JP2009142136A - Protective relay with inverse-time element and protecting method of electric power system - Google Patents

Protective relay with inverse-time element and protecting method of electric power system Download PDF

Info

Publication number
JP2009142136A
JP2009142136A JP2007319225A JP2007319225A JP2009142136A JP 2009142136 A JP2009142136 A JP 2009142136A JP 2007319225 A JP2007319225 A JP 2007319225A JP 2007319225 A JP2007319225 A JP 2007319225A JP 2009142136 A JP2009142136 A JP 2009142136A
Authority
JP
Japan
Prior art keywords
stage
relay
protection range
output
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007319225A
Other languages
Japanese (ja)
Other versions
JP5201971B2 (en
Inventor
Katsuhiko Hiromoto
克彦 廣本
Kazuya Takenoue
和也 竹之上
Shoji Kawamoto
昌次 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007319225A priority Critical patent/JP5201971B2/en
Publication of JP2009142136A publication Critical patent/JP2009142136A/en
Application granted granted Critical
Publication of JP5201971B2 publication Critical patent/JP5201971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective relay and a protecting method in which time-limit cooperation does not collapse even if a back power supply at the transmission side is changed in an electric power system in which an overcurrent relay is used for the protection of the receiving side. <P>SOLUTION: The protective relay, which is provided at the transmission side of the electric power system having the overcurrent relay that has inverse-time characteristics at the receiving side, includes a distance relay means and an overcurrent relay means, which has roughly the same inverse-time characteristics as those of the overcurrent relay at the receiving side. Furthermore, a first step protection range, in which the setting of the distance relay means is instantaneously shut off, is set to approximately 80% to 85% of a line impedance value of transmission and distribution lines connecting the transmission side and the receiving side. When an output of the second step is used, the protection range, in which shutoff is output after a certain period of time, is set to approximately 120% of the line impedance value. The setting of the protection range of the overvoltage relay means is made to cooperate with the shutoff time limit of the overcurrent relay means at the receiving side inside the premise of receiving end. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力系統の保護技術に係り、特に送電側の背後電源の変化によって受電側のインピーダンスが変化しても時限協調を維持して適切に保護することのできる反限時要素付き保護継電器および電力系統の保護方法に関する。   The present invention relates to a power system protection technique, and in particular, a protection relay with an anti-time limit element that can appropriately protect by maintaining time coordination even if the impedance on the power receiving side changes due to a change in the power source on the power transmission side, and The present invention relates to a power system protection method.

従来、図6に示すように、22kV程度の下位系統の短絡保護は、送電側10には線路により距離継電器(以下DZと略す)1、または瞬時要素付過電流継電器(以下OCと略す)2が用いられ、特高需要家が多く受電している下位系統の末端(受電側)20には、受電継電器として、変圧器(Tr)5の一次及びTr2次側負荷線共に過電流継電器(OC)3,4が用いられるのが一般的である。   Conventionally, as shown in FIG. 6, the short circuit protection of the lower system of about 22 kV is based on the distance relay (hereinafter abbreviated as DZ) 1 or the overcurrent relay with instantaneous element (hereinafter abbreviated as OC) 2 on the power transmission side 10 by a line. In the lower system end (power receiving side) 20 that is receiving a lot of power from high-end customers, both the primary and Tr secondary load lines of the transformer (Tr) 5 are overcurrent relays (OC) as power receiving relays. 3) and 4 are generally used.

送電側10の保護継電器(以下、送電側継電器という。)であるDZ1またはOC2と、受電側の保護継電器(以下、受電側継電器という。)OC3,OC4とは時限協調を取る必要があるため、DZ1の場合は図7(a)に示す時間特性G1dの3段のインピーダンス距離と時限による協調をとり、一方、OC2の場合は図8(a)に示す反限時特性による協調を取っている。   Since DZ1 or OC2 which is a protective relay on the power transmission side 10 (hereinafter referred to as a power transmission side relay) and a protection relay on the power receiving side (hereinafter referred to as a power reception side relay) OC3, OC4 need to be timed, In the case of DZ1, the three-way impedance distance of time characteristic G1d shown in FIG. 7 (a) is coordinated with the time limit, while in the case of OC2, the cooperation based on the inverse time limit characteristic shown in FIG. 8 (a) is taken.

しかし、電源側送電系統の変更等により背後電源7の容量が減少すると需要家側のB点から見た電源側の背後電源も相対的に減少する。その場合、図4に示す等価回路により、送電側から流れる事故時の電流が小さくなるため、送電電圧を事故電流で割った値で算出される受電点のインピーダンスは、相対的に大きくなるように変化する。このため、送電側継電器がDZ1の場合、図7(b)に示すようにDZ1の動作時間特性G1dが受電点側に比例的に移動する。一方、受電側継電器のOC3の時限特性G2の瞬時動作C1は、受電点インピーダンスは図中右方向に移動するが瞬時動作限界インピーダンスは変わらないため瞬時動作範囲が減少する。すなわち、瞬時動作限界インピーダンスは変わらないためOC3の反限時部C2は移動しない(保護範囲は1次側に広がる)。このため、送信側のDZ1の第3段目の動作時限Z3が受電継電器のOC3とその下位の二次OC4の間で事故が発生すると、送電側のDZ1が不要動作する可能性がある。   However, if the capacity of the rear power supply 7 decreases due to a change in the power transmission system on the power supply side, the power supply side power supply viewed from the point B on the consumer side also decreases relatively. In that case, the current at the time of an accident flowing from the power transmission side is reduced by the equivalent circuit shown in FIG. 4, so that the impedance of the power receiving point calculated by the value obtained by dividing the transmission voltage by the accident current is relatively large. Change. For this reason, when the power transmission side relay is DZ1, as shown in FIG. 7B, the operation time characteristic G1d of DZ1 moves proportionally to the power receiving point side. On the other hand, in the instantaneous operation C1 of the timing characteristic G2 of the OC3 of the power receiving side relay, the power receiving point impedance moves rightward in the figure, but the instantaneous operation limit impedance does not change, so the instantaneous operation range decreases. That is, since the instantaneous operation limit impedance does not change, the inverse time limit portion C2 of OC3 does not move (the protection range extends to the primary side). For this reason, if an accident occurs between the operation time limit Z3 of the third stage of the transmission side DZ1 between the OC3 of the power receiving relay and the secondary OC4 below it, there is a possibility that the transmission side DZ1 operates unnecessarily.

同様に、送電側継電器がOC2の場合、背後電源が減少しても、図8(b)に示すように送電側継電器と受電側継電器の両OC2,3の瞬時動作インピーダンス部Z1、C1が図中右方向へ移動し、反限時部Z2、C2は重なることはないが、送電継電器と受電継電器の両瞬時動作部Z1、C1に隙間Cができ、その間で事故が発生すると、瞬時に動作できず送電線保護上溶断等の問題が発生する。かといって、通常時の瞬時要素を問題が発生しない値とすると需要家側との協調が取れなくなる。   Similarly, when the power transmission side relay is OC2, even if the back power supply decreases, the instantaneous operating impedance parts Z1 and C1 of both the power transmission side relay and the power reception side relay OC2, 3 are shown in FIG. 8B. It moves in the middle right direction, and the infinite time zones Z2 and C2 do not overlap, but there is a gap C in both instantaneous operation parts Z1 and C1 of the power transmission relay and power reception relay, and if there is an accident between them, it can operate instantaneously Therefore, problems such as fusing on power line protection occur. However, if the instantaneous element in the normal state is a value that does not cause a problem, it becomes impossible to cooperate with the customer side.

なお、この種の距離継電方法の欠点を改善する技術として、たとえば特許文献1には、送電線の変電所に近い至近端の事故が発生したとき、インピーダンスがほぼ零のため事故箇所の内外が区別できない問題があり、これを解消するために、不足電圧継電器、過電流継電器、方向継電器のAND条件で送電線の遮断器をトリップさせるという技術が提案されている。   As a technique for improving the drawbacks of this type of distance relay method, for example, in Patent Document 1, when a near-end accident near a transmission line substation occurs, the impedance is almost zero, so There is a problem that the inside and outside cannot be distinguished, and in order to solve this problem, a technique has been proposed in which the circuit breaker of the transmission line is tripped under an AND condition of an undervoltage relay, an overcurrent relay, and a direction relay.

背後電源が変化する系統操作は、事故時にはすみやかに実施する必要があり、現地での整定変更は間に合わない。このため、各保護継電器の時限協調をどのように取るかが問題となるが、上記特許文献1の技術は、送電線の背後電源の変化に追従する保護協調を改善する技術ではないため、この問題を解決することができない。
特開平8−23626号公報
System operation with a change in the back power supply needs to be carried out promptly in the event of an accident, and the setting changes at the site are not in time. For this reason, it becomes a problem how to take the timed coordination of each protection relay. However, since the technique of Patent Document 1 is not a technique for improving the protection coordination following the change of the power supply behind the transmission line, The problem cannot be solved.
JP-A-8-23626

本発明は上述のかかる事情に鑑みてなされたものであり、受電側の保護に過電流継電器を使用する特高需要家などで、背後電源が変化する送電線または配電線(以下、送配電線という。)の保護において、時限協調が崩れず、且つ、送配電線を確実に保護することのできる反限時要素付き保護継電器および電力系統の保護方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and is a power transmission line or distribution line (hereinafter referred to as a transmission / distribution line) in which the back power supply is changed in an extra high-volume consumer who uses an overcurrent relay to protect the power receiving side. It is an object of the present invention to provide a protective relay with an anti-time element and a method for protecting an electric power system that can protect the transmission and distribution lines without failing in time cooperation.

上記目的を達成するため、本発明に係わる反限時要素付き保護継電器は、受電側(需要家受電点)に反限時特性を持つ過電流継電器を有する電力系統において、前記受電側と送配電線を介して接続する送電側変電所に設けられた保護継電器であって、当該保護継電器は、距離継電手段と、受電側の前記過電流継電器と略同一の反限時特性を有する過電流継電手段を備えたことを特徴とする。   In order to achieve the above object, a protective relay with an anti-time element according to the present invention is an electric power system having an overcurrent relay having an anti-time characteristic on a power receiving side (customer receiving point). A protective relay provided in a power transmission side substation connected via a distance relay means, and an overcurrent relay means having approximately the same inverse time characteristics as the distance relay means and the overcurrent relay on the power receiving side It is provided with.

本発明では、送電端から受電端までの線路は、距離継電手段で保護し、受電側の構内DZ2段以降は、距離継電器と反限時特性を持つ過電流継電手段を演算選択して保護するので、系統側の背後電源の変化時に於いても、受電側の保護として使用される過電流継電器との時限協調を取ることができる。   In the present invention, the line from the power transmission end to the power reception end is protected by the distance relay means, and after the second DZ stage on the power receiving side, the distance relay and the overcurrent relay means having an inverse time characteristic are selected and protected. Therefore, even when the power supply behind the system changes, it is possible to coordinate with the overcurrent relay used as protection on the power receiving side.

本発明に係わる反限時要素付き保護継電器の距離継電手段は、送電側から少なくとも第1段、第2段、および第3段の3段階の保護範囲を有し、通常時(背後電源容量が変化しない時)において前記第2段の保護範囲は受電側の受電点を含み、前記第3段の保護範囲は前記受電点より後ろ(負荷側)に設定され、前記第1段の保護範囲の事故検出信号によってトリップ判定を実行する第1のトリップ判定手段と、前記第2段の保護範囲の事故検出信号と、前記過電流継電手段の不使用条件とに基づいてトリップ判定を行う第2のトリップ判定手段と、前記第3段の保護範囲の事故検出信号と、受電側の構内事故条件と、前記過電流継電手段の使用条件とを用いてトリップ判定を行う第3のトリップ判定手段と、を備えたことを特徴とする。   The distance relay means of the protective relay with an anti-time element according to the present invention has at least a first stage, a second stage, and a third stage protection range from the power transmission side, and is in a normal state (rear power supply capacity is The second stage protection range includes a power receiving point on the power receiving side, and the third stage protection range is set behind the power receiving point (load side) at the time of no change). Second trip determination is performed based on first trip determination means for executing trip determination based on an accident detection signal, an accident detection signal in the protection range of the second stage, and a non-use condition of the overcurrent relay means. Trip judging means, a third trip judging means for making a trip judgment using the accident detection signal of the protection range of the third stage, the on-site accident condition on the power receiving side, and the use condition of the overcurrent relay means And.

本発明では、送電側背後電源の容量の変化によって、需要家構内(2次側)にずれ込むことになる第3段の保護範囲については、この保護範囲の事故検出信号と、受電側の構内事故条件と、過電流継電手段の使用条件とにもとづいてトリップ信号を出力することによって、時限協調を維持する。   In the present invention, for the third stage protection range that will shift to the customer premises (secondary side) due to the change in the capacity of the power source on the back side of the power transmission side, Timed coordination is maintained by outputting a trip signal based on the conditions and the usage conditions of the overcurrent relay means.

好ましくは、前記受電側の構内事故条件として、前記距離継電手段によって、事故点が前記第2段の保護範囲に無く、前記第3段の保護範囲内にあることを検出したときに成立したと判定することによって、簡便に過電流継電手段に切替、問題となる箇所の時限協調を維持することができる。なお、この条件に送電側の背後電源容量変化ありという条件を加えても良い。   Preferably, the on-site accident condition on the power receiving side is established when the distance relay means detects that the accident point is not within the second stage protection range and is within the third stage protection range. , It is possible to easily switch to the overcurrent relay means and maintain the timed coordination of the problematic location. Note that a condition that there is a change in the rear power supply capacity on the power transmission side may be added to this condition.

また、本発明に係わる反限時要素付き保護継電器の距離継電手段は、距離の保護範囲として送電側から少なくとも第1段、第2段、および第3段の3段階に設定可能であって、通常時において前記第2段の保護範囲は受電側の受電点を含み、前記第3段の保護範囲は前記受電点より後ろに設定され、前記過電流継電手段の出力と前記距離継電手段の第3段の出力とを切り替える切替手段と、前記距離継電手段の第1段の出力と、前記第2段の出力と、前記切替手段の出力とに基づいてトリップ信号を出力することを特徴とする。   Further, the distance relay means of the protective relay with an anti-time element according to the present invention can be set as at least the first stage, the second stage, and the third stage from the power transmission side as a distance protection range, In a normal state, the protection range of the second stage includes a power reception point on the power receiving side, the protection range of the third stage is set behind the power reception point, and the output of the overcurrent relay unit and the distance relay unit A trip signal is output based on the switching means for switching the output of the third stage, the output of the first stage of the distance relay means, the output of the second stage, and the output of the switching means. Features.

本発明では、第3段の保護範囲については、距離継電手段と受電側と同様の特性を有する過電流継電手段とを切替可能にすることによって、系統構成が変更したことによって背後電源の容量が変化した場合でも時限協調を維持して適切な保護動作を継続させることができる。   In the present invention, the protection range of the third stage can be switched between the distance relaying means and the overcurrent relaying means having the same characteristics as the power receiving side, thereby changing the system configuration by changing the system configuration. Even when the capacity changes, it is possible to maintain time cooperation and continue appropriate protection operation.

本発明に係わる保護回路、または保護継電器は、前記距離継電手段の距離の保護範囲の設定を3段に設定できるものであって、この第2段と第3段の出力にそれぞれ第1、第2のタイマーを挿入し、前記過電流継電手段の出力に第3のタイマーを挿入し、この出力と前記受電側の構内事故条件と、この過電流継電手段の使用条件をANDする第1のAND回路を設け、前記第1、第2のタイマー出力と、前記第3のAND回路の出力を否定するNOT回路の出力とでANDする第2、第3のAND回路を設け、前記距離継電手段の第1段の出力と、第1、第2、第3のAND回路の出力をORするOR回路とにより構成することを特徴とする。   The protection circuit or the protection relay according to the present invention is capable of setting the distance protection range of the distance relay means in three stages, and the first and the second outputs are the first, A second timer is inserted, a third timer is inserted into the output of the overcurrent relay means, and the output, the on-site accident condition on the power receiving side, and the use condition of the overcurrent relay means are ANDed. 1 AND circuit, and second and third AND circuits that AND the output of the first and second timers and the output of the NOT circuit that negates the output of the third AND circuit, and the distance It is characterized by comprising an output of the first stage of the relay means and an OR circuit that ORs the outputs of the first, second and third AND circuits.

本発明では、構成をさらに具体的にしたものであり、前記距離継電手段の距離整定のステップを使用し、その出力に挿入した第1、第2タイマーと、前記過電流継電手段の第3のタイマーにより受電側の過電流継電器との時限協調を容易に整定できる。   In the present invention, the configuration is more specific, and the distance setting step of the distance relay means is used, and the first and second timers inserted in the output of the distance relay means and the overcurrent relay means The timer of 3 can easily set the timed coordination with the overcurrent relay on the power receiving side.

本発明の係わる保護回路または保護継電器は、前記過電流継電手段の出力と受電側の構内事故条件と過電流継電手段の使用の条件とのAND回路と、このAND出力と前記距離継電手段の初段の出力とのOR回路により構成することを特徴とする。   The protection circuit or the protection relay according to the present invention includes an AND circuit of the output of the overcurrent relay means, the on-site accident condition on the power receiving side, and the use condition of the overcurrent relay means, and the AND output and the distance relay. It is characterized by comprising an OR circuit with the output of the first stage of the means.

本発明では、前記距離継電器の第1段の出力のみを使用することにより、回路や整定や受電側との保護協調を容易にすることができる。   In the present invention, by using only the output of the first stage of the distance relay, it is possible to facilitate protection coordination with the circuit, settling, and the power receiving side.

本発明に係わる保護回路または保護継電器は、前記距離継電手段の第2段と第3段の出力にそれぞれ第1、第2のタイマーを挿入し、前記過電流継電手段の出力と前記距離継電手段の第3の出力の第2のタイマー出力とを切り替えるAND回路とNOT回路で構成する切替手段の回路を設け、前記距離継電手段の第1段の出力と、前記第2段の出力の第2のタイマー出力と、前記切替手段の出力とのOR回路とにより構成することを特徴とする。   In the protection circuit or the protection relay according to the present invention, the first and second timers are respectively inserted into the outputs of the second stage and the third stage of the distance relay means, and the output of the overcurrent relay means and the distance There is provided a circuit of switching means composed of an AND circuit and a NOT circuit for switching between the second timer output of the third output of the relay means, and the output of the first stage of the distance relay means, It is characterized by comprising an OR circuit of the output second timer output and the output of the switching means.

本発明では、系統変更等により背後電源容量が減少したときなどに、前記距離継電器では受電側の過電流継電器との時限協調が取れない距離の箇所のみ前記過電流継電器に切り替えることにより時限協調を維持することができる。   In the present invention, when the rear power supply capacity is reduced due to a system change or the like, the distance relay performs the time coordination by switching to the overcurrent relay only at a distance where the time relay cannot be coordinated with the power receiving side overcurrent relay. Can be maintained.

本発明に係わる電力系統の保護方法は、上記の保護回路または保護継電器を用いて線路保護をする方法にあって、前記距離継電手段の整定を瞬時遮断する第1段の保護範囲を線路インピーダンス値の80%から85%程度に、第2段の出力使用時は、ある時間後遮断出力する保護範囲を、受電至近端の送配電線を確実に含むため線路インピーダンス値の120%程度とし、前記過電流継電手段の保護範囲の整定を受電端の構内で、受電側の前記過電流継電手段の遮断時限に対して協調を取った遮断時限にすることを特徴とする。   A power system protection method according to the present invention is a method of protecting a line using the protection circuit or the protection relay described above, wherein the first stage protection range for instantaneously interrupting the setting of the distance relay means is a line impedance. When the output of the second stage is used from 80% to 85% of the value, the protection range that shuts off the output after a certain period of time is set to about 120% of the line impedance value in order to reliably include the transmission and distribution lines near the power receiving end. The protection range of the overcurrent relay means is set to a cutoff time coordinated with the cutoff time of the overcurrent relay means on the power receiving side within the power receiving end.

また、送電端の前記過電流継電手段の反限時特性を数種類設定し、受電側の前記過電流継電手段の反限時特性と同じか又は、保護上問題ない範囲で特性が同一と考えられる反限時特性を選択し、受電側と同一整定として時限協調時間を整定する保護継電手段とすることにより、整定の簡素化と時限協調の確実性を増すことができる。   Also, several types of inverse time characteristics of the overcurrent relay means at the power transmission end are set, and the characteristics are considered to be the same as the inverse time characteristics of the overcurrent relay means on the power receiving side, or within the range where there is no problem in terms of protection. By selecting the inverse time characteristic and using the protective relay means for setting the time cooperation time as the same setting as the power receiving side, it is possible to simplify the setting and increase the certainty of the time cooperation.

本発明によれば、受電側の保護が過電流継電器において、距離継電手段に過電流継電手段の反限時特性を重ねて使用することによって、送電側背後電源容量の変化により受電端インピーダンスが変化しても、適切な時限協調を維持することが可能となる。   According to the present invention, in the overcurrent relay where the protection on the power receiving side is used, the reverse end time characteristic of the overcurrent relaying means is overlapped with the distance relaying means, so that the receiving end impedance is changed due to the change in the power supply side rear power capacity. Even if it changes, it becomes possible to maintain appropriate timed cooperation.

以下、本発明の実施の形態を説明する。
図1は、第1の実施の形態による送電側10の保護回路である。
Embodiments of the present invention will be described below.
FIG. 1 is a protection circuit on the power transmission side 10 according to the first embodiment.

この図で、距離継電器(DZ)1は、距離(インピーダンス)により動作時限を変えるための3段の出力S1,S2,S3を備え、受電側の瞬時要素付過電流継電器3,4と同じ反限時特性を持つ過電流継電器(OC)2aと、タイマーT1,T2,T3により時限協調をとる。   In this figure, the distance relay (DZ) 1 has three stages of outputs S1, S2, and S3 for changing the operation time according to the distance (impedance), and is the same as the overcurrent relays with instantaneous elements 3 and 4 on the power receiving side. Time coordination is achieved by an overcurrent relay (OC) 2a having a time limit characteristic and timers T1, T2 and T3.

第3段の出力S3には、タイマーT2を介した信号をAND論理A3に入力する。前記OC2aの出力もタイマーT3を介し、相手端構内事故判定信号Jと、本OC機能の使用の信号Uと共にAND論理A1に入力する。また、本OC機能の使用の信号UをNOT論理N1を通して前記AND論理A3のゲート入力として接続する。このAND論理A3の出力と、前記DZ1の出力S1、タイマーT1の出力、前記AND論理A1の出力をそれぞれOR論理R1に入力し、この出力を送電用遮断器のトリップ信号とする。   A signal through the timer T2 is input to the AND logic A3 as the third-stage output S3. The output of the OC2a is also input to the AND logic A1 through the timer T3 together with the counterpart end-site accident determination signal J and the signal U for use of this OC function. Further, a signal U for use of this OC function is connected as a gate input of the AND logic A3 through NOT logic N1. The output of the AND logic A3, the output S1 of the DZ1, the output of the timer T1, and the output of the AND logic A1 are respectively input to the OR logic R1, and this output is used as a trip signal for the power transmission circuit breaker.

ただし、相手端構内事故判定信号Jは、前記DZ1のS2信号をNOT論理N2に通した信号(S2不動作により相手端子までの線路インピーダンスの120%以上遠い位置を判定)と、前記DZ1のS3信号(電源端リレーが見るべき相手構内のバックアップ保護整定範囲)とをAND論理A2に入力した信号により確実に相手構内の判定を行う。   However, the other party premises accident judgment signal J is a signal obtained by passing the S2 signal of the DZ1 through the NOT logic N2 (determining a position 120% or more away from the line impedance to the counterpart terminal due to S2 non-operation) and the S3 of the DZ1. The signal (the backup protection settling range of the partner premises to be viewed by the power supply relay) and the signal input to the AND logic A2 are used to reliably determine the partner premises.

図1と、図2の時間特性グラフで作用を説明する。
まず、前記DZ1の特性を図3で示す送電側背後電源7が、通常時状態のときのインピーダンスにより、第2段目Z2の動作点(距離)を受電端Bより少し前に設定しタイマーT1をOC3瞬時要素に協調を取り0.3秒程度に設定する。そして前記OC2aの反限時特性部Zcを受電継電器のOC3の反限時特性部C2と同じ値に整定し、タイマーT3は、OC3反限時要素との協調時間として0.3秒程度に設定する。これにより、需要家構内の反限時特性部分の事故では必ず送電側OC2aの動作がT3整定時限だけ遅れるため確実な時限協調が取れるとともに、受電端OCと同じ整定値で整定が可能であるため整定値決定業務および事故時の解析業務上も判断が容易となる利点がある。
The operation will be described with reference to FIG. 1 and the time characteristic graph of FIG.
First, the operating point (distance) of the second stage Z2 is set slightly before the power receiving end B according to the impedance when the power transmitting side power supply 7 whose characteristics of the DZ1 are shown in FIG. Is coordinated with the OC3 instantaneous element and set to about 0.3 seconds. Then, the counter time characteristic part Zc of the OC2a is set to the same value as the counter time characteristic part C2 of the OC3 of the power receiving relay, and the timer T3 is set to about 0.3 seconds as the cooperation time with the OC3 time limit element. As a result, since the operation of the power transmission side OC2a is always delayed by the T3 settling time in an accident at the inverse time characteristic portion in the customer premises, it is possible to achieve a reliable time cooperation and settling with the same settling value as the power receiving end OC. There is an advantage that judgment is easy in the value determination work and the analysis work in the event of an accident.

次に送電側10の背後電源7の容量が通常時のときと、減少したときの時限特性の変化を説明する。図2の点線部が通常時の送電継電器DZ1の時間特性G1dであり、背後電源容量減少時に、実線で示す特性のように移動する。しかし、前記OC2aの機能の反限時特性部Zcは、事故電流のみに起因するため移動せず、受電継電器OC3や4の時限特性と重なることはない。   Next, a change in the time characteristic when the capacity of the rear power supply 7 on the power transmission side 10 is normal and when it decreases will be described. The dotted line portion in FIG. 2 is the time characteristic G1d of the normal power transmission relay DZ1, and moves as indicated by the solid line when the rear power supply capacity decreases. However, the inverse time characteristic part Zc of the function of the OC2a does not move because it is caused only by the fault current, and does not overlap with the time characteristic of the power receiving relays OC3 and OC4.

事故時の動作を説明すると、たとえば、Z1で示すインピーダンスの範囲での事故は、図1のDZ1の第1段出力S1により即出力のOR論理R1を介してトリップ出力される。またZ2の範囲では、DZ1の第2段出力S2によりタイマーT1の時限後同じくOR論理R1を介して出力される。また、受電側20の構内事故の場合、受電継電器のOC3の時間特性G2に従って受電側の遮断器が開放される。しかし、この動作が不良の場合、DZ1の2段Z2または、相手端構内事故判定信号Jがセットされると、OC2aの反限時特性Zc部により開放制御される。   Explaining the operation at the time of an accident, for example, an accident in the impedance range indicated by Z1 is tripped and output via the OR logic R1 of immediate output by the first stage output S1 of DZ1 in FIG. Further, in the range of Z2, the second stage output S2 of DZ1 outputs the same after the time limit of the timer T1 via the OR logic R1. Further, in the case of a local accident on the power receiving side 20, the circuit breaker on the power receiving side is opened according to the time characteristic G2 of the OC3 of the power receiving relay. However, when this operation is defective, when the second stage Z2 of DZ1 or the counterpart end premises accident determination signal J is set, the opening control is performed by the inverse time characteristic Zc portion of the OC2a.

本実施の形態によれば、系統構成の変更等によって背後電源の容量が変化しても、第3段の保護範囲の事故検出信号S3と、受電側の構内事故条件と、受電側と略同一の特性を有する過電流継電手段の使用条件とにもとづいて演算選択してトリップ信号を出力するので、時限協調を取ることができる。   According to the present embodiment, even if the capacity of the rear power supply changes due to a change in system configuration or the like, the accident detection signal S3 in the third stage protection range, the on-site accident condition on the power receiving side, and substantially the same as the power receiving side Since the trip signal is output by selecting the calculation based on the use condition of the overcurrent relay means having the above characteristics, it is possible to achieve timed coordination.

次に、図5を用いて第2の実施形態を説明する。
本実施の形態は、第1の実施形態におけるDZ1の第3段目の出力S3と前記OC2aの出力を手動で切り替える切替手段43−51を設けて単純にしたものである。OC2aに前記切替手段43−51からの信号43UとAND論理A5でANDし、その出力をOR論理R1に入力する。一方DZ1の第3段出力S3のタイマーT2を介した出力と、前記43UのNOT論理N1を介して反転させた出力をAND論理A4へ入力してAND演算をして、その出力を前記OR論理R1に入力する。
Next, a second embodiment will be described with reference to FIG.
This embodiment is simplified by providing switching means 43-51 for manually switching the output S3 of the third stage of DZ1 in the first embodiment and the output of the OC2a. The signal AND of the signal 43U from the switching means 43-51 is ANDed to the OC2a by the AND logic A5, and the output is input to the OR logic R1. On the other hand, the output of the third stage output S3 of DZ1 through the timer T2 and the output inverted through the NOT logic N1 of 43U are input to the AND logic A4 to perform an AND operation, and the output is the OR logic. Input to R1.

上記の構成において、切替手段43Uを通常時にしておくと信号出力なしで従来と同じDZのみで動作させ、43UをOC使用に切り替えると信号出力ありとなり、前記DZ1の第3段出力S3の代わりに、OC2aの出力で動作させる。   In the above configuration, when the switching means 43U is kept in a normal state, it operates with only the same DZ as before without signal output, and when 43U is switched to OC use, there is a signal output, instead of the third stage output S3 of the DZ1. And operate with the output of OC2a.

以上、本実施の形態によれば、送電側の背後電源の容量が変化しても、送電側と受電側の保護協調が取られ、通常時と同じ適切な時限で送電側の遮断器を開放制御することが可能となる。   As described above, according to the present embodiment, even if the capacity of the power source on the power transmission side changes, protection coordination between the power transmission side and the power reception side is taken, and the circuit breaker on the power transmission side is opened at the same appropriate time as normal. It becomes possible to control.

本発明は、電力系統における送電線の保護に利用することができる。   The present invention can be used for protection of transmission lines in a power system.

本発明の第1の実施の形態による送信側の保護継電器の回路図である。1 is a circuit diagram of a protection relay on a transmission side according to a first embodiment of the present invention. 本発明の第1の実施の形態における動作時間特性図である。It is an operation time characteristic figure in a 1st embodiment of the present invention. 図1の回路が使用される電力系統のシステム構成図である。FIG. 2 is a system configuration diagram of a power system in which the circuit of FIG. 1 is used. 図3の系統の等価回路図である。FIG. 4 is an equivalent circuit diagram of the system in FIG. 3. 本発明の第2の実施の形態による送信側の保護継電器の回路図である。It is a circuit diagram of the protection relay of the transmission side by the 2nd Embodiment of this invention. 従来の電力系統における保護継電器の設置図である。It is an installation figure of the protection relay in the conventional electric power system. 従来のDZ方式の動作時間特性図であり、図7(a)は通常時の時間特性、図7(b)は背後電源容量減少時の時間特性を示す。FIG. 7A is a diagram illustrating an operation time characteristic of a conventional DZ system, in which FIG. 7A shows a time characteristic at a normal time, and FIG. 従来のOC方式の動作時間特性図であり、図8(a)は通常時の時間特性、図8(b)は背後電源容量減少時の時間特性を示す。FIG. 8A is an operation time characteristic diagram of a conventional OC system, and FIG. 8A shows a time characteristic at normal time, and FIG. 8B shows a time characteristic when a rear power supply capacity decreases.

符号の説明Explanation of symbols

1 距離継電器(DZ,距離継電手段)
2,2a,3,4 過電流継電器(OC,過電流継電手段)
5 変圧器
6 受信側背後電源
7 送信側背後電源
10 送電側変電所設備
20 受電側変電所設備
A1〜A5 AND論理
R1 OR論理
N1,N2 NOT論理
T1〜T3 タイマー
1 Distance relay (DZ, distance relay means)
2, 2a, 3, 4 Overcurrent relay (OC, overcurrent relay means)
5 Transformer 6 Receiving side power supply 7 Transmitting side power supply 10 Power transmission side substation equipment 20 Power receiving side substation equipment A1 to A5 AND logic R1 OR logic N1, N2 NOT logic T1 to T3 Timer

Claims (5)

受電側に反限時特性を持つ過電流継電器を有する電力系統の送電側に設けられた保護継電器であって、
前記保護継電器は、距離継電手段と、受電側の前記過電流継電器と略同一の反限時特性を有する過電流継電手段を備えたことを特徴とする反限時要素付き保護継電器。
A protective relay provided on the power transmission side of an electric power system having an overcurrent relay having an inverse time characteristic on the power receiving side,
The protective relay includes a distance relay means and an overcurrent relay means having an inverse time characteristic substantially the same as that of the power-receiving-side overcurrent relay.
前記距離継電手段は、送電側から少なくとも第1段、第2段、および第3段の3段階の保護範囲を有し、通常時において前記第2段の保護範囲は受電側の受電点を含み、前記第3段の保護範囲は前記受電点より後ろに設定され、
前記第1段の保護範囲の事故検出信号によってトリップ判定を実行する第1のトリップ判定手段と、
前記第2段の保護範囲の事故検出信号と、前記過電流継電手段の不使用条件とに基づいてトリップ判定を行う第2のトリップ判定手段と、
前記第3段の保護範囲の事故検出信号と、受電側の構内事故条件と、前記過電流継電手段の使用条件とを用いてトリップ判定を行う第3のトリップ判定手段と、
を備えたことを特徴とする請求項1記載の反限時要素付き保護継電器。
The distance relay means has at least a first stage, a second stage, and a third stage protection range from the power transmission side, and the normal protection range of the second stage is a power reception point on the power reception side. The third stage protection range is set behind the power receiving point,
First trip determination means for performing trip determination according to an accident detection signal in the protection range of the first stage;
Second trip determination means for performing a trip determination based on an accident detection signal of the protection range of the second stage and a non-use condition of the overcurrent relay means;
A third trip determining means for performing a trip determination using the accident detection signal of the third stage protection range, the on-site accident condition on the power receiving side, and the use condition of the overcurrent relay means;
The protective relay with an anti-time element according to claim 1.
前記受電側の構内事故条件は、前記距離継電手段によって、事故点が前記第2段の保護範囲に無く、前記第3段の保護範囲内にあることを検出したときに成立することを特徴とする請求項2記載の反限時要素付き保護継電器。   The on-site accident condition on the power receiving side is satisfied when the distance relay means detects that the accident point is not in the second stage protection range and is in the third stage protection range. The protective relay with an anti-time limit element according to claim 2. 前記距離継電手段は、距離の保護範囲として送電側から少なくとも第1段、第2段、および第3段の3段階に設定可能であって、通常時において前記第2段の保護範囲は受電側の受電点を含み、前記第3段の保護範囲は前記受電点より後ろに設定され、
前記過電流継電手段の出力と前記距離継電手段の第3段の出力とを切り替える切替手段と、前記距離継電手段の第1段の出力と、前記第2段の出力と、前記切替手段の出力とに基づいてトリップ信号を出力することを特徴とする請求項1記載の反限時要素付き保護継電器。
The distance relay means can set at least three stages from the power transmission side as the distance protection range, ie, the first stage, the second stage, and the third stage. The third-stage protection range is set behind the power receiving point.
Switching means for switching between the output of the overcurrent relay means and the third stage output of the distance relay means, the first stage output of the distance relay means, the second stage output, and the switching 2. The protective relay with an anti-time-limit element according to claim 1, wherein a trip signal is output based on the output of the means.
請求項1〜4のいずれか一項に記載の保護継電器を用いて電力系統を保護する方法であって、
前記距離継電手段の整定として瞬時遮断する第1段の保護範囲を送電側と受電側を結ぶ送配電線の線路インピーダンス値の80%から85%程度に設定し、
第2段の出力使用時は、一定時間後遮断出力する保護範囲を、線路インピーダンス値の120%程度に設定し、
前記過電流継電手段の保護範囲の整定を受電端の構内で、受電側の前記過電流継電器の遮断時限と協調を取ることを特徴とする電力系統の保護方法。
A method for protecting a power system using the protective relay according to any one of claims 1 to 4,
The first stage protection range that instantaneously cuts off as the distance relay means is set to about 80% to 85% of the line impedance value of the transmission and distribution line connecting the power transmission side and the power reception side,
When using the output of the second stage, set the protection range to cut off output after a certain time to about 120% of the line impedance value,
A method for protecting a power system, characterized in that setting of a protection range of the overcurrent relay means is coordinated with a cutoff time of the overcurrent relay on a power receiving side within a power receiving end premises.
JP2007319225A 2007-12-11 2007-12-11 Protection relay with anti-time element and protection method of power system Expired - Fee Related JP5201971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319225A JP5201971B2 (en) 2007-12-11 2007-12-11 Protection relay with anti-time element and protection method of power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319225A JP5201971B2 (en) 2007-12-11 2007-12-11 Protection relay with anti-time element and protection method of power system

Publications (2)

Publication Number Publication Date
JP2009142136A true JP2009142136A (en) 2009-06-25
JP5201971B2 JP5201971B2 (en) 2013-06-05

Family

ID=40872179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319225A Expired - Fee Related JP5201971B2 (en) 2007-12-11 2007-12-11 Protection relay with anti-time element and protection method of power system

Country Status (1)

Country Link
JP (1) JP5201971B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219696A (en) * 2013-05-02 2013-07-24 深圳市力通威电子科技有限公司 Overcurrent protection method and device
CN103414150A (en) * 2013-08-23 2013-11-27 上海新时达电气股份有限公司 Inverse time limit protection method
JP2014075973A (en) * 2009-10-20 2014-04-24 Toshiba Corp Protective relay device
CN107645155A (en) * 2017-09-05 2018-01-30 广东电网有限责任公司电力科学研究院 Distribution network line distance protecting method after large-scale distributed photo-voltaic power supply access
CN109066977A (en) * 2018-08-08 2018-12-21 上海宇航系统工程研究所 A kind of distribution aerospace craft intelligence power supply-distribution system
KR20200080694A (en) * 2018-12-27 2020-07-07 충북대학교 산학협력단 Protection apparatus using directional overcurrent ground relay and distance relay in grid-connected distributed generation
CN111756023A (en) * 2020-05-27 2020-10-09 中海石油(中国)有限公司深圳分公司 Inverse time limit characteristic curve obtaining method and device of overcurrent protection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816855B (en) * 2015-11-27 2019-08-16 中国电力科学研究院 A kind of inverse time current protection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141921A (en) * 1979-04-18 1980-11-06 Nissin Electric Co Ltd Multiple selection breaker device
JPS5619339A (en) * 1979-07-24 1981-02-24 Tokyo Shibaura Electric Co Method of protecting power distribution system
JPS57129130A (en) * 1981-02-03 1982-08-11 Tokyo Electric Power Co Transmission line protecting relay
JPH0583844A (en) * 1991-09-17 1993-04-02 Toshiba Corp Distance relay unit
JPH0591647A (en) * 1991-09-24 1993-04-09 Toshiba Corp Ground-fault protection relaying system for power distribution line
JPH0823626A (en) * 1994-07-05 1996-01-23 Fuji Electric Co Ltd Distance relay system
JPH0847165A (en) * 1994-07-28 1996-02-16 Kyushu Electric Power Co Inc Bidirectional protection relaying system and bidirectional protection distance relay in the power line
JPH1132427A (en) * 1997-07-10 1999-02-02 Mitsubishi Electric Corp Distribution system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141921A (en) * 1979-04-18 1980-11-06 Nissin Electric Co Ltd Multiple selection breaker device
JPS5619339A (en) * 1979-07-24 1981-02-24 Tokyo Shibaura Electric Co Method of protecting power distribution system
JPS57129130A (en) * 1981-02-03 1982-08-11 Tokyo Electric Power Co Transmission line protecting relay
JPH0583844A (en) * 1991-09-17 1993-04-02 Toshiba Corp Distance relay unit
JPH0591647A (en) * 1991-09-24 1993-04-09 Toshiba Corp Ground-fault protection relaying system for power distribution line
JPH0823626A (en) * 1994-07-05 1996-01-23 Fuji Electric Co Ltd Distance relay system
JPH0847165A (en) * 1994-07-28 1996-02-16 Kyushu Electric Power Co Inc Bidirectional protection relaying system and bidirectional protection distance relay in the power line
JPH1132427A (en) * 1997-07-10 1999-02-02 Mitsubishi Electric Corp Distribution system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075973A (en) * 2009-10-20 2014-04-24 Toshiba Corp Protective relay device
CN103219696A (en) * 2013-05-02 2013-07-24 深圳市力通威电子科技有限公司 Overcurrent protection method and device
CN103414150A (en) * 2013-08-23 2013-11-27 上海新时达电气股份有限公司 Inverse time limit protection method
CN107645155A (en) * 2017-09-05 2018-01-30 广东电网有限责任公司电力科学研究院 Distribution network line distance protecting method after large-scale distributed photo-voltaic power supply access
CN109066977A (en) * 2018-08-08 2018-12-21 上海宇航系统工程研究所 A kind of distribution aerospace craft intelligence power supply-distribution system
CN109066977B (en) * 2018-08-08 2021-09-28 上海宇航系统工程研究所 Distributed intelligent power supply and distribution system for aerospace vehicle
KR20200080694A (en) * 2018-12-27 2020-07-07 충북대학교 산학협력단 Protection apparatus using directional overcurrent ground relay and distance relay in grid-connected distributed generation
KR102298211B1 (en) * 2018-12-27 2021-09-03 충북대학교 산학협력단 Protection apparatus using directional overcurrent ground relay and distance relay in grid-connected distributed generation
CN111756023A (en) * 2020-05-27 2020-10-09 中海石油(中国)有限公司深圳分公司 Inverse time limit characteristic curve obtaining method and device of overcurrent protection device
CN111756023B (en) * 2020-05-27 2022-10-11 中海石油(中国)有限公司深圳分公司 Inverse time limit characteristic curve obtaining method and device of overcurrent protection device

Also Published As

Publication number Publication date
JP5201971B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US10418804B2 (en) Fault protection system and method for an electrical power distribution system
JP5201971B2 (en) Protection relay with anti-time element and protection method of power system
AU2008213827B2 (en) Fuse saving power distribution system fault protection
WO2014124660A1 (en) Method and device for detection of a fault in a protected unit
JP2007244138A (en) Protective circuit
JP5100423B2 (en) Protective relay system
JP5208684B2 (en) Ground fault protection relay system
JP2008160910A (en) Protective relay device
JP2013255306A (en) Premise protective relay device
JP2011254626A (en) Transmission line protector
JP2014192953A (en) Transmission line protection device, and transmission line protection system
CN100448132C (en) Integrated protection system based on electric current principle
Rainin et al. Improvements of protective characteristics of automatic low-voltage circuit breakers
JPH0214283Y2 (en)
JP2001286055A (en) Multiterminal protective relay for transmission line
JP5014716B2 (en) Circuit breaker
JP2019122094A (en) Line selection relay device with premise protective function
JPH01252122A (en) Network relay
JPH03251042A (en) Spot network incoming transfer system
JP2008161012A (en) Overcurrent relay device
JPH08251811A (en) Spot network
JP2008161011A (en) Short circuit direction relay device
JP2000032648A (en) Circuit breaker malfunctioning countermeasure device
JP2008161013A (en) Ground fault overcurrent relay device
JPH0518237U (en) Two-line combined transmission line protection relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5201971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees