装置やプリンタ等が挙げられる。
The measurement unit 15 includes an intensity measurement unit that measures the intensity of transmitted light received by the light receiving element 143, a measurement line A that connects the rotation center of the light receiving element 143 and the light receiving element 143, and the optical axis B of the lens 100. Measuring angle detecting means for detecting a measuring angle α which is an angle formed (not shown).
The rotating means 16 rotates the light receiving unit 14 around the lens 100 as shown in FIG. Here, the rotating means can rotate the light receiving unit 14 not only in one direction of rotation shown in FIG. 1 but also in another direction in which this direction and the rotation axis are orthogonal (see FIG. 2 described later). .
Examples of the output means include a display device such as a liquid crystal display and a printer.

[欠点評価方法]
本実施形態のレンズの欠点評価方法は、光源11から照射されレンズ100を透過した透過光を受光素子143で受光する受光動作、および、受光素子143をレンズ100に対して相対的に回転させる回転動作、を同時に実施する回転受光過程と、測定角α、および、受光動作で受光した透過光の強度、を測定する測定過程と、測定過程で測定した測定角αごとの透過光の強度に基づいてレンズ100の欠点を評価する評価過程と、を備える。
[Defect evaluation method]
In the lens defect evaluation method of the present embodiment, the light receiving element 143 receives light transmitted from the light source 11 and transmitted through the lens 100, and rotation that rotates the light receiving element 143 relative to the lens 100. Based on the rotational light reception process that simultaneously performs the operation, the measurement angle α, the measurement process that measures the intensity of the transmitted light received in the light reception operation, and the transmitted light intensity for each measurement angle α that is measured in the measurement process And an evaluation process for evaluating the defects of the lens 100.

図2に、回転受光過程における、光源11、レンズ100および受光ユニット14の位置関係の概略を示す。
本実施形態においては、図2に示すように、表面に平行な多数の傷100Aをつけたレンズ100を測定の対象とする。
傷100Aは、例えば、特許文献1に記載のように、レンズと擦傷物とを相対運動させることで形成することができる。
FIG. 2 shows an outline of the positional relationship among the light source 11, the lens 100, and the light receiving unit 14 in the rotational light receiving process.
In the present embodiment, as shown in FIG. 2, a lens 100 having a large number of scratches 100A parallel to the surface is a measurement target.
The scratch 100A can be formed by, for example, relatively moving a lens and a scratched object as described in Patent Document 1.

[回転受光過程]
欠点評価方法を実施するにあたり、まず、図1に示すように、レンズ100を支持部13にセットする。
続いて、光源11を発光させ、レンズ100への光の照射を開始する。
光源11から照射された光は、光学系12に導かれ、レンズ100に入射する。レンズ100を透過した光の一部は、受光ユニット14内に取り入れられ、集光レンズ142で集光されて、受光素子143に受光される(受光動作)。
[Rotating light receiving process]
In carrying out the defect evaluation method, first, the lens 100 is set on the support portion 13 as shown in FIG.
Subsequently, the light source 11 is caused to emit light, and irradiation of light to the lens 100 is started.
The light emitted from the light source 11 is guided to the optical system 12 and enters the lens 100. Part of the light transmitted through the lens 100 is taken into the light receiving unit 14, collected by the condenser lens 142, and received by the light receiving element 143 (light receiving operation).

次に、受光動作を継続しつつ、回転手段16により回転動作を開始する。
回転動作では、図2(A)に示すように、傷100Aと垂直な面内において受光ユニット14を回転させる。この回転動作を縦回転動作とする。
また、縦回転動作とは別に、図2(B)に示すように、傷100Aと平行な面内において受光ユニット14を回転させる横回転動作も実施される。
つまり、回転動作では、受光ユニット14を回転軸が互いに直行する2つの方向に回転させる。
Next, the rotation operation is started by the rotation means 16 while continuing the light receiving operation.
In the rotation operation, as shown in FIG. 2A, the light receiving unit 14 is rotated in a plane perpendicular to the scratch 100A. This rotation operation is referred to as a vertical rotation operation.
In addition to the vertical rotation operation, as shown in FIG. 2B, a horizontal rotation operation for rotating the light receiving unit 14 in a plane parallel to the scratch 100A is also performed.
That is, in the rotation operation, the light receiving unit 14 is rotated in two directions in which the rotation axes are orthogonal to each other.

