JP2009142257A - Method for producing supplement powder, and supplement - Google Patents
Method for producing supplement powder, and supplement Download PDFInfo
- Publication number
- JP2009142257A JP2009142257A JP2008035758A JP2008035758A JP2009142257A JP 2009142257 A JP2009142257 A JP 2009142257A JP 2008035758 A JP2008035758 A JP 2008035758A JP 2008035758 A JP2008035758 A JP 2008035758A JP 2009142257 A JP2009142257 A JP 2009142257A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- hydrogen gas
- zeolite
- porous body
- natural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
本発明は、水素ガスを吸着(付着)し、且つ吸着した水素ガスの保持能に優れた補助食品用粉体の製造方法、およびこの粉体を腸まで搬送するのに適した形態にした補助食品に関する。 The present invention relates to a method for producing a powder for supplementary food that adsorbs (adheres) hydrogen gas and has an excellent ability to retain the adsorbed hydrogen gas, and an auxiliary in a form suitable for transporting the powder to the intestine. Regarding food.
特許文献1に記載されるように、珊瑚や牡蛎殼、或いは珪酸カルシウムを主成分とするゼオライトは微細なポーラス状となっていることもあってガスや有機物の吸着材として広く利用されている。 As described in Patent Document 1, potatoes, oysters, or zeolite containing calcium silicate as a main component is widely used as an adsorbent for gas and organic matter because it has a fine porous shape.
特許文献2には内部を中空状にした造粒体の材料としてゼオライトが挙げられている。この特許文献2には内部を中空状にした造粒体の利用分野として食品工業が例示され、また造粒体の機能として水素吸蔵も例示されている。 Patent Document 2 mentions zeolite as a material for a granulated body having a hollow interior. In this Patent Document 2, the food industry is exemplified as a field of use of a granulated body having a hollow interior, and hydrogen storage is also exemplified as a function of the granulated body.
珊瑚に関する先行技術としては、特許文献3及び4が挙げられる。これら先行技術には、マイナス水素イオンを付加或いは吸着させた珊瑚カルシウム粉末とその製法が開示されている。
また、サンゴ粉末にマイナス水素イオンを吸着させたとする健康食品がインターネットのウェブサイト(www.kenko-suiso.com)などに紹介されている。
Patent documents 3 and 4 are mentioned as prior art about a bag. These prior arts disclose cocoon powder to which negative hydrogen ions are added or adsorbed and a method for producing the same.
In addition, health foods that coral powder adsorbs negative hydrogen ions are introduced on the Internet website (www.kenko-suiso.com).
また、非特許文献1には、水素イオンと活性酸素との関係についての記載があり、虚血−再灌流による細胞障害に水素イオンが有効であることが記載されている。
非特許文献1にも記載されるように、従来から体内の活性酸素を無効化するのに有効な手段として水素分子を構成する水素イオンと電子をフリーラジカルと結合させることが考えられている。しかしながら、水素ガスを溶解した水を飲んでも、また特許文献1、2に記載されたゼオライトや珊瑚を経口サプリメントとして体内に取り入れても有効な結果は得られていない。 As described in Non-Patent Document 1, it has been conventionally considered to combine hydrogen ions and electrons constituting hydrogen molecules with free radicals as an effective means for invalidating active oxygen in the body. However, effective results are not obtained even if drinking water in which hydrogen gas is dissolved, or taking the zeolite or sputum described in Patent Documents 1 and 2 into the body as an oral supplement.
上記の原因の第1は、水に溶解する水素ガスの量は体内の活性酸素を無効化するためには少なく、またゼオライトや珊瑚に十分な量の水素ガスを吸着せせることが困難であることが挙げられる。 The first cause of the above is that the amount of hydrogen gas dissolved in water is small to invalidate the active oxygen in the body, and it is difficult to adsorb a sufficient amount of hydrogen gas to zeolite or soot. Is mentioned.
また、天然の珊瑚(風化珊瑚)の表面積は1m2/g程度であり、ゼオライトの表面積は300m2/g程度である。つまり、珊瑚の表面には比較的大きな穴が存在しており、水素ガスが吸着保持されるのに好適な穴の大きさは5nm〜50nm程度と考えられるが、珊瑚表面の穴は大きすぎて、珊瑚を水素ガス中に置いても、水素ガスは殆んど保持されない。 Moreover, the surface area of natural soot (weathered soot) is about 1 m 2 / g, and the surface area of zeolite is about 300 m 2 / g. In other words, there are relatively large holes on the surface of the ridge, and the size of the hole suitable for adsorbing and holding hydrogen gas is considered to be about 5 nm to 50 nm, but the hole on the ridge surface is too large. Even if the soot is placed in hydrogen gas, the hydrogen gas is hardly retained.
