JP2009144532A - Wind turbine generator - Google Patents

Wind turbine generator Download PDF

Info

Publication number
JP2009144532A
JP2009144532A JP2007320171A JP2007320171A JP2009144532A JP 2009144532 A JP2009144532 A JP 2009144532A JP 2007320171 A JP2007320171 A JP 2007320171A JP 2007320171 A JP2007320171 A JP 2007320171A JP 2009144532 A JP2009144532 A JP 2009144532A
Authority
JP
Japan
Prior art keywords
planetary
pin
wind turbine
inner ring
gearbox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007320171A
Other languages
Japanese (ja)
Inventor
Takafumi Yoshida
孝文 吉田
Isahiko Shoda
功彦 正田
Hisao Miyake
寿生 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007320171A priority Critical patent/JP2009144532A/en
Publication of JP2009144532A publication Critical patent/JP2009144532A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/084Ball or roller bearings self-adjusting by means of at least one substantially spherical surface sliding on a complementary spherical surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/28Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/041Combinations of toothed gearings only for conveying rotary motion with constant gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the weight of a wind turbine generator and improve its reliability by eliminating uneven contact at a planetary bearing part of a planetary type planetary speed increaser by extending life of the planetary bearing part and reducing its size. <P>SOLUTION: In the wind turbine generator for generating power by driving a generator by an axial output of the planetary speed increaser as a main shaft for integrally rotating with a rotor head to which a wind turbine blade is attached is accelerated via the planetary speed increaser, the planetary speed increaser is provided with a planetary gear 31 for rotating around a planetary pin 25 while revolving around it, the planetary bearing part 50 arranged between the planetary pin 25 and the planetary gear 31 is provided with rollers 60 between an inner ring 51 at a static side which is fixed to an outer circumference of the planetary pin 25 and an outer ring 55 for integrally rotating on its axis with the planetary gear 31. The inner ring 51 forms a spherical seat 52 on a contact surface and is separated into a pin side inner ring part 53 and a roller side inner ring part 54. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自然エネルギーの風を回転力に変換する風車を用いて発電を行う風力発電装置に関する。   The present invention relates to a wind turbine generator that generates power using a windmill that converts wind of natural energy into rotational force.

従来、自然エネルギーである風力を利用して発電を行う風力発電装置が知られている。この種の風力発電装置は、支柱上に設置されたナセルに、風車翼を取り付けたロータヘッドと、このロータヘッドと一体に回転するよう連結された主軸と、風車翼に風力を受けて回転する主軸を連結した増速機と、増速機の軸出力によって駆動される発電機とを設けたものである。このように構成された風力発電装置においては、風力を回転力に変換する風車翼を備えたロータヘッド及び主軸が回転して軸出力を発生し、主軸に連結された増速機を介して回転数を増速した軸出力が発電機に伝達される。このため、風力を回転力に変換して得られる軸出力を発電機の駆動源とし、発電機の動力として風力を利用した発電を行うことができる。   2. Description of the Related Art Conventionally, a wind power generator that generates power using wind power, which is natural energy, is known. This type of wind power generator rotates with a wind turbine blade receiving wind power from a rotor head with wind turbine blades attached to a nacelle installed on a support column, a main shaft coupled to rotate integrally with the rotor head. A gearbox connected to the main shaft and a generator driven by the shaft output of the gearbox are provided. In the wind turbine generator configured as described above, the rotor head including the wind turbine blades for converting the wind power into the rotational force and the main shaft rotate to generate the shaft output, and rotate through the speed increaser connected to the main shaft. The shaft output increased in number is transmitted to the generator. For this reason, the shaft output obtained by converting wind power into rotational force can be used as a drive source of the generator, and power generation using wind power as the power of the generator can be performed.

このような風力発電装置において、ロータヘッド及び主軸の低速回転を増速して発電機を高速回転させる増速機は、大トルクの伝達と大きな増速比が求められることから、一般的にプラネタリ型の遊星増速機が使用されている。しかし、風力発電装置に使用される遊星増速機は、公転する遊星歯車の軸部を自転可能に支持している遊星軸受部において、大きなトルク及び荷重を受けて遊星ピンが撓むように変形するため、ピン軸方向の入力側から出力側へ向けて変形量が大きくなる。
すなわち、風力発電装置に使用される遊星増速機は、遊星ピンの変形量が大きい出力側において、遊星軸受部に偏った荷重が作用する片当たりを生じるため、片当たりを生じた摺動部分の摩耗が促進されて軸受寿命を短くするという問題を有している。
In such a wind turbine generator, a speed increaser that increases the low speed rotation of the rotor head and the main shaft to rotate the generator at a high speed generally requires a large torque transmission and a large speed increase ratio. A type of planetary gearbox is used. However, the planetary gearbox used in the wind turbine generator is deformed so that the planetary pin is bent by receiving a large torque and load in the planetary bearing portion that supports the shaft portion of the revolving planetary gear so as to be able to rotate. The amount of deformation increases from the input side to the output side in the pin axis direction.
That is, the planetary gearbox used in the wind turbine generator has a single contact where a biased load acts on the planetary bearing portion on the output side where the deformation amount of the planetary pin is large. The problem is that the wear of the bearing is promoted and the life of the bearing is shortened.

軸受の片当たりを防止する技術としては、軸受メタルの裏金端部にスリット部等を設けることにより、軸に傾きが生じた場合にもメタル端面に高圧面が発生しないようにして、メタル端面の偏摩耗を低減することが提案されている。(たとえば、特許文献1参照)
また、油圧ポンプモータの主軸すべり軸受において、回転軸と片当たりする側の軸受ブッシュの一部に複数本のスリットを入れるなどして、焼付きや摩耗を防止することが提案されている。(たとえば、特許文献2参照)
また、遊星歯車減速機の軸受装置において、ピニオンシャフトの変形による片当たりを軽減し、針状ころ軸受とピニオンシャフトとの接触部での応力集中を緩和する技術が提案されている。(たとえば、特許文献3参照)
特開平7−167149号公報 特開平8−312648号公報 特開平8−338481号公報
As a technology to prevent the bearings from coming into contact with each other, a slit or the like is provided at the end of the back metal of the bearing metal so that no high pressure surface is generated on the metal end surface even when the shaft is inclined. It has been proposed to reduce uneven wear. (For example, see Patent Document 1)
Further, it has been proposed to prevent seizure and wear in a main shaft slide bearing of a hydraulic pump motor by inserting a plurality of slits in a part of a bearing bush which is in contact with the rotating shaft. (For example, see Patent Document 2)
Further, in a planetary gear speed reducer bearing device, a technology has been proposed in which the contact per unit due to deformation of the pinion shaft is reduced and stress concentration at the contact portion between the needle roller bearing and the pinion shaft is reduced. (For example, see Patent Document 3)
JP 7-167149 A JP-A-8-31648 Japanese Patent Laid-Open No. 8-338481

上述した風力発電装置の遊星増速機は、遊星部軸受における早期寿命の問題を解消するため、片当たりを見込んで軸受サイズを決定するということが行われている。このため、摩耗代を大きく確保することで軸受サイズが大きくなり、増速機重量を増す原因となる。ちなみに、プラネタリ型の遊星増速機は、全重量において約40〜50%が遊星部の重量であるから、この部分の重量増大は、増速機全体の重量増大に大きな影響を及ぼすこととなる。
また、増速機の重量増大は、支柱上の高所に設置されるナセルの全体重量を増大させることになるので、支柱や基礎等の設計条件が厳しくなる。
In order to solve the problem of the early life in the planetary part bearing, the planetary gearbox of the wind power generator described above is designed to determine the bearing size in anticipation of one piece. For this reason, securing a large wear allowance increases the bearing size and increases the weight of the gearbox. Incidentally, the planetary planetary gearbox has about 40 to 50% of the total weight of the planetary part, so that the increase in the weight of this part has a great influence on the weight increase of the whole gearbox. .
In addition, the increase in the weight of the speed increaser increases the overall weight of the nacelle installed at a high place on the support column, so that the design conditions of the support column and the foundation become severe.