[測定過程および評価過程]
測定過程では、測定部15が、受光素子143が受光した透過光の強度を測定し、そのときの測定角αを検出する。こうして得られた測定角αごとの透過光の強度は、出力手段および演算部に送信される。
演算過程では、演算部が、あらかじめ設定した角度範囲にわたって測定角αごとの透過光の強度を積分し、この積分値に基づいてレンズ100の評価値を算出する。また、演算部は、あらかじめ設定した特定の測定角αにおける透過光の強度に基づいて評価値を算出する。得られた評価値は、出力手段に送信される。
出力手段は、受信した測定角αごとの透過光の強度および評価値を出力する。
[Measurement process and evaluation process]
In the measurement process, the measurement unit 15 measures the intensity of the transmitted light received by the light receiving element 143 and detects the measurement angle α at that time. The intensity of the transmitted light for each measurement angle α thus obtained is transmitted to the output means and the calculation unit.
In the calculation process, the calculation unit integrates the intensity of transmitted light for each measurement angle α over a preset angle range, and calculates the evaluation value of the lens 100 based on the integration value. The computing unit also calculates an evaluation value based on the intensity of transmitted light at a specific measurement angle α set in advance. The obtained evaluation value is transmitted to the output means.
The output means outputs the intensity of transmitted light and the evaluation value for each received measurement angle α.

[実施形態の作用効果]
このような本実施形態によれば、次のような効果がある。
(1)回転手段16が、受光ユニット14をレンズ100に対して相対的に回転させるので、広い範囲の測定角αの透過光を、受光素子143で受光することができる。これにより、従来のヘイズメータでは評価できなかった測定角αの大きい透過光の強度をも測定することができ、レンズ100の欠点を客観的かつ定量的に評価することができる。
(2)出力手段が、測定角αごとの透過光の強度を出力するので、測定角αに対する透過光の強度分布を評価することができる。これにより、特定の測定角αに透過光のピークを示すような特異的な傷をも正確に評価することができる。
[Effects of Embodiment]
According to this embodiment, there are the following effects.
(1) Since the rotating means 16 rotates the light receiving unit 14 relative to the lens 100, the light receiving element 143 can receive transmitted light having a wide range of measurement angles α. As a result, the intensity of transmitted light having a large measurement angle α that cannot be evaluated with a conventional haze meter can be measured, and the defects of the lens 100 can be objectively and quantitatively evaluated.
(2) Since the output means outputs the intensity of the transmitted light for each measurement angle α, the intensity distribution of the transmitted light with respect to the measurement angle α can be evaluated. This makes it possible to accurately evaluate a specific flaw that shows a peak of transmitted light at a specific measurement angle α.

(3)演算部が、最終的なレンズ100の評価値を決定するので、測定者の主観を排除し、レンズ100の欠点をより客観的かつ定量的に評価することができる。
(4)演算部が、広い測定角範囲の透過光を反映した積分値に基づいて評価値を算出するので、レンズ100の欠点をより客観的かつ定量的に評価することができる。
(5)演算部が、あらかじめ設定した特定の測定角αにおける透過光の強度に基づいて評価値を算出するので、例えば、欠点の程度により透過光の強度に差が出やすい測定角αを特定しておき、その測定角αのみの透過率の測定によって効率的にレンズ100の欠点を評価することができる。
(3) Since the calculation unit determines the final evaluation value of the lens 100, the subjectivity of the measurer can be eliminated and the defects of the lens 100 can be evaluated more objectively and quantitatively.
(4) Since the calculation unit calculates the evaluation value based on the integrated value reflecting the transmitted light in a wide measurement angle range, the defect of the lens 100 can be evaluated more objectively and quantitatively.
(5) Since the calculation unit calculates an evaluation value based on the intensity of transmitted light at a specific measurement angle α set in advance, for example, the measurement angle α that easily causes a difference in transmitted light intensity depending on the degree of defects is specified. In addition, the defect of the lens 100 can be efficiently evaluated by measuring the transmittance of only the measurement angle α.

