JP2009142771A - Stress-induced light emitting materail-photocatalyst composite - Google Patents

Stress-induced light emitting materail-photocatalyst composite Download PDF

Info

Publication number
JP2009142771A
JP2009142771A JP2007323959A JP2007323959A JP2009142771A JP 2009142771 A JP2009142771 A JP 2009142771A JP 2007323959 A JP2007323959 A JP 2007323959A JP 2007323959 A JP2007323959 A JP 2007323959A JP 2009142771 A JP2009142771 A JP 2009142771A
Authority
JP
Japan
Prior art keywords
stress
particles
stimulated luminescent
photocatalyst
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007323959A
Other languages
Japanese (ja)
Inventor
Tadashi Terasaki
正 寺崎
Chao-Nan Xu
超男 徐
Yusuke Imai
祐介 今井
Hiroshi Yamada
浩志 山田
Fano Chan
ファンオ チャン
Hiromi Kawahara
弘美 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007323959A priority Critical patent/JP2009142771A/en
Publication of JP2009142771A publication Critical patent/JP2009142771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new composite which is expected to be applied to a biological tissue such as cancer therapy. <P>SOLUTION: This stress-induced light emitting material-photocatalyst composite is characterized in that a photocatalytic particle demonstrating catalytic activity by light emission from a stress-induced light emitting particle is deposited on the surface of the stress-induced light emitting particle composed of aluminate as a parent material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、応力発光体−光触媒複合体に関するものである。   The present invention relates to a stress-stimulated luminescent material-photocatalyst composite.

応力発光体(mechanoluminescent material)とは、外部から印加された力(圧縮、変位、摩擦、衝撃など)の力学的エネルギーを光に変換して発光するインテリジェント材料であり、近年開発された新しい無機系素材である(非特許文献1〜8)。   A mechanoluminescent material is an intelligent material that emits light by converting the mechanical energy of externally applied force (compression, displacement, friction, impact, etc.) into light, and has been developed in recent years. It is a raw material (nonpatent literature 1-8).

本発明者らは、物質が変形しても元の形状に戻る弾性変形領域においても強く発光し、再現性よく繰返し発光が可能な材料である応力発光体の開発に世界で初めて成功した。本発明者らによる一連の研究で得た応力発光体についての知見によれば、材料系は基本的にセラミックであり、母体と発光中心からなるものである。そして本発明者らは母体と発光中心の結晶学的な最適化による圧光変換の高効率化と多色化にも成功している。   The present inventors have succeeded for the first time in the world in developing a stress-stimulated luminescent material, which is a material that emits intense light even in the elastic deformation region that returns to its original shape even when the substance is deformed, and can emit light repeatedly with high reproducibility. According to the knowledge about the stress-stimulated luminescent material obtained through a series of studies by the present inventors, the material system is basically a ceramic, and consists of a matrix and a luminescent center. The present inventors have also succeeded in increasing the efficiency and multicolorization of pressure light conversion by crystallographic optimization of the matrix and the emission center.

特に、人間の目の感度が最も高い緑色発光型のα-SrAl2O4:Eu2+に関しては、系統的に検討を行い、圧光変換効率を飛躍的に向上させてきた。現状では、指で擦る程度の弱い力の印加であっても、擦った部分の軌跡が発光する様子を肉眼で観察することができるに至っている。 In particular, the green light-emitting α-SrAl 2 O 4 : Eu 2+ , which has the highest human eye sensitivity, has been systematically studied and has greatly improved the pressure-light conversion efficiency. At present, even when a force that is weak enough to be rubbed with a finger is applied, the locus of the rubbed portion can be observed with the naked eye.

また、発光色として、紫外光(紫:非特許文献4)、可視光(青:非特許文献5、緑:非特許文献2、黄色:非特許文献6、赤:非特許文献7)を発する応力発光材料の開発に成功している。   Further, ultraviolet light (purple: non-patent document 4), visible light (blue: non-patent document 5, green: non-patent document 2, yellow: non-patent document 6, red: non-patent document 7) are emitted as emission colors. Successful development of stress luminescent materials.

このような応力発光材料においては、応力発光(mechanoluminescence:ML)の際には、力以外のエネルギー(光や電気など)を必要としない。ただし、これらの応力発光材料からは光励起発光(photoluminescence:PL)や電場発光(electroluminescence:EL)も観測でき、応力発光と同じ波長・波形のスペクトルを示す。このことはMLもPLやELと同様に、母体中にドープされた発光中心(例えばSAO:EならばEu2+の4f7→4f65d1)の電子遷移に由来する発光であることを示唆している。 In such a stress luminescent material, energy (light, electricity, etc.) other than force is not required in the case of stress luminescence (mechanoluminescence: ML). However, photoexcited luminescence (PL) and electroluminescence (EL) can be observed from these stress luminescent materials, and show the same wavelength and waveform spectrum as stress luminescence. This means that ML, like PL and EL, is light emission derived from the electronic transition of the emission center doped in the matrix (for example, 4f 7 → 4f 6 5d 1 of Eu 2+ in SAO: E). Suggests.

また本発明者らは、水滴のマイクロ空間を利用する噴霧熱分解法により、粒径10nm〜数十μmの応力発光ナノ粒子の作製にも成功しており(非特許文献8)、応力発光体は、今後は生体組織や次世代工学部品のようなマイクロ・ナノサイズの物質が活躍する領域への応用も期待されている。   The present inventors have also succeeded in producing stress-emitting nanoparticles having a particle size of 10 nm to several tens of μm by a spray pyrolysis method using a micro space of water droplets (Non-patent Document 8). In the future, it is also expected to be applied to areas where micro- and nano-sized materials such as biological tissues and next-generation engineering parts are active.

一方、癌治療などの分野においては従来、紫外線で直接に、あるいは紫外線照射による触媒作用を利用して間接的に癌細胞などの病理細胞を攻撃する方法が研究されている。具体的に検討されている方法としては、紫外線を癌細胞の存在する患部に外部から照射することにより癌細胞を死滅させる方法、紫外線により二酸化チタンなどの光触媒を励起して、酸化還元作用によって癌細胞を死滅させる方法などがある。
C. N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, Appl. Phys. Lett. 74 2414(1999). C. N. Xu, X. G. Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl. Phys. Lett. 76 176 (2000). C. N. Xu, Encyclopedia of Smart Materials, 1-2 190 (2002). H. W. Zhang, H. Yamada, N. Terasaki, C. N. Xu, Appl. Phys. Lett. , 91, 081905 (2007). H. W. Zhang, H. Yamada, N. Terasaki, C. N. Xu, Electrochem. Solid-State Lett., 10, J129 (2007). C. N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, Appl. Phys. Lett. , 74, 1236 (1999). X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, X. G. Zheng, Adv. Mater. , 17, 1254 (2005). C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, C. N. Xu, J. Am. Ceram. Soc, 90, 2273 (2007).
On the other hand, in the field of cancer treatment and the like, methods for attacking pathological cells such as cancer cells directly with ultraviolet rays or indirectly using the catalytic action of ultraviolet irradiation have been studied. Specific methods that have been studied include the method of killing cancer cells by irradiating the affected area where cancer cells are present from the outside with cancer cells by exciting the photocatalyst such as titanium dioxide with the ultraviolet rays, and the redox effect There are ways to kill cells.
CN Xu, T. Watanabe, M. Akiyama, XG Zheng, Appl. Phys. Lett. 74 2414 (1999). CN Xu, XG Zheng, M. Akiyama, K. Nonaka, T. Watanabe, Appl. Phys. Lett. 76 176 (2000). CN Xu, Encyclopedia of Smart Materials, 1-2 190 (2002). HW Zhang, H. Yamada, N. Terasaki, CN Xu, Appl. Phys. Lett., 91, 081905 (2007). HW Zhang, H. Yamada, N. Terasaki, CN Xu, Electrochem.Solid-State Lett., 10, J129 (2007). CN Xu, T. Watanabe, M. Akiyama, XG Zheng, Appl. Phys. Lett., 74, 1236 (1999). X. Wang, CN Xu, H. Yamada, K. Nishikubo, XG Zheng, Adv. Mater., 17, 1254 (2005). C. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, CN Xu, J. Am. Ceram. Soc, 90, 2273 (2007).

しかしながら、このような従来の紫外線照射による方法では、患者体内への外部からの紫外線照射が必要とされる。そのため、紫外線照射による癌治療では、副作用として紫外線照射による正常な組織の損傷が懸念される。   However, such a conventional method using ultraviolet irradiation requires irradiation of ultraviolet rays from the outside into the patient's body. Therefore, in cancer treatment by ultraviolet irradiation, there is a concern about normal tissue damage due to ultraviolet irradiation as a side effect.

