JP2009150757A - Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG - Google Patents

Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG Download PDF

Info

Publication number
JP2009150757A
JP2009150757A JP2007328445A JP2007328445A JP2009150757A JP 2009150757 A JP2009150757 A JP 2009150757A JP 2007328445 A JP2007328445 A JP 2007328445A JP 2007328445 A JP2007328445 A JP 2007328445A JP 2009150757 A JP2009150757 A JP 2009150757A
Authority
JP
Japan
Prior art keywords
slag
particle size
elution
slug
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007328445A
Other languages
Japanese (ja)
Inventor
Satoru Shimizu
悟 清水
Hisami Oyamada
久美 小山田
Keisuke Nakahara
啓介 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007328445A priority Critical patent/JP2009150757A/en
Publication of JP2009150757A publication Critical patent/JP2009150757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Ca<SP>2+</SP>elution amount test method for measuring accurately and quickly the elution amount of Ca<SP>2+</SP>eluted from slug, and an evaluation method for evaluating propriety of slug as a marine civil engineering and building material based on the elution amount of Ca<SP>2+</SP>acquired by the Ca<SP>2+</SP>elution amount test method. <P>SOLUTION: In the Ca<SP>2+</SP>elution amount test method, slug is dipped into pure water having a mass ratio 1,000 times or more as high as the mass of the slug, and pH after dipping the slug is measured, and the Ca<SP>2+</SP>elution amount from the slug is determined based on the measured pH value. In the evaluation method of slug, the slug is classified by granularity, and the Ca<SP>2+</SP>elution amount classified by the granularity is determined by using the Ca<SP>2+</SP>elution amount test method, and the Ca<SP>2+</SP>elution amount from the slug before being classified is determined by using the determined Ca<SP>2+</SP>elution amount classified by the granularity and a granularity distribution of the slug determined by classifying the slug by the granularity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転炉スラグや各種製錬スラグなどのスラグから溶出するCa2+の溶出量を測定するための溶出量試験方法、並びに、この溶出量試験方法による試験結果を用いたスラグの評価方法に関するものである。 The present invention relates to an elution amount test method for measuring the elution amount of Ca 2+ eluted from slag such as converter slag and various smelting slags, and evaluation of slag using test results obtained by this elution amount test method It is about the method.

金属の製錬工程及び精錬工程においては、高純度で上質な金属を得るために種々のスラグが発生し、製鉄所においても、高炉スラグ、転炉スラグ、取鍋スラグ、予備処理スラグなどの組成の異なる種々のスラグが発生する。これらのスラグは、路盤材、土壌改良材、地盤改良材、セメントやコンクリートの骨材、石材のみならず、海洋における、潜堤材、裏ごめ材、裏埋め材、盛土材、サンドコンパクション、SCPサンドマット、浅場造成材などの海洋土木建築材料として利用されている。   In the metal smelting and refining processes, various slags are generated in order to obtain high-quality, high-quality metals, and the composition of blast furnace slag, converter slag, ladle slag, pretreatment slag, etc. in steelworks Various slags with different values are generated. These slags are not only roadbed materials, soil improvement materials, ground improvement materials, cement and concrete aggregates, stone materials, but also submarine materials, backfill materials, backfill materials, embankment materials, sand compaction, It is used as marine civil engineering building materials such as SCP sand mats and shallow ground construction materials.

これらのスラグのうちで、遊離CaO(「遊離石灰」或いは「フリーライム」ともいう)を含有する、転炉スラグ、取鍋スラグ、溶銑予備処理スラグなどは、沿岸海域で利用したときに、スラグ中の遊離CaOが海水に溶出し、海水のpHが上昇することによって、海水の白濁現象が発生する場合もあることが知られている。この白濁現象は、以下のメカニズムで発生する。つまり、遊離CaOが海水に溶出してCa(OH)2が形成され、これによって海水のpHが上昇し、pHの上昇に伴って海水に溶解していたMg2+がMg(OH)2となって析出し、この析出物で海水が白濁して白濁現象が発生する。また、海水中のCa2+もpHの上昇に伴って海水に含まれる炭酸イオン(CO3 2-)と反応して、CaCO3を析出し、これも白濁の原因となる。尚、製鉄所で発生するスラグのうちで、高炉スラグを除くスラグは製鋼精錬工程で発生するので、まとめて「製鋼スラグ」と呼ばれており、この製鋼スラグには、含有量はそれぞれ異なるものの、遊離CaOが含有されている。 Among these slags, converter slag, ladle slag, hot metal pretreatment slag, etc. that contain free CaO (also referred to as “free lime” or “free lime”) are slag when used in coastal waters. It is known that the white turbidity of seawater may occur when the free CaO contained therein is eluted into seawater and the pH of the seawater rises. This cloudiness phenomenon occurs by the following mechanism. That is, free CaO elutes into seawater to form Ca (OH) 2 , which raises the pH of the seawater, and Mg 2+ dissolved in the seawater as the pH increases becomes Mg (OH) 2 . The precipitate is precipitated and the seawater becomes clouded by this deposit, resulting in a cloudiness phenomenon. Further, Ca 2+ in the seawater reacts with carbonate ions (CO 3 2− ) contained in the seawater as the pH rises to precipitate CaCO 3 , which also causes white turbidity. Of the slag generated at steelworks, slag other than blast furnace slag is generated in the steelmaking refining process, so it is collectively referred to as `` steel slag ''. , Free CaO is contained.