一方ゼオライトの細孔は極めて小さく、例えばモルデナイトの細孔径は数nmである。この程度の大きさであれば水素ガスを保持することができると考えられる。しかしながら、合成ゼオライトを水素ガス中に置いても、水素ガスは殆んど保持されない。これは細孔径が小さすぎるので、水素ガスが微細孔内に入りにくいからと考えられる。 On the other hand, the pores of zeolite are extremely small. For example, the pore diameter of mordenite is several nm. It is considered that hydrogen gas can be held with this size. However, even if the synthetic zeolite is placed in hydrogen gas, the hydrogen gas is hardly retained. This is presumably because the pore diameter is too small, so that hydrogen gas hardly enters the micropores.
また、特許文献3、4ではマイナス水素イオンを水素元素に更に1個の電子が付加された活性水素(ヒドリドイオン)として捉えている。しかしながら、マイナス水素イオンそのものが生体内に取り込まれると、電子が離れ酸素と反応して体に有害なスーパーオキサイドをはじめとする活性酸素種を誘発するおそれがある。さらにカルシウムにマイナス水素イオンを吸着させた水素化カルシウム(CaH2)は非常に強い塩基性を有し、水(H2O)と接触すると激しく反応し水素を発生するため、金属と直接接触すると爆発することもある消防法危険物にも該当する物質で、とても生体内でそのまま利用できるものではない。 In Patent Documents 3 and 4, negative hydrogen ions are regarded as active hydrogens (hydride ions) in which one electron is further added to a hydrogen element. However, if negative hydrogen ions themselves are taken into the living body, electrons may leave and react with oxygen to induce reactive oxygen species such as superoxide that is harmful to the body. In addition, calcium hydride (CaH 2 ) in which negative hydrogen ions are adsorbed on calcium has a very strong basicity, and when it comes into contact with water (H 2 O), it reacts violently to generate hydrogen. It is also a substance that falls under the Fire Service Act, which can explode, and it cannot be used as it is in vivo.
有効な結果が得られない第2の原因としては、胃の強烈なpHが考えられる。仮に十分な水素ガスを吸着した珊瑚やゼオライト等の多孔質体を口から取り入れても、胃酸を中和するための水酸イオン(OH−)として消費されてしまい体内に水素イオンを取り入れることができないからと考えられる。 The second cause of not obtaining an effective result is considered to be the intense pH of the stomach. Even if a porous material such as soot or zeolite that has adsorbed sufficient hydrogen gas is taken in from the mouth, it is consumed as hydroxide ions (OH − ) for neutralizing gastric acid, and hydrogen ions can be taken into the body. It is thought that it is not possible.
本発明者らは、水素ガスの吸収は主として腸管壁、特に小腸の上皮粘膜細胞から行われ、腸管壁から体内に取り入れられた水素は気体であるから、細胞の中でも核の中でも入っていける。そして体内の活性酸素と結合してその活性を喪失させるとの知見を得た。
この知見から、水素ガスを体内に送り込む担体は水ではなく固体が好ましいこと、また固体に水素ガスを保持する際にはある程度持続性が必要であるとの結論を得て本発明を成した。
The inventors of the present invention absorb hydrogen gas mainly from epithelial mucosa cells of the intestinal tract wall, particularly the small intestine, and hydrogen taken into the body from the intestinal tract wall is a gas, so it can enter cells and nuclei. And the knowledge that it combines with the active oxygen in the body and loses its activity was obtained.
From this knowledge, the present invention has been made with the conclusion that the carrier for sending hydrogen gas into the body is preferably solid rather than water, and that a certain degree of sustainability is required when holding the hydrogen gas in the solid.
即ち、本発明に係る補助食品粉体の製造方法は、骨格内に不可避的に有機物が存在する天然多孔質体、例えば天然ゼオライト、珊瑚、コンキオリン(Conciolin、蛋白質)を含有する貝殻(例えばカキ殻、アコヤ貝殻など)、真珠または海泡石を粉砕し、この天然多孔質体を非酸化雰囲気で焼成、即ち乾留することで前記不可避的に存在する有機物を低分子化し、低分子化によって発生した水素ガスを天然多孔質体の微細孔表面に物理的に吸着保持させるようにした。 That is, the method for producing a supplementary food powder according to the present invention includes a natural porous body in which organic matter is unavoidably present in the skeleton, such as natural zeolite, salmon, conchiolin (conciolin, protein) containing a shell (for example, oyster shell). , Pearl oyster shells, etc.), pulverized pearls or aorite, and calcination of this natural porous body in a non-oxidizing atmosphere, that is, dry distillation, to reduce the molecular weight of the organic matter inevitably existed by the low molecular weight Hydrogen gas was physically adsorbed and held on the microporous surface of the natural porous body.
前記乾留の条件としては、窒素ガス雰囲気、300〜500℃、2〜8時間程度が適当である。 As the dry distillation conditions, a nitrogen gas atmosphere, 300 to 500 ° C., and about 2 to 8 hours are suitable.
天然ゼオライトの場合には、火山灰が圧縮され水と接触して形成される過程で、様々な有機物が微量ではあるが骨格内に取り込まれている。そのため乾留することで前記有機物が低分子化して水素ガスを生じる。そして生じた水素ガスはゼオライトの微細孔(ミクロポア)の径が数nmであるので、そのまま微細孔(ミクロポア)内に留まり、徐々に放出されると考えられる。 In the case of natural zeolite, various organic substances are incorporated in the skeleton in a process in which volcanic ash is compressed and formed in contact with water. Therefore, by dry distillation, the organic substance is reduced in molecular weight to generate hydrogen gas. The generated hydrogen gas is considered to remain in the micropores (micropores) as they are, because the diameter of the micropores (micropores) of the zeolite is several nm.
珊瑚や牡蠣殻の場合には、数nmの微細孔は存在せず、径が50nm以上のマクロポアであるので、ゼオライトのように水素ガスがミクロポア内に留まるのではなく、層間に存在していた有機物が消失してできた隙間に水素ガスがそのまま留まると考えられる。 In the case of straw and oyster shells, there are no micropores of several nanometers, and macropores with a diameter of 50 nm or more, so hydrogen gas does not stay in the micropores like zeolite, but exists between the layers. It is considered that the hydrogen gas remains in the gap formed by the disappearance of the organic matter.
また、本発明に係る補助食品は、天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体の表面、またはこの粉体を所定形状に成形した成形体の表面に、腸溶性(アルカリ可溶性)コーティングを施して構成される。 Moreover, the supplement according to the present invention is a powder surface in which hydrogen gas is physically adsorbed and held on the surface of the fine pores by firing the natural porous body in a non-oxidizing atmosphere, or the powder is shaped into a predetermined shape. An enteric (alkali-soluble) coating is applied to the surface of the molded body molded in the above manner.
本発明の別態様の補助食品は、天然多孔質体を非酸化雰囲気で焼成することで微細孔表面に水素ガスが物理的に吸着保持されている粉体、またはこの粉体を所定形状に成形した成形体を、腸溶性(アルカリ可溶性)カプセル内に収納して構成される。 The supplementary food according to another aspect of the present invention is a powder in which hydrogen gas is physically adsorbed and held on the surface of fine pores by firing a natural porous body in a non-oxidizing atmosphere, or the powder is formed into a predetermined shape. The molded body is stored in an enteric (alkali-soluble) capsule.
また、本発明に係る補助食品用粉体としては、純水(1L)に溶解した場合の溶存水素量(DH)が0.25ppm以上(25℃、1atm)であれば、補助食品としての効果が十分に期待できる。 Moreover, as the powder for supplementary food according to the present invention, if the dissolved hydrogen amount (DH) when dissolved in pure water (1 L) is 0.25 ppm or more (25 ° C., 1 atm), the effect as a supplementary food is obtained. Can be expected enough.
本発明に係る補助食品用粉体か否か、つまり水素ガスが吸着保持されているか否かは酸化還元電位の測定によって検証することもできる。即ち水素ガスが物理的に吸着保持された本発明に係る補助食品用粉体と水素ガスが物理的に吸着保持されていない補助食品用粉体とを同一の水に同一の濃度で溶解させた時の水溶液の酸化還元電位の差は−20〜−300mVである。 Whether or not the powder is for supplementary food according to the present invention, that is, whether or not hydrogen gas is adsorbed and held, can be verified by measuring the redox potential. That is, the supplementary powder according to the present invention in which hydrogen gas is physically adsorbed and retained and the supplementary powder in which hydrogen gas is not physically adsorbed and retained are dissolved in the same water at the same concentration. The difference in redox potential of the aqueous solution at the time is -20 to -300 mV.