また、外部から照射される紫外線を体組織が吸収することにより、紫外線強度が減少して効率が低下するという問題点があった。   Further, when the body tissue absorbs ultraviolet rays irradiated from the outside, there is a problem in that the ultraviolet rays intensity is reduced and the efficiency is lowered.

このような点から、紫外線照射による癌治療においては、従来とは異なる発想による新しい手法の開発も望まれている。   In view of this, development of a new method based on an idea different from the conventional one is desired in cancer treatment by ultraviolet irradiation.

本発明は、以上のとおりの背景から、たとえば癌治療への応用など生体組織への応用も期待できる新規な複合体を提供することを課題としている。   From the background as described above, an object of the present invention is to provide a novel complex that can be expected to be applied to living tissue such as application to cancer treatment.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1:アルミン酸塩を母体材料とする応力発光体粒子の表面に、応力発光体粒子からの発光により触媒活性を発現する光触媒粒子が付着していることを特徴とする応力発光体−光触媒複合体。   First: Photoluminescent catalyst-photocatalyst composite characterized in that photocatalytic particles exhibiting catalytic activity by light emission from stressed luminescent particles are attached to the surface of stressed luminescent particles using aluminate as a base material. body.

第2:応力発光体粒子は、ホルミウムおよびセリウムをドープしたアルミン酸ストロンチウムからなることを特徴とする上記第1の応力発光体−光触媒複合体。   Second: The first stress-stimulated luminescent material-photocatalyst complex as described above, wherein the stress-stimulated luminescent particles are made of strontium aluminate doped with holmium and cerium.

第3:応力発光体粒子は、ユーロピウムをドープしたアルミン酸ストロンチウムからなることを特徴とする上記第1の応力発光体−光触媒複合体。   Third: The first stress-stimulated luminescent material-photocatalyst complex as described above, wherein the stress-stimulated luminescent particles are made of strontium aluminate doped with europium.

第4:光触媒粒子は二酸化チタン粒子であることを特徴とする上記第1から第3のいずれかの応力発光体−光触媒複合体。   Fourth: The photoluminescent catalyst-photocatalyst complex according to any one of the first to third aspects, wherein the photocatalytic particles are titanium dioxide particles.

本発明によれば、応力発光体粒子の表面に光触媒粒子が付着しているので、応力発光体粒子の励起により生じた発光により光触媒粒子が活性化され、分解反応の促進などの触媒作用を効率的に発現させることができる。   According to the present invention, since the photocatalyst particles are attached to the surface of the stress-stimulated luminescent particles, the photocatalyst particles are activated by the light emission generated by the excitation of the stress-stimulated luminescent particles, and the catalytic action such as promotion of the decomposition reaction is efficiently performed. It can be expressed in an experimental manner.

そして、応力発光体粒子への励起源として、紫外光などの光ではなく超音波等の手段を適用できることから、たとえば、当該複合体を体内に導入し外部から超音波を照射することで、外部からの紫外線照射に依らない体内からの光源として機能させ得る可能性がある。従って、本発明の応力発光体−光触媒複合体は新たな癌治療技術への応用も期待できる。   Then, as an excitation source for the stress luminescent particles, it is possible to apply means such as ultrasonic waves instead of light such as ultraviolet light. For example, by introducing the complex into the body and irradiating ultrasonic waves from the outside, There is a possibility that it can function as a light source from within the body that does not depend on UV irradiation from the body. Therefore, the stress-stimulated luminescent material-photocatalyst complex of the present invention can be expected to be applied to a new cancer treatment technique.

その他、抗菌、殺菌、非ヒト動物への治療、道路面への適用によるNO浄化、衝撃波が発生するトンネル内壁面への適用による汚れ浄化、光照射が全く行われない工場等の配管や処理構内への適用による流動物の流れエネルギーによる浄化などへの応用が期待できる。 Other antimicrobial, bactericidal, non-therapeutic to humans animals, NO x purification by application to the road surface, dirt cleaning by application to tunnel wall shock waves, piping and processing plants such as light irradiation is not performed at all The application to the purification by the flow energy of the fluid by applying to the premises can be expected.

本発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The present invention has the features as described above, and an embodiment thereof will be described below.

本発明で用いられる応力発光体粒子は、アルミン酸塩を母体材料とするものであり、負荷される力学的な外部エネルギーを光に変換して発光する。このような応力発光体とそのマイクロ粒子、ナノ粒子に関しては上記非特許文献1〜8の記載が参照される。   The stress-stimulated luminescent particles used in the present invention are based on aluminate as a host material, and emit light by converting a loaded mechanical external energy into light. Regarding the stress-stimulated luminescent material and its microparticles and nanoparticles, the descriptions in Non-Patent Documents 1 to 8 are referred to.

この応力発光体粒子は、たとえばAlO4様多面体構造よって形成される母体構造の空間に、アルカリ金属イオンおよび/またはアルカリ土類金属イオンが挿入された基本構造を有している。そして、上記空間に挿入されたアルカリ金属イオンおよび/またはアルカリ土類金属イオンの一部が、希土類金属イオン、遷移金属イオン、III族の金属イオン、およびIV族の金属イオンからなる群より選択される少なくとも1種の金属イオンによって置換されている。 The stress-stimulated luminescent particles have a basic structure in which alkali metal ions and / or alkaline earth metal ions are inserted into a space of a base structure formed by, for example, an AlO 4 -like polyhedral structure. And, a part of the alkali metal ions and / or alkaline earth metal ions inserted into the space is selected from the group consisting of rare earth metal ions, transition metal ions, group III metal ions, and group IV metal ions. Substituted by at least one metal ion.

好ましい態様では、上記基本構造は反転対称中心を持たないフレームワーク構造であり、歪による圧電効果に由来する発光機構を実現するために、上記母体構造には異方性を有する結晶構造が含まれている。より好ましくは、上記母体構造はα−SrAl24である。 In a preferred embodiment, the basic structure is a framework structure having no center of reversal symmetry, and the matrix structure includes an anisotropic crystal structure in order to realize a light emitting mechanism derived from a piezoelectric effect due to strain. ing. More preferably, the matrix structure is α-SrAl 2 O 4 .

発光中心の金属イオンの具体例としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどの希土類金属のイオン、あるいはTi、Zr、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ta、Wなどの遷移金属のイオンが挙げられる。これらの金属イオンは、1種単独で結晶構造内に含有させるようにしてもよく、2種以上を組み合わせて結晶構造内に含有させるようにしてもよい。   Specific examples of the metal ion at the emission center include ions of rare earth metals such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Or ions of transition metals such as Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ta, and W. These metal ions may be contained alone in the crystal structure, or two or more kinds may be contained in the crystal structure in combination.

発光中心の金属イオンの添加量は、好ましくは0.01〜10モル%である。この添加量が過少であると発光強度の向上効果が不十分となり、添加量が過剰であると母体物質の結晶構造が維持できなくなり、発光効率が低下して実用に適さなくなる。   The amount of the metal ion at the luminescent center is preferably 0.01 to 10 mol%. If the addition amount is too small, the effect of improving the light emission intensity is insufficient, and if the addition amount is excessive, the crystal structure of the base material cannot be maintained, and the light emission efficiency is lowered, making it unsuitable for practical use.

応力発光体粒子を作製する際には、たとえば上記した非特許文献に記載の方法を用いることができ、たとえばマイクロ粒子に関しては固相合成法、ナノ粒子に関しては噴霧熱分解法で作製することができる。   When producing stress-stimulated luminescent particles, for example, the methods described in the above-mentioned non-patent documents can be used. For example, microparticles can be prepared by solid-phase synthesis, and nanoparticles can be prepared by spray pyrolysis. it can.

本発明で用いられる応力発光体粒子の粒子径は、たとえば電子顕微鏡測定による平均値で10nm〜20μmである。   The particle diameter of the stress-stimulated luminescent particles used in the present invention is, for example, 10 nm to 20 μm as an average value measured by an electron microscope.

本発明では、たとえばホルミウムおよびセリウムをドープしたアルミン酸ストロンチウム(SAO:HoCe)、ユーロピウムをドープしたアルミン酸ストロンチウム(SAO:E)などの応力発光体粒子を好適に用いることができる。   In the present invention, stress luminescent particles such as strontium aluminate doped with holmium and cerium (SAO: HoCe) and strontium aluminate doped with europium (SAO: E) can be preferably used.

SAO:Eは、発光効率が特に高いものが得られており、たとえばEu2+に由来するブロードな発光ピークを520nm付近に有し、応力発光(ML)、PL共に緑色の発光を示すものが得られている。 SAO: E has a particularly high emission efficiency. For example, SAO: E has a broad emission peak derived from Eu 2+ in the vicinity of 520 nm, and both the stress emission (ML) and PL emit green light. Has been obtained.

SAO:HoCeは、光触媒粒子として代表的なものである二酸化チタンの吸収波長に近い紫外線の発光を示すものが得られており、紫外領域に吸収波長をもつ光触媒粒子を用いる場合に励起効率が高い点から好適である。   SAO: HoCe is a photocatalyst particle that exhibits ultraviolet light emission that is close to the absorption wavelength of titanium dioxide, and has high excitation efficiency when photocatalyst particles having an absorption wavelength in the ultraviolet region are used. From the point of view, it is preferable.

本発明で用いられる光触媒粒子は、応力発光体粒子からの発光により触媒活性を発現するものであり、その具体例としては、二酸化チタン粒子等の酸化物半導体粒子、硫化カドミウム粒子、あるいは二酸化チタンと他の遷移金属酸化物が複合化された酸化物、二酸化チタンに遷移金属イオンがドープされたものなどが挙げられる。   The photocatalyst particles used in the present invention express catalytic activity by light emission from stress-stimulated luminescent particles. Specific examples thereof include oxide semiconductor particles such as titanium dioxide particles, cadmium sulfide particles, or titanium dioxide. Examples include oxides in which other transition metal oxides are combined, and titanium dioxide doped with transition metal ions.

たとえば、二酸化チタン粒子として、一次粒子径1nm〜100nmのものが使用できる。結晶形は、光触媒能を有するものであればアナターゼ型、ルチル型、ブルッカイト型などのいずれであってもよい。二酸化チタンの光触媒メカニズムは、次のような機構に基づいていると言われている。先ず、二酸化チタン粒子に光が照射されると、二酸化チタン粒子内部に発生した電子や正孔が二酸化チタン粒子表面近傍の水や酸素と反応してヒドロキシラジカルや過酸化水素が発生し、このヒドロキシラジカルと過酸化水素の強力な酸化還元作用により、たとえば有機物質を炭酸ガスと水に分解する等の触媒作用が発現し、癌細胞への攻撃作用等が生じるものと考えられている。   For example, titanium dioxide particles having a primary particle diameter of 1 nm to 100 nm can be used. The crystal form may be any of anatase type, rutile type, brookite type, etc. as long as it has photocatalytic ability. The photocatalytic mechanism of titanium dioxide is said to be based on the following mechanism. First, when the titanium dioxide particles are irradiated with light, the electrons and holes generated inside the titanium dioxide particles react with water and oxygen near the surface of the titanium dioxide particles to generate hydroxy radicals and hydrogen peroxide. Due to the strong redox action of radicals and hydrogen peroxide, it is believed that, for example, a catalytic action such as decomposition of an organic substance into carbon dioxide gas and water appears, and an attack action on cancer cells occurs.

本発明の応力発光体−光触媒複合体において、応力発光体粒子の表面への光触媒粒子の付着態様としては、たとえば電子顕微鏡観察にて応力発光体粒子の表面に光触媒粒子がまばらに分布している態様、当該表面の大部分を埋める程度に光触媒粒子が密に付着している態様のいずれであってもよく、その付着量は、たとえば光触媒粒子/応力発光体粒子の重量比で0.1〜1である。   In the stress-stimulated luminescent material-photocatalyst composite of the present invention, the photocatalyst particles adhere to the surface of the stress-stimulated luminescent particles. For example, the photocatalyst particles are sparsely distributed on the surface of the stress-stimulated luminescent particles by electron microscope observation. The aspect may be any of the aspects in which the photocatalyst particles are densely adhered to such an extent that most of the surface is filled, and the adhesion amount is, for example, 0.1 to 0.1 by weight ratio of the photocatalyst particles / stress luminescent particles. 1.

応力発光体粒子の表面に光触媒粒子を付着固定させる際には、付着のための結合用化合物であらかじめ応力発光体粒子の表面を化学処理するようにしてもよい。たとえば、応力発光体粒子の表面にピロリン酸などの縮合リン酸塩を結合させておき、これに二酸化チタン表面の水酸基を化学的に結合させることで付着させるようにしてもよい。   When the photocatalyst particles are adhered and fixed to the surface of the stress-stimulated luminescent particles, the surface of the stress-stimulated luminescent particles may be chemically treated in advance with a binding compound for adhesion. For example, a condensed phosphate such as pyrophosphoric acid may be bonded to the surface of the stress-stimulated luminescent particles, and the hydroxyl group on the surface of titanium dioxide may be chemically bonded thereto to be adhered thereto.

本発明の応力発光体−光触媒複合体は、応力発光体粒子の発光によりその表面に付着した光触媒が活性化され、癌細胞等の病理細胞やインフルエンザなどを死滅させることができる。さらに、超音波照射により応力発光体粒子を発光させることができるため、たとえば、本発明の応力発光体−光触媒複合体を癌患者の体内に導入した後、患部に対して外部から超音波を照射することにより、応力発光体粒子を体内から発光させて光触媒を活性化することで、従来のような外部からの紫外線照射によらずに癌細胞を死滅させることも期待できる。   In the stress-stimulated luminescent material-photocatalyst complex of the present invention, the photocatalyst adhering to the surface is activated by the luminescence of the stress-stimulated luminescent particles, and pathological cells such as cancer cells and influenza can be killed. Furthermore, since stress-stimulated luminescent particles can be caused to emit light by ultrasonic irradiation, for example, after introducing the stress-stimulated luminescent material-photocatalyst complex of the present invention into the body of a cancer patient, the affected part is irradiated with ultrasonic waves from the outside. By doing so, the stress-stimulated luminescent particles are caused to emit light from within the body to activate the photocatalyst, so that it can be expected that the cancer cells will be killed without the conventional ultraviolet irradiation from the outside.

その他、抗菌、殺菌、非ヒト動物への治療、道路面への適用によるNO浄化、衝撃波が発生するトンネル内壁面への適用による汚れ浄化、光照射が全く行われない工場等の配管や処理構内への適用による流動物の流れエネルギーによる浄化などへの応用が期待できる。 Other antimicrobial, bactericidal, non-therapeutic to humans animals, NO x purification by application to the road surface, dirt cleaning by application to tunnel wall shock waves, piping and processing plants such as light irradiation is not performed at all The application to the purification by the flow energy of the fluid by applying to the premises can be expected.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例示によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
固相合成法により、応力発光体であるSAO:Eのマイクロ粒子を作製した。次いで応力発光体を5.6mmolピロリン酸DMF溶液中70℃で3日間加熱・攪拌処理することで、表面にピロリン酸の修飾を行った。
<Example 1>
Microparticles of SAO: E, a stress-stimulated luminescent material, were prepared by solid-phase synthesis. Next, the stress luminescent material was heated and stirred in a 5.6 mmol DMF pyrophosphate solution at 70 ° C. for 3 days to modify the surface with pyrophosphate.

次いで、ピロリン酸で処理したSAO:E粒子300mgと二酸化チタンナノ微粒子(石原産業(株)製、MPT−623、粒子径:縦20〜30nm、横10〜20nmのロッド状粒子:SEM観察)500mgを、DMF100ml中で温度70℃において3日間攪拌混合し、これによりSAO:E−二酸化チタン複合体を得た。そのSEM像を図4に示す。   Subsequently, 300 mg of SAO: E particles treated with pyrophosphoric acid and 500 mg of titanium dioxide nanoparticles (manufactured by Ishihara Sangyo Co., Ltd., MPT-623, particle size: 20-30 nm in length, 10-20 nm in the form of rod-shaped particles: SEM observation) The mixture was stirred and mixed in 100 ml of DMF at a temperature of 70 ° C. for 3 days to obtain a SAO: E-titanium dioxide composite. The SEM image is shown in FIG.

このSAO:E−二酸化チタン複合体のPLスペクトルを測定したところ(図1)、未処理のSAO:Eに対応する発光ピーク(520nm)が観測された。また、このSAO:E−二酸化チタン複合体を1質量%AgNO水溶液中に加え、そこに365nmの光照射をしたところ、1分後にはAgへの還元の進行が明らかに視認された。
<実施例2>
実施例1で用いたSAO:Eのマイクロ粒子のエタノール分散液に、超音波洗浄機(US−2A(アズワン)、高周波出力 120W、発振周波数 38kHz)を用いて超音波を照射し、発光スペクトルを測定した。その結果を図2に示す。同図に示されるように、超音波の照射により可視領域の発光を示すことが確認された。
<実施例3>
応力発光体であるSAO:HoCe粒子と、二酸化チタンナノ微粒子(石原産業(株)製、MPT−623)を組み合わせたときの癌細胞K562に対する細胞毒性評価を行った。細胞毒性評価は、Cell Titer-GloTM Luminescent Cell Viability Assayによりルシフェリンの化学発光を測定することにより行った。なお、SAO:HoCe粒子は、非特許文献4に従って作製したものを用いた。
When the PL spectrum of this SAO: E-titanium dioxide composite was measured (FIG. 1), an emission peak (520 nm) corresponding to untreated SAO: E was observed. Further, when this SAO: E-titanium dioxide composite was added to a 1% by mass AgNO 3 aqueous solution and irradiated with 365 nm light, the progress of reduction to Ag was clearly visible after 1 minute.
<Example 2>
The ethanol dispersion of SAO: E microparticles used in Example 1 was irradiated with ultrasonic waves using an ultrasonic cleaner (US-2A (As One), high frequency output 120 W, oscillation frequency 38 kHz), and the emission spectrum was measured. It was measured. The result is shown in FIG. As shown in the figure, it was confirmed that light emission in the visible region was exhibited by ultrasonic irradiation.
<Example 3>
Evaluation of cytotoxicity against cancer cell K562 was performed when SAO: HoCe particles, which are stress luminescent materials, and titanium dioxide nanoparticles (MPT-623, manufactured by Ishihara Sangyo Co., Ltd.) were combined. Cytotoxicity evaluation was performed by measuring the chemiluminescence of luciferin by Cell Titer-Glo Luminescent Cell Viability Assay. Note that SAO: HoCe particles were prepared according to Non-Patent Document 4.

96ウェルマイクロプレートの4ウェル×3=計12ウェルのうち、4ウェルにはSAO:HoCe5mgと二酸化チタン5mgをさらに加え、別の4ウェルにはSAO:HoCe5mgのみを加え、最後の4ウェルには何も加えなかった。次いで、これらの12ウェル内に、365nmの光照射を1分、次いで254nmの光照射を1分行った後、全てのウェルにそれぞれ癌細胞K562+培地90μlを加え、2時間インキュベートした。その後、各ウェル内にルシフェラーゼ50μlを入れ、60分シェーカーにて攪拌した後、ルシフェリンの化学発光を測定した。その結果を図3に示す。   96 well microplate 4 wells x 3 = total 12 wells, 4 wells added 5 mg SAO: HoCe and 5 mg titanium dioxide, another 4 wells added only 5 mg SAO: HoCe, the last 4 wells I didn't add anything. Next, 365 nm light irradiation was performed in these 12 wells for 1 minute, and then 254 nm light irradiation was performed for 1 minute. Then, 90 μl of cancer cell K562 + medium was added to each well and incubated for 2 hours. Thereafter, 50 μl of luciferase was placed in each well, and after stirring for 60 minutes with a shaker, chemiluminescence of luciferin was measured. The result is shown in FIG.

図3より、SAO:HoCeと二酸化チタンの両方を加えた場合のみ、癌細胞が効率的に死滅していた。   From FIG. 3, cancer cells were effectively killed only when both SAO: HoCe and titanium dioxide were added.

SAO:E−二酸化チタン複合体のPLスペクトルである。It is a PL spectrum of SAO: E-titanium dioxide composite. SAO:E粒子に超音波照射したときの発光スペクトルである。This is an emission spectrum when SAO: E particles are irradiated with ultrasonic waves. 細胞毒性評価の結果を示すグラフである。It is a graph which shows the result of cytotoxicity evaluation. SAO:E−二酸化チタン複合体のSEM像である。It is a SEM image of SAO: E-titanium dioxide composite.

Claims (4)

アルミン酸塩を母体材料とする応力発光体粒子の表面に、応力発光体粒子からの発光により触媒活性を発現する光触媒粒子が付着していることを特徴とする応力発光体−光触媒複合体。   2. A stress-stimulated luminescent material-photocatalyst complex, wherein photocatalyst particles exhibiting catalytic activity by light emission from a stress-stimulated luminescent particle are attached to the surface of stress-stimulated luminescent particles having an aluminate as a base material. 応力発光体粒子は、ホルミウムおよびセリウムをドープしたアルミン酸ストロンチウムからなることを特徴とする請求項1に記載の応力発光体−光触媒複合体。   The stress-stimulated luminescent material-photocatalyst composite according to claim 1, wherein the stress-stimulated luminescent particles are made of strontium aluminate doped with holmium and cerium. 応力発光体粒子は、ユーロピウムをドープしたアルミン酸ストロンチウムからなることを特徴とする請求項1に記載の応力発光体−光触媒複合体。   The stress-stimulated luminescent material-photocatalyst complex according to claim 1, wherein the stress-stimulated luminescent particles are made of strontium aluminate doped with europium. 光触媒粒子は二酸化チタン粒子であることを特徴とする請求項1から3のいずれかに記載の応力発光体−光触媒複合体。   4. The stress-stimulated luminescent material-photocatalyst complex according to any one of claims 1 to 3, wherein the photocatalyst particles are titanium dioxide particles.
JP2007323959A 2007-12-14 2007-12-14 Stress-induced light emitting materail-photocatalyst composite Pending JP2009142771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323959A JP2009142771A (en) 2007-12-14 2007-12-14 Stress-induced light emitting materail-photocatalyst composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323959A JP2009142771A (en) 2007-12-14 2007-12-14 Stress-induced light emitting materail-photocatalyst composite

Publications (1)

Publication Number Publication Date
JP2009142771A true JP2009142771A (en) 2009-07-02

Family

ID=40914046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323959A Pending JP2009142771A (en) 2007-12-14 2007-12-14 Stress-induced light emitting materail-photocatalyst composite

Country Status (1)

Country Link
JP (1) JP2009142771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083814A1 (en) * 2013-12-06 2015-06-11 堺化学工業株式会社 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083128A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Stress-driven type photocatalyst system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083128A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Stress-driven type photocatalyst system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083814A1 (en) * 2013-12-06 2015-06-11 堺化学工業株式会社 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body
JP5743044B1 (en) * 2013-12-06 2015-07-01 堺化学工業株式会社 Stress luminescent material, method for producing stress luminescent material, stress luminescent coating composition, resin composition, and stress luminescent material
KR20160094970A (en) * 2013-12-06 2016-08-10 사카이 가가쿠 고교 가부시키가이샤 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body
KR102251725B1 (en) 2013-12-06 2021-05-12 사카이 가가쿠 고교 가부시키가이샤 Stress-induced light-emission material, method for manufacturing stress-induced light-emission material, stress-induced light-emission paint composition, resin composition, and stress-induced light-emission body

Similar Documents

Publication Publication Date Title
Zhou et al. Recent progress in photocatalytic antibacterial
Bai et al. Luminescent ions in advanced composite materials for multifunctional applications
Wang et al. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation
US10874123B2 (en) Phosphor composition having selected surface coatings
JP6313371B2 (en) Method for curing a radiation curable medium comprising an uncured photoactivatable cured polymer
Tan et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform
Li et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles
Xu et al. Anti‐cAngptl4 Ab‐Conjugated N‐TiO2/NaYF4: Yb, Tm Nanocomposite for Near Infrared‐Triggered Drug Release and Enhanced Targeted Cancer Cell Ablation
JP2010270117A (en) Antimicrobial ultraviolet up-conversion composition
Navami et al. Shape controllable ultrasound assisted fabrication of CaZrO3: Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications
JP5770298B2 (en) Luminescent substance and light emitting device having the luminescent substance
Wang et al. Recent advances in Pr 3+-activated persistent phosphors
Liu et al. Light converting phosphor-based photocatalytic composites
CN111253931B (en) Up-conversion core-shell-based covalent organic framework material, and preparation method and application thereof
JP2007238879A (en) Phosphor material and method for producing the same
CN104927864B (en) Rare earth ions doped fluoride matrix visible-ultraviolet upconversion luminescence material, preparation method therefor and application thereof
JP2012518698A (en) Discharge lamp that emits UV light
JP2010037540A (en) Light emitting nano sheet, fluorescent illumination body, solar cell, color display using the same
CN102743752A (en) Composite nano-particles used in inorganic photodynamic therapy, and preparation method thereof
Zhang et al. Enhanced UV–Vis–NIR composite photocatalysis of NaBiF4: Yb3+, Tm3+ upconversion nanoparticles loaded on Bi2WO6 microspheres
JP2009142771A (en) Stress-induced light emitting materail-photocatalyst composite
JP2002346394A (en) Highly efficient photocatalyst composition, paint and substrate using the same and method for coating object using the same
Johnson et al. Bacteria inactivation via X-ray-induced UVC radioluminescence: toward in situ biofouling prevention in membrane modules
Wang et al. Highly luminous hollow chloroapatite phosphors formed by a template-free aerosol route for solid-state lighting
CN113502160B (en) Blue light excited ultraviolet fluorescent powder and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703