(6)演算部が、積分値に基づく評価値と、特定の測定角αにおける透過光の強度に基づく評価値と、の双方を算出するので、算出方法による評価値の変化があっても、レンズ100の欠点を正確に評価することができる。
(7)受光ユニット14を回転軸が互いに直行する2つの方向に回転させることにより、レンズ100の欠点を漏れなく評価することができる。
(8)傷100Aと平行な面内において受光ユニット14を回転させる横回転動作を実施するので、レンズ100表面に生じた大きな傷を、透過光の強度分布におけるピークとして観察することができる。
(6) Since the calculation unit calculates both the evaluation value based on the integral value and the evaluation value based on the intensity of transmitted light at the specific measurement angle α, even if there is a change in the evaluation value due to the calculation method, The defects of the lens 100 can be accurately evaluated.
(7) By rotating the light receiving unit 14 in two directions in which the rotation axes are orthogonal to each other, the defects of the lens 100 can be evaluated without omission.
(8) Since the lateral rotation operation of rotating the light receiving unit 14 in a plane parallel to the scratch 100A is performed, a large scratch generated on the surface of the lens 100 can be observed as a peak in the intensity distribution of transmitted light.

[変形例]
なお、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる他の構成などを含み、以下に示すような変形なども本発明に含まれる。
上述の実施形態において、受光ユニット14を回転させる回転手段16を例示したが、これに限らない。
回転手段16は、受光ユニット14とレンズ100とを、相対的に回転させるものであればよい。
例えば、回転手段16は、図3に示すように、固定された受光ユニット14に対して、レンズ100を回転させるものであってもよい。
このような場合でも、上述の実施形態と同様の優れた作用効果を得ることができる。
[Modification]
In addition, this invention is not limited to the above-mentioned embodiment, Other modifications etc. which can achieve the objective of this invention are included, The deformation | transformation etc. which are shown below are also contained in this invention.
In the above-described embodiment, the rotating unit 16 that rotates the light receiving unit 14 is illustrated, but the present invention is not limited thereto.
The rotating means 16 may be any means that relatively rotates the light receiving unit 14 and the lens 100.
For example, the rotating means 16 may rotate the lens 100 with respect to the fixed light receiving unit 14 as shown in FIG.
Even in such a case, the same excellent effects as those of the above-described embodiment can be obtained.

上述の実施形態において、レンズ100の欠点として、平行な多数の傷100Aを例示したが、これに限定されない。
本発明の欠点評価装置1によれば、散乱光を生じさせるようなレンズ100の不良、例えば、種々の形状の傷、はがれ、異物付着、曇り等をも評価することができる。
In the above-described embodiment, the parallel scratches 100A are illustrated as the defects of the lens 100. However, the present invention is not limited to this.
According to the defect evaluation apparatus 1 of the present invention, it is possible to evaluate defects of the lens 100 that cause scattered light, for example, various shapes of scratches, peeling, foreign matter adhesion, cloudiness, and the like.

上述の実施形態において、受光ユニット14を、回転軸が互いに直行する2つの方向に回転させる回転手段16を例示したが、これに限らない。
例えば、回転方向は1つでもよく、3つ以上であってもよい。
回転方向が1つであっても、従来の目視による評価に比べて正確な評価を実施することができる。また、回転方向が3つ以上であれば、レンズ100の欠点を、より一層正確に評価することができる。
In the above-described embodiment, the rotation unit 16 that rotates the light receiving unit 14 in two directions in which the rotation axes are orthogonal to each other is illustrated, but the present invention is not limited thereto.
For example, the number of rotation directions may be one, or three or more.
Even if the number of rotation directions is one, accurate evaluation can be performed as compared with the conventional visual evaluation. In addition, if there are three or more rotation directions, the defect of the lens 100 can be more accurately evaluated.

[実施例]
以下に、実施例を示して本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[Example]
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[実施例1]
上述の実施形態で示した欠点評価装置1および欠点評価方法により、レンズ100の評価を実施した。
測定対象としては、異なる傷のつき方をしたレンズ100を用いた。
レンズ100の表面には、程度の異なる傷100Aを形成し、傷100Aの大きさを目視で評価した。傷100Aの最も大きいものを目視評価1とし、最も小さいものを目視評価9とした。
[Example 1]
The lens 100 was evaluated by the defect evaluation apparatus 1 and the defect evaluation method described in the above embodiment.
As a measurement object, a lens 100 having different scratches was used.
A scratch 100A having a different degree was formed on the surface of the lens 100, and the size of the scratch 100A was visually evaluated. The largest scratch 100A was designated as visual evaluation 1, and the smallest one was designated as visual evaluation 9.