同様に、水素ガスが物理的に吸着保持された本発明に係る補助食品用粉体を水に溶解した時の飽和塩化銀電極を比較電極とした酸化還元電位は0〜−400mVである。 Similarly, the oxidation-reduction potential using a saturated silver chloride electrode as a reference electrode when the powder for food supplement according to the present invention in which hydrogen gas is physically adsorbed and held is dissolved in water is 0 to −400 mV.
本発明に係る補助食品用粉体は多量の水素ガスを吸着保持しており、しかも腸まで到達して水素ガスを徐々に放出する。このため、腸管壁(小腸の上皮粘膜細胞)から体内に水素ガスが取り込まれて以下に示した反応式のように活性酸素種の一種である極めて反応性が高く毒性の強いヒドロキシラジカル(・OH)を消去しヒドロキシラジカルによる生体内組織の損傷を防ぐことができる。
H2+2・OH→2H2O
上記の式で示したようにヒドロキシラジカルはスーパーオキシドラジカルと比べ強い求核性を示すためである。
The supplementary powder according to the present invention adsorbs and holds a large amount of hydrogen gas, and further reaches the intestines and gradually releases the hydrogen gas. For this reason, hydrogen gas is taken into the body from the intestinal wall (epithelial mucosa cells of the small intestine), and a highly reactive and highly toxic hydroxy radical (.OH) as a kind of active oxygen species as shown in the following reaction formula ) To prevent tissue damage in vivo due to hydroxy radicals.
H 2 + 2 · OH → 2H 2 O
This is because the hydroxy radical exhibits strong nucleophilicity as compared with the superoxide radical as shown in the above formula.
以下に本発明の好適な実施の形態を図面に基づいて説明する。図1(a)は本発明に係る補助食品用粉体としての天然ゼオライト(モルデナイト)の焼成前の断面の模式図、(b)は焼成後の模式図である。 Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 (a) is a schematic view of a cross section before firing of natural zeolite (mordenite) as a supplementary food powder according to the present invention, and FIG. 1 (b) is a schematic view after firing.
(a)に示すように、焼成前の天然ゼオライトには数nm径のミクロポアがアルミノシリケートの基本骨格内に存在し、多数のミクロポアの一部に有機物が取り込まれている。そして、焼成(乾留)後は(b)に示すように、有機物由来の水素ガスがミクロポア内に吸着保持されている。 As shown in (a), micropores with a diameter of several nanometers exist in the basic skeleton of aluminosilicate in the natural zeolite before calcination, and organic substances are incorporated into some of the micropores. And after baking (dry distillation), as shown in (b), hydrogen gas derived from organic matter is adsorbed and held in the micropores.
図2(a)は本発明に係る補助食品用粉体としてのコンキオリンを含有する貝殻の焼成前の断面の模式図、(b)は焼成後の模式図である。(a)に示すように、焼成前の貝殻はCaCO3からなる層間にコンキオリン(蛋白質)が保持されている。この蛋白質は通常の条件では脱落することはない。この貝殻を乾留すると(b)に示すように、蛋白質由来の水素ガスが層間に吸着保持されている。 Fig. 2 (a) is a schematic diagram of a cross-section before firing of a shell containing conchiolin as a supplementary powder according to the present invention, and (b) is a schematic diagram after firing. (A), the shells before calcination conchiolin interlayer consisting of CaCO 3 (protein) is held. This protein does not fall off under normal conditions. When this shell is dry-distilled, as shown in (b), protein-derived hydrogen gas is adsorbed and held between the layers.
以下の(表)は本発明に係る補助食品用粉体と比較粉体のH2濃度の検量結果を表すものである。 The following (Table) represents the calibration results of the H 2 concentration of the supplementary powder and the comparative powder according to the present invention.
(表)中、ゼオライト−1はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この乾燥した天然ゼオライトの粉体を機密容器に入れ、機密容器内を窒素ガスで置換し、非酸化雰囲気、450℃で3時間乾留して得たものである。 (Table) In zeolite-1, mordenite type natural zeolite is pulverized and dried, the powder of the dried natural zeolite is put in a confidential container, the inside of the confidential container is replaced with nitrogen gas, non-oxidizing atmosphere, 450 ° C. And obtained by dry distillation for 3 hours.
ゼオライト−2はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この粉体50gを300mlのナスフラスコに入れ、ロータリエバポレータに組付け、真空ポンプで減圧(4〜5mmHg)し水素ガスで常圧に戻す。この操作を3回繰り返した後に取り出したものである。 Zeolite-2 is obtained by grinding and drying mordenite-type natural zeolite, putting 50 g of this powder into a 300 ml eggplant flask, assembling it with a rotary evaporator, reducing the pressure with a vacuum pump (4-5 mmHg), and returning to normal pressure with hydrogen gas. . This operation was repeated three times and then removed.
ゼオライト−3はモルデナイト型天然ゼオライトを粉砕して乾燥させ、この粉体50gを300mlオートクレーブに入れ、水素ガス0.5Mpaで3回置換した後、水素ガス圧を0.8MPaまで高めて1時間静置したものである。 For zeolite-3, mordenite-type natural zeolite was pulverized and dried. 50 g of this powder was placed in a 300 ml autoclave and replaced with hydrogen gas 0.5 Mpa three times. Then, the hydrogen gas pressure was increased to 0.8 MPa and the mixture was allowed to stand for 1 hour. It is what I put.
ゼオライト−4はモルデナイト型合成ゼオライト(有機物が骨格内に存在しない)を粉砕して乾燥させ、この乾燥した合成ゼオライトの粉体を機密容器に入れ、機密容器内を窒素ガスで置換し、非酸化雰囲気、450℃で3時間乾留して得たものである。 Zeolite-4 is a mordenite-type synthetic zeolite (no organic matter is present in the framework), dried, put the dried synthetic zeolite powder into a confidential container, and the inside of the confidential container is replaced with nitrogen gas. It was obtained by dry distillation at 450 ° C. for 3 hours in an atmosphere.
サンゴ−1はゼオライト−1と同一の条件で乾留し、サンゴ−2、サンゴ−3はそれぞれゼオライト−2、ゼオライト−3と同一の条件で処理したものである。 Coral-1 is carbonized under the same conditions as zeolite-1, and coral-2 and coral-3 are treated under the same conditions as zeolite-2 and zeolite-3, respectively.
H2濃度の検量は、容積1200mlガラス製希釈瓶にN2を充填した後、H2ガス1.2mlを加えてよく混合した。この時瓶中のH2濃度は1000ppmとなる。このガスをGC(ガスクロマトグラム)に2回注入してH2ピークを得て、そのピーク面積値からH2の検量ファクターを算出した。
試料の定量は、内容積22mlのガラス製ヘッドスペースバイアルに試料1gを入れた後、純水10mlを添加して直ちにテフロン(登録商標)内張りシリコンゴムをアルミキャップでシールした。これをよく振った後室温で静置し、容器の気相0.5mlをガスタイトシリンジで採取してGCに注入した。
The H 2 concentration was calibrated by adding 1.2 ml of H 2 gas after mixing N 2 into a 1200 ml glass dilution bottle. At this time, the H 2 concentration in the bottle is 1000 ppm. This gas was injected twice into GC (gas chromatogram) to obtain an H 2 peak, and a calibration factor of H 2 was calculated from the peak area value.
For quantification of the sample, 1 g of the sample was put in a glass headspace vial having an internal volume of 22 ml, 10 ml of pure water was added, and immediately, Teflon (lined) lining silicon rubber was sealed with an aluminum cap. This was shaken well and allowed to stand at room temperature, and 0.5 ml of the gas phase in the container was collected with a gas tight syringe and injected into the GC.
分析条件は以下の通りである。
ガスクロマトグラム:島津 GC−14B
データ処理装置:島津クロマトパックC−R7A’
カラム:Molecular Sieve−5A 60-80メッシュ、2m
カラム温度:50℃
検出器:TCD
電流値:60mA
検出器温度:100℃
キャリヤーガス:アルゴン
入口圧:200kPa
アッテネーション:2^0
試料注入量:0.5ml
The analysis conditions are as follows.
Gas chromatogram: Shimadzu GC-14B
Data processor: Shimadzu Chromatopack C-R7A '
Column: Molecular Sieve-5A 60-80 mesh, 2m
Column temperature: 50 ° C
Detector: TCD
Current value: 60 mA
Detector temperature: 100 ° C
Carrier gas: Argon inlet pressure: 200 kPa
Attenuation: 2 ^ 0
Sample injection volume: 0.5 ml
(表)から以下のことが判明した。
骨格生成の過程で内部に不可避的に有機物が存在する天然ゼオライト、またはサンゴを乾留したものを水に溶かすと水素が発生する。また、乾留せずに外部から水素置換を試みた場合も、同様に水に溶かすと水素が発生する。しかもH2濃度は殆んど変わらない。
一方、骨格内に有機物を保持させていない合成ゼオライトを乾留したものを水に溶かしても水素は発生しない。
From the table, the following was found.
In the process of skeleton formation, hydrogen is generated when natural zeolite, in which organic substances are inevitably present in the interior, or coral obtained by dry distillation, is dissolved in water. Also, when hydrogen substitution is attempted from outside without dry distillation, hydrogen is similarly generated when dissolved in water. Moreover, the H 2 concentration is almost unchanged.
On the other hand, hydrogen is not generated even if a synthetic zeolite obtained by dry distillation of a synthetic zeolite that does not retain organic substances in the skeleton is dissolved in water.
以上から、天然ゼオライトの場合には生成の過程で不可避的に保持されている有機物が乾留によって低分子化し、最終的に水素ガスとして図1(b)に示したようにゼオライトのミクロポア内に吸着保持され、またサンゴや貝殻の場合には図2(b)に示したように炭酸カルシウムからなる層間の隙間に水素ガスが保持されると考えられる。 From the above, in the case of natural zeolite, the organic matter inevitably retained in the process of formation is reduced in molecular weight by dry distillation, and finally adsorbed as hydrogen gas in the micropores of the zeolite as shown in FIG. In the case of corals and shells, it is considered that hydrogen gas is held in a gap between layers made of calcium carbonate as shown in FIG.
図3(a)は、水素ガスを吸着保持した補助食品用粉体を造粒した成形体の表面に腸溶性コーティングを施したものであり、(b)は前記補助食品用粉体を腸溶性カプセル内に収容したものである。 FIG. 3 (a) shows an enteric coating on the surface of a molded body obtained by granulating a powder for supplementary food that has adsorbed and held hydrogen gas, and (b) shows that the powder for supplementary food is enteric-coated. It is housed in a capsule.
前記腸溶性コーティングとしては、メタクリル酸コポリマー、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、カルボキシメチルセルロース(CMEC)、セルロースアセテートフタレート、セルロースアセテートトリメリテート、メタクリル酸−アクリル酸エチルエステル共重合体、メタクリル酸−メタクリル酸メチルエステル共重合体、プロピレングリコール、ソルビタンモノラウレート、酢酸フタル酸セルロース(CAP)、酢酸トリメリト酸セルロース、フタル酸ヒドロキシプロピルメチルセルロース(HPMCP)、メタクリレート、キトサン、グアールガム、ペクチン、ローカスビーンガム及びポリエチレングリコール(PEG)、セラックなどが挙げられる。 Examples of the enteric coating include methacrylic acid copolymer, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylcellulose (CMEC), cellulose acetate phthalate, cellulose acetate trimellitate, methacrylic acid-acrylic acid ethyl ester copolymer, Methacrylic acid-methacrylic acid methyl ester copolymer, propylene glycol, sorbitan monolaurate, cellulose acetate phthalate (CAP), cellulose acetate trimellitic acid, hydroxypropyl methylcellulose phthalate (HPMCP), methacrylate, chitosan, guar gum, pectin, locus Examples include bean gum, polyethylene glycol (PEG), shellac, and the like.
腸溶性カプセルとしては、ゼラチン、セルロース類またはでんぷんからなるカプセルの表面に上記腸溶性コーティング液を塗布したもの、或いはカプセル自体を腸溶性としたもの、例えば上記のゼラチン、セルロース類またはでんぷんにペクチン、アルギン酸、アルギン酸ナトリウム、アルギン酸カルシウム、カルボキシメチルセルロース、セルロースアセテートフタレートなどのセルロース類、メタクリル酸コポリマーなどを混合したものが考えられる。 As the enteric capsule, the above-mentioned enteric coating liquid is applied to the surface of a capsule made of gelatin, celluloses or starch, or the capsule itself is enteric, for example, the above gelatin, celluloses or starch pectin, A mixture of alginic acid, sodium alginate, calcium alginate, carboxymethylcellulose, celluloses such as cellulose acetate phthalate, methacrylic acid copolymer, and the like can be considered.