このような背景から、風力発電装置に用いられるプラネタリ型の遊星増速機は、遊星軸受部における片当たりの問題を解決し、遊星軸受部の長寿命化及びコンパクト化を達成することが望まれる。そして、プラネタリ型の遊星増速機を小型・軽量化することにより、これを用いた風力発電装置の信頼性を向上させることが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、プラネタリ型遊星増速機の遊星軸受部に生じる片当たりの問題を解決し、遊星軸受部の長寿命化及びコンパクト化を達成することにより、風力発電装置の軽量化とともに信頼性を向上させることにある。
From such a background, it is desired that the planetary type planetary gearbox used in the wind power generator solves the problem of contact with each other in the planetary bearing portion and achieves a longer life and compactness of the planetary bearing portion. . And it is desired to improve the reliability of a wind power generator using the planetary planetary gearbox by reducing the size and weight of the planetary gearbox.
The present invention has been made in view of the above circumstances, and the object of the present invention is to solve the problem of contact per unit occurring in the planetary bearing portion of the planetary planetary gearbox and to extend the life of the planetary bearing portion. And by achieving compactness, it is in improving reliability with the weight reduction of a wind power generator.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る風力発電装置は、風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、前記内輪が、接触面に球面座を形成してピン側内輪部とコロ側内輪部とに分割されていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
In the wind turbine generator according to the present invention, a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and the generator is driven by the shaft output of the planetary gearbox. In the wind power generator that generates electric power, the planetary gearbox includes a planetary gear that revolves while rotating around the planetary pin, and the planetary bearing portion disposed between the planetary pin and the planetary gear includes the planetary gear. A roller is provided between a stationary inner ring fixed to the outer periphery of the planetary pin and an outer ring that rotates together with the planetary gear, and the inner ring forms a spherical seat on the contact surface to form a pin side inner ring portion and a roller side. It is characterized by being divided into an inner ring portion.

このような風力発電装置によれば、プラネタリ型の遊星増速機は、遊星ピンと遊星歯車との間に配設される遊星軸受部が、遊星ピンの外周に固着された静止側の内輪と遊星歯車と一体に自転する外輪との間にコロを備え、内輪が接触面に球面座を形成してピン側内輪部とコロ側内輪部とに分割されているので、運転時に大きなトルク及び荷重を受ける遊星ピンが変形しても、球面座により片当たりを吸収することができる。すなわち、球面座にはピン軸方向に略均等な荷重(面圧)が作用するので、片当たりすることはない。
この場合の球面座は、ピン軸中心から外向きに凸の曲面とされ、ピン軸方向の略中心位置から入力側及び出力側の両方向へ下がる凸曲面としてもよいし、あるいは、入力軸側を最も高くして出力側へ下がる凸曲面としてもよい。
According to such a wind turbine generator, the planetary planetary gearbox has a planetary bearing portion disposed between the planetary pin and the planetary gear, the inner ring on the stationary side and the planetary surface fixed to the outer periphery of the planetary pin. A roller is provided between the gear and the outer ring that rotates integrally.The inner ring forms a spherical seat on the contact surface and is divided into a pin-side inner ring part and a roller-side inner ring part. Even if the receiving planet pin is deformed, the spherical contact can absorb the piece contact. That is, a substantially equal load (surface pressure) acts on the spherical seat in the pin axis direction, so that it does not come into contact with the spherical seat.
The spherical seat in this case may be a curved surface that protrudes outward from the center of the pin axis, and may be a convex curved surface that descends from the approximate center position in the pin axis direction in both the input side and the output side. It may be a convex curved surface that is the highest and falls to the output side.

上記の発明において、前記内輪部はピン軸方向の入力側へ延長されていることが好ましく、これにより、遊星ピンが変形しても内輪と外輪との咬み合いを維持できる。
また、上記の発明において、前記球面座に油溝を設けることが好ましく、これにより、自然の風を利用して発電する風力発電装置に特有の不規則なトルク変動に対応し、球面座を確実に潤滑することができる。
In the above invention, the inner ring portion is preferably extended to the input side in the pin axis direction, so that the engagement between the inner ring and the outer ring can be maintained even if the planetary pin is deformed.
In the above invention, it is preferable that an oil groove is provided in the spherical seat, so that the spherical seat can be surely coped with irregular torque fluctuations peculiar to a wind power generator that generates power using natural wind. Can be lubricated.

本発明に係る風力発電装置は、風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、前記内輪と前記外輪との間に形成されるコロ設置空間内の周方向隙間寸法が、前記遊星ピンの運転時変形量を増すピン軸方向へ向けて段階的に小さくなるように設定されていることを特徴とするものである。   In the wind turbine generator according to the present invention, a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and the generator is driven by the shaft output of the planetary gearbox. In the wind power generator that generates electric power, the planetary gearbox includes a planetary gear that revolves while rotating around the planetary pin, and the planetary bearing portion disposed between the planetary pin and the planetary gear includes the planetary gear. A circumferential clearance in a roller installation space formed between the inner ring and the outer ring, comprising a roller between the stationary inner ring fixed to the outer periphery of the planetary pin and the outer ring that rotates integrally with the planetary gear. The dimensions are set so as to decrease stepwise toward the pin axis direction that increases the amount of deformation during operation of the planetary pin.

このような風力発電装置によれば、プラネタリ型の遊星増速機は、遊星ピンと遊星歯車との間に配設される遊星軸受部が、遊星ピンの外周に固着された静止側の内輪と遊星歯車と一体に自転する外輪との間にコロを備え、内輪と外輪との間に形成されるコロ設置空間内の周方向隙間寸法を、遊星ピンの運転時変形量を増すピン軸方向へ向けて段階的に小さくなるように設定したので、遊星ピンが変形してもピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはない。
この場合、同じコロを用いて外輪側に形成されるコロ設置空間を段階的に変化させてもよいし、あるいは、外輪側に形成されるコロ設置空間を同じにしてコロの径を段階的に変化させてもよい。
According to such a wind turbine generator, the planetary planetary gearbox has a planetary bearing portion disposed between the planetary pin and the planetary gear, the inner ring on the stationary side and the planetary surface fixed to the outer periphery of the planetary pin. A roller is provided between the outer ring and the outer ring that rotates integrally with the gear, and the circumferential clearance in the roller installation space formed between the inner ring and the outer ring is directed toward the pin axis direction, which increases the amount of deformation during operation of the planetary pin. Therefore, even if the planetary pin is deformed, it does not hit one side by receiving a substantially uniform load (surface pressure) in the pin axis direction.
In this case, the roller installation space formed on the outer ring side using the same roller may be changed stepwise, or the roller installation space formed on the outer ring side may be the same and the diameter of the roller stepped. It may be changed.

本発明に係る風力発電装置は、風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、前記遊星ピンが、運転時の変形方向と逆向きに予め傾斜させた状態で取付けられていることを特徴とするものである。   In the wind turbine generator according to the present invention, a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and the generator is driven by the shaft output of the planetary gearbox. In the wind power generator that generates electric power, the planetary gearbox includes a planetary gear that revolves while rotating around the planetary pin, and the planetary bearing portion disposed between the planetary pin and the planetary gear includes the planetary gear. A roller is provided between the stationary inner ring fixed to the outer periphery of the planetary pin and the outer ring that rotates together with the planetary gear, and the planetary pin is inclined in advance in the direction opposite to the deformation direction during operation. It is characterized by being attached.

このような風力発電装置によれば、プラネタリ型の遊星増速機は、遊星ピンと遊星歯車との間に配設される遊星軸受部が、遊星ピンの外周に固着された静止側の内輪と遊星歯車と一体に自転する外輪との間にコロを備え、遊星ピンを運転時の変形方向と逆向きに予め傾斜させた状態で取付けるようにしたので、運転時に遊星ピンが変形した状態で略水平になるため、ピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはない。   According to such a wind turbine generator, the planetary planetary gearbox has a planetary bearing portion disposed between the planetary pin and the planetary gear, the inner ring on the stationary side and the planetary surface fixed to the outer periphery of the planetary pin. Since a roller is provided between the gear and the outer ring that rotates integrally with the gear wheel, and the planetary pin is attached in a state of being inclined in advance in the direction opposite to the deformation direction during operation, the planetary pin is deformed during operation and is substantially horizontal. Therefore, it does not come into contact with each other under a substantially uniform load (surface pressure) in the pin axis direction.

本発明に係る風力発電装置は、風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、前記遊星ピンのばね定数が、ピン軸方向で入力側から出力側へ大きくなるように設定されていることを特徴とするものである。   In the wind turbine generator according to the present invention, a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and the generator is driven by the shaft output of the planetary gearbox. In the wind power generator that generates electric power, the planetary gearbox includes a planetary gear that revolves while rotating around the planetary pin, and the planetary bearing portion disposed between the planetary pin and the planetary gear includes the planetary gear. A roller is provided between the stationary inner ring fixed to the outer periphery of the planetary pin and the outer ring that rotates together with the planetary gear, and the spring constant of the planetary pin increases from the input side to the output side in the pin axis direction. It is characterized by being set as follows.

このような風力発電装置によれば、プラネタリ型の遊星増速機は、遊星ピンと遊星歯車との間に配設される遊星軸受部が、遊星ピンの外周に固着された静止側の内輪と遊星歯車と一体に自転する外輪との間にコロを備え、遊星ピンのばね定数が、ピン軸方向で入力側から出力側へ大きくなるように設定されているので、遊星ピンの入力側(根元)ほど剛性が小さいため全体が略水平状態を維持する。従って、運転時の遊星ピンは、ピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはない。
この場合、遊星ピンのばね定数をピン軸方向へ変化させる構造としては、下記のいずれでもよい。
According to such a wind turbine generator, the planetary planetary gearbox has a planetary bearing portion disposed between the planetary pin and the planetary gear, the inner ring on the stationary side and the planetary surface fixed to the outer periphery of the planetary pin. Since the roller is provided between the gear and the outer ring that rotates integrally with the gear wheel, the spring constant of the planetary pin is set to increase from the input side to the output side in the pin axis direction. Since the rigidity is so small, the whole maintains a substantially horizontal state. Therefore, the planetary pin at the time of driving does not hit one side under a substantially uniform load (surface pressure) in the pin axis direction.
In this case, the structure for changing the spring constant of the planetary pin in the pin axis direction may be any of the following.

1)たとえばゴムのような弾性体や軟材を遊星ピン(鋼製等)の表面部に入れ、その厚さが入力部側ほど厚くなるようにピン軸方向へ変化させる。
2)ばね定数の大きい素材(硬い素材)を遊星ピン(鋼製等)の表面部に入れ、その厚さが入力部側ほど薄くなるようにピン軸方向へ変化させる。
3)遊星ピンの外周面に周方向のスリットを入れ、入力側の剛性が低く(柔らかく)なるようにピン軸方向へ変化させる。このとき、入力軸側のスリット密度を変えて剛性を変化させてもよいし、あるいは、密度を一定にしてスリット幅を変えて剛性を変化させてもよい。
4)遊星ピンの内部に入力側ほど径の大きい略円錐形状の中空穴を設ける。
1) For example, an elastic body such as rubber or a soft material is put on the surface portion of a planetary pin (made of steel or the like), and the thickness is changed in the pin axis direction so as to increase toward the input portion side.
2) A material having a large spring constant (hard material) is put on the surface portion of the planetary pin (made of steel or the like), and the thickness is changed in the pin axis direction so that the thickness becomes thinner toward the input portion side.
3) A slit in the circumferential direction is formed on the outer peripheral surface of the planetary pin, and the direction of the pin axis is changed so that the rigidity on the input side is low (soft). At this time, the rigidity may be changed by changing the slit density on the input shaft side, or the rigidity may be changed by changing the slit width while keeping the density constant.
4) A substantially conical hollow hole having a larger diameter on the input side is provided inside the planetary pin.

上述した本発明によれば、風力発電装置に用いられるプラネタリ型の遊星増速機において、遊星軸受部に生じていた片当たりの問題を解決し、遊星軸受の長寿命化及びコンパクト化が可能となる。従って、プラネタリ型の遊星増速機を軽量化することができ、しかも耐久性や信頼性も向上するので、風力発電装置全体としての信頼性も向上する。
また、増速機の小型・軽量化は、支柱の上部に設置されるナセル全体の重量低減に貢献するので、支柱や基礎等の設計条件が緩和されるという効果も得られる。
According to the present invention described above, in the planetary planetary gearbox used in the wind turbine generator, the problem of piece contact that has occurred in the planetary bearing portion can be solved, and the life and size of the planetary bearing can be extended. Become. Therefore, the planetary planetary gearbox can be reduced in weight, and the durability and reliability can be improved, so that the reliability of the entire wind power generator is also improved.
In addition, the reduction in size and weight of the speed increaser contributes to the weight reduction of the entire nacelle installed on the upper part of the support column, so that the design conditions of the support column and foundation can be relaxed.

以下、本発明に係る風力発電装置の一実施形態を図面に基づいて説明する。
図8において、風力発電装置1は、基礎6上に立設される支柱2と、支柱2の上端に設置されるナセル3と、略水平な軸線周りに回転可能にしてナセル3に設けられるロータヘッド4とを有している。
ロータヘッド4には、その回転軸線周りに放射状にして複数枚の風車翼5が取り付けられている。この結果、ロータヘッド4の回転軸線方向から風車翼5に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換されるようになっている。
Hereinafter, an embodiment of a wind turbine generator according to the present invention will be described with reference to the drawings.
In FIG. 8, the wind power generator 1 includes a support column 2 standing on a foundation 6, a nacelle 3 installed at the upper end of the support column 2, and a rotor provided in the nacelle 3 so as to be rotatable around a substantially horizontal axis. And a head 4.
A plurality of wind turbine blades 5 are attached to the rotor head 4 in a radial pattern around the rotation axis. As a result, the force of the wind striking the wind turbine blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.

ナセル3の内部には、たとえば図9に示すように、ロータヘッド4と同軸の増速機20を介して連結された発電機11を具備してなる駆動・発電機構が収納設置されている。すなわち、ロータヘッド4の回転を増速機20で増速して発電機11を駆動させることにより、発電機11より発電機出力Wが得られるようになっている。なお、図9に示す符号12はトランス、13はコントローラ、14はインバータ、15はインバータクーラ、16は潤滑油クーラである。   Inside the nacelle 3, for example, as shown in FIG. 9, a drive / power generation mechanism including a generator 11 coupled to the rotor head 4 via a coaxial speed increaser 20 is housed and installed. That is, the generator output W can be obtained from the generator 11 by driving the generator 11 by increasing the rotation of the rotor head 4 with the speed increaser 20. In FIG. 9, reference numeral 12 denotes a transformer, 13 denotes a controller, 14 denotes an inverter, 15 denotes an inverter cooler, and 16 denotes a lubricating oil cooler.

図10に示す増速機20は、プラネタリ型の遊星増速機である。この増速機20は、ハウジング21内に収納された遊星歯車及び平歯車等を組み合わせた増速機構により、入力軸22の回転数を増速して出力軸23から出力する装置である。
入力軸22は、ロータヘッド4の主軸(不図示)と連結されている。入力軸22の他端側には、遊星増速機構30が設けられている。図示の遊星増速機構30は、入力軸22と一体に回転する保持板24に、複数(図示の構成例では3組)の遊星歯車31が遊星軸受部50を介して支持されている。各遊星歯車31は、保持板24から突出して固定され、円周方向へ等ピッチに配設されている遊星ピン25に取り付けた遊星軸受部50の外周に嵌合させることで、回動可能に支持されている。
The speed increaser 20 shown in FIG. 10 is a planetary planetary speed increaser. The speed increaser 20 is a device that increases the rotational speed of the input shaft 22 and outputs it from the output shaft 23 by a speed increasing mechanism that combines a planetary gear and a spur gear housed in a housing 21.
The input shaft 22 is connected to a main shaft (not shown) of the rotor head 4. A planetary speed increasing mechanism 30 is provided on the other end side of the input shaft 22. In the illustrated planetary speed increasing mechanism 30, a plurality of (three sets in the illustrated configuration example) planetary gears 31 are supported via a planetary bearing unit 50 on a holding plate 24 that rotates integrally with an input shaft 22. Each planetary gear 31 protrudes from the holding plate 24 and is fixed, and can be rotated by being fitted to the outer periphery of the planetary bearing portion 50 attached to the planetary pins 25 arranged at equal pitches in the circumferential direction. It is supported.

上述した遊星歯車31は、内周側(軸中心側)が遊星出力軸32に形成された太陽歯車33と噛合し、外周側が内歯歯車34と噛合している。なお、図中の符号27は、入力軸22及び保持板24を回転可能に支持する軸受である。
この遊星増速機構30は、遊星歯車31が自転しながら公転することにより、入力軸22の回転数を増速して遊星出力軸32に出力する。この場合の増速比は、遊星歯車31の歯数、太陽歯車33の歯数及び内歯歯車34の歯数により定まる。
The planetary gear 31 described above is meshed with the sun gear 33 formed on the planetary output shaft 32 on the inner circumferential side (shaft center side) and meshed with the internal gear 34 on the outer circumferential side. In addition, the code | symbol 27 in a figure is a bearing which supports the input shaft 22 and the holding plate 24 rotatably.
The planetary speed increasing mechanism 30 rotates the planetary gear 31 while rotating, thereby increasing the rotational speed of the input shaft 22 and outputting it to the planetary output shaft 32. The speed increasing ratio in this case is determined by the number of teeth of the planetary gear 31, the number of teeth of the sun gear 33, and the number of teeth of the internal gear 34.

遊星出力軸32は、平歯車増速機構40に連結されている。平歯車増速機構40は、第1平歯車41の第1回転軸42が遊星出力軸32と連結されており、入力軸22と同一軸線上で一体に回転可能となるように、第1回転軸42の2箇所が軸受26により支持されている。
第1平歯車41は、第2回転軸43に設けられた第2平歯車44と噛合している。この場合、第1平歯車41の歯数が第2平歯車44の歯数より多いため、第2回転軸43の回転数は第1回転軸42の回転数が増速されたものとなる。なお、図中の符号28は、第2回転軸43を回転可能に支持する軸受である。
The planetary output shaft 32 is connected to the spur gear speed increasing mechanism 40. In the spur gear speed increasing mechanism 40, the first rotation shaft 42 of the first spur gear 41 is connected to the planetary output shaft 32, and the first rotation is performed so that the spur gear speed increasing mechanism 40 can rotate integrally on the same axis as the input shaft 22. Two portions of the shaft 42 are supported by the bearing 26.
The first spur gear 41 meshes with a second spur gear 44 provided on the second rotation shaft 43. In this case, since the number of teeth of the first spur gear 41 is larger than the number of teeth of the second spur gear 44, the rotation speed of the second rotation shaft 43 is increased from the rotation speed of the first rotation shaft 42. In addition, the code | symbol 28 in a figure is a bearing which supports the 2nd rotating shaft 43 rotatably.

上述した第2回転軸43には、第2平歯車44と一体に回転する第3平歯車45が取り付けられている。この第3平歯車45は、出力軸23に取り付けられた第4平歯車46と噛合している。この場合、第3平歯車45の歯数が第4平歯車46の歯数より多いため、出力軸23の回転数は第2回転軸43の回転数が増速されたものとなる。なお、図中の符号29は、出力軸23を回転可能に支持する軸受である。
この結果、入力軸22の回転数は、遊星増速機構30のギア比、第1平歯車41及び第2平歯車44のギア比、そして、第3平歯車45及び第4平歯車46のギア比により、3段階の増速を経て出力軸23から出力される。すなわち、ロータヘッド4は、増速機20を介して3段階に増速された回転数により発電機11を駆動する。
なお、図中の符号47は、遊星増速機構30の潤滑油を溜めるオイルバスである。
A third spur gear 45 that rotates integrally with the second spur gear 44 is attached to the second rotation shaft 43 described above. The third spur gear 45 meshes with a fourth spur gear 46 attached to the output shaft 23. In this case, since the number of teeth of the third spur gear 45 is larger than the number of teeth of the fourth spur gear 46, the rotation speed of the output shaft 23 is the speed of the second rotation shaft 43 increased. In addition, the code | symbol 29 in a figure is a bearing which supports the output shaft 23 rotatably.
As a result, the rotational speed of the input shaft 22 is determined by the gear ratio of the planetary speed increasing mechanism 30, the gear ratio of the first spur gear 41 and the second spur gear 44, and the gear ratio of the third spur gear 45 and the fourth spur gear 46. Depending on the ratio, it is output from the output shaft 23 through three stages of speed increase. That is, the rotor head 4 drives the generator 11 with the number of rotations increased in three stages via the speed increaser 20.
Reference numeral 47 in the drawing is an oil bath for storing lubricating oil of the planetary speed increasing mechanism 30.

<第1の実施形態>
上述した遊星増速機構30において、遊星歯車31を支持する遊星軸受部50は、内輪と外輪との間にコロを介在させた構成とされる。以下、この遊星軸受部50に係る第1の実施形態を図1に基づいて説明する。
図示の遊星軸受部50は、遊星ピン25を中心に自転しながら公転する遊星歯車31を備え、遊星ピン25と遊星歯車31との間に配設される軸受であり、遊星ピン25の外周に固着された静止側の内輪51と、遊星歯車31と一体に自転する外輪55との間にコロ60を備えている。この場合の内輪51は、接触面に球面座52を形成してピン側内輪部53とコロ側内輪部54とに分割されている。なお、図示の遊星軸受部50は、大きな荷重およびトルクに対応するため、コロ60を軸方向に2個配設した複列円筒コロ軸受が並列に2組使用されている。
<First Embodiment>
In the planetary speed increasing mechanism 30 described above, the planetary bearing portion 50 that supports the planetary gear 31 is configured such that a roller is interposed between the inner ring and the outer ring. Hereinafter, a first embodiment of the planetary bearing unit 50 will be described with reference to FIG.
The illustrated planetary bearing portion 50 includes a planetary gear 31 that revolves around the planetary pin 25 and revolves around the planetary pin 25, and is a bearing disposed between the planetary pin 25 and the planetary gear 31. A roller 60 is provided between the fixed inner ring 51 on the stationary side and the outer ring 55 that rotates together with the planetary gear 31. The inner ring 51 in this case is divided into a pin side inner ring part 53 and a roller side inner ring part 54 by forming a spherical seat 52 on the contact surface. In the illustrated planetary bearing portion 50, two sets of double row cylindrical roller bearings in which two rollers 60 are arranged in the axial direction are used in parallel in order to cope with a large load and torque.

すなわち、遊星ピン25の外周に嵌合して固定される静止側の内輪51は、遊星ピン25のピン軸中心から外向きに凸の曲面がピン側内輪部53の接触面に形成されて球面座52となり、この球面座52と密着するようにして、コロ側内輪部54の接触面には凹曲面が形成されている。
また、図示の球面座52は、ピン軸方向の略中心位置から入力軸22が存在する入力側及び第1回転軸42が存在する出力軸側の両方向へ下がる凸曲面であるが、たとえば図2に示す変形例の遊星軸受部50Aのように、入力軸側を最も高くして出力側へ下がる凸曲面を有する球面座52Aとしてもよい。すなわち、この場合の内輪51Aは、接触面に入力軸側から出力軸側へ下がる凸曲面を有する球面座52Aを形成してピン側内輪部53Aとコロ側内輪部54Aとに分割されている。
That is, the stationary inner ring 51 fitted and fixed to the outer periphery of the planetary pin 25 has a curved surface that protrudes outward from the center of the pin axis of the planetary pin 25 on the contact surface of the pin side inner ring part 53. A concave curved surface is formed on the contact surface of the roller side inner ring portion 54 so as to be in close contact with the spherical seat 52.
Further, the spherical seat 52 shown in the figure is a convex curved surface that descends from the approximate center position in the pin axis direction to both the input side where the input shaft 22 exists and the output shaft side where the first rotating shaft 42 exists. A spherical seat 52A having a convex curved surface that is highest on the input shaft side and descends to the output side, like a planetary bearing portion 50A of the modification shown in FIG. That is, the inner ring 51A in this case is divided into a pin-side inner ring part 53A and a roller-side inner ring part 54A by forming a spherical seat 52A having a convex curved surface that descends from the input shaft side to the output shaft side on the contact surface.

このように構成された遊星軸受部50は、静止側の内輪51が接触面に球面座52を形成してピン側内輪部53とコロ側内輪部54とに分割されているので、風力発電装置1の運転時に大きな荷重及びトルクを受ける遊星ピン25が変形すると、接触面が曲面の球面座52にはピン軸方向に略均等な荷重(面圧)が作用する。このため、ピン軸方向に複数並んでいるコロ60に作用する荷重は略均等になり、変形量が大きくなる出力側のコロ60に大きな荷重が集中して摩耗が促進されるという片当たりを防止することができる。すなわち、遊星軸受部50においては、球面座52が片当たりを吸収するので、ピン軸方向の荷重が不均一になって片当たりすることを防止または抑制でき、局所的な破損の促進を防止して軸受寿命を向上させる。
また、局所的な摩耗促進による軸受寿命対策としてサイズの大きい軸受を選択する必要もなくなるので、遊星軸受部50及びこの遊星軸受部50を用いた増速機20の長寿命化及びコンパクト化が可能となる。
The planetary bearing unit 50 configured in this way is divided into a pin-side inner ring part 53 and a roller-side inner ring part 54 with the stationary inner ring 51 forming a spherical seat 52 on the contact surface. When the planetary pin 25 that receives a large load and torque during operation 1 is deformed, a substantially equal load (surface pressure) acts on the spherical seat 52 having a curved contact surface in the pin axis direction. For this reason, the load acting on the plurality of rollers 60 arranged in the pin axis direction is substantially uniform, and a large amount of load is concentrated on the output-side roller 60 where the amount of deformation increases, thereby preventing wear-out due to accelerated wear. can do. That is, in the planetary bearing portion 50, since the spherical seat 52 absorbs the piece contact, the load in the pin axis direction becomes non-uniform and can prevent or suppress the piece contact, and the promotion of local breakage is prevented. To improve bearing life.
Further, since it is not necessary to select a large-sized bearing as a measure for bearing life by promoting local wear, it is possible to extend the life and compactness of the planetary bearing unit 50 and the speed increaser 20 using the planetary bearing unit 50. It becomes.

ところで、上述した内輪部については、たとえば図2に示すように、ピン軸方向の入力側へ延長しておくことが好ましい。すなわち、内輪51Aの軸方向寸法は、外輪55よりも入力軸22が存在する方向へ長く延長しておくことが望ましい。
このような構成とすれば、運転時に遊星ピン25が変形しても、内輪51Aと外輪55との正常な咬み合いを維持することができる。なお、このような構成は、図1に示す内輪51にも適用可能である。
By the way, the inner ring portion described above is preferably extended to the input side in the pin axis direction, for example, as shown in FIG. That is, it is desirable that the axial dimension of the inner ring 51 </ b> A is extended longer than the outer ring 55 in the direction in which the input shaft 22 exists.
With such a configuration, even when the planetary pin 25 is deformed during driving, the normal engagement between the inner ring 51A and the outer ring 55 can be maintained. Such a configuration is also applicable to the inner ring 51 shown in FIG.

また、上述した実施形態及び変形例において、球面座51,51Aに油溝を設けておくことが好ましい。すなわち、静止側の内輪51において、ピン側内輪部53とコロ側内輪部54とに分割されて接触面となる球面座52に油溝を設けておくと、自然の風を利用して発電する風力発電装置1に特有の不規則なトルク変動を受けても、球面座52を確実に潤滑することができる。従って、大荷重が作用する球面座52に焼き付き等が生じることを防止でき、耐久性や信頼性の向上に有効となる。   In the embodiment and the modification described above, it is preferable to provide oil grooves in the spherical seats 51 and 51A. That is, in the stationary-side inner ring 51, if an oil groove is provided in the spherical seat 52 that is divided into the pin-side inner ring part 53 and the roller-side inner ring part 54 and serves as a contact surface, power is generated using natural wind. Even when the irregular torque fluctuation peculiar to the wind power generator 1 is received, the spherical seat 52 can be reliably lubricated. Accordingly, seizure or the like can be prevented from occurring on the spherical seat 52 on which a large load acts, which is effective in improving durability and reliability.

<第2の実施形態>
続いて、本発明に係る風力発電装置の遊星軸受部について、第2の実施形態を図3及び図4に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態の場合、遊星ピン25の外周に固着された静止側の内輪51と、遊星歯車31と一体に自転する外輪55Aとの間にコロ60を備えている遊星軸受部50Bにおいて、内輪51と外輪55Aとの間に形成されるコロ設置空間内の周方向隙間寸法が、遊星ピン25の運転時変形量を増すピン軸方向へ向けて、段階的に小さくなるように設定されている。
<Second Embodiment>
Then, 2nd Embodiment is described based on FIG.3 and FIG.4 about the planetary bearing part of the wind power generator which concerns on this invention. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In the case of this embodiment, in the planetary bearing portion 50B having a roller 60 between the stationary inner ring 51 fixed to the outer periphery of the planetary pin 25 and the outer ring 55A that rotates together with the planetary gear 31, the inner ring 51 is provided. The circumferential clearance dimension in the roller installation space formed between the outer ring 55A and the outer ring 55A is set so as to decrease stepwise in the direction of the pin axis that increases the amount of deformation of the planetary pin 25 during operation.

具体的に説明すると、図3に示す実施形態では、全てのコロ60について形状及び大きさが同じものを用いている。そして、外輪55A側に形成されるコロ設置空間の高さhについては、出力軸側のh1から入力軸側のh4まで段階的に変化させている。すなわち、運転時に変形する遊星ピン25は、その変形量がピン軸方向の出力軸側ほど大きくなるので、最も出力軸側となる高さh1を最も小さく設定するとともに、h2,h3,h4の順に入力軸側へ段階的に大きくしている。この結果、コロ60の径dが全て同じであることから、コロ設置空間の高さ寸法hとの差により定義される周方向隙間寸法は、遊星ピン25の運転時変形量を増すピン軸方向へ段階的に小さくなる。   Specifically, in the embodiment shown in FIG. 3, all the rollers 60 have the same shape and size. The height h of the roller installation space formed on the outer ring 55A side is changed stepwise from h1 on the output shaft side to h4 on the input shaft side. That is, since the deformation amount of the planetary pin 25 that is deformed during operation increases toward the output shaft side in the pin axis direction, the height h1 that is closest to the output shaft side is set to the smallest, and the order of h2, h3, and h4 is set. Increasing in steps toward the input shaft. As a result, since all the diameters d of the rollers 60 are the same, the circumferential clearance dimension defined by the difference from the height dimension h of the roller installation space is the pin axial direction that increases the deformation amount during operation of the planetary pin 25. It gets smaller step by step.

また、この実施形態の変形例では、たとえば図4に示す遊星軸受部50Cのように、外輪55側に形成されるコロ設置空間を同じにして、すなわち、コロ設置空間の高さhを全て同じにして、コロ60の径dをピン軸方向へ段階的に変化させてもよい。この場合、コロ60の径は、運転時に変形する遊星ピン25の変形量がピン軸方向の出力軸側ほど大きくなるので、最も出力軸側となる高さd1を最も大きく設定するとともに、d2,d3,d4の順に入力軸側へ段階的に小さくしている。この結果、コロ設置空間の高さ寸法hが全て同じであることから、コロ60の径dとの差により定義される周方向隙間寸法は、遊星ピン25の運転時変形量を増すピン軸方向へ段階的に小さくなる。   Further, in the modification of this embodiment, for example, as in the planetary bearing portion 50C shown in FIG. 4, the roller installation space formed on the outer ring 55 side is made the same, that is, the heights h of the roller installation spaces are all the same. Thus, the diameter d of the roller 60 may be changed stepwise in the pin axis direction. In this case, the diameter of the roller 60 is such that the deformation amount of the planetary pin 25 that is deformed during operation increases toward the output shaft side in the pin axis direction. The size is reduced stepwise toward the input shaft in the order of d3 and d4. As a result, since the height dimension h of the roller installation space is the same, the circumferential clearance dimension defined by the difference from the diameter d of the roller 60 is the pin axial direction that increases the amount of deformation during operation of the planetary pin 25. It gets smaller step by step.

このような構成の遊星軸受部50B,50Cとすれば、内輪51と外輪55との間に形成されるコロ設置空間内の周方向隙間寸法が、遊星ピン25の運転時変形量を増すピン軸方向へ向けて段階的に小さくなるので、遊星ピン25が変形してもピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはない。従って、遊星軸受部50B、50Cにおいては、ピン軸方向の荷重が不均一になって片当たりすることを防止または抑制できるので、局所的に破損が促進されることの防止により軸受寿命が向上する。   With the planetary bearing portions 50B, 50C having such a configuration, the circumferential clearance in the roller installation space formed between the inner ring 51 and the outer ring 55 increases the amount of deformation during operation of the planetary pin 25. Since it becomes smaller stepwise toward the direction, even if the planetary pin 25 is deformed, it does not hit one side by receiving a substantially equal load (surface pressure) in the pin axis direction. Therefore, in the planetary bearing portions 50B and 50C, the load in the pin axis direction is non-uniform and can be prevented or suppressed from hitting, so that the bearing life is improved by preventing local damage from being accelerated. .

<第3の実施形態>
続いて、本発明に係る風力発電装置の遊星軸受部について、第3の実施形態を図5に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態では、上述した実施形態の遊星ピン25が保持板24から水平に突出しているのに対して、運転時に変形することを見込んで取り付けられた遊星ピン25Aが採用されている。すなわち、本実施形態の遊星ピン25Aは、運転時の変形方向と逆向きに予め傾斜させた状態に取り付けられており、その傾斜は、運転時に変形して略水平になる程度とすればよい。なお、本実施形態では、従来と同じ構造の遊星軸受部50が採用されており、コロ60については、遊星ピン25Aの変形状態を誇張して明確に示すため、図示が省略されている。
<Third Embodiment>
Then, 3rd Embodiment is described based on FIG. 5 about the planetary bearing part of the wind power generator which concerns on this invention. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In this embodiment, the planetary pin 25A of the above-described embodiment protrudes horizontally from the holding plate 24, whereas the planetary pin 25A attached in anticipation of deformation during operation is employed. That is, the planetary pin 25A of the present embodiment is attached in a state inclined in advance in the direction opposite to the deformation direction during operation, and the inclination may be set so as to be deformed during operation and become substantially horizontal. In this embodiment, the planetary bearing portion 50 having the same structure as that of the prior art is employed, and the roller 60 is not shown in the drawing because the deformation state of the planetary pin 25A is clearly shown in an exaggerated manner.

このような構成とすれば、運転時に遊星ピン25Aが変形することにより略水平になるため、ピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはない。従って、遊星軸受部50においては、ピン軸方向の荷重が不均一になって片当たりすることを防止または抑制できるので、局所的に破損が促進されることの防止により軸受寿命が向上する。なお、遊星ピン25Aを傾斜させて取り付ける場合、保持板24側に形成する取付穴を傾斜させるだけであり、製造上の困難性はない。   With such a configuration, the planetary pin 25A is deformed during operation so that the planetary pin 25A is substantially horizontal, so that it does not come into contact with one another under a substantially equal load (surface pressure) in the pin axis direction. Therefore, in the planetary bearing portion 50, it is possible to prevent or suppress the load in the pin axis direction from becoming non-uniform and hitting one side, so that the bearing life is improved by preventing local damage from being accelerated. In addition, when attaching the planetary pin 25A by inclining, it is only inclining the attachment hole formed in the holding plate 24 side, and there is no difficulty in manufacture.

<第4の実施形態>
続いて、本発明に係る風力発電装置の遊星軸受部について、第4の実施形態を図6及び図7に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態では、遊星ピン25のばね定数が、ピン軸方向で入力側から出力側へ大きくなるように設定されている。
<Fourth Embodiment>
Then, 4th Embodiment is described based on FIG.6 and FIG.7 about the planetary bearing part of the wind power generator which concerns on this invention. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In this embodiment, the spring constant of the planetary pin 25 is set so as to increase from the input side to the output side in the pin axis direction.

図6に示す第1具体例の遊星ピン25Bは、表面部に弾性調整部材70を入れることにより、ばね定数をピン軸方向に変化させている。この場合の弾性調整部材70は、たとえばゴムのような弾性体や軟材が有効であり、鋼製部材の遊星ピン25Bに異なる部材の領域を形成している。
弾性調整部材70は、遊星ピン25Bの素材(鋼等)より柔らかいゴム等を採用した場合、表面部に入れる厚さが入力部側ほど厚くなるようにする。この結果、遊星ピン25Bのばね定数は、根元の入力側が最も小さく出力側が最も大きくなるように、ピン軸方向へ変化する。すなわち、図6に示す遊星ピン25Bは、入力側の剛性が小さくなるように構成されている。
In the planetary pin 25B of the first specific example shown in FIG. 6, the spring constant is changed in the pin axis direction by inserting the elastic adjustment member 70 in the surface portion. In this case, for example, an elastic body such as rubber or a soft material is effective as the elastic adjusting member 70, and different member regions are formed on the planetary pin 25B made of steel.
When the elastic adjustment member 70 employs a softer rubber or the like than the material (steel or the like) of the planetary pin 25B, the thickness of the elastic adjustment member 70 is increased toward the input portion. As a result, the spring constant of the planetary pin 25B changes in the pin axis direction so that the root input side is the smallest and the output side is the largest. That is, the planetary pin 25B shown in FIG. 6 is configured so that the rigidity on the input side becomes small.

このように、遊星ピン25Bのばね定数は、ピン軸方向で入力側から出力側へ大きくなるように設定されることにより、遊星ピン25Bの入力側(根元)ほど剛性が小さくなるので、負荷を受ける運転時には、ピン全体が略水平状態を維持する。従って、運転時の遊星ピン25Bは、ピン軸方向に略均等な荷重(面圧)を受けて片当たりすることはないので、局所的に破損が促進されることの防止により軸受寿命が向上する。   In this way, the spring constant of the planetary pin 25B is set so as to increase from the input side to the output side in the pin axis direction, so that the rigidity becomes smaller on the input side (root) of the planetary pin 25B. During the driving operation, the entire pin remains substantially horizontal. Accordingly, since the planetary pin 25B during operation is not subjected to a single contact under a substantially uniform load (surface pressure) in the pin axis direction, the bearing life is improved by preventing local breakage from being promoted. .

また、上述した第1具体例の変形例では、ピン素材よりもばね定数の大きい素材(硬い素材)を遊星ピン25Bの表面部に入れ、その厚さが入力側ほど薄くなるようにピン軸方向へ変化させてもよい。このようにしても、入力側の剛性が相対的に小さくなるので、負荷を受ける運転時には、ピン全体が略水平状態を維持する。   Further, in the modification of the first specific example described above, a material (hard material) having a spring constant larger than that of the pin material is placed on the surface portion of the planetary pin 25B, and the axial direction of the pin is such that the thickness becomes thinner toward the input side. May be changed. Even if it does in this way, since the rigidity of an input side becomes relatively small, at the time of the driving | running | working which receives load, the whole pin maintains a substantially horizontal state.

また、図7に示す第2具体例の遊星ピン25Cは、外周面に周方向のスリット80を入れることで、入力側の剛性が低く(柔らかく)なるようにピン軸方向へ変化させる。このとき、入力軸側のスリット密度を変えて剛性を変化させてもよいし、あるいは、密度を一定にしてスリット幅を変えることで剛性を変化させてもよい。
すなわち、スリット80が同じ幅であれば、入力軸側に形成するスリット80の密度を高くして剛性を下げる。また、スリット80の密度を一定にする場合、入力軸側のスリット幅を大きくして剛性を下げる。なお、スリット密度及びスリット幅の両方をともに変化させて、入力軸側の剛性を下げることも可能である。
Further, the planetary pin 25C of the second specific example shown in FIG. 7 is changed in the pin axis direction so that the rigidity on the input side becomes low (soft) by inserting a circumferential slit 80 in the outer peripheral surface. At this time, the rigidity may be changed by changing the slit density on the input shaft side, or the rigidity may be changed by changing the slit width while keeping the density constant.
That is, if the slits 80 have the same width, the density of the slits 80 formed on the input shaft side is increased to lower the rigidity. Further, when the density of the slits 80 is made constant, the slit width on the input shaft side is increased to lower the rigidity. It is also possible to reduce the rigidity on the input shaft side by changing both the slit density and the slit width.

また、図示を省略した第3具体例では、遊星ピンの内部に入力側ほど径の大きい略円錐形状の中空穴を設ける。この結果、遊星ピンの入力側ほど肉厚が薄くなるので、入力軸側の剛性を下げることができる。   In the third specific example, not shown, a substantially conical hollow hole having a larger diameter on the input side is provided inside the planetary pin. As a result, since the wall thickness becomes thinner toward the input side of the planetary pin, the rigidity on the input shaft side can be lowered.


上述した本発明によれば、遊星軸受部に生じていた片当たりの問題が解決され、遊星軸受の長寿命化及びコンパクト化が可能となる。従って、プラネタリ型の遊星増速機を軽量化することができ、しかも耐久性や信頼性も向上するので、風力発電装置全体としての信頼性も向上する。また、増速機の小型・軽量化は、支柱の上部に設置されるナセル全体の重量低減に貢献するので、支柱や基礎等の設計条件が緩和される。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。

According to the present invention described above, the problem of piece contact that has occurred in the planetary bearing portion is solved, and it is possible to extend the life of the planetary bearing and make it compact. Therefore, the planetary planetary gearbox can be reduced in weight, and the durability and reliability can be improved, so that the reliability of the entire wind power generator is also improved. In addition, the reduction in size and weight of the gearbox contributes to the weight reduction of the entire nacelle installed on the upper part of the column, so that the design conditions for the column and foundation are eased.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明の風力発電装置において、遊星増速機構の遊星歯車を支持する遊星軸受部に係る第1の実施形態を示す要部断面図である。In the wind power generator of the present invention, it is a principal part sectional view showing a 1st embodiment concerning a planetary bearing part which supports a planetary gear of a planetary speed increasing mechanism. 図1に示す遊星軸受部の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the planetary bearing part shown in FIG. 本発明の風力発電装置において、遊星増速機構の遊星歯車を支持する遊星軸受部に係る第2の実施形態を示す要部断面図である。In the wind power generator of the present invention, it is a principal section sectional view showing a 2nd embodiment concerning a planetary bearing part which supports a planetary gear of a planetary speed increasing mechanism. 図3に示す遊星軸受部の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the planetary bearing part shown in FIG. 本発明の風力発電装置において、遊星増速機構の遊星歯車を支持する遊星軸受部に係る第3の実施形態を示す要部断面図である。In the wind power generator of the present invention, it is a principal part sectional view showing a 3rd embodiment concerning a planetary bearing part which supports a planetary gear of a planetary speed increasing mechanism. 本発明の風力発電装置において、遊星増速機構の遊星歯車を支持する遊星軸受部に係る第4の実施形態(第1具体例)を示す要部断面図である。In the wind power generator of this invention, it is principal part sectional drawing which shows 4th Embodiment (1st specific example) which concerns on the planetary bearing part which supports the planetary gear of a planetary speed-up mechanism. 本発明の風力発電装置において、遊星増速機構の遊星歯車を支持する遊星軸受部に係る第4の実施形態(第2具体例)を示す要部断面図である。In the wind power generator of the present invention, it is a principal part sectional view showing the 4th embodiment (the 2nd example) concerning the planetary bearing part which supports the planetary gear of the planetary speed increasing mechanism. 風力発電装置の全体構成例を示す図である。It is a figure which shows the example of whole structure of a wind power generator. ナセルの内部構成例を示す斜視図である。It is a perspective view which shows the internal structural example of a nacelle. プラネタリ型遊星増速機の構成例を示す断面図である。It is sectional drawing which shows the structural example of a planetary type planetary gearbox.

符号の説明Explanation of symbols

1 風力発電装置
20 増速機(プラネタリ型の遊星増速機)
22 入力軸
23 出力軸
24 保持板
25,25A〜25C 遊星ピン
30 遊星増速機構
31 遊星歯車
50,50A〜50C 遊星軸受部
51,51A 内輪
52,52A 球面座
53,53A ピン側内輪部
54,54A コロ側内輪部
55 外輪
60 コロ
70 弾性調整部材
80 スリット
1 Wind power generator 20 Gearbox (Planetary planetary gearbox)
22 Input shaft 23 Output shaft
24 holding plate 25,25A-25C planetary pin 30 planetary speed increasing mechanism 31 planetary gear 50,50A-50C planetary bearing part 51,51A inner ring 52,52A spherical seat 53,53A pin side inner ring part 54,54A roller side inner ring part 55 Outer ring 60 Roller 70 Elasticity adjusting member 80 Slit

Claims (6)

風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、
前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、
前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、
前記内輪が、接触面に球面座を形成してピン側内輪部とコロ側内輪部とに分割されていることを特徴とする風力発電装置。
In a wind turbine generator in which a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and a generator is driven by the shaft output of the planetary gearbox to generate power.
The planetary gearbox has a planetary gear that revolves while rotating around a planetary pin,
A planetary bearing portion disposed between the planetary pin and the planetary gear includes a roller between a stationary inner ring fixed to the outer periphery of the planetary pin and an outer ring that rotates integrally with the planetary gear,
The wind turbine generator according to claim 1, wherein the inner ring is divided into a pin side inner ring part and a roller side inner ring part by forming a spherical seat on a contact surface.
前記内輪部がピン軸方向の入力側へ延長されていることを特徴とする請求項1に記載の風力発電装置。   The wind turbine generator according to claim 1, wherein the inner ring portion is extended to the input side in the pin axis direction. 前記球面座に油溝が設けられていることを特徴とする請求項1または2に記載の風力発電装置。   The wind turbine generator according to claim 1 or 2, wherein an oil groove is provided in the spherical seat. 風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、
前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、
前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、
前記内輪と前記外輪との間に形成されるコロ設置空間内の周方向隙間寸法が、前記遊星ピンの運転時変形量を増すピン軸方向へ向けて段階的に小さくなるように設定されていることを特徴とする風力発電装置。
In a wind turbine generator in which a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and a generator is driven by the shaft output of the planetary gearbox to generate power.
The planetary gearbox has a planetary gear that revolves while rotating around a planetary pin,
A planetary bearing portion disposed between the planetary pin and the planetary gear includes a roller between a stationary inner ring fixed to the outer periphery of the planetary pin and an outer ring that rotates integrally with the planetary gear,
The circumferential clearance dimension in the roller installation space formed between the inner ring and the outer ring is set so as to decrease stepwise toward the pin axis direction that increases the amount of deformation during operation of the planetary pin. Wind power generator characterized by that.
風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、
前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、
前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、
前記遊星ピンが、運転時の変形方向と逆向きに予め傾斜させた状態で取付けられていることを特徴とする風力発電装置。
In a wind turbine generator in which a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and a generator is driven by the shaft output of the planetary gearbox to generate power.
The planetary gearbox has a planetary gear that revolves while rotating around a planetary pin,
A planetary bearing portion disposed between the planetary pin and the planetary gear includes a roller between a stationary inner ring fixed to the outer periphery of the planetary pin and an outer ring that rotates integrally with the planetary gear,
The wind turbine generator, wherein the planetary pin is attached in a state of being inclined in advance in the direction opposite to the deformation direction during operation.
風車翼を取り付けたロータヘッドと一体に回転する主軸がプラネタリ型の遊星増速機を介して増速され、該遊星増速機の軸出力により発電機を駆動して発電する風力発電装置において、
前記遊星増速機が遊星ピンを中心に自転しながら公転する遊星歯車を備え、
前記遊星ピンと前記遊星歯車との間に配設される遊星軸受部が、前記遊星ピンの外周に固着された静止側の内輪と前記遊星歯車と一体に自転する外輪との間にコロを備え、
前記遊星ピンのばね定数が、ピン軸方向で入力側から出力側へ大きくなるように設定されていることを特徴とする風力発電装置。
In a wind turbine generator in which a main shaft that rotates integrally with a rotor head to which a wind turbine blade is attached is accelerated through a planetary planetary gearbox, and a generator is driven by the shaft output of the planetary gearbox to generate power.
The planetary gearbox has a planetary gear that revolves while rotating around a planetary pin,
A planetary bearing portion disposed between the planetary pin and the planetary gear includes a roller between a stationary inner ring fixed to the outer periphery of the planetary pin and an outer ring that rotates integrally with the planetary gear,
A wind power generator characterized in that a spring constant of the planetary pin is set so as to increase from the input side to the output side in the pin axis direction.
JP2007320171A 2007-12-11 2007-12-11 Wind turbine generator Withdrawn JP2009144532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320171A JP2009144532A (en) 2007-12-11 2007-12-11 Wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320171A JP2009144532A (en) 2007-12-11 2007-12-11 Wind turbine generator

Publications (1)

Publication Number Publication Date
JP2009144532A true JP2009144532A (en) 2009-07-02

Family

ID=40915435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320171A Withdrawn JP2009144532A (en) 2007-12-11 2007-12-11 Wind turbine generator

Country Status (1)

Country Link
JP (1) JP2009144532A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284420A1 (en) * 2009-08-10 2011-02-16 Hansen Transmissions International, Naamloze Vennotschap Parallel gear unit for a gearbox for a wind turbine
JP2011127451A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Transmission for wind turbine generator system and wind turbine generator
JP2011208610A (en) * 2010-03-30 2011-10-20 Sumitomo Heavy Ind Ltd Speed increasing gear for wind power generation
WO2013038495A1 (en) * 2011-09-13 2013-03-21 住友重機械工業株式会社 Step-up gear for wind-powered electricity generation
JPWO2012029121A1 (en) * 2010-08-31 2013-10-28 三菱重工業株式会社 Planetary gear mechanism, bearing structure, wind power generator, and planetary gear manufacturing method
CN103791043A (en) * 2012-10-30 2014-05-14 吴小杰 Planetary parallel-axis transmission wind power speed increasing gearbox with bearings lubricated by grease
CN103791042A (en) * 2012-10-30 2014-05-14 吴小杰 Hybrid drive type wind power speed increasing gear box with bearings lubricated by grease
CN104514812A (en) * 2014-12-25 2015-04-15 合肥华升泵阀股份有限公司 Self-aligning roll shaft unit
CN111263857A (en) * 2017-09-21 2020-06-09 Imo控股有限责任公司 Main bearing unit for a rotor shaft of a wind turbine and wind turbine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8578806B2 (en) 2009-08-10 2013-11-12 Hansen Transmissions International N.V. Parallel gear unit for a gearbox for a wind turbine
EP2284420A1 (en) * 2009-08-10 2011-02-16 Hansen Transmissions International, Naamloze Vennotschap Parallel gear unit for a gearbox for a wind turbine
JP2011127451A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Transmission for wind turbine generator system and wind turbine generator
JP2011208610A (en) * 2010-03-30 2011-10-20 Sumitomo Heavy Ind Ltd Speed increasing gear for wind power generation
JPWO2012029121A1 (en) * 2010-08-31 2013-10-28 三菱重工業株式会社 Planetary gear mechanism, bearing structure, wind power generator, and planetary gear manufacturing method
CN103827484A (en) * 2011-09-13 2014-05-28 住友重机械工业株式会社 Step-up gear for wind-powered electricity generation
WO2013038495A1 (en) * 2011-09-13 2013-03-21 住友重機械工業株式会社 Step-up gear for wind-powered electricity generation
CN103791043A (en) * 2012-10-30 2014-05-14 吴小杰 Planetary parallel-axis transmission wind power speed increasing gearbox with bearings lubricated by grease
CN103791042A (en) * 2012-10-30 2014-05-14 吴小杰 Hybrid drive type wind power speed increasing gear box with bearings lubricated by grease
CN104514812A (en) * 2014-12-25 2015-04-15 合肥华升泵阀股份有限公司 Self-aligning roll shaft unit
CN104514812B (en) * 2014-12-25 2017-06-20 合肥华升泵阀股份有限公司 A kind of Self-aligning roll shaft unit
CN111263857A (en) * 2017-09-21 2020-06-09 Imo控股有限责任公司 Main bearing unit for a rotor shaft of a wind turbine and wind turbine
CN111263857B (en) * 2017-09-21 2022-02-18 Imo控股有限责任公司 Main bearing unit for a rotor shaft of a wind turbine and wind turbine

Similar Documents

Publication Publication Date Title
JP2009144532A (en) Wind turbine generator
JP5031091B2 (en) Speed increaser for wind power generator and wind power generator
JP5161958B2 (en) Speed increaser for wind power generator and wind power generator
JP4031747B2 (en) Wind turbine for wind power generation
EP2108082B1 (en) A wind turbine with a drive train
JP5546638B2 (en) Planetary gear mechanism and wind power generator
JP5345048B2 (en) Wind power transmission and wind power generator
JP5493079B2 (en) Configuration of planetary gear device and planetary gear
JP6018203B2 (en) Journal bearing for use in orbiting circular transmission and method for promoting hydrodynamic oil flow in journal bearing
WO2010146654A1 (en) Wind-driven generator
WO2011024898A1 (en) Planetary bearing structure
JP2005195097A (en) Cylindrical roller bearing and planetary gear using it
US20090139799A1 (en) Textured surfaces for gears
JP2009144533A (en) Wind turbine generator
US10385830B2 (en) Compound main bearing arrangement for a wind turbine
JP5148346B2 (en) Wind power generator
JP4464669B2 (en) Wind speed booster
WO2011027427A1 (en) Wind driven generator
JP6870105B2 (en) Adjustment units and methods for wind turbine orientation and / or pitch adjustment
JP2006009575A (en) Planetary gear device
JP4909578B2 (en) Windmill drive
JP5951877B2 (en) Bearing structure and wind power generator
KR101345714B1 (en) Wind power generator
JP2021195948A (en) Yaw bearing for wind turbine
WO2023186232A1 (en) Transmission for a wind turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301