[縦回転動作による評価]
図4に、縦回転動作において測定した測定角αに対する透過光の強度分布を示す。
図4において、縦軸は相対強度、横軸は測定角αを表す。
図4に示す強度分布に基づいて、測定角α=5〜50°の範囲で求めた強度の積分値、測定角α=10°における透過光の強度、これらに基づくレンズ100の欠点の評価値を、以下の表1に示す。また、評価値の算出基準を表2に示す。
[Evaluation by vertical rotation]
FIG. 4 shows the intensity distribution of transmitted light with respect to the measurement angle α measured in the longitudinal rotation operation.
In FIG. 4, the vertical axis represents the relative intensity, and the horizontal axis represents the measurement angle α.
Based on the intensity distribution shown in FIG. 4, the integrated value of the intensity obtained in the range of the measurement angle α = 5 to 50 °, the intensity of the transmitted light at the measurement angle α = 10 °, and the evaluation value of the defect of the lens 100 based on these values. Is shown in Table 1 below. Table 2 shows the evaluation value calculation criteria.

Figure 2009150803
Figure 2009150803

Figure 2009150803
Figure 2009150803

図4から、傷100Aが大きく目視での評価が悪いレンズ100ほど、光の散乱が大きいことがわかる。
表1から、本発明の欠点評価装置1および欠点評価方法によれば、積分値に基づき、レンズ100の欠点が客観的かつ定量的に評価できていることがわかる。
特に、サンプルNo.2とサンプルNo.3は、傷が小さいため目視では評価が困難であり、優劣が付けられなかった。これに対し、本実施例では、積分値等に基づいて異なる評価値を算出することができた。
このことから、本発明の欠点評価装置1および欠点評価方法は、特に、目視では評価が困難であった細かい傷等の欠点の評価に対して有効であることがわかる。
From FIG. 4, it can be seen that the larger the scratch 100 </ b> A, the worse the visual evaluation, the greater the light scattering.
From Table 1, it can be seen that according to the defect evaluation apparatus 1 and the defect evaluation method of the present invention, the defect of the lens 100 can be objectively and quantitatively evaluated based on the integral value.
In particular, sample no. 2 and Sample No. No. 3 was difficult to evaluate by visual observation because the scratches were small, and superiority or inferiority was not attached. On the other hand, in this example, different evaluation values could be calculated based on the integral value or the like.
From this, it can be seen that the defect evaluation apparatus 1 and the defect evaluation method of the present invention are particularly effective for the evaluation of defects such as fine scratches that are difficult to evaluate visually.

また、測定角α=10°に固定した場合でも、積分値に基づいて算出したものとほぼ同様の評価値が得られている。
このことから、測定角αを適切に設定すれば、すべてのサンプルについて広い測定範囲の透過光を測定しなくても、効率的にレンズ100の欠点を適切に評価できることがわかる。
Even when the measurement angle α is fixed at 10 °, an evaluation value almost the same as that calculated based on the integral value is obtained.
From this, it can be seen that if the measurement angle α is appropriately set, the defects of the lens 100 can be efficiently evaluated appropriately without measuring the transmitted light in a wide measurement range for all the samples.

[横回転動作による評価]
サンプルNo.1〜3のレンズ100について、横回転動作による評価を実施した。
図5に、横回転動作において測定した測定角αに対する透過光の強度分布を示す。
図5において、縦軸は相対強度、横軸は測定角αを表す。
図5に示す強度分布に基づいて、測定角α=5〜50°の範囲で求めた強度の積分値、測定角α=10°における透過光の強度、これらに基づくレンズ100の欠点の評価値を、以下の表3に示す。また、評価値の算出基準は前記表2と同じである。
[Evaluation by lateral rotation]
Sample No. With respect to the lenses 100 of 1 to 3, the evaluation by the lateral rotation operation was performed.
FIG. 5 shows the intensity distribution of transmitted light with respect to the measurement angle α measured in the lateral rotation operation.
In FIG. 5, the vertical axis represents the relative intensity, and the horizontal axis represents the measurement angle α.
Based on the intensity distribution shown in FIG. 5, the integrated value of the intensity obtained in the range of the measurement angle α = 5 to 50 °, the intensity of the transmitted light at the measurement angle α = 10 °, and the evaluation value of the defect of the lens 100 based on these values. Is shown in Table 3 below. The evaluation value calculation criteria are the same as those in Table 2.

Figure 2009150803
Figure 2009150803

図5によると、サンプルNo.1と2では、測定角α=10°付近に透過光強度のピークが見られ、レンズ100の表面に部分的に大きな傷が付いているものと考えられる。
表1と表3とを比較すると、同じサンプルでも評価値に若干の違いが見られる。これは、透過光強度のピークによるものと考えられる。
このことから、大きな傷の有無を考慮し、レンズ100の欠点を漏れなく評価するためには、縦回転動作と横回転動作の双方を実施することが適切であると考えられる。
According to FIG. In 1 and 2, a peak of transmitted light intensity is seen near the measurement angle α = 10 °, and it is considered that the surface of the lens 100 is partially damaged.
When Table 1 and Table 3 are compared, there is a slight difference in evaluation values even for the same sample. This is considered due to the peak of transmitted light intensity.
From this, it is considered that it is appropriate to perform both the longitudinal rotation operation and the lateral rotation operation in order to evaluate the defects of the lens 100 without omission in consideration of the presence or absence of large scratches.

[実施例2]
上述の実施例1よりも目視評価での傷100Aが大きい目視評価4〜7のレンズ100について、欠点評価装置1および欠点評価方法による評価を実施した。
評価は、目視評価ごとに3枚ずつのレンズ100について実施した。
レンズ100の材質は、プラスチックレンズである。
[Example 2]
Evaluation by the defect evaluation apparatus 1 and the defect evaluation method was performed on the lenses 100 of the visual evaluation 4 to 7 having a larger scratch 100A in the visual evaluation than that of Example 1 described above.
The evaluation was performed on three lenses 100 for each visual evaluation.
The material of the lens 100 is a plastic lens.

図6に、縦回転動作において測定した測定角αに対する透過光の強度分布を、図7に、横回転動作において測定した測定角αに対する透過光の強度分布を示す。図6,7において、縦軸は相対強度、横軸は測定角αを表す。
また、測定角α=5〜50°(横回転では−40〜40°)の範囲で求めた透過光強度の積分値を図8および図9に、測定角α=10°における透過光の強度を図10および図11にまとめた。図8〜10において、棒グラフは3つのサンプルの測定値(積分値または透過光強度)の平均値を、縦棒は3つのサンプルの測定値の分布を示す。
FIG. 6 shows the intensity distribution of the transmitted light with respect to the measurement angle α measured in the vertical rotation operation, and FIG. 7 shows the intensity distribution of the transmitted light with respect to the measurement angle α measured in the horizontal rotation operation. 6 and 7, the vertical axis represents the relative intensity, and the horizontal axis represents the measurement angle α.
In addition, the integrated values of the transmitted light intensities obtained in the range of the measurement angle α = 5 to 50 ° (−40 to 40 ° in the case of lateral rotation) are shown in FIGS. 8 and 9, and the intensity of the transmitted light at the measurement angle α = 10 °. Are summarized in FIG. 10 and FIG. 8 to 10, the bar graph shows the average value of the measured values (integrated value or transmitted light intensity) of three samples, and the vertical bar shows the distribution of the measured values of the three samples.

図6,8,10によれば、縦回転動作による測定値は、目視による評価と相関があることがわかる。
また、図7,9,11によれば、横回転動作による測定値は、目視による評価と相関があることがわかる。
以上より、本発明の欠点評価装置1および欠点評価方法によれば、比較的大きな傷100Aを有するレンズ100についても、レンズ100の欠点を客観的かつ定量的に評価できることがわかる。
According to FIGS. 6, 8, and 10, it can be seen that the measurement value by the vertical rotation operation has a correlation with the visual evaluation.
Moreover, according to FIGS. 7, 9, and 11, it can be seen that the measured value by the lateral rotation operation has a correlation with the visual evaluation.
As described above, according to the defect evaluation apparatus 1 and the defect evaluation method of the present invention, it is understood that the defect of the lens 100 can be objectively and quantitatively evaluated even for the lens 100 having the relatively large scratch 100A.

本発明は、レンズの欠点評価装置およびレンズの欠点評価方法として利用できる。   The present invention can be used as a lens defect evaluation apparatus and a lens defect evaluation method.

本発明の実施形態に係るレンズの欠点評価装置の概略構成を示す図。The figure which shows schematic structure of the fault evaluation apparatus of the lens which concerns on embodiment of this invention. 本発明の実施形態の回転受光過程における、光源、レンズおよび受光ユニットの位置関係を示す概略図。Schematic which shows the positional relationship of a light source, a lens, and a light reception unit in the rotation light reception process of embodiment of this invention. 本発明の実施形態の変形例に係る回転手段によるレンズの回転を示す図。The figure which shows rotation of the lens by the rotation means which concerns on the modification of embodiment of this invention. 縦回転動作において測定した測定角に対する透過光の強度分布を示す図。The figure which shows intensity distribution of the transmitted light with respect to the measurement angle measured in vertical rotation operation | movement. 横回転動作において測定した測定角に対する透過光の強度分布を示す図。The figure which shows intensity distribution of the transmitted light with respect to the measurement angle measured in horizontal rotation operation | movement. 縦回転動作において測定した測定角に対する透過光の強度分布を示す図。The figure which shows intensity distribution of the transmitted light with respect to the measurement angle measured in vertical rotation operation | movement. 横回転動作において測定した測定角に対する透過光の強度分布を示す図。The figure which shows intensity distribution of the transmitted light with respect to the measurement angle measured in horizontal rotation operation | movement. 縦回転動作において測定した透過光強度の積分値をまとめた図。The figure which put together the integrated value of the transmitted light intensity measured in the vertical rotation operation | movement. 横回転動作において測定した透過光強度の積分値をまとめた図。The figure which put together the integrated value of the transmitted light intensity measured in horizontal rotation operation | movement. 縦回転動作で測定角10°において測定した透過光強度をまとめた図。The figure which put together the transmitted light intensity measured in the measurement angle of 10 degrees by the vertical rotation operation. 横回転動作で測定角10°において測定した透過光強度をまとめた図。The figure which put together the transmitted light intensity measured in the measurement angle of 10 degrees by horizontal rotation operation. 一般的なヘイズメータの概略構成を示す図。The figure which shows schematic structure of a general haze meter.

符号の説明Explanation of symbols

1…欠点評価装置、11…光源、15…測定部、16…回転手段、100…レンズ、143…受光素子   DESCRIPTION OF SYMBOLS 1 ... Defect evaluation apparatus, 11 ... Light source, 15 ... Measuring part, 16 ... Rotating means, 100 ... Lens, 143 ... Light receiving element

Claims (6)

評価対象とするレンズに光を照射する光源と、
前記光源から照射され前記レンズを透過した透過光を受光する受光素子と、
前記受光素子が受光した前記透過光の強度を測定する測定部と、
前記受光素子を前記レンズに対して相対的に回転させる回転手段と、
前記受光素子の回転中心と前記受光素子とを結ぶ測定線と前記レンズの光軸とのなす角である測定角ごとの前記透過光の強度を出力する出力手段と、
を備えた
ことを特徴とするレンズの欠点評価装置。
A light source for irradiating light to a lens to be evaluated;
A light receiving element that receives transmitted light that has been irradiated from the light source and transmitted through the lens;
A measuring unit for measuring the intensity of the transmitted light received by the light receiving element;
Rotating means for rotating the light receiving element relative to the lens;
Output means for outputting the intensity of the transmitted light for each measurement angle, which is an angle formed by a measurement line connecting the rotation center of the light receiving element and the light receiving element, and the optical axis of the lens;
An apparatus for evaluating a defect of a lens, comprising:
請求項1に記載のレンズの欠点評価装置において、
前記測定角ごとの前記透過光の強度に基づいて前記レンズの欠点を評価した評価値を算出する演算部を備え、
前記出力手段は、前記演算部が算出した前記評価値を出力する
ことを特徴とするレンズの欠点評価装置。
In the lens defect evaluation apparatus according to claim 1,
An arithmetic unit that calculates an evaluation value that evaluates the defect of the lens based on the intensity of the transmitted light for each measurement angle;
The lens defect evaluation apparatus, wherein the output means outputs the evaluation value calculated by the calculation unit.
請求項2に記載のレンズの欠点評価装置において、
前記演算部は、
あらかじめ設定した角度範囲にわたって前記測定角ごとの前記透過光の強度を積分し、
この積分値に基づいて前記評価値を算出する
ことを特徴とするレンズの欠点評価装置。
In the lens defect evaluation apparatus according to claim 2,
The computing unit is
Integrating the intensity of the transmitted light for each measurement angle over a pre-set angle range;
A lens defect evaluation apparatus, wherein the evaluation value is calculated based on the integral value.
請求項2に記載のレンズの欠点評価装置において、
前記演算部は、あらかじめ設定した特定の前記測定角における前記透過光の強度に基づいて前記評価値を算出する
ことを特徴とするレンズの欠点評価装置。
In the lens defect evaluation apparatus according to claim 2,
The lens calculation apparatus according to claim 1, wherein the calculation unit calculates the evaluation value based on an intensity of the transmitted light at a specific measurement angle set in advance.
請求項1ないし請求項4のいずれかに記載のレンズの欠点評価装置において、
前記回転手段は、前記受光素子を回転軸が互いに直行する2つの方向に回転させる
ことを特徴とするレンズの欠点評価装置。
In the lens defect evaluation apparatus according to any one of claims 1 to 4,
The apparatus for evaluating a defect of a lens, wherein the rotating means rotates the light receiving element in two directions in which a rotation axis is orthogonal to each other.
光源から照射されレンズを透過した透過光を受光素子で受光する受光動作、および、前記受光素子を前記レンズに対して相対的に回転させる回転動作、を交互にまたは同時に実施する回転受光過程と、
前記受光素子の回転中心と前記受光素子とを結ぶ測定線と前記レンズの光軸とのなす角である測定角、および、前記受光動作で受光した前記透過光の強度、を測定する測定過程と、
前記測定過程で測定した前記測定角ごとの前記透過光の強度に基づいて前記レンズの欠点を評価する評価過程と、
を備える
ことを特徴とするレンズの欠点評価方法。
A light receiving operation for receiving light transmitted from the light source and transmitted through the lens by a light receiving element, and a rotational light receiving process for alternately or simultaneously performing a rotating operation for rotating the light receiving element relative to the lens;
A measurement process for measuring a measurement angle which is an angle formed by a measurement line connecting the rotation center of the light receiving element and the light receiving element and an optical axis of the lens, and an intensity of the transmitted light received in the light receiving operation; ,
An evaluation process for evaluating defects of the lens based on the intensity of the transmitted light at each measurement angle measured in the measurement process;
A method for evaluating a defect of a lens, comprising:
JP2007329684A 2007-12-21 2007-12-21 Defect evaluation device of lens, and defect evaluation method of lens Withdrawn JP2009150803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329684A JP2009150803A (en) 2007-12-21 2007-12-21 Defect evaluation device of lens, and defect evaluation method of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329684A JP2009150803A (en) 2007-12-21 2007-12-21 Defect evaluation device of lens, and defect evaluation method of lens

Publications (1)

Publication Number Publication Date
JP2009150803A true JP2009150803A (en) 2009-07-09

Family

ID=40920078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329684A Withdrawn JP2009150803A (en) 2007-12-21 2007-12-21 Defect evaluation device of lens, and defect evaluation method of lens

Country Status (1)

Country Link
JP (1) JP2009150803A (en)

Similar Documents

Publication Publication Date Title
JP6336710B2 (en) Optical device for detecting inhomogeneities in the sample, in particular the polarimeter
Foschum et al. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media
TWI797296B (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
US20090147241A1 (en) Method for evaluation of a gemstone
JP6936219B2 (en) Cuvette carrier
US7312866B2 (en) Methods and systems for substrate surface evaluation
EP3059575B1 (en) Method for determining the quality of a surface of an ophthalmic lens
JP2001519890A (en) Techniques for detecting three-dimensional defect locations in transparent structures
JP6936144B2 (en) Particle characterization method and equipment
US20060001885A1 (en) Method and device for quantitative determination of the optical quality of a transparent material
US9863842B2 (en) Method for characterizing an ophthalmic lens
JP2008170344A (en) Evaluating method and measuring device of glareproof
JPH11281584A (en) Method and apparatus for inspection
TW201341785A (en) A system and method for inspecting an article for defects
WO2017175811A1 (en) Cancer detection method, cancer detection device, and cancer detection program
JP2009150803A (en) Defect evaluation device of lens, and defect evaluation method of lens
JP6430204B2 (en) Surface cleanliness determination device and surface cleanliness determination program
JP2009145141A (en) Defect inspection device and defect inspection program
CN102175687B (en) Determinator for measuring proportion of encrusted diamond
JP2004033276A5 (en)
JP2821460B2 (en) Inspection device for transparent substrate
EP2294379B1 (en) Method and device for measuring focal lengths of any dioptric system
LIEW et al. Design and Development of a Novel Lighting System for Car Wiper Arm Defects Inspection
KR101785069B1 (en) Darkfield illumination device
JP3417972B2 (en) Lens inspection apparatus and inspection method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301