前記ゼラチンは、胃酸に溶けることなく、気温が上昇してもカプセル同士が付着せず、かつガスバリアー性も高いが、腸溶性ではない。そこで、ゼラチンのNH2基とカラギーナンのSO3基をイオン架橋させることによって、ゼラチンの性質を腸溶性にすることもできる。 The gelatin does not dissolve in stomach acid, does not adhere to capsules even when the temperature rises, and has high gas barrier properties, but is not enteric. Therefore, the properties of gelatin can be made enteric by ion-crosslinking the NH 2 group of gelatin and the SO 3 group of carrageenan.
また、腸溶性カプセルの作製方法としてはエマルションの作成方法を利用してもよい。例えば、水素ガスを飽和状態まで溶解させたアルギン酸水溶液を用意し、このアルギン酸水溶液に前記水素ガスを吸着保持した焼成ゼオライト粉末(珊瑚粉末、カキ殻粉末、アコヤ貝殻粉末、真珠粉末または海泡石粉末など)を溶解してこれを分散相とする。一方カルシウム水溶液を連続相として用意する。 Moreover, as a method for producing an enteric capsule, an emulsion production method may be used. For example, an alginic acid aqueous solution in which hydrogen gas is dissolved to a saturated state is prepared, and the calcined zeolite powder (salt powder, oyster shell powder, pearl oyster shell powder, pearl powder or foam stone powder, in which the hydrogen gas is adsorbed and held in the aqueous alginic acid solution. Etc.) is dissolved to form a dispersed phase. On the other hand, an aqueous calcium solution is prepared as a continuous phase.
そして、前記分散相と連続相を隔壁を介して分離し、分散相に圧力をかけることで隔壁に形成した貫通穴を介して分散相を連続相中に粒子状に送り込む。すると、送り込まれた分散相粒子を構成するアルギン酸と連続相中のカルシウムとが反応して酸不溶性でアルカリ可溶性のアルギン酸カルシウム膜が分散相粒子の表面に形成され、このアルギン酸カルシウム膜が腸溶性カプセルとなる。 And the said dispersed phase and a continuous phase are isolate | separated through a partition, and a dispersed phase is sent in a particulate form through the through-hole formed in the partition by applying a pressure to a dispersed phase. Then, alginic acid constituting the fed dispersed phase particles reacts with calcium in the continuous phase to form an acid-insoluble and alkali-soluble calcium alginate film on the surface of the dispersed phase particles. This calcium alginate film is enteric capsule. It becomes.
Claims (5)
The supplementary food according to claim 3 or 4, wherein the natural porous body is a shell, pearl, or cuff stone containing natural zeolite, straw, conchiolin (protein).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008035758A JP4159598B1 (en) | 2007-11-22 | 2008-02-18 | Supplementary powder manufacturing method and supplement |
PCT/JP2008/003598 WO2009104230A1 (en) | 2008-02-18 | 2008-12-04 | Process for producing powder for supplemental food and supplemental food |
TW098105125A TW200944139A (en) | 2008-02-18 | 2009-02-18 | Process for producing powder for supplemental food and supplemental food |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007302376 | 2007-11-22 | ||
JP2007302374 | 2007-11-22 | ||
JP2008035758A JP4159598B1 (en) | 2007-11-22 | 2008-02-18 | Supplementary powder manufacturing method and supplement |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008150047A Division JP2009142258A (en) | 2007-11-22 | 2008-06-09 | Method for producing supplement powder, and supplement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4159598B1 JP4159598B1 (en) | 2008-10-01 |
JP2009142257A true JP2009142257A (en) | 2009-07-02 |
Family
ID=39916177
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008035758A Expired - Fee Related JP4159598B1 (en) | 2007-11-22 | 2008-02-18 | Supplementary powder manufacturing method and supplement |
JP2008150047A Pending JP2009142258A (en) | 2007-11-22 | 2008-06-09 | Method for producing supplement powder, and supplement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008150047A Pending JP2009142258A (en) | 2007-11-22 | 2008-06-09 | Method for producing supplement powder, and supplement |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP4159598B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010007778A1 (en) * | 2008-07-15 | 2010-01-21 | 株式会社インテリジェントアセットマネジメント | Method for production of powder for supplementary food, and supplementary food |
JP2014031299A (en) * | 2012-08-06 | 2014-02-20 | Life Produce Co Ltd | Method for manufacturing hydrogen storage material, and hydrogen storage material |
WO2014077088A1 (en) * | 2012-11-13 | 2014-05-22 | 株式会社エヌエクス | Method for producing fired product of freshwater clam shell, and composition for ameliorating hepatic dysfunction which contains said fired product as active ingredient |
JP2020033197A (en) * | 2018-08-27 | 2020-03-05 | 株式会社アッチェ | Producing method of hydrogen-carrying powder |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4472022B1 (en) * | 2009-12-11 | 2010-06-02 | 株式会社Enagegate | Hydrogen gas-containing calcium carbonate and method for producing the same |
CN101971982A (en) * | 2010-08-26 | 2011-02-16 | 陈传雁 | Oyster shell powder containing hydrogen and manufacture method thereof |
JP4729649B1 (en) * | 2010-12-10 | 2011-07-20 | 株式会社バイオレドックス研究所 | Hydrogen gas-containing calcium carbonate and method for producing the same |
KR102213003B1 (en) | 2020-06-30 | 2021-02-05 | 최형일 | Expanded Polystyrene Foam Non-Combustible Composition, Method of Preparing the Same and Non-Combustible Expanded Polystyrene Foam Using the Same |
-
2008
- 2008-02-18 JP JP2008035758A patent/JP4159598B1/en not_active Expired - Fee Related
- 2008-06-09 JP JP2008150047A patent/JP2009142258A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010007778A1 (en) * | 2008-07-15 | 2010-01-21 | 株式会社インテリジェントアセットマネジメント | Method for production of powder for supplementary food, and supplementary food |
JP2014031299A (en) * | 2012-08-06 | 2014-02-20 | Life Produce Co Ltd | Method for manufacturing hydrogen storage material, and hydrogen storage material |
WO2014077088A1 (en) * | 2012-11-13 | 2014-05-22 | 株式会社エヌエクス | Method for producing fired product of freshwater clam shell, and composition for ameliorating hepatic dysfunction which contains said fired product as active ingredient |
JP2020033197A (en) * | 2018-08-27 | 2020-03-05 | 株式会社アッチェ | Producing method of hydrogen-carrying powder |
JP7125710B2 (en) | 2018-08-27 | 2022-08-25 | 株式会社アッチェ | Method for producing hydrogen-supported powder |
Also Published As
Publication number | Publication date |
---|---|
JP2009142258A (en) | 2009-07-02 |
JP4159598B1 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010007778A1 (en) | Method for production of powder for supplementary food, and supplementary food | |
JP4159598B1 (en) | Supplementary powder manufacturing method and supplement | |
JP5168240B2 (en) | Adsorbents, cleansing agents, kidney disease therapeutic agents, and functional foods | |
TWI404539B (en) | Absorbing agent for medical use | |
EP2628483B1 (en) | Medical adsorbent and method for producing same | |
JP2012211043A (en) | Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold, mask, carbon/polymer composite, adsorbing sheet, and functional food | |
JP2006509771A5 (en) | ||
JP2013047175A (en) | Adsorbent, cleansing agent, renal disease treating medicine, functional food, and cell culturing material | |
JP2011121819A (en) | Hydrogen gas-containing calcium carbonate and method for producing the same | |
Wen et al. | Porous hollow silica nanoparticles as carriers for controlled delivery of ibuprofen to small intestine | |
JP2012121782A (en) | Hydrogen gas-containing calcium carbonate and method for producing the same | |
WO2010086985A1 (en) | Adsorbent for oral administration | |
TWI520751B (en) | Adsorbent for oral administration, and agent for treating renal or liver disease | |
KR101858418B1 (en) | Adsorbent for oral administration, therapeutic agent for renal diseases and therapeutic agent for hepatic diseases | |
WO2009104230A1 (en) | Process for producing powder for supplemental food and supplemental food | |
JP5985027B2 (en) | Method for producing pharmaceutical adsorbent for oral administration | |
Hirai et al. | Adsorption capacity of activated carbon-encapsulated hollow-type spherical bacterial cellulose gels for uremic toxins in a simulated human gastrointestinal environment | |
CN108101146A (en) | Strontium element and radon element sepatation process in rich strontium water | |
JP6386571B2 (en) | Orally administered pharmaceutical adsorbent with increased strength | |
CN116082697B (en) | Yeast-based nanofiber aerogel and use thereof in lead poisoning and lead removal | |
CN117414341A (en) | Dapoxetine hydrochloride tablet and preparation method thereof | |
JP2005270948A (en) | Salt adsorbent sealed capsule | |
TWI587878B (en) | Oral toxic adsorbent | |
CN116078351A (en) | Preparation method of indoor air treatment medicament and indoor air treatment medicament | |
Siswanto et al. | Formulation of Metformin Hydrochloride Floating Tablet With HPMC K4m Cr And Sodium Bicarbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080715 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |