JP2009149780A - Flame-retardant resin composition and molded body using the same - Google Patents

Flame-retardant resin composition and molded body using the same Download PDF

Info

Publication number
JP2009149780A
JP2009149780A JP2007329542A JP2007329542A JP2009149780A JP 2009149780 A JP2009149780 A JP 2009149780A JP 2007329542 A JP2007329542 A JP 2007329542A JP 2007329542 A JP2007329542 A JP 2007329542A JP 2009149780 A JP2009149780 A JP 2009149780A
Authority
JP
Japan
Prior art keywords
resin
flame
retardant
flame retardant
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007329542A
Other languages
Japanese (ja)
Inventor
Takayuki Fujiwaka
貴之 藤若
Keisuke Masuko
啓介 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2007329542A priority Critical patent/JP2009149780A/en
Publication of JP2009149780A publication Critical patent/JP2009149780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant material that is completely halogen-free, for solving problems that although a conventional silicone flame retardant is safe and environmentally friendly, a halogen-based drip preventive agent is necessary for suppressing drip during combustion. <P>SOLUTION: The flame-retardant resin composition is prepared by adding 1 to 20 parts by weight of a solid flame-retardant composition to 100 parts by weigh of a resin containing a polycarbonate resin, the flame-retardant composition prepared by kneading 20 to 70 wt.% of carbon nanotubes with 30 to 80 wt.% of a liquid branched silicone resin in which 15% or more, in a molar ratio, of side chains are phenyl groups. The flame-retardant resin composition exhibits V-0 evaluation of combustion according to UL94 and does not drip. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は芳香環を有する熱可塑性樹脂にシリコーン樹脂とカーボンナノチューブを配合することで難燃性が付与された難燃性樹脂組成物に関する。
The present invention relates to a flame retardant resin composition provided with flame retardancy by blending a silicone resin and a carbon nanotube with a thermoplastic resin having an aromatic ring.

カーボンナノチューブはその特性からエレクトロニクス(トランジスター素子、配線など)、エネルギー(燃料電池用電極材料、太陽光発電装置、ガス貯蔵など)、電子放出(フラットパネル装置など)、化学(吸着剤、触媒、センサーなど)、複合材料(導電性プラスチック、強化材料)など様々な分野での応用が期待されている。また、カーボンナノチューブをナノコンポジットすることで難燃性を発現するため、ハロゲンおよびリンを含まない難燃材として注目されている。特に燃焼時の発熱量の低減や独特な燃焼残渣を形成しドリップを抑えるなど優れた挙動を示す(例えば、非特許文献1参照。)。   Carbon nanotubes have characteristics such as electronics (transistor elements, wiring, etc.), energy (electrode materials for fuel cells, solar power generation devices, gas storage, etc.), electron emission (flat panel devices, etc.), chemistry (adsorbents, catalysts, sensors). Etc.), composite materials (conductive plastics, reinforced materials), etc. are expected to be applied in various fields. In addition, since nanocomposites of carbon nanotubes exhibit flame retardancy, they are attracting attention as flame retardants that do not contain halogen and phosphorus. In particular, it exhibits excellent behavior such as reduction of the amount of heat generated during combustion and formation of a unique combustion residue to suppress drip (see Non-Patent Document 1, for example).

しかし、カーボンナノチューブだけではその難燃性は弱く単独ではUL規格においてV−1以上を満足することが出来ない。また、カーボンナノチューブはアスペクト比が非常に大きいためその分散が非常に困難である。特にプラスチック中への分散は非常に困難である。一般的な顔料の分散方法であるワックスに分散させる方法をカーボンナノチューブの分散に適用すると、特に、カーボンナノチューブが高濃度の場合、ワックスがカーボンナノチューブの絡まりの中に保持されてしまい、これを樹脂中に分散させても分散体がほぐれず、カーボンナノチューブは樹脂中に分散できなかった。そのため低濃度の分散体しか作成が出来ず、添加量を多くすると強化材料どころか物性を落とす結果になっていた。また、ワックスを使用すると難燃ナノコンポジットにした際、ワックスが燃焼しやすいという問題があった。   However, the flame retardancy of carbon nanotubes alone is weak, and by itself, V-1 or higher cannot be satisfied in the UL standard. In addition, since the carbon nanotube has a very large aspect ratio, its dispersion is very difficult. In particular, dispersion in plastic is very difficult. When the method of dispersing in a wax, which is a general pigment dispersion method, is applied to the dispersion of carbon nanotubes, particularly when the concentration of carbon nanotubes is high, the wax is held in the entanglement of carbon nanotubes, which is used as a resin. Even when dispersed in the dispersion, the dispersion was not loosened, and the carbon nanotubes could not be dispersed in the resin. For this reason, only low-concentration dispersions can be produced, and increasing the amount added resulted in a drop in physical properties as well as reinforcing materials. In addition, when wax is used, there is a problem that the wax easily burns when it is made into a flame retardant nanocomposite.

従来、シリコーン樹脂による難燃性を発現させる技術としては芳香族環を有する樹脂へ特定のシリコーン樹脂を分散させる方法が知られている(特許文献1参照)。また、カーボンナノチューブを樹脂中に分散させる技術としては、カーボンナノチューブをプラズマで処理することにより絡まりをほぐし樹脂へ分散させる方法が知られている(特許文献2参照)。また、カーボンナノチューブを珪素化合物に添加する技術としては、オルガノポリシロキサンに単層の根元成長カーボンナノチューブを分散させ熱伝導率の優れたグリースを作成する方法が知られている(特許文献3参照)。さらにカーボンナノチューブとシリコーン樹脂の混合物を樹脂へ分散させる技術も知られている(特許文献4、5参照)。   Conventionally, a method of dispersing a specific silicone resin in a resin having an aromatic ring is known as a technique for developing flame retardancy with a silicone resin (see Patent Document 1). Further, as a technique for dispersing carbon nanotubes in a resin, a method is known in which carbon nanotubes are treated with plasma to loosen entanglements and disperse them in a resin (see Patent Document 2). As a technique for adding carbon nanotubes to a silicon compound, a method is known in which a single-layer base-grown carbon nanotube is dispersed in organopolysiloxane to produce a grease having excellent thermal conductivity (see Patent Document 3). . Furthermore, a technique for dispersing a mixture of carbon nanotubes and silicone resin in a resin is also known (see Patent Documents 4 and 5).

しかしながら、特許文献1記載の技術はドリップ性が問題であり、ドリップを抑えるためにはPTFEなどの添加剤が必要となる。特許文献2記載の技術は樹脂へのプラズマ処理が必要でありコスト面に大きな問題がある。特許文献3記載の技術は、単層のカーボンナノチューブを用いており樹脂添加剤としては高価で不向きであり、さらには液状の化合物であり樹脂に添加し押出機で加工を行うとサージングしてしまうなどの加工性に問題点がある。また特許文献4記載の技術は、難燃性についての記載が無く、特許文献5記載の技術はシリコーン樹脂の他に別の難燃剤を添加することで難燃性を発現させている。

T.Kashiwagi他、MACROMOL. Rapid Commun.、23(2002)、761?765 特開平10−139964号公報 特開2003−306607号公報 特開2003−301110号公報 特開2007−154100号公報 特開2007−231219号公報
However, the technique described in Patent Document 1 has a problem of drip, and an additive such as PTFE is required to suppress the drip. The technique described in Patent Document 2 requires a plasma treatment for the resin, and has a large problem in cost. The technique described in Patent Document 3 uses single-walled carbon nanotubes, and is expensive and unsuitable as a resin additive. Further, it is a liquid compound and surgings when it is added to a resin and processed by an extruder. There are problems with processability. In addition, the technique described in Patent Document 4 has no description of flame retardancy, and the technique described in Patent Document 5 exhibits flame retardancy by adding another flame retardant in addition to the silicone resin.

T.A. Kashiwagi et al., MACROMOL. Rapid Commun. 23 (2002), 761? 765 Japanese Patent Laid-Open No. 10-139964 JP 2003-306607 A JP 2003-301110 A JP 2007-154100 A JP 2007-231219 A

本発明は、芳香環を有する熱可塑性樹脂へカーボンナノチューブおよびフェニル基を有するシリコーン樹脂を添加することで難燃性を付与することを目的とする。   An object of the present invention is to impart flame retardancy by adding a carbon resin and a silicone resin having a phenyl group to a thermoplastic resin having an aromatic ring.

更に本発明はカーボンナノチューブとフェニル基を有するシリコーン樹脂を予め混合し吸着させることで固形の難燃剤とすることでシリコーン樹脂のハンドリング性を向上させることを目的とする。   A further object of the present invention is to improve the handling properties of a silicone resin by mixing and adsorbing a carbon nanotube and a silicone resin having a phenyl group in advance to form a solid flame retardant.

ポリカーボネート樹脂を含む樹脂100重量部に対し、カーボンナノチューブ20〜70重量%と、側鎖のうちモル比で15%以上がフェニル基である液状の分岐シリコーン樹脂30〜80重量%とを練肉してなる固形状の難燃性組成物を1〜20重量部添加してなり、且つ、UL94に準じた燃焼性評価でV−0およびドリップしないことを特徴とする難燃性樹脂組成物に関する。   For 100 parts by weight of a resin containing a polycarbonate resin, 20 to 70% by weight of carbon nanotubes and 30 to 80% by weight of a liquid branched silicone resin in which 15% or more of the side chains are phenyl groups in molar ratio are ground. In addition, the present invention relates to a flame retardant resin composition characterized by adding 1 to 20 parts by weight of a solid flame retardant composition and having no V-0 and drip in the flammability evaluation according to UL94.

更に本発明は、ポリカーボネート樹脂を含む樹脂がポリカーボネート樹脂、PC/ABS樹脂、PC/PET樹脂またはPC/PBT樹脂のいずれかである難燃性樹脂組成物に関する。
更に本発明は、カーボンナノチューブが多層カーボンナノチューブである難燃性樹脂組成物に関する。
Furthermore, the present invention relates to a flame retardant resin composition in which the resin containing a polycarbonate resin is any one of a polycarbonate resin, a PC / ABS resin, a PC / PET resin, and a PC / PBT resin.
The present invention further relates to a flame retardant resin composition in which the carbon nanotube is a multi-walled carbon nanotube.

更に本発明は、難燃性樹脂組成物のUL94に準じた燃焼性評価に用いる試験片の厚みが1.6mmの射出成形品である難燃性樹脂組成物に関する。更に本発明は、上記難燃性樹脂組成物からなる成形体に関する。   Furthermore, the present invention relates to a flame retardant resin composition which is an injection molded product having a thickness of 1.6 mm for a test piece used for flammability evaluation according to UL94 of the flame retardant resin composition. Furthermore, this invention relates to the molded object which consists of the said flame-retardant resin composition.

本発明で用いるカーボンナノチューブは、グラファイトの1枚面を巻いて円筒状にした形状を有しており、そのグラファイト層が1層で巻いた構造を持つ単層カーボンナノチューブ、2層またはそれ以上で巻いた多層カーボンナノチューブのいずれでも良いが、多層カーボンナノチューブであることが好ましい。単層カーボンナノチューブは、価格が高いこと嵩が非常に高いことなどから現状では樹脂の添加剤としては難しい。   The carbon nanotube used in the present invention has a shape in which one surface of graphite is rolled into a cylindrical shape, and the single-walled carbon nanotube having a structure in which the graphite layer is wound in one layer, two layers or more. Any of the rolled multi-walled carbon nanotubes may be used, but multi-walled carbon nanotubes are preferred. Single-walled carbon nanotubes are currently difficult to use as resin additives due to their high price and very high bulk.

本発明のカーボンナノチューブは、一般にレーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法、燃焼法などで製造できるが、どのような方法で製造したカーボンナノチューブでも構わない。特に、ゼオライトを触媒の担体としてアセチレンを原料に熱CVD法で作る方法は、特に精製することなく、多少の熱分解による不定形炭素被覆はあるものの、純度が高く、良くグラファイト化された多層カーボンナノチューブが得られる点で、本発明に使用するカーボンナノチューブとして好ましい。   The carbon nanotube of the present invention can be generally produced by a laser ablation method, an arc discharge method, a thermal CVD method, a plasma CVD method, a combustion method or the like, but may be a carbon nanotube produced by any method. In particular, the method of making acetylene as a raw material using zeolite as a catalyst carrier by the thermal CVD method is highly purified and well graphitized multi-layer carbon, although there is an amorphous carbon coating by some thermal decomposition without any purification. It is preferable as a carbon nanotube used in the present invention in that a nanotube is obtained.

本発明で用いるカーボンナノチューブは、好ましくは径が1〜200nmのもので、更に好ましくは径が3.5〜150nmのものである。   The carbon nanotubes used in the present invention preferably have a diameter of 1 to 200 nm, and more preferably have a diameter of 3.5 to 150 nm.

本発明に用いられるフェニル基を有する分岐シリコーン樹脂は、化学式(1)に示すように末端はR3SiO1.0およびR3Siで表され分岐がない構成部分はR2SiO1.0単位で分岐がある構成部分はR2SiO1.5で表される。 In the branched silicone resin having a phenyl group used in the present invention, as shown in the chemical formula (1), the terminal portion is represented by R 3 SiO 1.0 and R 3 Si, and the unbranched constituent portion is branched by R 2 SiO 1.0 unit. The constituent parts are represented by R 2 SiO 1.5 .

Figure 2009149780
側鎖もしくは末端のRがフェニル基以外ではアルキル基、メチルスチレン基、長鎖アルキル基、ポリエーテル基、カルビノール基、アミノ基、エポキシ基、カルボキシル基、水酸基、高級脂肪酸基、メルカプト基、メタクリル基、アルコキシ基等から構成される。またmとnのモル比はmを1としたときnは10以下であることが好ましい。
Figure 2009149780
When side chain or terminal R is other than phenyl group, alkyl group, methylstyrene group, long chain alkyl group, polyether group, carbinol group, amino group, epoxy group, carboxyl group, hydroxyl group, higher fatty acid group, mercapto group, methacrylic group A group, an alkoxy group, and the like. The molar ratio of m to n is preferably 10 or less when m is 1.

これらのフェニル基を有する液状の分岐シリコーン樹脂のフェニル基の含有割合は側鎖の全置換基のうちモル比で15%以上であることが好ましく、さらに好ましくは15〜60%である。フェニル基の含有割合が低すぎると樹脂への相容性や耐熱性が悪いため樹脂添加には不向きとなる。また、含有率が高すぎると相容性が高くなりすぎブリード性が低くなり難燃性低下を引き起こす。さらにはシリコーン樹脂同士の立体障害などによりカーボンナノチューブの分散性が落ちるので好ましくない。   The content of the phenyl group in the liquid branched silicone resin having a phenyl group is preferably 15% or more, more preferably 15 to 60%, in terms of molar ratio among all substituents in the side chain. If the phenyl group content is too low, the resin compatibility and heat resistance are poor, making it unsuitable for resin addition. On the other hand, if the content is too high, the compatibility becomes too high and the bleed property becomes low, causing a reduction in flame retardancy. Furthermore, the dispersibility of the carbon nanotubes decreases due to steric hindrance between the silicone resins, which is not preferable.

本発明に用いられるフェニル基を有する分岐シリコーン樹脂は、25℃における動粘度が5〜3000万mm2/s、更に好ましくは25℃における動粘度が10〜10000mm2/sの分岐シリコーンオイルを使用することが好ましい。動粘度が5mm2/s未満の分岐シリコーンオイルは樹脂加工温度での揮発量が多く樹脂組成物やその成形品の外観に筋が出てしまうなどの悪影響をあたえたり、作業環境に悪影響を与えたりする問題が生じることがあるので好ましくない。また、3000万mm2/sを超えるような分岐シリコーンオイルを用いるとカーボンナノチューブにより更に強固になり樹脂に添加した際に分散しなくなる、且つ、分岐シリコーン樹脂のブリード性低下に伴う難燃性低下などの問題が生じるので好ましくない。 Branched silicone resin having phenyl groups employed in the invention, 25 kinematic viscosity at ° C. is from 5 to 30,000,000 mm 2 / s, more preferably a kinematic viscosity at 25 ° C. using a branch silicone oil 10~10000mm 2 / s It is preferable to do. Branched silicone oil with a kinematic viscosity of less than 5 mm 2 / s has a large amount of volatilization at the resin processing temperature. This is not preferable because a problem may occur. In addition, when branched silicone oil exceeding 30 million mm 2 / s is used, it becomes stronger by carbon nanotubes and does not disperse when added to the resin, and the flame retardance decreases due to the decreased bleeding property of the branched silicone resin. This is not preferable because of problems such as.

本発明におけるシリコーンオイルの動粘度の測定方法はASTM D 445−46によるウッベローデ粘度計を使用して行われる。   The method for measuring the kinematic viscosity of the silicone oil in the present invention is performed using an Ubbelohde viscometer according to ASTM D 445-46.

シリコーン樹脂が難燃性示すメカニズムとしては樹脂中へ分散されたシリコーンが燃焼時の熱により成形品表面へ移行していき、シリコーン樹脂自体の難燃性などで難燃層を形成することが出来る。また、燃焼時には樹脂の炭化層とシリカが複合することにより難燃性を発揮すると想定されている。シリコーン難燃剤はハロゲン系やリン系難燃剤と比べ非常にクリーンであるなどの優位性がある。ただし、シリコーン難燃剤だけではドリップを起こしてしまうため用途によってはドリップ防止剤が必要となる。ドリップ防止剤としてはPTFEなどがあるがハロゲンを含有するため完全なハロゲンフリーにはならない。   As a mechanism that the silicone resin exhibits flame retardancy, the silicone dispersed in the resin moves to the surface of the molded product due to heat during combustion, and a flame retardant layer can be formed due to the flame retardancy of the silicone resin itself. . Further, it is assumed that the resin carbonized layer and silica combine to exhibit flame retardancy during combustion. Silicone flame retardants have the advantage of being very clean compared to halogen and phosphorus flame retardants. However, since the silicone flame retardant alone causes drip, an anti-drip agent is required depending on the application. There is PTFE as an anti-drip agent, but it does not become completely halogen-free because it contains halogen.

本発明においてカーボンナノチューブと、側鎖のうちモル比で15%以上がフェニル基である液状の分岐シリコーン樹脂は予め練肉し、固形の難燃性組成物として用いる。固体にすることで樹脂へのシリコーン樹脂の添加の際のサージングの心配がなくなることや液状物加工法の検討および機械の購入などの必要性が無くなるなどのメリットがある。   In the present invention, the carbon nanotube and the liquid branched silicone resin in which 15% or more of the side chains in the molar ratio are phenyl groups are preliminarily kneaded and used as a solid flame retardant composition. By making it solid, there are merits such that there is no need to worry about surging when adding a silicone resin to the resin, and there is no need to study a liquid processing method and purchase a machine.

本発明のカーボンナノチューブ組成物は、カーボンナノチューブ20〜70重量%と分岐シリコーン樹脂30〜80重量%とからなり、好ましくは、カーボンナノチューブ30〜50重量%と分岐シリコーン樹脂50〜70重量%とからなるものであるカーボンナノチューブの含有量が20重量%未満であれば、分岐シリコーン樹脂の量が多すぎるため固形にならなかったり物性や加工性に悪影響を与えたりしてしまう。   The carbon nanotube composition of the present invention comprises 20 to 70% by weight of carbon nanotubes and 30 to 80% by weight of branched silicone resin, and preferably 30 to 50% by weight of carbon nanotubes and 50 to 70% by weight of branched silicone resin. If the carbon nanotube content is less than 20% by weight, the amount of the branched silicone resin is too large, so that it does not become solid or adversely affects physical properties and processability.

また、カーボンナノチューブの量が70重量%を超えるとカーボンナノチューブ組成物が強固になりすぎてしまうため樹脂に添加したとき均一に分散せず固形の塊のまま樹脂中に残ってしまうためカーボンナノチューブの特性を活かすことが出来なくなってしまう。   In addition, if the amount of carbon nanotubes exceeds 70% by weight, the carbon nanotube composition becomes too strong, and when added to the resin, it does not disperse uniformly and remains in the resin as a solid mass. It becomes impossible to make use of the characteristics.

本発明においてカーボンナノチューブの分散媒として採用した分岐シリコーン樹脂は液体であるため、練肉機による前分散が非常に容易であり、カーボンナノチューブを高濃度に添加してもカーボンナノチューブ組成物が強固にならず、また、樹脂への相溶性もよいので分散性も非常によい。   In the present invention, the branched silicone resin employed as a carbon nanotube dispersion medium is a liquid, so that it is very easy to pre-disperse with a kneading machine, and the carbon nanotube composition is strong even when carbon nanotubes are added in high concentration. In addition, since the compatibility with the resin is good, the dispersibility is also very good.

一方、カーボンナノチューブは非常に絡まった構造を取るため、その塊の内部に空間があるため非常に吸油能も高い。そのため、所定量の分岐シリコーン樹脂とカーボンナノチューブを練肉することにより、分岐シリコーン樹脂をカーボンナノチューブの絡まった構造体の内部に抱き込むことができるため、分岐シリコーン樹脂は混練した組成物の表面上にはほとんど出てくることはなく、カーボンナノチューブ組成物は固形を保つことが出来る。   On the other hand, carbon nanotubes have a very entangled structure, so that there is a space inside the mass, and therefore the oil absorption capacity is very high. Therefore, by kneading a predetermined amount of the branched silicone resin and the carbon nanotube, the branched silicone resin can be held inside the structure entangled with the carbon nanotube, so that the branched silicone resin is on the surface of the kneaded composition. The carbon nanotube composition can remain solid.

分岐シリコーン樹脂とカーボンナノチューブの練肉するための装置としては、サンドミル、ボールミル、ロールミル等があるが、好ましくはロールミルを使用する。ロールミルにはロールが二本のものと三本のものが主であるが、特に三本ロールミルが好ましい。   Examples of the apparatus for kneading the branched silicone resin and the carbon nanotube include a sand mill, a ball mill, and a roll mill. A roll mill is preferably used. The roll mill mainly includes two rolls and three rolls, and a three roll mill is particularly preferable.

本発明において混練は加熱下で行っても良い。例えば、ロールミルのロールを電気ヒーターや蒸気で加熱し、加熱混練をすることも出来る。粘度が高い高分子量の分岐シリコーン樹脂は加温する事により粘弾性が低下し混練しやすくなるが、もともと粘度が低い低分子量の分岐シリコーン樹脂は加熱により揮発してしまうので加熱する必要がない。特に粘度が10mm2/s以下の分岐シリコーン樹脂を用いる場合はロールの温度を100℃以下で使用する事が好ましい。 In the present invention, kneading may be performed under heating. For example, the roll of the roll mill can be heated and kneaded by heating with an electric heater or steam. A high molecular weight branched silicone resin having a high viscosity has a reduced viscoelasticity and is easily kneaded by heating, but a low molecular weight branched silicone resin having a low viscosity is volatilized by heating, and thus does not need to be heated. In particular, when a branched silicone resin having a viscosity of 10 mm 2 / s or less is used, the roll temperature is preferably 100 ° C. or less.

ポリカーボネート樹脂を含む樹脂とはポリカーボネート樹脂とその他の熱可塑性樹脂のブレンドポリマーまたはポリマーアロイであり、好ましくはその他の熱可塑性樹脂が芳香環を有する熱可塑性樹脂である。   The resin containing a polycarbonate resin is a blend polymer or polymer alloy of a polycarbonate resin and another thermoplastic resin, and preferably the other thermoplastic resin is a thermoplastic resin having an aromatic ring.

芳香環を有する熱可塑性樹脂の芳香環とは、ベンゼン環、縮合ベンゼン環、複素芳香環、非ベンゼン系芳香環などの芳香族化合物に分類される環の総称を示し、具体的にはポリスチレン樹脂、AS樹脂、ABS樹脂、AES樹脂、PBT樹脂、PET樹脂、芳香族アミド樹脂、変性ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、芳香族ポリエーテルエーテルケトン樹脂、液晶ポリマー、ポリエーテルイミド樹脂、芳香族ポリアミドイミド樹脂、ポリアリレート樹脂、芳香族ポリサルフォン樹脂、芳香族ポリエーテルサルフォン樹脂、芳香族微生物崩壊性樹脂が挙げられるが、これらに限定されるものではない。また、これらの樹脂を2種以上含むものであっても良い。   The aromatic ring of a thermoplastic resin having an aromatic ring is a generic name for rings classified into aromatic compounds such as a benzene ring, a condensed benzene ring, a heteroaromatic ring, and a non-benzene aromatic ring, and specifically, a polystyrene resin. AS resin, ABS resin, AES resin, PBT resin, PET resin, aromatic amide resin, modified polyphenylene ether resin, polyphenylene sulfide resin, aromatic polyetheretherketone resin, liquid crystal polymer, polyetherimide resin, aromatic polyamideimide Examples include, but are not limited to, resins, polyarylate resins, aromatic polysulfone resins, aromatic polyether sulfone resins, and aromatic microbial disintegrating resins. Moreover, you may contain 2 or more types of these resin.

また、本発明に用いられる熱可塑性樹脂として、芳香族微生物崩壊性樹脂も用いることができる。具体的にはポリ(エチレンテレフタレート/サクシネート)、ポリ(プチレンアジペート/テレフタレート)、ポリ(テトラメチレンアジペート/テレフタレート)などが挙げられる。   Moreover, aromatic microbial disintegrating resin can also be used as a thermoplastic resin used for this invention. Specific examples include poly (ethylene terephthalate / succinate), poly (butylene adipate / terephthalate), poly (tetramethylene adipate / terephthalate), and the like.

ポリカーボネート樹脂を含む樹脂100重量部に対し、カーボンナノチューブと分岐シリコーン樹脂からなる難燃性組成物を1重量部以上20重量部以下添加することが好ましい。難燃性組成物を1重量部以下添加しても効果は期待できず、20重量部以上添加するとシリコーン樹脂の添加量が多くなりすぎることによる物性低下や難燃性低下を引き起こしてしまう。   It is preferable to add 1 to 20 parts by weight of a flame retardant composition comprising carbon nanotubes and a branched silicone resin to 100 parts by weight of a resin containing a polycarbonate resin. Even if 1 part by weight or less of the flame retardant composition is added, the effect cannot be expected. When 20 parts by weight or more is added, the physical properties and flame resistance are lowered due to excessive addition of the silicone resin.

本発明におけるカーボンナノチューブと分岐シリコーン樹脂を添加した樹脂成形品としては、ハロゲンやリンを含まずに優れた難燃性を示すことから環境に配慮する難燃性材料に使用することができる。又、カーボンナノチューブは非常にアスペクト比の大きい繊維形状であるため、機械的強度を向上させた成型品、あるいは樹脂中に配合したカーボンナノチューブは燃焼時のドリップを抑える効果があることから幅広い難燃性の樹脂成型品に用いることが出来る。   The resin molded product to which the carbon nanotube and the branched silicone resin in the present invention are added can be used as a flame retardant material considering the environment because it exhibits excellent flame retardancy without containing halogen or phosphorus. In addition, since carbon nanotubes have a fiber shape with a very large aspect ratio, molded products with improved mechanical strength, or carbon nanotubes blended in resin have a wide range of flame retardant properties because they have the effect of suppressing drip during combustion. It can be used for a molded resin product.

本発明における樹脂組成物の製造は特に限定されるものではない。例えば、ポリカーボネート樹脂を含む樹脂、カーボンナノチューブと分岐シリコーン樹脂からなる難燃性組成物と、更に必要に応じて難燃剤や各種添加剤や着色剤等を加え、ヘンシェルミキサーやタンブラー、ディスパー等で混合しニーダー,ロールミル,スーパーミキサー,ヘンシェルミキサー,シュギミキサー,バーティカルグラニュレーター,ハイスピードミキサー,ファーマトリックス,ボールミル,スチールミル,サンドミル,振動ミル,アトライター,バンバリーミキサーのような回分式混練機、二軸押出機、単軸押出機、ローター型二軸混練機等で混合や溶融混練分散し、ペレット状、粉体状、顆粒状あるいはビーズ状等の形状の難燃性樹脂組成物を得ることができる。   The production of the resin composition in the present invention is not particularly limited. For example, a resin containing polycarbonate resin, a flame retardant composition composed of carbon nanotubes and a branched silicone resin, and a flame retardant, various additives, a colorant, etc., if necessary, are mixed with a Henschel mixer, tumbler, disper, etc. Kneader, Roll mill, Super mixer, Henschel mixer, Shugi mixer, Vertical granulator, High speed mixer, Fur matrix, Ball mill, Steel mill, Sand mill, Vibration mill, Attritor, Banbury mixer It is possible to obtain a flame retardant resin composition in the form of pellets, powders, granules, beads, etc. by mixing, melt-kneading and dispersing with an extruder, a single screw extruder, a rotor type twin screw kneader, etc. .

本発明の樹脂組成物は、カーボンナノチューブと分岐シリコーン樹脂からなる難燃性組成物を比較的高濃度に含有し、成形時に被成形樹脂(ベース樹脂)で希釈されるマスターバッチであっても良いし、カーボンナノチューブと分岐シリコーン樹脂からなる難燃性組成物の濃度が比較的低く、被成形樹脂で希釈せずにそのままの組成で成形に供されるコンパウンドであっても良い。   The resin composition of the present invention may be a masterbatch containing a flame retardant composition composed of carbon nanotubes and a branched silicone resin at a relatively high concentration and diluted with a molding resin (base resin) at the time of molding. However, the concentration of the flame retardant composition comprising the carbon nanotube and the branched silicone resin may be relatively low, and the compound may be used for molding with the same composition without being diluted with the molding resin.

本発明の成形品は、押出成形、射出成形、ブロー成形のいずれかの成形方法で得られるものでもよいし、樹脂組成物を粉砕して得られる粉体塗料でもよい。   The molded article of the present invention may be obtained by any one of extrusion molding, injection molding, and blow molding, or may be a powder paint obtained by pulverizing a resin composition.

本発明の樹脂組成物には、本発明の効果を損なわない範囲内で必要に応じて適当な添加剤、例えば、耐酸化安定剤、耐候安定剤、帯電防止剤、染料、顔料、分散剤、難燃剤、カップリング剤等を配合してもよい。   In the resin composition of the present invention, suitable additives as necessary within the range not impairing the effects of the present invention, such as oxidation resistance stabilizer, weather resistance stabilizer, antistatic agent, dye, pigment, dispersant, You may mix | blend a flame retardant, a coupling agent, etc.

以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

カーボンナノチューブはNanocyl社製の線径が10〜40nm、平均長さが5〜15μmのCVD法により作成された多層カーボンナノチューブを用い、シリコーンオイルは信越化学社製メチルフェニル系のシリコーンオリゴマー「X−40−9243」および「X−40−9244」を用いた。表1記載の加工温度にて三本ロールにて原料を練肉したところ3本ロールから非常に剥がれやすいフィルム状の難燃性組成物を得たので、それを粉砕して固形の難燃性組成物を得た。   The carbon nanotube is a multi-walled carbon nanotube made by Nanocyl's CVD method having a wire diameter of 10 to 40 nm and an average length of 5 to 15 μm, and the silicone oil is a methyl phenyl silicone oligomer “X-” manufactured by Shin-Etsu Chemical Co., Ltd. 40-9243 "and" X-40-9244 "were used. When the raw material was kneaded with the three rolls at the processing temperature shown in Table 1, a film-like flame retardant composition that was very easy to peel from the three rolls was obtained. A composition was obtained.

なお、比較としてミツビシカーボン#10の50重量%と100mm2/sのジメチルシリコーンオイルの50重量%を室温において3本ロールで練肉するとロール上にべったりと伸び、得られたカーボン組成物は粘り気のあるグリース状となるので、当然粉砕が出来るような固体とはならない。カーボンナノチューブにおいては添加量が20重量%においてもグリース状にはならず、粉砕可能な固体となる。 For comparison, when 50% by weight of Mitsubishi Carbon # 10 and 50% by weight of 100 mm 2 / s dimethyl silicone oil were kneaded with three rolls at room temperature, the resulting carbon composition was sticky. Since it has a grease-like shape, it is naturally not a solid that can be crushed. Carbon nanotubes do not become grease-like even when added in an amount of 20% by weight, and become a pulverizable solid.

また、得られた難燃性組成物をポリカーボネート樹脂に対してカーボンナノチューブ量が全体の2%になるように添加し、東洋精機製のブラベンダーミキサーにて過熱混練後、プレス機にて板状の成形物を作成しカーボンナノチューブの分散性を透過顕微鏡にて確認した。さらに練肉工程による分散性の比較を行うために同様の素材を用いて、練肉方法を3本ロール、2本ロール、練肉工程無しで難燃性組成物を得た。さらに上記の方法により成形品を作成しその分散性を確認した。結果を表1に示す。   In addition, the obtained flame retardant composition was added to the polycarbonate resin so that the amount of carbon nanotubes was 2% of the total, and was heated and kneaded with a Brabender mixer manufactured by Toyo Seiki, and then plate-shaped with a press. The molded product was prepared and the dispersibility of the carbon nanotubes was confirmed with a transmission microscope. Furthermore, in order to compare the dispersibility by a kneading process, the flame retardant composition was obtained using the same raw material, without the kneading method using three rolls, two rolls, and the kneading process. Further, a molded product was prepared by the above method and its dispersibility was confirmed. The results are shown in Table 1.

○:良分散
△:分散不良
×:未分散
○: Good dispersion △: Poor dispersion ×: Not dispersed

Figure 2009149780
[難燃性]
ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製のユーピロンS3000)を、除湿乾燥機で120℃4時間乾燥後、これにカーボンナノチューブとフェニル基を有する分岐シリコーン樹脂からなる難燃性組成物を所定量加えスーパーミキサーにて攪拌羽回転速度約300rpmで4分間、攪拌・混合した。これを250℃に設定した二軸押出機で溶融混練し樹脂組成物を作成した後、射出成形機(東芝機械(株)製IS−100F型)を用い、UL94で規定される各厚みの燃焼試験片が共取りできるように設計された金型を用い成形を行った。難燃性の評価は、アンダーライターズ・ラボラトリーズ・INCの定めている規格(UL94:機器部品用プラスチック材料の難燃性試験の規格)に準拠して行った。全燃焼時間は、試験片厚み1.6mmの試験片を用い、着火後の残炎時間(5試料の合計)を測定して求めた。
Figure 2009149780
[Flame retardance]
After a polycarbonate resin (Iupilon S3000 manufactured by Mitsubishi Engineering Plastics) is dried at 120 ° C. for 4 hours in a dehumidifying dryer, a predetermined amount of a flame retardant composition comprising a branched silicone resin having carbon nanotubes and phenyl groups is added to the super resin. The mixture was stirred and mixed with a mixer at a stirring blade rotation speed of about 300 rpm for 4 minutes. After melt-kneading this with a twin screw extruder set at 250 ° C. to prepare a resin composition, each thickness of combustion defined by UL94 is burned using an injection molding machine (IS-100F type manufactured by Toshiba Machine Co., Ltd.). Molding was performed using a mold designed so that the test pieces could be taken together. The evaluation of flame retardancy was performed in accordance with the standard (UL94: flame retardancy test standard for plastic materials for equipment parts) established by Underwriters Laboratories INC. The total combustion time was determined by measuring the afterflame time after ignition (total of 5 samples) using a test piece having a thickness of 1.6 mm.

PC/ABS、PSも同様の工程を経て作成するが、PC/ABSは60℃5時間乾燥後を250度で溶融混練、PSは乾燥工程を経ずに200℃で溶融混練し樹脂組成物を得た。PC/ABSは三菱エンジニアリングプラスチックス社製のユーピロンMB2212R、PSはPSジャパン社製のPSJポリスチレン679を用いた。   PC / ABS and PS are prepared through the same process. PC / ABS is melt-kneaded at 250 ° C. after drying at 60 ° C. for 5 hours, and PS is melt-kneaded at 200 ° C. without passing through the drying process. Obtained. PC / ABS was Iupilon MB2212R manufactured by Mitsubishi Engineering Plastics, and PS was PSJ polystyrene 679 manufactured by PS Japan.

なお、カーボンナノチューブのみおよび分岐シリコーン樹脂のみのものも同様に押出機で溶融混練したものを用いて試験片を作成した。
燃焼結果を表2に記載した。
In addition, the test piece was created using the thing only melted and knead | mixed with the extruder similarly about only a carbon nanotube and a branched silicone resin.
The combustion results are listed in Table 2.

Figure 2009149780
Figure 2009149780

Claims (5)

ポリカーボネート樹脂を含む樹脂100重量部に対し、カーボンナノチューブ20〜70重量%と、側鎖のうちモル比で15%以上がフェニル基である液状の分岐シリコーン樹脂30〜80重量%とを練肉してなる固形状の難燃性組成物を1〜20重量部添加してなり、且つ、UL94に準じた燃焼性評価でV−0およびドリップしないことを特徴とする難燃性樹脂組成物。   For 100 parts by weight of a resin containing a polycarbonate resin, 20 to 70% by weight of carbon nanotubes and 30 to 80% by weight of a liquid branched silicone resin in which 15% or more of the side chains are phenyl groups in molar ratio are ground. A flame retardant resin composition comprising 1 to 20 parts by weight of a solid flame retardant composition and V-0 and no drip in a flammability evaluation according to UL94. ポリカーボネート樹脂を含む樹脂がポリカーボネート樹脂、PC/ABS樹脂、PC/PET樹脂またはPC/PBT樹脂のいずれかであることを特徴とする請求項1記載の難燃性樹脂組成物。   The flame-retardant resin composition according to claim 1, wherein the resin containing the polycarbonate resin is any one of a polycarbonate resin, a PC / ABS resin, a PC / PET resin, and a PC / PBT resin. カーボンナノチューブが多層カーボンナノチューブであることを特徴とする請求項1又は2記載の難燃性樹脂組成物。   The flame retardant resin composition according to claim 1 or 2, wherein the carbon nanotube is a multi-walled carbon nanotube. 請求項1記載のUL94に準じた燃焼性評価に用いる試験片の厚みが1.6mmの射出成形品であることを特徴とする請求項1ないし3いずれか記載の難燃性樹脂組成物。   The flame-retardant resin composition according to any one of claims 1 to 3, wherein the test piece used for the flammability evaluation according to UL94 according to claim 1 is an injection molded product having a thickness of 1.6 mm. 請求項1ないし4いずれか記載の難燃性樹脂組成物からなることを特徴とする成形体。
A molded article comprising the flame retardant resin composition according to any one of claims 1 to 4.
JP2007329542A 2007-12-21 2007-12-21 Flame-retardant resin composition and molded body using the same Pending JP2009149780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329542A JP2009149780A (en) 2007-12-21 2007-12-21 Flame-retardant resin composition and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329542A JP2009149780A (en) 2007-12-21 2007-12-21 Flame-retardant resin composition and molded body using the same

Publications (1)

Publication Number Publication Date
JP2009149780A true JP2009149780A (en) 2009-07-09

Family

ID=40919294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329542A Pending JP2009149780A (en) 2007-12-21 2007-12-21 Flame-retardant resin composition and molded body using the same

Country Status (1)

Country Link
JP (1) JP2009149780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037498A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Antidripping Agent for Styrene based Flame Resistant Resin, and Styrene Flame Resistant Resin Composition Comprising The Same
JP2016147992A (en) * 2015-02-13 2016-08-18 日信工業株式会社 Manufacturing method of carbon fiber composite material and carbon fiber composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037498A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Antidripping Agent for Styrene based Flame Resistant Resin, and Styrene Flame Resistant Resin Composition Comprising The Same
KR101683339B1 (en) * 2013-09-30 2016-12-06 주식회사 엘지화학 Antidripping Agent for Styrene based Flame Resistant Resin, and Styrene Flame Resistant Resin Composition Comprising The Same
JP2016147992A (en) * 2015-02-13 2016-08-18 日信工業株式会社 Manufacturing method of carbon fiber composite material and carbon fiber composite material

Similar Documents

Publication Publication Date Title
Xing et al. Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites
Zhang et al. Engineering carbon nanotubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly (butylene succinate)
Ma et al. Flame retarded polymer nanocomposites: development, trend and future perspective
JP5268050B2 (en) Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition
Dong et al. Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites
Xu et al. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite
Niu et al. The structure of microencapsulated carbon microspheres and its flame retardancy in poly (ethylene terephthalate)
Liu et al. Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene‐vinyl acetate copolymers
JP2007154100A (en) Electroconductive agent for resin, electroconductive resin composition and its roduction method
Hussain et al. Significant enhancement of mechanical and thermal properties of thermoplastic polyester elastomer by polymer blending and nanoinclusion
Zheng et al. Modified magnesium hydroxide encapsulated by melamine cyanurate in flame-retardant polyamide-6
CN110283415B (en) Thermoplastic elastomer with both conductivity and flame retardance and preparation method thereof
Yang et al. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system
George et al. Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites
Chen et al. Effects of zinc borate and microcapsulated red phosphorus on mechanical properties and flame retardancy of polypropylene/magnesium hydroxide composites
Xie et al. Improving the flame retardancy of polypropylene by nano metal–organic frameworks and bioethanol coproduct
JP2007231219A (en) Carbon nanotube composition
Wang et al. Enhanced flame retardancy and mechanical properties of intumescent flame-retardant polypropylene with triazine derivative-modified nano-SiO 2
JP2012072351A (en) Polysiloxane-modified polylactic acid resin composition and manufacturing method for the same
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
Cao et al. Isolated protective char layers by nanoclay network: significantly improved flame retardancy and mechanical performance of TPV/MH composites by small amount of nanoclay
Zhang et al. Constructing flame retardant silica nanoparticles through styrene maleic anhydride copolymer grafting for PC/ABS composites
JP2009149780A (en) Flame-retardant resin composition and molded body using the same
Xu et al. Effects of collagen fiber addition on the combustion and thermal stability of natural rubber
Wang et al. Electrical conductivity and thermal properties of acrylonitrile‐butadiene‐styrene filled with multiwall carbon nanotubes