白濁化の原因となる、Mg(OH)2及びCaCO3自体は無害であるが、工事期間中の白濁現象は、外観上の問題から港湾工事を進める上での障害となることがある。また、白濁の発生は、遊離CaOの溶解に起因する海水のpH上昇を示唆しており、環境上、留意しなければならない。 Although Mg (OH) 2 and CaCO 3 itself, which cause white turbidity, are harmless, the white turbidity phenomenon during the construction period may be an obstacle to proceeding with port construction due to problems in appearance. Moreover, generation | occurrence | production of cloudiness suggests the pH rise of seawater resulting from melt | dissolution of free CaO, and must be careful from an environmental viewpoint.

ところで、最近の製鋼プロセスにおいては、脱珪処理、脱硫処理、脱燐処理及び脱炭処理の各工程の効率的な分割化が進み、多種多様な製鋼スラグが発生しており、その形状、組織は多岐にわたり、製鋼スラグにおける遊離CaOの溶解挙動も複雑となっている。   By the way, in recent steelmaking processes, efficient division of each process of desiliconization treatment, desulfurization treatment, dephosphorization treatment, and decarburization treatment has progressed, and a wide variety of steelmaking slag has been generated. Are diverse, and the dissolution behavior of free CaO in steelmaking slag is also complicated.

そこで、製鋼スラグを沿岸海域で利用するにあたり、このような種々の製鋼スラグのなかから、白濁現象を発生しないスラグを選定するための試験方法が、特許文献1に提案されている。特許文献1によれば、「遊離CaO分が0〜10.0質量%、硫黄分が0〜1.0質量%の範囲である製鋼スラグであって、2倍の質量比の海水に浸漬させて3時間経過した時点における海水のpHが10.5以下となる製鋼スラグ」であれば、白濁現象は防止されるとしている。つまり、製鋼スラグの2倍の質量比の海水に浸漬させて、3時間経過した時点における海水のpHが10.5以下であるならば、当該製鋼スラグからのCa2+の溶出量は少なく、沿岸海域に敷設した場合の白濁が防止できるというものである。
特開2003−26456号公報
Then, when utilizing steelmaking slag in a coastal sea area, the test method for selecting the slag which does not generate | occur | produce a cloudiness phenomenon is proposed in patent document 1 from such various steelmaking slag. According to Patent Document 1, “a steelmaking slag having a free CaO content of 0 to 10.0 mass% and a sulfur content of 0 to 1.0 mass%, which is immersed in seawater having a mass ratio of 2 times. If the steelmaking slag is such that the pH of the seawater becomes 10.5 or less when 3 hours have passed, the cloudiness phenomenon is prevented. That is, if the pH of the seawater is 10.5 or less when it is immersed in seawater having a mass ratio twice that of steelmaking slag and 3 hours have passed, the amount of Ca 2+ eluted from the steelmaking slag is small, It can prevent white turbidity when laid in the coastal sea area.
JP 2003-26456 A

しかしながら、特許文献1で提案された試験方法には、以下の問題点がある。   However, the test method proposed in Patent Document 1 has the following problems.

即ち、特許文献1では、溶媒として海水を用いているために、溶出したCa2+が海水に含まれる炭酸イオンと反応してCaCO3を析出させてしまい、この析出物はpHを上昇させる機能を有していないことから、海水のpH変化とスラグからのCa2+の溶出量とが比例せず、海水のpH変化の観察からは、スラグからのCa2+の溶出量を正確に測定することはできない。また、析出したCaCO3がスラグの表面を覆い、スラグからのCa2+の溶出を妨げる役割を担うこともあり、より一層スラグからのCa2+の溶出量を正確に測定することが困難となる。 That is, in Patent Document 1, since seawater is used as a solvent, the eluted Ca 2+ reacts with carbonate ions contained in the seawater to precipitate CaCO 3 , and this precipitate increases the pH. Because the pH of seawater is not proportional to the amount of Ca 2+ eluted from the slag, the amount of Ca 2+ eluted from the slag can be accurately measured by observing the pH change of the seawater. I can't do it. Also, cover the precipitated CaCO 3 is a slag surface, also play a role to prevent the dissolution of Ca 2+ from the slag, it is difficult to accurately measure the more the amount of elution of Ca 2+ from the slag Become.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、製鋼スラグや各種製錬スラグなどのスラグから溶出するCa2+の溶出量を正確に且つ迅速に測定するためのCa2+溶出量試験方法を提供するとともに、このCa2+溶出量試験方法により得られるCa2+の溶出量に基づいて、スラグの海洋土木建築材料としての適否を評価する評価方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to measure Ca 2+ eluted from slags such as steel slag and various smelting slags accurately and quickly. while providing 2+ elution test method, to provide an evaluation method based on the elution weight of the Ca 2+ obtained by the Ca 2+ elution test method to evaluate the suitability of a marine civil engineering and construction material of the slag It is.

上記課題を解決するための第1の発明に係るスラグのCa2+溶出量試験方法は、スラグの質量に対して1000倍以上の質量比の純水を溶媒として該溶媒にスラグを浸漬させ、スラグを浸漬させた以降の前記溶媒のpHを測定し、前記溶媒のpH測定値に基づいてスラグからのCa2+の溶出量を求めることを特徴とするものである。 The slag Ca 2+ elution amount test method according to the first invention for solving the above-mentioned problem is to immerse slag in the solvent using pure water having a mass ratio of 1000 times or more with respect to the mass of the slag as a solvent, The pH of the solvent after the slag is immersed is measured, and the elution amount of Ca 2+ from the slag is obtained based on the measured pH value of the solvent.

第2の発明に係るスラグの評価方法は、スラグを粒度別に分別し、分別した粒度別に、第1の発明に記載のスラグのCa2+溶出量試験方法を用いてCa2+の溶出量を求め、求めた粒度別のCa2+の溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とを用いて、分別する前のスラグからのCa2+の溶出量を定めることを特徴とするものである。 Evaluation method of slag according to the second invention, the slag fractionated by particle size and the particle size by fractionated, the elution amount of Ca 2+ with Ca 2+ elution test method of the slag according to the first aspect Determine the amount of Ca 2+ elution from the slag before separation using the obtained Ca 2+ elution amount for each particle size and the slag particle size distribution obtained by separating the slag by particle size. It is characterized by.

第3の発明に係るスラグの評価方法は、スラグを粒度別に分別し、分別した粒度別に、第1の発明に記載のスラグのCa2+溶出量試験方法を用いてCa2+の溶出量を求め、求めた粒度別のCa2+の溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とを用いて、分別する前のスラグからのCa2+の溶出量を定め、当該溶出量が目標値よりも大きいときには、計算上で使用するスラグの粒度分布を変更し、前記粒度別のCa2+の溶出量と、変更したスラグの粒度分布とを用いて、粒度分布を変更したスラグからのCa2+の溶出量を定めることを特徴とするものである。 Evaluation method of slag according to the third invention, the slag fractionated by particle size and the particle size by fractionated, the elution amount of Ca 2+ with Ca 2+ elution test method of the slag according to the first aspect The amount of Ca 2+ eluted from the slag before separation is determined using the obtained amount of Ca 2+ leached by particle size and the particle size distribution of slag obtained by separating the slag by particle size. When the dissolution amount is larger than the target value, the particle size distribution of the slag used in the calculation is changed, and the particle size distribution is calculated using the dissolution amount of Ca 2+ for each particle size and the changed particle size distribution of the slag. The elution amount of Ca 2+ from the changed slag is determined.

本発明に係るCa2+溶出量試験方法によれば、溶媒として純水を用いているので、溶出したCa2+はCaCO3などの析出物を形成せず、溶媒のpH変化と溶出するCa2+とが1対1の相関関係となり、溶媒のpH変化から正確にCa2+の溶出量を測定することができ、また、溶媒である純水の質量をスラグの質量の1000倍以上とするので、溶媒のpH上昇が抑えられ、正確にCa2+の溶出量を測定することができる。また更に、溶媒のpHを測定するという比較的簡単な測定からCa2+の溶出量を測定することができ、従って、迅速にCa2+の溶出量を把握することができる。 According to the Ca 2+ elution test method according to the present invention, pure water is used as the solvent, so that the eluted Ca 2+ does not form precipitates such as CaCO 3, and the pH of the solvent and the eluted Ca 2+ has a one-to-one correlation, and the amount of Ca 2+ elution can be accurately measured from the pH change of the solvent. The mass of pure water as the solvent is 1000 times the mass of the slag. Therefore, the increase in pH of the solvent can be suppressed, and the amount of Ca 2+ eluted can be accurately measured. Furthermore, the elution amount of Ca 2+ can be measured from a relatively simple measurement of measuring the pH of the solvent. Therefore, the elution amount of Ca 2+ can be quickly grasped.

また、本発明に係るスラグの評価方法によれば、スラグの粒度別のCa2+の溶出量を求めるので、求めた粒度別のCa2+の溶出量とスラグの粒度分布とから、スラグ全体のCa2+溶出量が把握でき、海域用として利用する際の適否を評価することができる。そして、把握したCa2+溶出量が目標値よりも高い場合、つまり、海域用としての利用が不適と評価された場合には、求めた粒度別のCa2+の溶出量に基づき、粒度分布を変更させたときのスラグからのCa2+溶出量を求めることが可能であり、従って、スラグからのCa2+溶出量が目標値以下となるようにスラグの粒度分布を変更させることによって、Ca2+を溶出するスラグを海洋土木建築材料として利用する際の白濁現象を、未然に防止することが可能となる。 Further, according to the evaluation method of the slag according to the present invention, the so determined quantity eluted of granularity different Ca 2+ slag, the amount of elution of particle size different Ca 2+ determined and the particle size distribution of the slag, the entire slag The elution amount of Ca 2+ can be ascertained, and the suitability for use in sea areas can be evaluated. And when the grasped Ca 2+ elution amount is higher than the target value, that is, when the use for the sea area is evaluated as inappropriate, the particle size distribution is based on the obtained Ca 2+ elution amount for each particle size. It is possible to determine the Ca 2+ elution amount from the slag when the slag is changed. Therefore, by changing the particle size distribution of the slag so that the Ca 2+ elution amount from the slag is less than the target value, It becomes possible to prevent the cloudiness phenomenon when slag eluting Ca 2+ is used as a marine civil engineering building material.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

本発明者等は、遊離CaOを含有し、Ca2+を溶出する製鋼スラグなどのスラグの海域利用を、安全且つ拡大させることを目的とし、Ca2+を溶出するスラグを海水に敷設した際に、海水のpHがどのぐらい変化し、白濁が起こるかを予測するために、スラグ粒子におけるアルカリ溶出の測定を検討した。 The present inventors have contains free CaO, waters utilization of slag, such as steel slag, eluting the Ca 2+, it is intended to be safe and expanded, upon laying the slag eluting Ca 2+ in seawater Furthermore, in order to predict how much the pH of seawater changes and cloudiness occurs, the measurement of alkali elution in slag particles was examined.

現状、スラグからの溶出物のうちでアルカリに関与する因子は、遊離CaOの溶解のみと考えられるため、Ca2+溶出量の測定方法の開発を行った。ここで、Ca2+の溶出量の測定にあたり、溶媒のpH変化からCa2+の溶出濃度を換算することを目的とした。 At present, the only factor that is related to alkali among the effluents from slag is considered to be dissolution of free CaO. Therefore, a method for measuring the Ca 2+ elution amount was developed. Here, when measuring the elution amount of Ca 2+, with the aim of converting the elution concentration of Ca 2+ from pH change of the solvent.

スラグからのCa2+の溶出は、下記の(1)式で表される。
CaO+H2O → Ca(OH) → Ca2++2OH-……(1)
つまり、スラグ中のCaO(酸化カルシウム)が水分と反応してCa(OH)2(水酸化カルシウム)に変化し、このCa(OH)2が水及び海水に溶解してCa2+(カルシウムイオン)と水酸化物イオン(OH-)を生成することで、アルカリ性となる。
The elution of Ca 2+ from the slag is expressed by the following formula (1).
CaO + H 2 O → Ca ( OH) → Ca 2+ + 2OH - ...... (1)
That is, CaO (calcium oxide) in the slag reacts with moisture to change to Ca (OH) 2 (calcium hydroxide), and this Ca (OH) 2 dissolves in water and seawater to cause Ca 2+ (calcium ions). ) And hydroxide ions (OH ), it becomes alkaline.

溶媒のpH測定値からCa2+溶出濃度を換算するためには、他の因子の影響を排除しなければならず、従って、海水は溶媒として使用できない。その理由は、海水にはCa2+の他にMg2+が含まれており、pHが上昇して高くなるとMg(OH)2が生成するために、海水のpHが、pH9.8付近から見掛け上変化しなくなる。そのために、海水では、pH測定値からCa2+溶出量を換算することができない。また、溶媒として純水を使用しても、Ca(OH)2はpH12.5近傍で飽和状態となることから、測定中に溶媒のpHが12.5以上にならないようにするために、溶媒に対してスラグの添加量を少なくしなければならない。 In order to convert the Ca 2+ elution concentration from the measured pH value of the solvent, the influence of other factors must be excluded, and seawater cannot be used as a solvent. The reason is that the sea water includes the Mg 2+ in addition to Ca 2+, to the pH increases to increase Mg (OH) 2 to produce, pH of seawater, from the vicinity of pH9.8 Apparently no longer change. Therefore, in seawater, the Ca 2+ elution amount cannot be converted from the measured pH value. Further, even if pure water is used as the solvent, Ca (OH) 2 is saturated near pH 12.5. Therefore, in order to prevent the pH of the solvent from exceeding 12.5 during the measurement, However, the amount of slag added must be reduced.

以上のことから、溶媒には、純水として蒸留後イオン交換したイオン交換水を使用し、スラグと溶媒との質量比を1:1000として、測定を行なった。   From the above, for the solvent, ion-exchanged water that was ion-exchanged after distillation was used as pure water, and the mass ratio of slag to solvent was set to 1: 1000.

予め破砕された製鋼スラグを105℃で2時間乾燥して、付着水分を除去した後、このスラグから、0.075mm越え0.15mm以下、0.15mm超え0.425mm以下、0.6mm超え1.18mm以下、2.0mm超え4.75mm以下の4種類の粒度範囲のスラグを篩分器にて回収し、この4種類の粒度別のスラグ毎に測定を行なった。また、篩分器にて回収する際に、粒度分布も測定した。また更に、4種類に分別された粒度別のスラグ毎に化学成分を分析して、成分値のばらつきは分析の誤差範囲内であり、粒度による成分の変化はないことを確認している。   After pre-crushed steelmaking slag was dried at 105 ° C. for 2 hours to remove adhering moisture, 0.075 mm to 0.15 mm, 0.15 mm to 0.425 mm, 0.6 mm to 1 The slags in four types of particle size ranges of .18 mm or less and 2.0 mm to 4.75 mm or less were collected by a sieving device, and measurement was performed for each of these four types of slag. In addition, the particle size distribution was also measured when collecting with a sieving machine. Furthermore, chemical components are analyzed for each slag classified into four types according to particle size, and it is confirmed that the variation in component values is within the error range of the analysis, and there is no change in the components due to particle size.

粒度別に分別したそれぞれのスラグから1gのスラグを採取し、このスラグを、ビーカーに収容された1000mLの純水に浸漬させ、回転翼攪拌器にて200rpmの回転速度で攪拌しつつ、pH測定計を用いて溶媒のpHを測定した。   1 g of slag was sampled from each slag sorted according to particle size, and this slag was immersed in 1000 mL of pure water contained in a beaker and stirred at a rotational speed of 200 rpm with a rotary blade stirrer while measuring the pH meter Was used to measure the pH of the solvent.

各粒度におけるpH測定結果を図1に示す。図1に示すように、スラグ粒度の違いによって、pHの変化に差があることが確認された。つまり、スラグ粒度が細かいほど、pHの変化が大きく、且つ、最終的なpH値が高くなることが確認できた。スラグの化学成分組成は、前述したように同一であることから、pH変化の違いは粒度に起因するものであることが分かった。   The pH measurement results for each particle size are shown in FIG. As shown in FIG. 1, it was confirmed that there was a difference in pH change depending on the difference in slag particle size. That is, it was confirmed that the finer the slag particle size, the larger the pH change and the higher the final pH value. Since the chemical composition of the slag is the same as described above, it has been found that the difference in pH change is caused by the particle size.

図1に示す溶媒のpH測定値からCa2+濃度を求めるにあたっては、以下に示すCa(OH)2の塩基酸解離定数を用いたイオン平衡計算から求めた。つまり、下記の(2)式〜(5)式に示す塩基酸解離定数を解き、[OH-]の三次関数から全Ca濃度(Cb)を求めるという方法である。 In obtaining the Ca 2+ concentration from the measured pH value of the solvent shown in FIG. 1, it was obtained by ion equilibrium calculation using the basic acid dissociation constant of Ca (OH) 2 shown below. That is, the basic acid dissociation constant shown in the following formulas (2) to (5) is solved, and the total Ca concentration (Cb) is obtained from the cubic function of [OH ].

Kb1=[OH-]×[Ca(OH)+]/[Ca(OH)2]=3.98×10-3…(2)
Kb2=[OH-]×[Ca2+]/[Ca(OH)+]=3.98×10-2…(3)
Cb(全Ca濃度)=[Ca(OH)2]+[Ca(OH)+]+[Ca2+] …(4)
[OH-]=[H+]+[Ca(OH)+]+2[Ca2+] …(5)
これらの(2)式〜(5)式を解くことによって、下記の(6)式が得られ、この(6)式に、各pHでの[OH-]の濃度を代入することにより、Ca2+の濃度を得ることができる。
Kb1 = [OH -] × [ Ca (OH) +] / [Ca (OH) 2] = 3.98 × 10 -3 ... (2)
Kb2 = [OH -] × [ Ca 2+] / [Ca (OH) +] = 3.98 × 10 -2 ... (3)
Cb (total Ca concentration) = [Ca (OH) 2 ] + [Ca (OH) + ] + [Ca 2+ ] (4)
[OH -] = [H + ] + [Ca (OH) +] +2 [Ca 2+] ... (5)
By solving these equations (2) to (5), the following equation (6) is obtained. By substituting the concentration of [OH ] at each pH into this equation (6), the Ca A concentration of 2+ can be obtained.

Cb=[OH-]3+3.98×10-3[OH-]2+1.58×10-4[OH-]/(3.98×10-3[OH-]+2×1.58×10-4) …(6)
表1に(6)式を用いてpH測定値からCa2+濃度を計算した結果を示す。表1に示すように、溶媒のpHと溶媒中のCa2+濃度とは、1対1の関係であることが分かる。尚、一部の溶出試験では、溶媒中のCa2+濃度をICP発光分析によって測定しており、ICP発光分析の結果と表1に示す結果とが一致することを確認している。
Cb = [OH -] 3 + 3.98 × 10 -3 [OH -] 2 + 1.58 × 10 -4 [OH -] / (3.98 × 10 -3 [OH -] + 2 × 1.58 × 10 -4) ... ( 6)
Table 1 shows the result of calculating the Ca 2+ concentration from the measured pH value using the equation (6). As shown in Table 1, it can be seen that there is a one-to-one relationship between the pH of the solvent and the concentration of Ca 2+ in the solvent. In some dissolution tests, the Ca 2+ concentration in the solvent was measured by ICP emission analysis, and it was confirmed that the results of the ICP emission analysis coincided with the results shown in Table 1.

Figure 2009150757
Figure 2009150757

このようにして得られる溶媒のpHと溶媒中のCa2+濃度との関係を用いて、図1に示すpH測定値をCa2+の濃度に換算すると、図2に示すCa2+濃度と経過時間との関係が得られる。尚、図2では、粒度が2.0mm超え4.75mm以下のスラグのデータを省略しているが、粒度が2.0mm超え4.75mm以下のスラグのデータは、粒度が0.6mm超え1.18mm以下のスラグのデータよりも更にCa2+濃度の低い側に位置することを確認している。 Using this way, the relationship between the Ca 2+ concentration of pH and solvent of the resulting solvent and converting the measured pH values shown in Figure 1 to a concentration of Ca 2+, and Ca 2+ concentration shown in FIG. 2 A relationship with elapsed time is obtained. In FIG. 2, slag data having a particle size of 2.0 mm to 4.75 mm or less is omitted, but slag data having a particle size of 2.0 mm to 4.75 mm or less has a particle size of 0.6 mm to 1 It has been confirmed that it is located on the side where Ca 2+ concentration is lower than the data of slag of 18 mm or less.

以上の説明のように、溶媒として純水を用い、この溶媒にスラグを浸漬させ、溶媒のpHを測定することで、溶媒のpH測定値に基づいてスラグからのCa2+の溶出量を精度良く且つ迅速に測定できるとの知見が得られた。 As described above, pure water is used as a solvent, slag is immersed in this solvent, and the pH of the solvent is measured, so that the amount of Ca 2+ eluted from the slag can be accurately determined based on the measured pH value of the solvent. The knowledge that it can measure well and quickly was obtained.

本発明に係るスラグのCa2+溶出量試験方法は、上記知見に基づきなされたものであり、スラグの質量に対して1000倍以上の質量比の純水を溶媒として該溶媒にスラグを浸漬させ、スラグを浸漬させた以降の前記溶媒のpHを測定し、前記溶媒のpH測定値に基づいてスラグからのCa2+の溶出量を求めることを特徴とする。 The slag Ca 2+ elution test method according to the present invention is based on the above findings, and slag is immersed in the solvent using pure water having a mass ratio of 1000 times or more with respect to the mass of the slag as a solvent. The pH of the solvent after the slag is immersed is measured, and the elution amount of Ca 2+ from the slag is obtained based on the measured pH value of the solvent.

本発明のCa2+溶出量試験方法を実施する上で、溶媒である純水は、スラグの質量の1000倍以上であればよく、上限は特に規定する必要はないが、余りに多くなるとハンドリングが困難になることから、スラグの質量の2000倍程度を上限とすればよい。また、pH測定計も特別な仕様を必要とせず、市販のpH測定計で充分である。また、本発明で用いる純水は、溶出したCa2+の反応に影響を及ぼさない程度の清浄度であればよく、蒸留水、イオン交換水、蒸留後イオン交換したイオン交換水を使用できる。 In carrying out the Ca 2+ elution amount test method of the present invention, the pure water as the solvent may be 1000 times or more the mass of the slag, and there is no need to define the upper limit in particular. Since it becomes difficult, the upper limit may be about 2000 times the mass of the slag. Also, the pH meter does not require special specifications, and a commercially available pH meter is sufficient. In addition, the pure water used in the present invention may have a cleanness that does not affect the reaction of the eluted Ca 2+ , and distilled water, ion-exchanged water, or ion-exchanged water ion-exchanged after distillation can be used.

このように、本発明に係るスラグのCa2+溶出量試験方法によれば、溶媒として純水を用いているので、溶出したCa2+はCaCO3などの析出物を形成せず、溶媒のpH変化と溶出するCa2+とが1対1の相関関係となり、溶媒のpH測定値から正確にCa2+の溶出量を測定することができる。また、溶媒である純水の質量をスラグの質量の1000倍以上とするので、溶媒のpH上昇が抑えられ、正確にCa2+の溶出量を測定することができる。 As described above, according to the slag Ca 2+ elution test method according to the present invention, pure water is used as the solvent, and thus the eluted Ca 2+ does not form precipitates such as CaCO 3 , There is a one-to-one correlation between pH change and eluted Ca 2+, and the amount of Ca 2+ eluted can be accurately measured from the measured pH value of the solvent. Further, since the mass of pure water as the solvent is 1000 times or more the mass of the slag, an increase in the pH of the solvent can be suppressed, and the amount of Ca 2+ eluted can be accurately measured.

ところで、前述した図2に示す曲線の勾配がCa2+の溶出速度となる。図2からも明らかなように、スラグの粒度が小さいほど、Ca2+の溶出速度が速いことが確認できた。即ち、スラグの化学成分が同一の場合には、粒径の小さいものの比率が多いスラグほど、Ca2+の溶出速度が速く、海洋土木建築材料として使用したときには白濁現象が起こりやすいこと分かる。 By the way, the slope of the curve shown in FIG. 2 described above becomes the elution rate of Ca 2+ . As is clear from FIG. 2, it was confirmed that the smaller the slag particle size, the faster the Ca 2+ elution rate. That is, when the chemical composition of the slag is the same, the slag having a small proportion of the particle size has a higher Ca 2+ elution rate, and the cloudiness phenomenon is more likely to occur when used as a marine civil engineering building material.

図3に、図2に示す経過時間30分までのCa2+溶出速度の平均値と、スラグ1gあたりの表面積との関係を示す。尚、図3中のスラグAが、前述した図1及び図2の試験データを示したスラグであり、スラグBは組成の異なる別の製鋼スラグのデータである。また、スラグ1gあたりの表面積を求めるにあたり、スラグの形状を球体と仮定するとともに、スラグの密度を、充填における見掛け比重(2500kg/m3)として計算した。 FIG. 3 shows the relationship between the average value of the Ca 2+ elution rate up to 30 minutes and the surface area per gram of slag shown in FIG. In addition, the slag A in FIG. 3 is the slag which showed the test data of FIG.1 and FIG.2 mentioned above, and the slag B is the data of another steelmaking slag from which a composition differs. Moreover, when calculating | requiring the surface area per slag, while assuming the shape of a slag as a sphere, the density of slag was computed as apparent specific gravity (2500 kg / m < 3 >) in filling.

図3に示すように、スラグのCa2+の溶出速度は単位質量あたりの表面積と相関があることが分かった。また、このCa2+溶出速度と単位質量あたりの表面積との関係は、スラグAとスラグBとを比較すると両者は異なることから、スラグの化学成分組成によって異なることも確認できた。 As shown in FIG. 3, it was found that the dissolution rate of Ca 2+ in slag has a correlation with the surface area per unit mass. Moreover, since the relationship between this Ca 2+ elution rate and the surface area per unit mass is different when comparing slag A and slag B, it was also confirmed that they differ depending on the chemical composition of the slag.

従って、スラグからのCa2+溶出量は、粒度別にスラグを分別し、分別した粒度別にCa2+溶出量を求めれば、求めた粒度別のCa2+溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とから、容易に推定できることが分かった。そして、推定したCa2+溶出量を、経験上から定まる白濁発生のCa2+溶出量(=目標値)と比較すれば、スラグの海洋土木建築材料としての適否を容易に評価できることが分かった。つまり、Ca2+溶出量が目標値を超えた場合には、白濁の可能性があることから、不適と評価する。 Thus, Ca 2+ elution amount from the slag, the particle size separately fractionated slag, by obtaining the Ca 2+ elution in size by fractionated, and particle size-specific Ca 2+ elution amount obtained, fractionated slag by size It was found that the slag particle size distribution can be easily estimated. And it was found that if the estimated Ca 2+ elution amount is compared with the Ca 2+ elution amount (= target value) generated from the experience, the suitability of slag as a marine civil engineering building material can be easily evaluated. . That is, when the Ca 2+ elution amount exceeds the target value, it is evaluated as inappropriate because there is a possibility of cloudiness.

また、Ca2+溶出量の推定結果から、Ca2+の溶出量が目標値よりも多く、当該スラグは海洋土木建築材料として適していないと評価された場合でも、粒度別に分別したスラグのなかで、Ca2+の溶出量が多い、粒度の最も小さいスラグを計算上全量削除する、或いは、粒度の最も小さいスラグの一部分を計算上削除するなどして粒度分布構成を変更し、粒度分布を変更したスラグでCa2+溶出量の計算をし直すことよって、Ca2+溶出量を目標値以下にすることが可能であることを知見した。 Further, the estimation result of Ca 2+ elution amount, elution of Ca 2+ is more than the target value, even if the slag was rated as not suitable as a marine civil engineering building materials, among slag fractionated by particle size Then, change the particle size distribution configuration by deleting all the slag with the largest Ca 2+ elution amount and the smallest particle size in the calculation, or by deleting a part of the slag with the smallest particle size in the calculation, etc. What it can change the slag re calculation of Ca 2+ elution amount was found that it is possible to make the Ca 2+ elution amount less than the target value.

本発明に係るスラグの評価方法は、この検討結果に基づきなされたものであり、スラグを粒度別に分別し、分別した粒度別に、前記Ca2+溶出量試験方法を用いてCa2+の溶出量を求め、求めた粒度別のCa2+の溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とを用いて、分別する前のスラグからのCa2+の溶出量を定めることを特徴とする。この場合に、Ca2+の溶出量が目標値よりも大きいときには、計算上で使用するスラグの粒度分布を変更し、前記粒度別のCa2+の溶出量と、変更したスラグの粒度分布とを用いて、粒度分布を変更したスラグからのCa2+の溶出量を定めることができる。 Evaluation method of slag according to the present invention has been made based on this study result, slag fractionated by particle size and the particle size by fractionated elution of Ca 2+ using the Ca 2+ elution test method The amount of Ca 2+ elution from the slag before fractionation is determined using the calculated amount of Ca 2+ elution by particle size and the particle size distribution of slag obtained by fractionating the slag by particle size. It is characterized by that. In this case, when the Ca 2+ elution amount is larger than the target value, the particle size distribution of the slag used in the calculation is changed, and the Ca 2+ elution amount for each particle size and the changed slag particle size distribution Can be used to determine the elution amount of Ca 2+ from the slag whose particle size distribution has been changed.

本発明のスラグの評価方法を実施する上で、スラグを粒度別に分別する際に、スラグの最大サイズと最小サイズとの範囲にもよるが、少なくとも3種類以上に分類することが好ましく、望ましくは4種類以上とする。分別数が少ないと、仮に、Ca2+の溶出量が目標値よりも大きくなったときに、計算上で粒度分布を変更する際の障害となる恐れがあるからである。つまり、篩分器での再度の篩分け作業が必要になる可能性があるからである。また、粒径が1mm以上のスラグ粒子からはCa2+の溶出は少ないので、粒径が1mm以上のものはまとめて1つのグループとして分別しても構わない。 In carrying out the slag evaluation method of the present invention, when separating the slag according to the particle size, it is preferable to classify into at least three types, preferably depending on the range of the maximum size and the minimum size of the slag. 4 types or more. This is because if the number of fractions is small, there is a risk that it may become an obstacle to changing the particle size distribution in calculation if the amount of Ca 2+ elution becomes larger than the target value. That is, there is a possibility that a second sieving operation with a sieving device may be required. In addition, since leaching of Ca 2+ is small from slag particles having a particle size of 1 mm or more, particles having a particle size of 1 mm or more may be grouped together as one group.

このように、本発明に係るスラグの評価方法によれば、スラグの粒度別のCa2+の溶出量を求めるので、求めた粒度別のCa2+の溶出量とスラグの粒度分布とから、スラグ全体のCa2+溶出量が把握でき、海域用として利用する際の適否を的確に評価することができる。そして、把握したCa2+溶出量が目標値よりも高い場合には、粒度分布を変更させたときのスラグからのCa2+溶出量を求めることが可能であり、スラグからのCa2+溶出量が目標値以下となるように、スラグの粒度分布を変更させることによって、スラグを海洋土木建築材料として利用する際の白濁現象を、未然に防止することが可能となる。 Thus, according to the evaluation method of the slag according to the present invention, the so determined quantity eluted of granularity different Ca 2+ slag, the amount of elution of particle size different Ca 2+ determined and the particle size distribution of the slag, The amount of Ca 2+ elution in the entire slag can be grasped, and the suitability when used for marine use can be accurately evaluated. When the grasped Ca 2+ elution amount is higher than the target value, it is possible to obtain the Ca 2+ elution amount from the slag when the particle size distribution is changed, and the Ca 2+ elution from the slag. By changing the particle size distribution of the slag so that the amount is equal to or less than the target value, it becomes possible to prevent the cloudiness phenomenon when using the slag as a marine civil engineering building material.

純水を溶媒として該溶媒にスラグを浸漬させたときの溶媒のpH変化を、スラグ粒度の違いにより比較して示す図である。It is a figure which shows the pH change of a solvent when a pure water is used as a solvent and a slag is immersed in this solvent by the difference in a slag particle size. 図1に示すpH測定値をCa2+濃度に換算して示す図である。FIG. 2 is a diagram showing the measured pH values shown in FIG. 1 in terms of Ca 2+ concentration. 図2に示すCa2+溶出速度の測定値と、スラグ1gあたりの表面積との関係を示す図である。It is a figure which shows the relationship between the measured value of Ca2 + elution rate shown in FIG. 2, and the surface area per 1g of slag.

Claims (3)

スラグの質量に対して1000倍以上の質量比の純水を溶媒として該溶媒にスラグを浸漬させ、スラグを浸漬させた以降の前記溶媒のpHを測定し、前記溶媒のpH測定値に基づいてスラグからのCa2+の溶出量を求めることを特徴とする、スラグのCa2+溶出量試験方法。 Using pure water with a mass ratio of 1000 times or more with respect to the mass of the slag as a solvent, slag is immersed in the solvent, the pH of the solvent after the slag is immersed is measured, and based on the measured pH value of the solvent and it obtains the amount of elution of Ca 2+ from the slag, Ca 2+ elution test method of the slag. スラグを粒度別に分別し、分別した粒度別に、請求項1に記載のスラグのCa2+溶出量試験方法を用いてCa2+の溶出量を求め、求めた粒度別のCa2+の溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とを用いて、分別する前のスラグからのCa2+の溶出量を定めることを特徴とする、スラグの評価方法。 Slag fractionated by particle size and the particle size by fractionated to obtain the elution amount of Ca 2+ with Ca 2+ elution test method of the slag according to claim 1, the amount of elution of particle size different Ca 2+ determined And an elution amount of Ca 2+ from the slag before sorting using a slag particle size distribution obtained by sorting the slag according to particle size. スラグを粒度別に分別し、分別した粒度別に、請求項1に記載のスラグのCa2+溶出量試験方法を用いてCa2+の溶出量を求め、求めた粒度別のCa2+の溶出量と、スラグを粒度別に分別することによって求められるスラグの粒度分布とを用いて、分別する前のスラグからのCa2+の溶出量を定め、当該溶出量が目標値よりも大きいときには、計算上で使用するスラグの粒度分布を変更し、前記粒度別のCa2+の溶出量と、変更したスラグの粒度分布とを用いて、粒度分布を変更したスラグからのCa2+の溶出量を定めることを特徴とする、スラグの評価方法。 Slag fractionated by particle size and the particle size by fractionated to obtain the elution amount of Ca 2+ with Ca 2+ elution test method of the slag according to claim 1, the amount of elution of particle size different Ca 2+ determined And the slag particle size distribution obtained by separating the slag according to particle size, the amount of Ca 2+ elution from the slag before separation is determined, and when the amount is larger than the target value, The particle size distribution of the slag used in the above is changed, and the amount of Ca 2+ eluted from the slag whose particle size distribution is changed is determined using the amount of Ca 2+ eluted by the particle size and the particle size distribution of the changed slag. A method for evaluating slag, characterized by that.
JP2007328445A 2007-12-20 2007-12-20 Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG Pending JP2009150757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328445A JP2009150757A (en) 2007-12-20 2007-12-20 Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328445A JP2009150757A (en) 2007-12-20 2007-12-20 Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG

Publications (1)

Publication Number Publication Date
JP2009150757A true JP2009150757A (en) 2009-07-09

Family

ID=40920039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328445A Pending JP2009150757A (en) 2007-12-20 2007-12-20 Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG

Country Status (1)

Country Link
JP (1) JP2009150757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077922A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp Method for predicting oh- load of seawater by throwing in slag and method for preparing or selecting slag to be thrown in sea area
JP2016176275A (en) * 2015-03-20 2016-10-06 Jfeスチール株式会社 Sand compaction pile material, sand compaction pile and sand compaction pile developing method
JP2017066827A (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Alkali drainage risk prediction method at land site
WO2017163595A1 (en) * 2016-03-24 2017-09-28 日新製鋼株式会社 Method for eluting calcium from steel slag and method for recovering calcium from steel slag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077922A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp Method for predicting oh- load of seawater by throwing in slag and method for preparing or selecting slag to be thrown in sea area
JP2016176275A (en) * 2015-03-20 2016-10-06 Jfeスチール株式会社 Sand compaction pile material, sand compaction pile and sand compaction pile developing method
JP2017066827A (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Alkali drainage risk prediction method at land site
WO2017163595A1 (en) * 2016-03-24 2017-09-28 日新製鋼株式会社 Method for eluting calcium from steel slag and method for recovering calcium from steel slag
CN108883984A (en) * 2016-03-24 2018-11-23 日新制钢株式会社 The method for making calcium recycle calcium from the method dissolved out in steelmaking slag and from steelmaking slag
JPWO2017163595A1 (en) * 2016-03-24 2019-01-31 日新製鋼株式会社 Method for eluting calcium from steelmaking slag and method for recovering calcium from steelmaking slag

Similar Documents

Publication Publication Date Title
Galvín et al. Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes
Barca et al. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe
Barbudo et al. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes
Kasap et al. Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings
Torras et al. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements
JP2009150757A (en) Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG
Yokoyama et al. Serial batch elution of electric arc furnace oxidizing slag discharged from normal steelmaking process into fresh water
Matsumoto et al. Application of coal ash to postmine land for prevention of soil erosion in coal mine in Indonesia: utilization of fly ash and bottom ash
Bani-Hani et al. Archeaometallurgical finds from Barsinia, Northern Jordan: Microstructural characterization and conservation treatment
Cabrera et al. Leaching issues in recycled aggregate concrete
JP5790597B2 (en) Method for predicting strength of modified soil and method for producing modified soil using the same
JP6142760B2 (en) Strength prediction method for modified soil
Li et al. Mineralogical determination and geo-chemical modeling of chromium release from AOD slag: Distribution and leachability aspects
JP5664087B2 (en) Method for predicting OH-load of seawater by slag injection and method for preparing or selecting slag for seawater input
Matsumoto et al. Interaction between physical and chemical weathering of argillaceous rocks and the effects on the occurrence of acid mine drainage (AMD)
Štulović et al. Leaching properties of secondary lead slag stabilized/solidified with cement and selected additives
Yang et al. Long-term leaching behaviours of cement composites prepared by hazardous wastes
JP2009204272A (en) Ph forecasting method of seawater when slug is charged and preparing method of slug for ocean sea
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JP4776973B2 (en) Method for determining steel slag and method for predicting solidification of steel slag
CN109443967A (en) A kind of evaluation method of slag as aggregate stability
JP6413854B2 (en) Manufacturing method for civil engineering materials for land use
JP3963711B2 (en) Method for producing steelmaking slag for harbor construction that does not become cloudy
WO2009048205A1 (en) Chloride threshold value method for steel corrosion in concrete
Mahmood et al. Experimental and computational assessment of the strength properties of Mont Wright tailings matrices for use as road materials