JP2009142257A - Method for producing supplement powder, and supplement - Google Patents

Method for producing supplement powder, and supplement Download PDF

Info

Publication number
JP2009142257A
JP2009142257A JP2008035758A JP2008035758A JP2009142257A JP 2009142257 A JP2009142257 A JP 2009142257A JP 2008035758 A JP2008035758 A JP 2008035758A JP 2008035758 A JP2008035758 A JP 2008035758A JP 2009142257 A JP2009142257 A JP 2009142257A
Authority
JP
Japan
Prior art keywords
powder
hydrogen gas
zeolite
porous body
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035758A
Other languages
Japanese (ja)
Other versions
JP4159598B1 (en
Inventor
Yoshiaki Matsuo
至晃 松尾
Kokichi Hanaoka
孝吉 花岡
Ryoichi Otsubo
亮一 大坪
Atsuyoshi Murakami
篤良 村上
Masahiro Kawano
真寛 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLVENT SCIENCE LAB
SOLVENT SCIENCE LABORATORY
Original Assignee
SOLVENT SCIENCE LAB
SOLVENT SCIENCE LABORATORY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLVENT SCIENCE LAB, SOLVENT SCIENCE LABORATORY filed Critical SOLVENT SCIENCE LAB
Priority to JP2008035758A priority Critical patent/JP4159598B1/en
Application granted granted Critical
Publication of JP4159598B1 publication Critical patent/JP4159598B1/en
Priority to PCT/JP2008/003598 priority patent/WO2009104230A1/en
Priority to TW098105125A priority patent/TW200944139A/en
Publication of JP2009142257A publication Critical patent/JP2009142257A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide supplement comprising a natural porous body to which a large amount of molecular hydrogen adsorb and is held. <P>SOLUTION: The method for producing supplement powder is produced based on the study that various organic substances such as natural zeolite are taken in the bone structure even in minute amounts during a process of pressurizing volcanic ash and making the ash come in contact with water, the organic substance is made to have low molecular weight and generates hydrogen gas due to dry distillation, and the generated hydrogen gas remains in micro pores as it is because the diameter of the micropore of zeolite corresponds to a few nanometers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素ガスを吸着(付着)し、且つ吸着した水素ガスの保持能に優れた補助食品用粉体の製造方法、およびこの粉体を腸まで搬送するのに適した形態にした補助食品に関する。   The present invention relates to a method for producing a powder for supplementary food that adsorbs (adheres) hydrogen gas and has an excellent ability to retain the adsorbed hydrogen gas, and an auxiliary in a form suitable for transporting the powder to the intestine. Regarding food.

特許文献1に記載されるように、珊瑚や牡蛎殼、或いは珪酸カルシウムを主成分とするゼオライトは微細なポーラス状となっていることもあってガスや有機物の吸着材として広く利用されている。   As described in Patent Document 1, potatoes, oysters, or zeolite containing calcium silicate as a main component is widely used as an adsorbent for gas and organic matter because it has a fine porous shape.

特許文献2には内部を中空状にした造粒体の材料としてゼオライトが挙げられている。この特許文献2には内部を中空状にした造粒体の利用分野として食品工業が例示され、また造粒体の機能として水素吸蔵も例示されている。   Patent Document 2 mentions zeolite as a material for a granulated body having a hollow interior. In this Patent Document 2, the food industry is exemplified as a field of use of a granulated body having a hollow interior, and hydrogen storage is also exemplified as a function of the granulated body.

珊瑚に関する先行技術としては、特許文献3及び4が挙げられる。これら先行技術には、マイナス水素イオンを付加或いは吸着させた珊瑚カルシウム粉末とその製法が開示されている。
また、サンゴ粉末にマイナス水素イオンを吸着させたとする健康食品がインターネットのウェブサイト(www.kenko-suiso.com)などに紹介されている。
Patent documents 3 and 4 are mentioned as prior art about a bag. These prior arts disclose cocoon powder to which negative hydrogen ions are added or adsorbed and a method for producing the same.
In addition, health foods that coral powder adsorbs negative hydrogen ions are introduced on the Internet website (www.kenko-suiso.com).

また、非特許文献1には、水素イオンと活性酸素との関係についての記載があり、虚血−再灌流による細胞障害に水素イオンが有効であることが記載されている。
特開2007−187312号公報 特開平10−202082号公報 特開2005−245265号公報 特開2007−217351号公報 Nature Medicine 2007 5/8
Non-Patent Document 1 describes the relationship between hydrogen ions and active oxygen, and describes that hydrogen ions are effective for cell damage caused by ischemia-reperfusion.
JP 2007-188731 A Japanese Patent Laid-Open No. 10-202082 JP 2005-245265 A JP 2007-217351 A Nature Medicine 2007 5/8

非特許文献1にも記載されるように、従来から体内の活性酸素を無効化するのに有効な手段として水素分子を構成する水素イオンと電子をフリーラジカルと結合させることが考えられている。しかしながら、水素ガスを溶解した水を飲んでも、また特許文献1、2に記載されたゼオライトや珊瑚を経口サプリメントとして体内に取り入れても有効な結果は得られていない。   As described in Non-Patent Document 1, it has been conventionally considered to combine hydrogen ions and electrons constituting hydrogen molecules with free radicals as an effective means for invalidating active oxygen in the body. However, effective results are not obtained even if drinking water in which hydrogen gas is dissolved, or taking the zeolite or sputum described in Patent Documents 1 and 2 into the body as an oral supplement.

上記の原因の第1は、水に溶解する水素ガスの量は体内の活性酸素を無効化するためには少なく、またゼオライトや珊瑚に十分な量の水素ガスを吸着せせることが困難であることが挙げられる。   The first cause of the above is that the amount of hydrogen gas dissolved in water is small to invalidate the active oxygen in the body, and it is difficult to adsorb a sufficient amount of hydrogen gas to zeolite or soot. Is mentioned.

また、天然の珊瑚(風化珊瑚)の表面積は1m/g程度であり、ゼオライトの表面積は300m/g程度である。つまり、珊瑚の表面には比較的大きな穴が存在しており、水素ガスが吸着保持されるのに好適な穴の大きさは5nm〜50nm程度と考えられるが、珊瑚表面の穴は大きすぎて、珊瑚を水素ガス中に置いても、水素ガスは殆んど保持されない。 Moreover, the surface area of natural soot (weathered soot) is about 1 m 2 / g, and the surface area of zeolite is about 300 m 2 / g. In other words, there are relatively large holes on the surface of the ridge, and the size of the hole suitable for adsorbing and holding hydrogen gas is considered to be about 5 nm to 50 nm, but the hole on the ridge surface is too large. Even if the soot is placed in hydrogen gas, the hydrogen gas is hardly retained.

一方ゼオライトの細孔は極めて小さく、例えばモルデナイトの細孔径は数nmである。この程度の大きさであれば水素ガスを保持することができると考えられる。しかしながら、合成ゼオライトを水素ガス中に置いても、水素ガスは殆んど保持されない。これは細孔径が小さすぎるので、水素ガスが微細孔内に入りにくいからと考えられる。   On the other hand, the pores of zeolite are extremely small. For example, the pore diameter of mordenite is several nm. It is considered that hydrogen gas can be held with this size. However, even if the synthetic zeolite is placed in hydrogen gas, the hydrogen gas is hardly retained. This is presumably because the pore diameter is too small, so that hydrogen gas hardly enters the micropores.

また、特許文献3、4ではマイナス水素イオンを水素元素に更に1個の電子が付加された活性水素(ヒドリドイオン)として捉えている。しかしながら、マイナス水素イオンそのものが生体内に取り込まれると、電子が離れ酸素と反応して体に有害なスーパーオキサイドをはじめとする活性酸素種を誘発するおそれがある。さらにカルシウムにマイナス水素イオンを吸着させた水素化カルシウム(CaH)は非常に強い塩基性を有し、水(HO)と接触すると激しく反応し水素を発生するため、金属と直接接触すると爆発することもある消防法危険物にも該当する物質で、とても生体内でそのまま利用できるものではない。 In Patent Documents 3 and 4, negative hydrogen ions are regarded as active hydrogens (hydride ions) in which one electron is further added to a hydrogen element. However, if negative hydrogen ions themselves are taken into the living body, electrons may leave and react with oxygen to induce reactive oxygen species such as superoxide that is harmful to the body. In addition, calcium hydride (CaH 2 ) in which negative hydrogen ions are adsorbed on calcium has a very strong basicity, and when it comes into contact with water (H 2 O), it reacts violently to generate hydrogen. It is also a substance that falls under the Fire Service Act, which can explode, and it cannot be used as it is in vivo.

有効な結果が得られない第2の原因としては、胃の強烈なpHが考えられる。仮に十分な水素ガスを吸着した珊瑚やゼオライト等の多孔質体を口から取り入れても、胃酸を中和するための水酸イオン(OH)として消費されてしまい体内に水素イオンを取り入れることができないからと考えられる。 The second cause of not obtaining an effective result is considered to be the intense pH of the stomach. Even if a porous material such as soot or zeolite that has adsorbed sufficient hydrogen gas is taken in from the mouth, it is consumed as hydroxide ions (OH ) for neutralizing gastric acid, and hydrogen ions can be taken into the body. It is thought that it is not possible.

本発明者らは、水素ガスの吸収は主として腸管壁、特に小腸の上皮粘膜細胞から行われ、腸管壁から体内に取り入れられた水素は気体であるから、細胞の中でも核の中でも入っていける。そして体内の活性酸素と結合してその活性を喪失させるとの知見を得た。
この知見から、水素ガスを体内に送り込む担体は水ではなく固体が好ましいこと、また固体に水素ガスを保持する際にはある程度持続性が必要であるとの結論を得て本発明を成した。
The inventors of the present invention absorb hydrogen gas mainly from epithelial mucosa cells of the intestinal tract wall, particularly the small intestine, and hydrogen taken into the body from the intestinal tract wall is a gas, so it can enter cells and nuclei. And the knowledge that it combines with the active oxygen in the body and loses its activity was obtained.
From this knowledge, the present invention has been made with the conclusion that the carrier for sending hydrogen gas into the body is preferably solid rather than water, and that a certain degree of sustainability is required when holding the hydrogen gas in the solid.

即ち、本発明に係る補助食品粉体の製造方法は、骨格内に不可避的に有機物が存在する天然多孔質体、例えば天然ゼオライト、珊瑚、コンキオリン(Conciolin、蛋白質)を含有する貝殻(例えばカキ殻、アコヤ貝殻など)、真珠または海泡石を粉砕し、この天然多孔質体を非酸化雰囲気で焼成、即ち乾留することで前記不可避的に存在する有機物を低分子化し、低分子化によって発生した水素ガスを天然多孔質体の微細孔表面に物理的に吸着保持させるようにした。   That is, the method for producing a supplementary food powder according to the present invention includes a natural porous body in which organic matter is unavoidably present in the skeleton, such as natural zeolite, salmon, conchiolin (conciolin, protein) containing a shell (for example, oyster shell). , Pearl oyster shells, etc.), pulverized pearls or aorite, and calcination of this natural porous body in a non-oxidizing atmosphere, that is, dry distillation, to reduce the molecular weight of the organic matter inevitably existed by the low molecular weight Hydrogen gas was physically adsorbed and held on the microporous surface of the natural porous body.

前記乾留の条件としては、窒素ガス雰囲気、300〜500℃、2〜8時間程度が適当である。   As the dry distillation conditions, a nitrogen gas atmosphere, 300 to 500 ° C., and about 2 to 8 hours are suitable.

天然ゼオライトの場合には、火山灰が圧縮され水と接触して形成される過程で、様々な有機物が微量ではあるが骨格内に取り込まれている。そのため乾留することで前記有機物が低分子化して水素ガスを生じる。そして生じた水素ガスはゼオライトの微細孔(ミクロポア)の径が数nmであるので、そのまま微細孔(ミクロポア)内に留まり、徐々に放出されると考えられる。   In the case of natural zeolite, various organic substances are incorporated in the skeleton in a process in which volcanic ash is compressed and formed in contact with water. Therefore, by dry distillation, the organic substance is reduced in molecular weight to generate hydrogen gas. The generated hydrogen gas is considered to remain in the micropores (micropores) as they are, because the diameter of the micropores (micropores) of the zeolite is several nm.

珊瑚や牡蠣殻の場合には、数nmの微細孔は存在せず、径が50nm以上のマクロポアであるので、ゼオライトのように水素ガスがミクロポア内に留まるのではなく、層間に存在していた有機物が消失してできた隙間に水素ガスがそのまま留まると考えられる。   In the case of straw and oyster shells, there are no micropores of several nanometers, and macropores with a diameter of 50 nm or more, so hydrogen gas does not stay in the micropores like zeolite, but exists between the layers. It is considered that the hydrogen gas remains in the gap formed by the disappearance of the organic matter.

また、本発明に係る補助食品は、天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体の表面、またはこの粉体を所定形状に成形した成形体の表面に、腸溶性(アルカリ可溶性)コーティングを施して構成される。   Moreover, the supplement according to the present invention is a powder surface in which hydrogen gas is physically adsorbed and held on the surface of the fine pores by firing the natural porous body in a non-oxidizing atmosphere, or the powder is shaped into a predetermined shape. An enteric (alkali-soluble) coating is applied to the surface of the molded body molded in the above manner.

本発明の別態様の補助食品は、天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体、またはこの粉体を所定形状に成形した成形体を、腸溶性(アルカリ可溶性)カプセル内に収納して構成される。   The supplementary food according to another aspect of the present invention is a powder in which hydrogen gas is physically adsorbed and held on the surface of fine pores by firing a natural porous body in a non-oxidizing atmosphere, or the powder is formed into a predetermined shape. The molded body is stored in an enteric (alkali-soluble) capsule.

また、本発明に係る補助食品用粉体としては、純水(1L)に溶解した場合の溶存水素量(DH)が0.25ppm以上(25℃、1atm)であれば、補助食品としての効果が十分に期待できる。   Moreover, as the powder for supplementary food according to the present invention, if the dissolved hydrogen amount (DH) when dissolved in pure water (1 L) is 0.25 ppm or more (25 ° C., 1 atm), the effect as a supplementary food is obtained. Can be expected enough.

本発明に係る補助食品用粉体か否か、つまり水素ガスが吸着保持されているか否かは酸化還元電位の測定によって検証することもできる。即ち水素ガスが物理的に吸着保持された本発明に係る補助食品用粉体と水素ガスが物理的に吸着保持されていない補助食品用粉体とを同一の水に同一の濃度で溶解させた時の水溶液の酸化還元電位の差は−20〜−300mVである。   Whether or not the powder is for supplementary food according to the present invention, that is, whether or not hydrogen gas is adsorbed and held, can be verified by measuring the redox potential. That is, the supplementary powder according to the present invention in which hydrogen gas is physically adsorbed and retained and the supplementary powder in which hydrogen gas is not physically adsorbed and retained are dissolved in the same water at the same concentration. The difference in redox potential of the aqueous solution at the time is -20 to -300 mV.

同様に、水素ガスが物理的に吸着保持された本発明に係る補助食品用粉体を水に溶解した時の飽和塩化銀電極を比較電極とした酸化還元電位は0〜−400mVである。   Similarly, the oxidation-reduction potential using a saturated silver chloride electrode as a reference electrode when the powder for food supplement according to the present invention in which hydrogen gas is physically adsorbed and held is dissolved in water is 0 to −400 mV.

本発明に係る補助食品用粉体は多量の水素ガスを吸着保持しており、しかも腸まで到達して水素ガスを徐々に放出する。このため、腸管壁(小腸の上皮粘膜細胞)から体内に水素ガスが取り込まれて以下に示した反応式のように活性酸素種の一種である極めて反応性が高く毒性の強いヒドロキシラジカル(・OH)を消去しヒドロキシラジカルによる生体内組織の損傷を防ぐことができる。
+2・OH→2H
上記の式で示したようにヒドロキシラジカルはスーパーオキシドラジカルと比べ強い求核性を示すためである。
The supplementary powder according to the present invention adsorbs and holds a large amount of hydrogen gas, and further reaches the intestines and gradually releases the hydrogen gas. For this reason, hydrogen gas is taken into the body from the intestinal wall (epithelial mucosa cells of the small intestine), and a highly reactive and highly toxic hydroxy radical (.OH) as a kind of active oxygen species as shown in the following reaction formula ) To prevent tissue damage in vivo due to hydroxy radicals.
H 2 + 2 · OH → 2H 2 O
This is because the hydroxy radical exhibits strong nucleophilicity as compared with the superoxide radical as shown in the above formula.

以下に本発明の好適な実施の形態を図面に基づいて説明する。図1(a)は本発明に係る補助食品用粉体としての天然ゼオライト(モルデナイト)の焼成前の断面の模式図、(b)は焼成後の模式図である。   Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 (a) is a schematic view of a cross section before firing of natural zeolite (mordenite) as a supplementary food powder according to the present invention, and FIG. 1 (b) is a schematic view after firing.

(a)に示すように、焼成前の天然ゼオライトには数nm径のミクロポアがアルミノシリケートの基本骨格内に存在し、多数のミクロポアの一部に有機物が取り込まれている。そして、焼成(乾留)後は(b)に示すように、有機物由来の水素ガスがミクロポア内に吸着保持されている。   As shown in (a), micropores with a diameter of several nanometers exist in the basic skeleton of aluminosilicate in the natural zeolite before calcination, and organic substances are incorporated into some of the micropores. And after baking (dry distillation), as shown in (b), hydrogen gas derived from organic matter is adsorbed and held in the micropores.

図2(a)は本発明に係る補助食品用粉体としてのコンキオリンを含有する貝殻の焼成前の断面の模式図、(b)は焼成後の模式図である。(a)に示すように、焼成前の貝殻はCaCOからなる層間にコンキオリン(蛋白質)が保持されている。この蛋白質は通常の条件では脱落することはない。この貝殻を乾留すると(b)に示すように、蛋白質由来の水素ガスが層間に吸着保持されている。 Fig. 2 (a) is a schematic diagram of a cross-section before firing of a shell containing conchiolin as a supplementary powder according to the present invention, and (b) is a schematic diagram after firing. (A), the shells before calcination conchiolin interlayer consisting of CaCO 3 (protein) is held. This protein does not fall off under normal conditions. When this shell is dry-distilled, as shown in (b), protein-derived hydrogen gas is adsorbed and held between the layers.

以下の(表)は本発明に係る補助食品用粉体と比較粉体のH濃度の検量結果を表すものである。 The following (Table) represents the calibration results of the H 2 concentration of the supplementary powder and the comparative powder according to the present invention.

(表)中、ゼオライト−1はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この乾燥した天然ゼオライトの粉体を機密容器に入れ、機密容器内を窒素ガスで置換し、非酸化雰囲気、450℃で3時間乾留して得たものである。   (Table) In zeolite-1, mordenite type natural zeolite is pulverized and dried, the powder of the dried natural zeolite is put in a confidential container, the inside of the confidential container is replaced with nitrogen gas, non-oxidizing atmosphere, 450 ° C. And obtained by dry distillation for 3 hours.

ゼオライト−2はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この粉体50gを300mlのナスフラスコに入れ、ロータリエバポレータに組付け、真空ポンプで減圧(4〜5mmHg)し水素ガスで常圧に戻す。この操作を3回繰り返した後に取り出したものである。   Zeolite-2 is obtained by grinding and drying mordenite-type natural zeolite, putting 50 g of this powder into a 300 ml eggplant flask, assembling it with a rotary evaporator, reducing the pressure with a vacuum pump (4-5 mmHg), and returning to normal pressure with hydrogen gas. . This operation was repeated three times and then removed.

