JP2009145004A - Rotating type total enthalpy heat exchanger - Google Patents

Rotating type total enthalpy heat exchanger Download PDF

Info

Publication number
JP2009145004A
JP2009145004A JP2007324286A JP2007324286A JP2009145004A JP 2009145004 A JP2009145004 A JP 2009145004A JP 2007324286 A JP2007324286 A JP 2007324286A JP 2007324286 A JP2007324286 A JP 2007324286A JP 2009145004 A JP2009145004 A JP 2009145004A
Authority
JP
Japan
Prior art keywords
air
exhaust
fan
duct
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007324286A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和生 佐藤
Naomiki Matsushita
直幹 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AREFU NET KK
Original Assignee
AREFU NET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AREFU NET KK filed Critical AREFU NET KK
Priority to JP2007324286A priority Critical patent/JP2009145004A/en
Publication of JP2009145004A publication Critical patent/JP2009145004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating type total heat exchanger with a high heat recovery efficiency, which eliminates the risk of intrusion of return air. <P>SOLUTION: The rotating type total enthalpy heat exchanger includes: a rotor which houses a heat exchange element carrying out total heat exchange of two different types of air currents of supply air and exhaust air; a supply duct and an exhaust duct for the air currents formed on both sides of the rotor; and an air supply fan and an air exhaust fan causing an air current in each of the supply duct and the exhaust duct. The air supply fan is arranged so as to push the air current into the heat exchanger, the air exhaust fan is arranged so as to draw out the air current from the heat exchanger, a rotational frequency of the air supply fan is controlled such that an exhaust duct internal pressure Pe is constantly lower than a supply duct internal pressure Ps fan like screen plates are provided in a supply side and an exhaust side of the rotor housing the heat exchange element group, and intrusion of air on an exhaust duct side into an exhaust duct side is prevented during rotation of the rotor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放射線使用施設や医療施設などの室内換気基準が高く、空調エネルギーが大きく、排気に対して熱交換器を用いて熱回収している回転型全熱交換器に関するものである。   The present invention relates to a rotary total heat exchanger that has high indoor ventilation standards, such as radiation-use facilities and medical facilities, has large air-conditioning energy, and uses a heat exchanger to recover heat with respect to exhaust.

放射線使用施設では施設内環境保全のため、室内換気回数が10〜40回/時に及び空調エネルギーが大きいので、省エネルギー対策している設備では排気熱は熱交換器を用いて熱回収しているのが現状である。リターン空気が入ると汚染空気の濃度が濃くなることから、全量フレッシュ空気が原則である。このような空調設備においては、一般的に、熱交換器も給気と排気が完全分離された静止型熱交換器が採用されている。   In the facility using radiation, the indoor ventilation frequency is 10-40 times / hour and the air-conditioning energy is large in order to preserve the environment in the facility, so the exhaust heat is recovered by using a heat exchanger in the energy saving equipment. Is the current situation. Since the concentration of polluted air increases when return air enters, the whole amount of fresh air is the principle. In such an air conditioning facility, a static heat exchanger in which supply air and exhaust gas are completely separated is generally employed as the heat exchanger.

一般的に、排気と給気の異なる2種類の気流を全熱交換する熱交換素子群を収容するローターと、該熱交換素子群を収容するローターの両側に形成された気流の排気用ダクトおよび給気用ダクトとから構成される回転型全熱交換器が用いる方が、熱回収効率が静止型に比べて格段に向上する。   In general, a rotor that houses a heat exchange element group that performs total heat exchange between two types of airflows that are different in exhaust and supply air, and an airflow exhaust duct formed on both sides of the rotor that houses the heat exchange element group, and The heat recovery efficiency is significantly improved when the rotary total heat exchanger composed of the air supply duct is used as compared with the stationary type.

しかしながら、上記回転型全熱交換器の場合、熱交換素子群を収容するローターが回転しているため、排気用ダクトから給気用ダクトへ空気(リターン空気)が入る可能性がある。そのため、放射線使用施設のような施設内環境保全の基準が高い施設には、回転型全熱交換器を採用することができなかった。
なお、熱交換素子群を収容するローターは、必ず各室との間に隙間があり、色々な方法でシールされている。しかしながら、一般の全熱交換器は空気の漏れ量が5%前後(多いものでは10%)も存在する。また、熱交換素子群を収容するローターの汎用製品では、空気の漏れ量が2〜5%程度存在するといった状況である。
However, in the case of the rotary total heat exchanger, since the rotor accommodating the heat exchange element group is rotating, there is a possibility that air (return air) enters the air supply duct from the exhaust duct. For this reason, a rotary total heat exchanger could not be employed in a facility having a high standard of environmental conservation in a facility such as a radiation use facility.
In addition, the rotor which accommodates a heat exchange element group always has a clearance gap between each chamber, and is sealed by various methods. However, a general total heat exchanger has an air leakage amount of about 5% (10% at most). Moreover, in the general-purpose product of the rotor that accommodates the heat exchange element group, the amount of air leakage is about 2 to 5%.

特開平6−128792号公報Japanese Patent Laid-Open No. 6-128792

本発明は、かかるリターン空気が入るリスクを最小限にする回転型全熱交換器を提供することを目的とする。   It is an object of the present invention to provide a rotary total heat exchanger that minimizes the risk of such return air entering.

上記目的を達成するため、本発明の回転型全熱交換器は、給気と排気の異なる2種類の気流を全熱交換する熱交換素子群を収容するローターと、該ローターの前後に設けられた中央仕切板によって形成された気流の給気用ダクトおよび排気用ダクトと、給気用ダクトと排気用ダクトにそれぞれ気流を起こす給気ファンと排気ファンとから成る回転型全熱交換器において、以下に示される特徴(構成)を備える。
1)先ず、給気ファンの配置は、押し込み配置、すなわち、回転型全熱交換器内に気流を押し込む配置とする。そして、排気ファンの配置は、引き込み配置、すなわち、回転型全熱交換器内から気流を引き込む配置とする。
従前の回転型全熱交換器の場合、給気ファンは、抵抗のある物はファンのサクション側に付けて押込み圧を高くするのが効率的であることから、給気ファンはハニカム型の熱交換素子群の出口側に設けるのが一般的である。本発明は、給気ファンをハニカム型熱交換素子群の入り口側に取付けることでハニカム型熱交換素子群の入り側で室圧を陽圧にし、排気ファンをハニカム型熱交換素子群の出口側に取付けることでハニカム型の熱交換素子群の室圧を陰圧にしたのが特徴である。
2)排気用ダクト内圧が給気用ダクト内圧より常時低くなるように、給気ファン及び/又は排気ファンの回転数を制御する。具体的な制御としては、各室内の給排気はVAV(Variable Air Volume)で流量が制御され、若しくはON−OFF制御されているため、給排気ファン共に回転数を制御して風量を制御する。また、仮に差圧が逆転した状態になれば警報を発信し、状態改善できなかった場合は設備の停止を行うように制御設計を行うのが好ましい。
3)給気用ダクト内における熱交換素子に対する給気の流出側でローターの回転方向の上流側と、排気用ダクト内における熱交換素子に対する排気の流入側でローターの回転方向の下流側とに、略扇状の遮蔽板が設ける。
In order to achieve the above object, a rotary total heat exchanger according to the present invention is provided with a rotor that houses a heat exchange element group that performs total heat exchange between two types of airflows that are different from supply air and exhaust, and before and after the rotor. A rotary total heat exchanger comprising an air supply duct and an exhaust duct formed by a central partition plate, and an air supply fan and an exhaust fan that generate an airflow in the air supply duct and the exhaust duct, respectively. The following features (configuration) are provided.
1) First, the arrangement of the air supply fan is a push-in arrangement, that is, an arrangement in which the airflow is pushed into the rotary total heat exchanger. And the arrangement | positioning of an exhaust fan shall be drawing-in arrangement | positioning, ie, the arrangement | positioning which draws in air current from the inside of a rotary total heat exchanger.
In the case of the conventional rotary total heat exchanger, it is efficient to increase the indentation pressure by attaching a resistance object to the suction side of the fan. Generally, it is provided on the exit side of the exchange element group. The present invention attaches an air supply fan to the inlet side of the honeycomb type heat exchange element group to make the chamber pressure positive at the entrance side of the honeycomb type heat exchange element group, and the exhaust fan to the outlet side of the honeycomb type heat exchange element group It is characterized in that the chamber pressure of the honeycomb type heat exchange element group is set to a negative pressure by being attached to.
2) The rotational speed of the supply fan and / or the exhaust fan is controlled so that the exhaust duct internal pressure is always lower than the supply duct internal pressure. As specific control, since the flow rate of air supply / exhaust in each room is controlled by VAV (Variable Air Volume) or ON-OFF control, the air volume is controlled by controlling the rotational speed of both the air supply / exhaust fans. Further, it is preferable to design the control so that an alarm is issued if the differential pressure is reversed, and the equipment is stopped if the state cannot be improved.
3) On the upstream side in the rotation direction of the rotor on the outflow side of the supply air to the heat exchange element in the air supply duct, and on the downstream side in the rotation direction of the rotor on the inflow side of exhaust to the heat exchange element in the exhaust duct. A substantially fan-shaped shielding plate is provided.

上記1)〜3)の特徴を備えることにより、回転型全熱交換器の内圧は、排気用ダクト内圧が給気用ダクト内圧より常時低くなるように制御でき、それにより排気用ダクトを通る空気が給気用ダクトに戻るといったリターン空気を最小限に抑えることが可能となる。   By providing the above features 1) to 3), the internal pressure of the rotary total heat exchanger can be controlled so that the exhaust duct internal pressure is always lower than the supply duct internal pressure, and thereby the air passing through the exhaust duct It is possible to minimize the return air that returns to the air supply duct.

また、上記4)の構成により、排気用ダクトを通る空気(排気)が、ローターの内部の熱交換素子内を通過する際に、ローターが回転することにより配管自体が中央仕切板で仕切られている排気用ダクト側から給気用ダクト側に移動した場合を想定して、希釈の効果を利用してリターン空気が入るリスクを最小限に抑えるものである。
すなわち、ローターの回転により排気が流れている熱交換素子内が給気用ダクトに移動した直後は、給気用ダクト内における熱交換素子に対する給気の流出側でローターの回転方向の上流側に設けられた略扇状の遮蔽板の作用によって、給気ファンから押し出された気流の影響を受け難くなるので、熱交換素子の配管内に残留している空気(排気)が徐々に遮蔽板の反対側から給気用ダクトに流出することになる。これにより、仮に排気が汚染されている場合でも、希釈の効果により汚染濃度は無視できるレベルとなるのである。
In addition, with the configuration of 4), when the air (exhaust gas) passing through the exhaust duct passes through the heat exchange element inside the rotor, the rotor rotates so that the pipe itself is partitioned by the central partition plate. Assuming the case of moving from the exhaust duct side to the air supply duct side, the risk of return air entering is minimized by utilizing the effect of dilution.
That is, immediately after the inside of the heat exchange element in which the exhaust gas is flowing due to the rotation of the rotor moves to the supply duct, the supply air outflow side with respect to the heat exchange element in the supply duct is upstream of the rotation direction of the rotor. The effect of the substantially fan-shaped shielding plate provided makes it less susceptible to the airflow pushed out of the air supply fan, so the air (exhaust gas) remaining in the heat exchange element pipe is gradually opposite the shielding plate. It will flow out to the air supply duct from the side. Thereby, even if the exhaust gas is contaminated, the contamination concentration is negligible due to the effect of dilution.

また、排気用ダクト内における熱交換素子に対する排気の流入側でローターの回転方向の下流側に設けられた略扇状の遮蔽板の作用によって、熱交換素子の配管内に残留している空気(排気)が徐々に遮蔽板の反対側から排気用ダクトに流出することになる。
すなわち、熱交換素子の配管内に残留している空気(排気)は、排気ファンから引き込まれるため、希釈されていくのである。仮に排気が汚染されている場合でも、希釈の効果により汚染濃度は無視できるレベルとなり、ローターの回転によって給気用ダクト側に移動していくことになる。
In addition, air (exhaust gas) remaining in the pipe of the heat exchange element by the action of a substantially fan-shaped shielding plate provided on the inflow side of the exhaust gas with respect to the heat exchange element in the exhaust duct and downstream in the rotational direction of the rotor. ) Gradually flows out from the opposite side of the shielding plate to the exhaust duct.
That is, the air (exhaust gas) remaining in the pipe of the heat exchange element is drawn from the exhaust fan and is diluted. Even if the exhaust gas is contaminated, the concentration of contamination becomes negligible due to the effect of dilution, and the exhaust gas moves toward the air supply duct by the rotation of the rotor.

ここで、上記の遮蔽板は、具体的には中心角5〜10度の扇形状を成すものが好ましい。この遮蔽板の中心角は、熱交換素子群を収容するローターの回転軸方向の長さや、ローターの回転速度との兼ね合いで中心角5〜10度の範囲で設計がなされる。遮蔽板の中心角が5度よりも小さくなれば、熱交換素子の配管に残留している排気が遮蔽板の反対側から徐々に給気用ダクトに流出するための余裕度が低くなり、希釈の効果を利用してリターン空気が入るリスクを最小限に抑えることが困難となる。また、遮蔽板の中心角が10度よりも大きくなれば、ダクト内の気流の通過面積が小さくなり交換器の熱交換効率が低下することになる。
具体的には、給気側5度、排気側5度、遮蔽板を設けるのが好ましい。
Here, specifically, the shielding plate preferably has a fan shape with a central angle of 5 to 10 degrees. The central angle of the shielding plate is designed in the range of the central angle of 5 to 10 degrees in consideration of the length in the rotation axis direction of the rotor accommodating the heat exchange element group and the rotational speed of the rotor. If the central angle of the shielding plate is smaller than 5 degrees, the margin for the exhaust gas remaining in the heat exchange element piping to gradually flow out from the opposite side of the shielding plate to the air supply duct is reduced. It is difficult to minimize the risk that return air will enter by using the effect of. Further, if the central angle of the shielding plate is larger than 10 degrees, the passage area of the airflow in the duct is reduced, and the heat exchange efficiency of the exchanger is lowered.
Specifically, it is preferable to provide a shielding plate with 5 degrees on the air supply side, 5 degrees on the exhaust side.

また、本発明の回転型全熱交換器は、上記1)〜4)の特徴(構成)に加え、排気用ダクト内圧と給気用ダクト内圧の差圧を検知する差圧検知手段と、給気ファンの回転軸に連結されるモータ回転を制御するモータ制御手段を更に備え、給気ファンの回転数を制御することが好ましい。
差圧検知手段は、例えば、給気のハニカム型熱交換素子群の入り口と排気のハニカム型熱交換素子群の出口間の部屋の差圧、及び、給気のハニカム型熱交換素子群の出口と排気のハニカム型熱交換素子群の入り口の部屋の差圧を監視することにより行う。その何れかの差圧で排気側が高い場合は、給気側が正圧になるまで給気ファンの回転数を上げる。但し、給気側は正圧、排気側は負圧のため、給気側が排気側より低い圧になる事態は生じず、この場合は、給気ファンが回転しなかった場合となるため故障警報が鳴り、装置は全停止することになる。
The rotary total heat exchanger according to the present invention includes, in addition to the features (configurations) 1) to 4), a differential pressure detecting means for detecting a differential pressure between the exhaust duct internal pressure and the supply duct internal pressure, It is preferable to further include motor control means for controlling the rotation of the motor connected to the rotation shaft of the air fan, and to control the rotation speed of the air supply fan.
The differential pressure detection means includes, for example, the differential pressure in the room between the inlet of the honeycomb-type heat exchange element group for supply air and the outlet of the honeycomb-type heat exchange element group for exhaust gas, and the outlet of the honeycomb-type heat exchange element group for supply air And monitoring the differential pressure in the entrance room of the honeycomb-type heat exchange element group for exhaust. When the exhaust side is high at any of the differential pressures, the rotation speed of the supply fan is increased until the supply side becomes positive pressure. However, because the supply side is positive pressure and the exhaust side is negative pressure, there is no situation where the supply side is lower than the exhaust side. In this case, the supply fan does not rotate, so there is a failure warning. Will sound and the device will stop.

特に、上記の差圧検知手段において、排気用ダクト内圧が給気用ダクト内圧より大きい場合に、警報を発信する警報告知手段を更に設けることが好ましい。
排気用ダクト内圧が給気用ダクト内圧より大きい場合には、排気の漏れを補償できない可能性が高く、かかる場合に警報を発信することとしたものである。
さらに、状態が改善されない場合は設備停止が好ましい。
In particular, in the differential pressure detection means described above, it is preferable to further provide a warning reporting means for issuing an alarm when the exhaust duct internal pressure is greater than the supply duct internal pressure.
When the exhaust duct internal pressure is larger than the air supply duct internal pressure, there is a high possibility that exhaust leakage cannot be compensated for, and an alarm is issued in such a case.
Furthermore, when the state is not improved, the equipment is preferably stopped.

本発明の回転型全熱交換器によれば、リターン空気が入るリスクを最小限にし、静止型に比べて熱回収効率を大幅に向上できるといった効果がある。   According to the rotary total heat exchanger of the present invention, there is an effect that the risk that return air enters can be minimized and the heat recovery efficiency can be greatly improved as compared with the stationary type.

以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。ただし、本発明の範囲は、図示例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the scope of the present invention is not limited to the illustrated examples.

図1において、回転型全熱交換器1は、ハニカム型の熱交換素子群9を収納するローター2と、ローター2の回転軸上にある中央仕切板3によって仕切られている給気用ダクト4及び排気用ダクト5と、それぞれのダクトに設けられた給気ファン7と排気ファン8とから構成されている。また、給気用ファン7と排気用ファン8の配置は、それぞれ押し込み配置と引き込み配置となっている。そして、排気用ダクト5の内圧(Pe)が給気用ダクト4の内圧(Ps)より常時低くなるように、給気ファン7若しくは排気ファン8の回転数が制御されている。   In FIG. 1, a rotary total heat exchanger 1 includes a rotor 2 that houses a honeycomb-type heat exchange element group 9, and an air supply duct 4 that is partitioned by a central partition plate 3 on the rotation axis of the rotor 2. And an exhaust duct 5 and an air supply fan 7 and an exhaust fan 8 provided in each duct. The arrangement of the air supply fan 7 and the exhaust fan 8 is a push-in arrangement and a pull-in arrangement, respectively. The rotational speed of the air supply fan 7 or the exhaust fan 8 is controlled so that the internal pressure (Pe) of the exhaust duct 5 is always lower than the internal pressure (Ps) of the air supply duct 4.

図2に示すように、ローター2は、クラフト紙(又はアルミ)製などの積層ハニカム構造の熱交換素子群9を有しており、ローター2の回転軸は駆動モーター(図示せず)に接続されている。ローター2は駆動モーター(図示せず)によって1分間に5〜10回転している。
排気用ダクト5を通る空気(排気)が、ローター2の内部の熱交換素子郡9の配管を通過する際に、ローター2が回転することにより通気孔自体が中央仕切板3で仕切られている排気用ダクト5側から給気用ダクト4側に移動する場合を考える。
ローター2の回転により排気が流れている熱交換素子群9の配管が給気用ダクト4側に移動した直後は、給気用ダクト4内における熱交換素子群9に対する給気の流出側でローターの回転方向の上流側に設けられた中心角5度の扇状の遮蔽板8の作用によって、給気ファン6から押し出された気流の影響を受け難くなる。これにより、熱交換素子群9の配管内に残留している空気(排気)が徐々に遮蔽板8の反対側から給気用ダクト4に流出することになる。
従って、仮に排気が汚染されている場合でも、希釈の効果により汚染濃度は無視できるレベルとなるのである。
As shown in FIG. 2, the rotor 2 has a heat exchange element group 9 having a laminated honeycomb structure such as craft paper (or aluminum), and the rotating shaft of the rotor 2 is connected to a drive motor (not shown). Has been. The rotor 2 is rotated 5 to 10 times per minute by a drive motor (not shown).
When the air (exhaust gas) passing through the exhaust duct 5 passes through the piping of the heat exchange element group 9 inside the rotor 2, the air holes themselves are partitioned by the central partition plate 3 by the rotation of the rotor 2. Consider the case of moving from the exhaust duct 5 side to the air supply duct 4 side.
Immediately after the piping of the heat exchange element group 9 through which the exhaust gas is flowing due to the rotation of the rotor 2 moves to the air supply duct 4 side, the rotor on the outflow side of the air supply to the heat exchange element group 9 in the air supply duct 4 Due to the action of the fan-shaped shielding plate 8 having a central angle of 5 degrees provided on the upstream side in the rotation direction, it is difficult to be influenced by the airflow pushed out from the air supply fan 6. As a result, air (exhaust gas) remaining in the piping of the heat exchange element group 9 gradually flows out from the opposite side of the shielding plate 8 to the air supply duct 4.
Therefore, even if the exhaust gas is contaminated, the contamination concentration is negligible due to the effect of dilution.

また、排気用ダクト5内における熱交換素子群9に対する排気の流入側でローター2の回転方向の下流側に設けられた中心角5度の扇状の遮蔽板8の作用によって、熱交換素子群9の配管内に残留している空気(排気)が徐々に遮蔽板8の反対側から排気用ダクト5に流出することになる。
すなわち、熱交換素子群9の配管内に残留している空気(排気)は、排気ファン7から引き込まれるため、希釈されていくことになる。
従って、仮に排気が汚染されている場合でも、希釈の効果により汚染濃度は無視できるレベルとなり、ローター2の回転によって給気用ダクト4側に移動していくことになる。
Further, the heat exchange element group 9 is obtained by the action of the fan-shaped shielding plate 8 having a central angle of 5 degrees provided on the exhaust inflow side with respect to the heat exchange element group 9 in the exhaust duct 5 and on the downstream side in the rotation direction of the rotor 2. The air (exhaust gas) remaining in the pipe gradually flows out from the opposite side of the shielding plate 8 to the exhaust duct 5.
That is, the air (exhaust gas) remaining in the piping of the heat exchange element group 9 is drawn from the exhaust fan 7 and is diluted.
Therefore, even if the exhaust gas is contaminated, the contamination concentration becomes a negligible level due to the effect of dilution, and the exhaust gas moves toward the supply air duct 4 side by the rotation of the rotor 2.

図3に回転型全熱交換器のローター断面の扇状の遮蔽板を示す。ここで、遮蔽板は中心角10度の扇形状をなしている。遮蔽板の中心角が10度以内とすることで、ダクト内の気流の通過面積を十分に確保して、交換器の熱交換効率が低下することを防いでいる。
遮蔽板は、中央仕切板3(図示せず)で仕切られた給気側と排気側にそれぞれに中心角5度の扇状の遮蔽板を設けて、全体として中心角10度の扇形状の遮蔽板を形成している。
FIG. 3 shows a fan-shaped shielding plate having a rotor cross section of the rotary total heat exchanger. Here, the shielding plate has a fan shape with a central angle of 10 degrees. By setting the central angle of the shielding plate to be within 10 degrees, it is possible to secure a sufficient area for the air flow in the duct to prevent the heat exchange efficiency of the exchanger from being lowered.
The shield plate is provided with fan-shaped shield plates with a central angle of 5 degrees on the air supply side and the exhaust side partitioned by a central partition plate 3 (not shown), and as a whole, a fan-shaped shield with a central angle of 10 degrees. A plate is formed.

本発明の回転型全熱交換器は、放射線使用施設や医療施設などの室内換気基準が高く、空調エネルギーが大きく、排気に対して熱交換器を用いて熱回収している設備に利用できる。   The rotary total heat exchanger of the present invention has high indoor ventilation standards such as radiation use facilities and medical facilities, has large air conditioning energy, and can be used for facilities that recover heat using a heat exchanger for exhaust.

回転型全熱交換器の模式図Schematic diagram of rotary total heat exchanger 回転型全熱交換器のローターの模式図Schematic diagram of rotor of rotary total heat exchanger 回転型全熱交換器のローター断面の遮蔽板の説明図Explanatory drawing of shielding plate of rotor cross section of rotary total heat exchanger

符号の説明Explanation of symbols

1 回転型全熱交換器
2 ローター
3 中央仕切板
4 給気用ダクト
5 排気用ダクト
6 給気ファン
7 排気ファン
8 遮蔽板
9 熱交換素子群
DESCRIPTION OF SYMBOLS 1 Rotating total heat exchanger 2 Rotor 3 Center partition plate 4 Duct for supply of air 5 Duct for exhaust 6 Air supply fan 7 Exhaust fan 8 Shielding plate 9 Heat exchange element group

Claims (4)

給気と排気の異なる2種類の気流を全熱交換する熱交換素子群を収容するローターと、該ローターの前後に設けられた中央仕切板によって形成された気流の給気用ダクトおよび排気用ダクトと、給気用ダクトと排気用ダクトにそれぞれ気流を起こす給気ファンと排気ファンとから成る回転型全熱交換器において、
1)給気ファンは押し込み配置とされ;
2)排気ファンは引き込み配置とされ;
3)排気用ダクト内圧が給気用ダクト内圧より常時低くなるように給気ファン及び/又は排気ファンの回転数が制御され;
4)前記給気用ダクト内における熱交換素子に対する給気の流出側でローターの回転方向の上流側と、前記排気用ダクト内における熱交換素子に対する排気の流入側でローターの回転方向の下流側とに、略扇状の遮蔽板が設けられたことを特徴とする回転型全熱交換器。
An air supply duct and an exhaust duct for an airflow formed by a rotor that accommodates a heat exchange element group that totally exchanges two types of airflows of different supply and exhaust air, and a central partition plate provided before and after the rotor And a rotary total heat exchanger composed of an air supply fan and an exhaust fan that generate airflow in the air supply duct and the exhaust duct, respectively.
1) The air supply fan is pushed in;
2) The exhaust fan is retracted;
3) The rotation speed of the air supply fan and / or the exhaust fan is controlled so that the internal pressure of the exhaust duct is always lower than the internal pressure of the supply air duct;
4) The upstream side in the rotation direction of the rotor on the outflow side of the supply air with respect to the heat exchange element in the supply duct, and the downstream side in the rotation direction of the rotor on the inflow side of exhaust with respect to the heat exchange element in the exhaust duct And a rotary total heat exchanger characterized in that a substantially fan-shaped shielding plate is provided.
前記遮蔽板が、中心角5〜10度の扇形状を成すことを特徴とする請求項1に記載の回転型全熱交換器。   The rotary total heat exchanger according to claim 1, wherein the shielding plate has a fan shape with a central angle of 5 to 10 degrees. 排気用ダクト内圧と給気用ダクト内圧の差圧を検知する差圧検知手段と、前記給気ファンの回転軸に連結されるモータ回転を制御するモータ制御手段とにより、前記給気ファンの回転数を制御するものであることを特徴とする請求項1に記載の回転型全熱交換器。   Rotation of the air supply fan by differential pressure detecting means for detecting a differential pressure between the exhaust duct internal pressure and the air supply duct internal pressure, and motor control means for controlling motor rotation coupled to the rotation shaft of the air supply fan. The rotary total heat exchanger according to claim 1, wherein the number is controlled. 前記差圧検知手段において、排気用ダクト内圧が給気用ダクト内圧より大きい場合に、警報を発信する警報告知手段を更に設けたことを特徴とする請求項1に記載の回転型全熱交換器。   2. The rotary total heat exchanger according to claim 1, further comprising a warning reporting means for issuing an alarm when the internal pressure of the exhaust duct is larger than the internal pressure of the air supply duct in the differential pressure detecting means. .
JP2007324286A 2007-12-17 2007-12-17 Rotating type total enthalpy heat exchanger Pending JP2009145004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324286A JP2009145004A (en) 2007-12-17 2007-12-17 Rotating type total enthalpy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324286A JP2009145004A (en) 2007-12-17 2007-12-17 Rotating type total enthalpy heat exchanger

Publications (1)

Publication Number Publication Date
JP2009145004A true JP2009145004A (en) 2009-07-02

Family

ID=40915786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324286A Pending JP2009145004A (en) 2007-12-17 2007-12-17 Rotating type total enthalpy heat exchanger

Country Status (1)

Country Link
JP (1) JP2009145004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068364A (en) * 2011-09-22 2013-04-18 Seibu Giken Co Ltd Air conditioning apparatus
EP4350258A3 (en) * 2019-04-15 2024-06-12 Daikin Industries, Ltd. Air-handling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180271U (en) * 1986-04-24 1987-11-16
JPH01123933A (en) * 1987-11-06 1989-05-16 Matsushita Seiko Co Ltd Automatic operation device for air feeding
JPH05131577A (en) * 1991-07-30 1993-05-28 Seibu Giken:Kk Method for reinforcing treatment of end face part of honeycomb molded body
JPH06241519A (en) * 1993-02-19 1994-08-30 Sanyo Electric Co Ltd Alarming device of safety cabinet
JP2007263548A (en) * 2006-03-03 2007-10-11 Fusao Hashimoto Ventilation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180271U (en) * 1986-04-24 1987-11-16
JPH01123933A (en) * 1987-11-06 1989-05-16 Matsushita Seiko Co Ltd Automatic operation device for air feeding
JPH05131577A (en) * 1991-07-30 1993-05-28 Seibu Giken:Kk Method for reinforcing treatment of end face part of honeycomb molded body
JPH06241519A (en) * 1993-02-19 1994-08-30 Sanyo Electric Co Ltd Alarming device of safety cabinet
JP2007263548A (en) * 2006-03-03 2007-10-11 Fusao Hashimoto Ventilation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068364A (en) * 2011-09-22 2013-04-18 Seibu Giken Co Ltd Air conditioning apparatus
EP4350258A3 (en) * 2019-04-15 2024-06-12 Daikin Industries, Ltd. Air-handling system

Similar Documents

Publication Publication Date Title
JP6034794B2 (en) Air purification system
ES2870273T3 (en) Cooling and / or heating system with axial vane fan
KR101584667B1 (en) Airconditioner with bypass apparatus
KR20190009578A (en) Impeller rotation type yellow dust inflow prevention device
KR20210007321A (en) Filter module of installation type air inlet
JP2006329626A (en) Air conditioner
KR102258030B1 (en) Dust collection airflow fan
JP2009145004A (en) Rotating type total enthalpy heat exchanger
JP2018506011A (en) Disc type air ecological box and climate ecological air conditioning method
JP5203746B2 (en) Local space air purifier
KR102136879B1 (en) turbo fan and ceiling type air conditioner using thereof
KR101433437B1 (en) Ventilation equipment for window
KR101892873B1 (en) High-efficiency ceiling-mounted ventilation system with special filter unit for convenient maintenance and blocking of foreign matter
JP2005069503A (en) Air conditioning unit
CN106352410A (en) Air conditioning system
CN201779800U (en) Multifunctional fresh air ventilator
CN111594968A (en) Ventilation device and ventilation system
KR20210153333A (en) Air circulator with the function of removing harmful substances such as fine dust etc.
JP2009183853A (en) Air cleaning apparatus of local space
CN103953977A (en) Fresh air injecting type room air processing system
EP2093507A1 (en) Ventilation unit
CN219264432U (en) Novel air conditioner wind gap is killed and is mended wind device
CN204513634U (en) PM2.5 cleaning system
CN212227323U (en) Ventilation device and ventilation system
JP5974267B2 (en) Blower with silencer box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120709