ゼオライト−3はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この粉体50gを300mlオートクレーブに入れ、水素ガス0.5Mpaで3回置換した後、水素ガス圧を0.8MPaまで高めて1時間静置したものである。   For zeolite-3, mordenite-type natural zeolite was pulverized and dried. 50 g of this powder was placed in a 300 ml autoclave and replaced with hydrogen gas 0.5 Mpa three times. Then, the hydrogen gas pressure was increased to 0.8 MPa and the mixture was allowed to stand for 1 hour. It is what I put.

ゼオライト−4はモルデナイト型合成ゼオライト(有機物が骨格内に存在しない)を粉砕して乾燥させ、この乾燥した合成ゼオライトの粉体を機密容器に入れ、機密容器内を窒素ガスで置換し、非酸化雰囲気、450℃で3時間乾留して得たものである。   Zeolite-4 is a mordenite-type synthetic zeolite (no organic matter is present in the framework), dried, put the dried synthetic zeolite powder into a confidential container, and the inside of the confidential container is replaced with nitrogen gas. It was obtained by dry distillation at 450 ° C. for 3 hours in an atmosphere.

サンゴ−1はゼオライト−1と同一の条件で乾留し、サンゴ−2、サンゴ−3はそれぞれゼオライト−2、ゼオライト−3と同一の条件で処理したものである。   Coral-1 is carbonized under the same conditions as zeolite-1, and coral-2 and coral-3 are treated under the same conditions as zeolite-2 and zeolite-3, respectively.

濃度の検量は、容積1200mlガラス製希釈瓶にNを充填した後、Hガス1.2mlを加えてよく混合した。この時瓶中のH濃度は1000ppmとなる。このガスをGC(ガスクロマトグラム)に2回注入してHピークを得て、そのピーク面積値からHの検量ファクターを算出した。
試料の定量は、内容積22mlのガラス製ヘッドスペースバイアルに試料1gを入れた後、純水10mlを添加して直ちにテフロン(登録商標)内張りシリコンゴムをアルミキャップでシールした。これをよく振った後室温で静置し、容器の気相0.5mlをガスタイトシリンジで採取してGCに注入した。
The H 2 concentration was calibrated by adding 1.2 ml of H 2 gas after mixing N 2 into a 1200 ml glass dilution bottle. At this time, the H 2 concentration in the bottle is 1000 ppm. This gas was injected twice into GC (gas chromatogram) to obtain an H 2 peak, and a calibration factor of H 2 was calculated from the peak area value.
For quantification of the sample, 1 g of the sample was put in a glass headspace vial having an internal volume of 22 ml, 10 ml of pure water was added, and immediately, Teflon (lined) lining silicon rubber was sealed with an aluminum cap. This was shaken well and allowed to stand at room temperature, and 0.5 ml of the gas phase in the container was collected with a gas tight syringe and injected into the GC.

分析条件は以下の通りである。
ガスクロマトグラム:島津 GC−14B
データ処理装置:島津クロマトパックC−R7A’
カラム:Molecular Sieve−5A 60-80メッシュ、2m
カラム温度:50℃
検出器:TCD
電流値:60mA
検出器温度:100℃
キャリヤーガス:アルゴン
入口圧:200kPa
アッテネーション:2^0
試料注入量:0.5ml
The analysis conditions are as follows.
Gas chromatogram: Shimadzu GC-14B
Data processor: Shimadzu Chromatopack C-R7A '
Column: Molecular Sieve-5A 60-80 mesh, 2m
Column temperature: 50 ° C
Detector: TCD
Current value: 60 mA
Detector temperature: 100 ° C
Carrier gas: Argon inlet pressure: 200 kPa
Attenuation: 2 ^ 0
Sample injection volume: 0.5 ml

(表)から以下のことが判明した。
骨格生成の過程で内部に不可避的に有機物が存在する天然ゼオライト、またはサンゴを乾留したものを水に溶かすと水素が発生する。また、乾留せずに外部から水素置換を試みた場合も、同様に水に溶かすと水素が発生する。しかもH濃度は殆んど変わらない。
一方、骨格内に有機物を保持させていない合成ゼオライトを乾留したものを水に溶かしても水素は発生しない。
From the table, the following was found.
In the process of skeleton formation, hydrogen is generated when natural zeolite, in which organic substances are inevitably present in the interior, or coral obtained by dry distillation, is dissolved in water. Also, when hydrogen substitution is attempted from outside without dry distillation, hydrogen is similarly generated when dissolved in water. Moreover, the H 2 concentration is almost unchanged.
On the other hand, hydrogen is not generated even if a synthetic zeolite obtained by dry distillation of a synthetic zeolite that does not retain organic substances in the skeleton is dissolved in water.

以上から、天然ゼオライトの場合には生成の過程で不可避的に保持されている有機物が乾留によって低分子化し、最終的に水素ガスとして図1(b)に示したようにゼオライトのミクロポア内に吸着保持され、またサンゴや貝殻の場合には図2(b)に示したように炭酸カルシウムからなる層間の隙間に水素ガスが保持されると考えられる。   From the above, in the case of natural zeolite, the organic matter inevitably retained in the process of formation is reduced in molecular weight by dry distillation, and finally adsorbed as hydrogen gas in the micropores of the zeolite as shown in FIG. In the case of corals and shells, it is considered that hydrogen gas is held in a gap between layers made of calcium carbonate as shown in FIG.

図3(a)は、水素ガスを吸着保持した補助食品用粉体を造粒した成形体の表面に腸溶性コーティングを施したものであり、(b)は前記補助食品用粉体を腸溶性カプセル内に収容したものである。   FIG. 3 (a) shows an enteric coating on the surface of a molded body obtained by granulating a powder for supplementary food that has adsorbed and held hydrogen gas, and (b) shows that the powder for supplementary food is enteric-coated. It is housed in a capsule.

前記腸溶性コーティングとしては、メタクリル酸コポリマー、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、カルボキシメチルセルロース(CMEC)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、メタクリル酸−アクリル酸エチルエステル共重合体、メタクリル酸−メタクリル酸メチルエステル共重合体、プロピレングリコール、ソルビタンモノラウレート、酢酸フタル酸セルロース(CAP)、酢酸トリメリト酸セルロース、フタル酸ヒドロキシプロピルメチルセルロース(HPMCP)、メタクリレート、キトサン、グアールガム、ペクチン、ローカスビーンガム及びポリエチレングリコール(PEG)、セラックなどが挙げられる。   Examples of the enteric coating include methacrylic acid copolymer, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylcellulose (CMEC), cellulose acetate phthalate, cellulose acetate trimellitate, methacrylic acid-acrylic acid ethyl ester copolymer, Methacrylic acid-methacrylic acid methyl ester copolymer, propylene glycol, sorbitan monolaurate, cellulose acetate phthalate (CAP), cellulose acetate trimellitic acid, hydroxypropyl methylcellulose phthalate (HPMCP), methacrylate, chitosan, guar gum, pectin, locus Examples include bean gum, polyethylene glycol (PEG), shellac, and the like.

腸溶性カプセルとしては、ゼラチン、セルロース類またはでんぷんからなるカプセルの表面に上記腸溶性コーティング液を塗布したもの、或いはカプセル自体を腸溶性としたもの、例えば上記のゼラチン、セルロース類またはでんぷんにペクチン、アルギン酸、アルギン酸ナトリウム、アルギン酸カルシウム、カルボキシメチルセルロース、セルロースアセテートフタレートなどのセルロース類、メタクリル酸コポリマーなどを混合したものが考えられる。   As the enteric capsule, the above-mentioned enteric coating liquid is applied to the surface of a capsule made of gelatin, celluloses or starch, or the capsule itself is enteric, for example, the above gelatin, celluloses or starch pectin, A mixture of alginic acid, sodium alginate, calcium alginate, carboxymethylcellulose, celluloses such as cellulose acetate phthalate, methacrylic acid copolymer, and the like can be considered.

前記ゼラチンは、胃酸に溶けることなく、気温が上昇してもカプセル同士が付着せず、かつガスバリアー性も高いが、腸溶性ではない。そこで、ゼラチンのNH基とカラギーナンのSO基をイオン架橋させることによって、ゼラチンの性質を腸溶性にすることもできる。 The gelatin does not dissolve in stomach acid, does not adhere to capsules even when the temperature rises, and has high gas barrier properties, but is not enteric. Therefore, the properties of gelatin can be made enteric by ion-crosslinking the NH 2 group of gelatin and the SO 3 group of carrageenan.

また、腸溶性カプセルの作製方法としてはエマルションの作成方法を利用してもよい。例えば、水素ガスを飽和状態まで溶解させたアルギン酸水溶液を用意し、このアルギン酸水溶液に前記水素ガスを吸着保持した焼成ゼオライト粉末(珊瑚粉末、カキ殻粉末、アコヤ貝殻粉末、真珠粉末または海泡石粉末など)を溶解してこれを分散相とする。一方カルシウム水溶液を連続相として用意する。   Moreover, as a method for producing an enteric capsule, an emulsion production method may be used. For example, an alginic acid aqueous solution in which hydrogen gas is dissolved to a saturated state is prepared, and the calcined zeolite powder (salt powder, oyster shell powder, pearl oyster shell powder, pearl powder or foam stone powder, in which the hydrogen gas is adsorbed and held in the aqueous alginic acid solution. Etc.) is dissolved to form a dispersed phase. On the other hand, an aqueous calcium solution is prepared as a continuous phase.

そして、前記分散相と連続相を隔壁を介して分離し、分散相に圧力をかけることで隔壁に形成した貫通穴を介して分散相を連続相中に粒子状に送り込む。すると、送り込まれた分散相粒子を構成するアルギン酸と連続相中のカルシウムとが反応して酸不溶性でアルカリ可溶性のアルギン酸カルシウム膜が分散相粒子の表面に形成され、このアルギン酸カルシウム膜が腸溶性カプセルとなる。   And the said dispersed phase and a continuous phase are isolate | separated through a partition, and a dispersed phase is sent in a particulate form through the through-hole formed in the partition by applying a pressure to a dispersed phase. Then, alginic acid constituting the fed dispersed phase particles reacts with calcium in the continuous phase to form an acid-insoluble and alkali-soluble calcium alginate film on the surface of the dispersed phase particles. This calcium alginate film is enteric capsule. It becomes.

(a)は本発明に係る補助食品用粉体としての天然ゼオライト(モルデナイト)の焼成前の断面の模式図、(b)は焼成後の模式図(A) is the schematic diagram of the cross section before baking of the natural zeolite (mordenite) as the powder for supplementary foods concerning this invention, (b) is the schematic diagram after baking. (a)は本発明に係る補助食品用粉体としてのコンキオリン(蛋白質)を含有する貝殻の焼成前の断面の模式図、(b)は焼成後の模式図(A) is the schematic diagram of the cross section before baking of the shell containing the conchiolin (protein) as the powder for supplementary foods concerning this invention, (b) is the schematic diagram after baking. (a)は、水素ガスを吸着保持した補助食品用粉体を造粒した成形体の表面に腸溶性コーティングを施した図、(b)は前記補助食品用粉体を腸溶性カプセル内に収容した図(A) is the figure which applied enteric coating to the surface of the molded object which granulated the powder for supplementary food which adsorbed and hold | maintained hydrogen gas, (b) accommodates the said powder for supplementary food in an enteric capsule Figure

Claims (5)

骨格内に不可避的に有機物が存在する天然多孔質体を粉砕し、この天然多孔質体を非酸化雰囲気で焼成することで前記不可避的に存在する有機物を低分子化し、低分子化によって発生した水素ガスを天然多孔質体の微細孔表面に物理的に吸着保持させることを特徴とする補助食品用粉体の製造方法。 The natural porous body in which organic matter is inevitably present in the skeleton is pulverized, and the natural porous body is baked in a non-oxidizing atmosphere to lower the molecular weight of the inevitable organic matter. A method for producing a powder for supplementary food, characterized in that hydrogen gas is physically adsorbed and held on the fine pore surfaces of a natural porous body. 請求項1に記載の補助食品用粉体の製造方法において、前記天然多孔質体は、天然ゼオライト、珊瑚、コンキオリン(蛋白質)を含有する貝殻、真珠または海泡石であることを特徴とする補助食品用粉体の製造方法。 2. The method for producing a powder for supplementary food according to claim 1, wherein the natural porous body is a shell, pearl, or sea foam containing natural zeolite, straw, conchiolin (protein). A method for producing a powder for food. 天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体の表面、またはこの粉体を所定形状に成形した成形体の表面に、腸溶性コーティングを施したことを特徴とする補助食品。 The natural porous body is baked in a non-oxidizing atmosphere, and the surface of the powder in which hydrogen gas is physically adsorbed and held on the surface of the fine pores, or the surface of the molded body obtained by molding this powder into a predetermined shape, Supplementary food characterized by a soluble coating. 天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体、またはこの粉体を所定形状に成形した成形体を、腸溶性カプセル内に収納したことを特徴とする補助食品。 A powder in which hydrogen gas is physically adsorbed and held on the surface of fine pores by firing a natural porous body in a non-oxidizing atmosphere, or a molded body in which this powder is molded into a predetermined shape is placed in an enteric capsule. Supplementary food characterized by storage. 請求項3または請求項4に記載の補助食品において、前記天然多孔質体は、天然ゼオライト、珊瑚、コンキオリン(蛋白質)を含有する貝殻、真珠または海泡石であることを特徴とする補助食品。
The supplementary food according to claim 3 or 4, wherein the natural porous body is a shell, pearl, or cuff stone containing natural zeolite, straw, conchiolin (protein).
JP2008035758A 2007-11-22 2008-02-18 Supplementary powder manufacturing method and supplement Expired - Fee Related JP4159598B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008035758A JP4159598B1 (en) 2007-11-22 2008-02-18 Supplementary powder manufacturing method and supplement
PCT/JP2008/003598 WO2009104230A1 (en) 2008-02-18 2008-12-04 Process for producing powder for supplemental food and supplemental food
TW098105125A TW200944139A (en) 2008-02-18 2009-02-18 Process for producing powder for supplemental food and supplemental food

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007302376 2007-11-22
JP2007302374 2007-11-22
JP2008035758A JP4159598B1 (en) 2007-11-22 2008-02-18 Supplementary powder manufacturing method and supplement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008150047A Division JP2009142258A (en) 2007-11-22 2008-06-09 Method for producing supplement powder, and supplement

Publications (2)

Publication Number Publication Date
JP4159598B1 JP4159598B1 (en) 2008-10-01
JP2009142257A true JP2009142257A (en) 2009-07-02

Family

ID=39916177

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008035758A Expired - Fee Related JP4159598B1 (en) 2007-11-22 2008-02-18 Supplementary powder manufacturing method and supplement
JP2008150047A Pending JP2009142258A (en) 2007-11-22 2008-06-09 Method for producing supplement powder, and supplement

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008150047A Pending JP2009142258A (en) 2007-11-22 2008-06-09 Method for producing supplement powder, and supplement

Country Status (1)

Country Link
JP (2) JP4159598B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007778A1 (en) * 2008-07-15 2010-01-21 株式会社インテリジェントアセットマネジメント Method for production of powder for supplementary food, and supplementary food
JP2014031299A (en) * 2012-08-06 2014-02-20 Life Produce Co Ltd Method for manufacturing hydrogen storage material, and hydrogen storage material
WO2014077088A1 (en) * 2012-11-13 2014-05-22 株式会社エヌエクス Method for producing fired product of freshwater clam shell, and composition for ameliorating hepatic dysfunction which contains said fired product as active ingredient
JP2020033197A (en) * 2018-08-27 2020-03-05 株式会社アッチェ Producing method of hydrogen-carrying powder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4472022B1 (en) * 2009-12-11 2010-06-02 株式会社Enagegate Hydrogen gas-containing calcium carbonate and method for producing the same
CN101971982A (en) * 2010-08-26 2011-02-16 陈传雁 Oyster shell powder containing hydrogen and manufacture method thereof
JP4729649B1 (en) * 2010-12-10 2011-07-20 株式会社バイオレドックス研究所 Hydrogen gas-containing calcium carbonate and method for producing the same
KR102213003B1 (en) 2020-06-30 2021-02-05 최형일 Expanded Polystyrene Foam Non-Combustible Composition, Method of Preparing the Same and Non-Combustible Expanded Polystyrene Foam Using the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007778A1 (en) * 2008-07-15 2010-01-21 株式会社インテリジェントアセットマネジメント Method for production of powder for supplementary food, and supplementary food
JP2014031299A (en) * 2012-08-06 2014-02-20 Life Produce Co Ltd Method for manufacturing hydrogen storage material, and hydrogen storage material
WO2014077088A1 (en) * 2012-11-13 2014-05-22 株式会社エヌエクス Method for producing fired product of freshwater clam shell, and composition for ameliorating hepatic dysfunction which contains said fired product as active ingredient
JP2020033197A (en) * 2018-08-27 2020-03-05 株式会社アッチェ Producing method of hydrogen-carrying powder
JP7125710B2 (en) 2018-08-27 2022-08-25 株式会社アッチェ Method for producing hydrogen-supported powder

Also Published As

Publication number Publication date
JP2009142258A (en) 2009-07-02
JP4159598B1 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2010007778A1 (en) Method for production of powder for supplementary food, and supplementary food
JP4159598B1 (en) Supplementary powder manufacturing method and supplement
JP5168240B2 (en) Adsorbents, cleansing agents, kidney disease therapeutic agents, and functional foods
TWI404539B (en) Absorbing agent for medical use
EP2628483B1 (en) Medical adsorbent and method for producing same
JP2012211043A (en) Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold, mask, carbon/polymer composite, adsorbing sheet, and functional food
JP2006509771A5 (en)
JP2013047175A (en) Adsorbent, cleansing agent, renal disease treating medicine, functional food, and cell culturing material
JP2011121819A (en) Hydrogen gas-containing calcium carbonate and method for producing the same
Wen et al. Porous hollow silica nanoparticles as carriers for controlled delivery of ibuprofen to small intestine
JP2012121782A (en) Hydrogen gas-containing calcium carbonate and method for producing the same
WO2010086985A1 (en) Adsorbent for oral administration
TWI520751B (en) Adsorbent for oral administration, and agent for treating renal or liver disease
KR101858418B1 (en) Adsorbent for oral administration, therapeutic agent for renal diseases and therapeutic agent for hepatic diseases
WO2009104230A1 (en) Process for producing powder for supplemental food and supplemental food
JP5985027B2 (en) Method for producing pharmaceutical adsorbent for oral administration
Hirai et al. Adsorption capacity of activated carbon-encapsulated hollow-type spherical bacterial cellulose gels for uremic toxins in a simulated human gastrointestinal environment
CN108101146A (en) Strontium element and radon element sepatation process in rich strontium water
JP6386571B2 (en) Orally administered pharmaceutical adsorbent with increased strength
CN116082697B (en) Yeast-based nanofiber aerogel and use thereof in lead poisoning and lead removal
CN117414341A (en) Dapoxetine hydrochloride tablet and preparation method thereof
JP2005270948A (en) Salt adsorbent sealed capsule
TWI587878B (en) Oral toxic adsorbent
CN116078351A (en) Preparation method of indoor air treatment medicament and indoor air treatment medicament
Siswanto et al. Formulation of Metformin Hydrochloride Floating Tablet With HPMC K4m Cr And Sodium Bicarbonate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees