JP2009140878A - Insulating electric wire - Google Patents

Insulating electric wire Download PDF

Info

Publication number
JP2009140878A
JP2009140878A JP2007318989A JP2007318989A JP2009140878A JP 2009140878 A JP2009140878 A JP 2009140878A JP 2007318989 A JP2007318989 A JP 2007318989A JP 2007318989 A JP2007318989 A JP 2007318989A JP 2009140878 A JP2009140878 A JP 2009140878A
Authority
JP
Japan
Prior art keywords
hollow silica
varnish
insulated wire
insulating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318989A
Other languages
Japanese (ja)
Other versions
JP5194755B2 (en
Inventor
Yuki Honda
祐樹 本田
Tomiya Abe
富也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007318989A priority Critical patent/JP5194755B2/en
Publication of JP2009140878A publication Critical patent/JP2009140878A/en
Application granted granted Critical
Publication of JP5194755B2 publication Critical patent/JP5194755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating electric wire which has a high thermal resistance and is superior in suppression of a corona discharge at a high frequency region. <P>SOLUTION: The insulating electric wire has an insulating coating formed by coating and baking an insulating varnish having imide-based resin varnish as a main component on a conductor. The insulating varnish has a hollow silica dispersant in which hollow silica is dispersed in a mixed solvent of an amide-based polarorganic solvent and a silane coupling agent, mixed in the imide-based resin varnish. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータやトランスなどの電気機器に用いられる絶縁電線、絶縁電線として用いられるエナメル線及びそれに用いられる絶縁塗料に関するものである。   The present invention relates to an insulated wire used for an electric device such as a motor or a transformer, an enameled wire used as an insulated wire, and an insulating paint used therefor.

一般的に、絶縁電線として用いられるエナメル線は、導体上にエナメル塗料を塗布・焼付して成る絶縁皮膜が形成されたものである。このエナメル線を巻線にして得られる電気機器用のコイルは、大容量、大型重電機器に広く実用されている。
この電気機器用のコイルに用いられるエナメル線を使用して電気機器、例えばモータやトランスなどを作製する場合、一般的にはモータのコア(磁芯)のスロットに連続的にエナメル線をコイル状に巻回して形成したり、或いはエナメル線をコイル状に巻いたものをコアのスロットに嵌合、挿入したりする方法が主流である。
Generally, an enameled wire used as an insulated wire has an insulating film formed by applying and baking an enamel paint on a conductor. A coil for an electric device obtained by winding the enameled wire is widely used in a large capacity and large heavy electric device.
When manufacturing an electric device such as a motor or a transformer by using the enamel wire used for the coil for the electric device, generally the enamel wire is continuously coiled in the slot of the core (magnetic core) of the motor. The mainstream method is to form the coil by winding it in a coil or by fitting and inserting a coil of enameled wire into a slot in the core.

一方、断面積の大きな、すなわち外径の大きいエナメル線や、平角導体を有するエナメル線の場合、エナメル線を連続的に巻いて巻き数の多い長尺のコイルを形成するのではなく、巻き数の少ない短尺の小径コイルを複数形成し、これら小径コイルのエナメル線端末を溶接して繋ぎ合わせ、長尺のコイルを形成する方法が提案されている。このように形成したコイルは、小型かつ高密度の磁束が要求される電気機器のコイル、例えば自動車の発電機などのコイルに使用されている。   On the other hand, in the case of an enameled wire with a large cross-sectional area, that is, a large outer diameter or an enameled wire having a rectangular conductor, the enameled wire is not continuously wound to form a long coil with a large number of turns, but the number of turns A method has been proposed in which a plurality of short small-diameter coils with a small number are formed, and enameled wire ends of these small-diameter coils are welded together to form a long coil. The coil formed in this way is used for a coil of an electric device that requires a small and high-density magnetic flux, such as a coil of an automobile generator.

また、自動車のインバータ制御装置などに使用されるモータには、導体の周りにポリエステルイミド系ワニスを塗布・焼付してなる絶縁皮膜を形成し、そのポリエステルイミド絶縁皮膜の周りにポリアミドイミド系ワニスを塗布・焼付してなる絶縁皮膜を設けたダブルコート線や、導体の周りにポリアミドイミド系ワニスを塗布、焼付してなる絶縁皮膜を設けたシングルコート線が主に使用されている。
また、導体の周りにポリイミド系ワニスを塗布・焼付してなる絶縁皮膜を形成し、そのポリイミド系絶縁皮膜の周りにポリアミドイミド系絶縁皮膜を設け、耐熱性と機械強度を向上させたダブルコート線なども使用されている(例えば、特許文献1参照)。
Also, for motors used in inverter control devices for automobiles, an insulating film is formed by applying and baking polyesterimide varnish around the conductor, and polyamideimide varnish is applied around the polyesterimide insulating film. A double-coated wire provided with an insulating film formed by coating and baking, and a single-coated wire provided with an insulating film formed by applying and baking a polyamideimide varnish around a conductor are mainly used.
In addition, an insulation film is formed by applying and baking polyimide varnish around the conductor, and a polyamide-imide insulation film is provided around the polyimide insulation film to improve heat resistance and mechanical strength. Are also used (see, for example, Patent Document 1).

しかしながら、ポリアミドイミドやポリイミド系絶縁皮膜は高耐熱である反面、極性が高いことから誘電率が高く、例えば、インバータ制御の場合、インバータから発生する高いサージ電圧がモータに侵入し、モータの絶縁システムに悪影響を及ぼす。具体的には、コイル状に巻回したエナメル線間に十分な絶縁性が無い場合、コロナ放電によって絶縁皮膜の劣化が促進される。
このとき、エナメル線の耐インバータサージ性を向上させる手法として、コロナ放電が発生した場合でもエナメル線の寿命を長くするという手法が考えられる。寿命を長くする手法としては、電気絶縁ワニスにシリカゾルを分散させてなる絶縁皮膜をエナメル線に設けることが知られている(例えば、特許文献2参照)。
However, polyamide-imide and polyimide-based insulation films have high heat resistance, but because of their high polarity, they have a high dielectric constant. For example, in the case of inverter control, a high surge voltage generated from the inverter enters the motor, and the motor insulation system. Adversely affect. Specifically, when there is not sufficient insulation between the enamel wires wound in a coil shape, the deterioration of the insulating film is promoted by corona discharge.
At this time, as a method for improving the inverter surge resistance of the enameled wire, a method of extending the life of the enameled wire even when corona discharge occurs can be considered. As a technique for extending the life, it is known to provide an enameled wire with an insulating film in which silica sol is dispersed in an electrically insulating varnish (see, for example, Patent Document 2).

また、高周波課電時のインバータサージ電圧に対して、絶縁皮膜のコロナ放電開始電圧の方が高ければ、コロナ放電が発生せず寿命が長くなる。上記コロナ放電開始電圧を高くする方法としては、絶縁皮膜の厚膜化と低誘電率化が挙げられる。絶縁皮膜の低誘電率化としては、フッ素系ポリイミドからなる絶縁ワニスを導体表面に塗布・焼付して絶縁皮膜を形成することなどが提案されている(例えば、特許文献3参照)。   Moreover, if the corona discharge start voltage of the insulating film is higher than the inverter surge voltage during high frequency voltage application, corona discharge does not occur and the life is prolonged. Examples of a method for increasing the corona discharge start voltage include increasing the thickness of the insulating film and decreasing the dielectric constant. In order to reduce the dielectric constant of an insulating film, it has been proposed to form an insulating film by applying and baking an insulating varnish made of fluorine-based polyimide on a conductor surface (see, for example, Patent Document 3).

特開平5−130759号公報Japanese Patent Laid-Open No. 5-130759 特開2004−22831号公報JP 2004-22831 A 特開2002−56720号公報JP 2002-56720 A

しかしながら、絶縁皮膜の厚膜化は、占積率が増大し、モータが大型化してしまうため好ましくない。
また、フッ素系の絶縁ワニスからなる絶縁皮膜は、誘電率は低いものの高温焼付け時に有害なフッ素系ガスを生じてしまうおそれがあった。
However, increasing the thickness of the insulating film is not preferable because the space factor increases and the motor becomes larger.
In addition, although the insulating film made of a fluorine-based insulating varnish has a low dielectric constant, there is a risk of generating a harmful fluorine-based gas during high-temperature baking.

本発明の目的は、上記従来技術の問題点を解消し、高耐熱で、かつ高周波領域でのコロナ放電の発生抑制に優れた絶縁電線を提供することにある。   An object of the present invention is to provide an insulated wire that solves the above-described problems of the prior art, has high heat resistance, and is excellent in suppressing the occurrence of corona discharge in a high-frequency region.

本発明の第一の態様は、導体上にイミド系樹脂ワニスを主成分とする絶縁ワニスを塗布し焼付して絶縁皮膜が形成されている絶縁電線において、前記絶縁ワニスは、アミド系極性有機溶媒とシランカップリング剤との混合溶媒に中空シリカが分散された中空シリカ分散液が、前記イミド系樹脂ワニスに混合されてなることを特徴とする。   A first aspect of the present invention is an insulated wire in which an insulating varnish mainly composed of an imide resin varnish is applied and baked on a conductor to form an insulating film. The insulating varnish is an amide polar organic solvent. A hollow silica dispersion in which hollow silica is dispersed in a mixed solvent of silane coupling agent and silane coupling agent is mixed with the imide resin varnish.

本発明の第二の態様は、第一の態様に記載の発明において、前記中空シリカは30vol%以上の空隙率を有することを特徴とする。   According to a second aspect of the present invention, in the invention according to the first aspect, the hollow silica has a porosity of 30 vol% or more.

本発明の第三の態様は、第一又は第二の態様に記載の発明において、前記中空シリカは、前記絶縁ワニスの樹脂分100重量部に対して、シリカ量で10重量部以上50重量部未満含まれていることを特徴とする。   According to a third aspect of the present invention, in the invention according to the first or second aspect, the hollow silica is 10 parts by weight or more and 50 parts by weight of silica with respect to 100 parts by weight of the resin content of the insulating varnish. It is characterized by being included in less than.

本発明の第四の態様は、第一乃至第三の態様のいずれかに記載の発明において、前記中空シリカは、平均粒子径が200nm未満であることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the hollow silica has an average particle diameter of less than 200 nm.

本発明の第五の態様は、第一の態様に記載の発明において、前記シランカップリング剤は、前記中空シリカのシリカ量に対して0.01重量部以上10重量部未満含まれていることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to the first aspect, the silane coupling agent is contained in an amount of 0.01 parts by weight or more and less than 10 parts by weight with respect to the amount of silica of the hollow silica. It is characterized by.

本発明の第六の態様は、第一の態様に記載の発明において、前記イミド系樹脂ワニスは、ポリアミドイミド樹脂、或いはポリイミド樹脂であることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to the first aspect, the imide-based resin varnish is a polyamide-imide resin or a polyimide resin.

本発明によれば、高耐熱で、かつ高周波領域でのコロナ放電の発生抑制に優れた絶縁電線が得られる。   According to the present invention, an insulated wire that is highly heat resistant and excellent in suppressing the occurrence of corona discharge in a high frequency region can be obtained.

以下、本発明を実施するための最良の形態を説明する。
本実施形態における絶縁電線は、シランカップリング剤とアミド系極性有機溶媒からなる混合溶媒中に中空シリカを分散させた中空シリカ分散液を、イミド系樹脂ワニスに混合して得られる絶縁ワニスを導体上に塗布し焼付して絶縁皮膜を設けたものである。
上記導体に用いられる金属としては、例えば銅、アルミニウムが挙げられる。また、上記導体の断面形状は、絶縁電線として用いることができるものならば円形状・平角形状など、どのような断面形状であってもよい。
また、上記イミド系樹脂ワニスは、具体的には、ポリアミドイミド樹脂、あるいはポリイミド樹脂を1種類以上用いたものである。
Hereinafter, the best mode for carrying out the present invention will be described.
The insulated wire in the present embodiment is a conductor of insulating varnish obtained by mixing a hollow silica dispersion in which hollow silica is dispersed in a mixed solvent composed of a silane coupling agent and an amide polar organic solvent into an imide resin varnish. It is applied and baked to provide an insulating film.
Examples of the metal used for the conductor include copper and aluminum. Further, the cross-sectional shape of the conductor may be any cross-sectional shape such as a circular shape or a flat rectangular shape as long as it can be used as an insulated wire.
The imide-based resin varnish specifically uses one or more types of polyamide-imide resin or polyimide resin.

上記中空シリカは、主成分がケイ素酸化物であり、非晶質である。シリカ源としては、ケイ素酸化物及びその前駆体であり、縮合や重合して最終的にシリカになるものを用いることができる。具体的には、テトラエトキシシランやメチルトリエトキシシラン、ジメチルトリエトキシシラン、1,2−ビス(トリエトキシシリル)エタンなどのアルコキシドや活性シリカを単独または併用して用いることができる。活性シリカは安価で安全性が高いため、特に好ましい。活性シリカは、水ガラスをイオン交換したり、水ガラスから有機溶剤で抽出したりするなどして調製することができる。   The hollow silica is mainly composed of silicon oxide and is amorphous. As the silica source, silicon oxide and its precursor, which can be finally converted to silica by condensation or polymerization can be used. Specifically, alkoxides such as tetraethoxysilane, methyltriethoxysilane, dimethyltriethoxysilane, 1,2-bis (triethoxysilyl) ethane, and activated silica can be used alone or in combination. Activated silica is particularly preferred because it is inexpensive and highly safe. The active silica can be prepared by ion exchange of water glass or extraction from water glass with an organic solvent.

また、上記中空シリカは、ナノサイズの中空を有するシリカ微粒子を含む。
上記シリカ微粒子は空気との複合誘電体を形成するため、絶縁皮膜の誘電率を低下させることができる。中空シリカを他の素材と混合することにより、中空シリカの内部空間すなわち空気を利用して、絶縁皮膜の低誘電化を図ることができる。また、中空シリカの内部空間はナノサイズの空間であるので、絶縁破壊が起こり難い。
Moreover, the said hollow silica contains the silica fine particle which has a nanosize hollow.
Since the silica fine particles form a composite dielectric with air, the dielectric constant of the insulating film can be lowered. By mixing the hollow silica with other materials, the dielectric space of the insulating film can be reduced using the internal space of the hollow silica, that is, air. In addition, since the internal space of the hollow silica is a nano-sized space, dielectric breakdown hardly occurs.

具体的には、上記中空シリカは、透過型電子顕微鏡法において、シリカ粒子径及び中空シリカの殻厚から求めた前記微粒子の空隙率が30vol%以上であることが好ましく、30vol%以上50vol%以下であることがより好ましい。
空隙率が30vol%未満の場合、高周波領域でのコロナ放電の発生抑制効果や絶縁破壊特性が低下する傾向があり、空隙率が50vol%を超える場合、空隙率が30vol%以上50vol%以下の場合と比べて中空シリカの機械的強度が弱くなり、分散時に中空シリカの破壊が生じてしまう場合があるためである。
Specifically, the hollow silica preferably has a fine particle porosity of 30 vol% or more and 30 vol% or less and 50 vol% or less obtained from the silica particle diameter and the hollow silica shell thickness in transmission electron microscopy. It is more preferable that
When the porosity is less than 30 vol%, the effect of suppressing the occurrence of corona discharge in the high frequency region and the dielectric breakdown characteristics tend to decrease. When the porosity exceeds 50 vol%, the porosity is between 30 vol% and 50 vol% This is because the mechanical strength of the hollow silica becomes weaker than that of the hollow silica, and the hollow silica may be broken during dispersion.

また、具体的には、上記イミド系樹脂ワニスの樹脂分100重量部に対して、中空シリカがシリカ量で10重量部以上50重量部未満含まれていることが好ましい。
10重量部未満の場合、中空シリカの中空構造に起因する効果である低誘電化が発揮されず、50重量部以上の場合、ワニス成分中でのシリカの沈降、シリカ配合によるワニスの増粘が発生するためである。
Specifically, it is preferable that the hollow silica is contained in an amount of 10 parts by weight or more and less than 50 parts by weight with respect to 100 parts by weight of the resin component of the imide resin varnish.
When the amount is less than 10 parts by weight, the effect of lowering the dielectric due to the hollow structure of the hollow silica is not exhibited. When the amount is 50 parts by weight or more, precipitation of the silica in the varnish component, thickening of the varnish due to silica blending This is because it occurs.

さらに、具体的には、透過型電子顕微鏡法において求めた上記微粒子の平均粒子径が200nm未満であることが好ましい。平均粒子径が200nm以上の中空シリカは、イミド系樹脂ワニスヘの分散性が悪く、安定性に非常に劣るためである。   Furthermore, specifically, it is preferable that the average particle diameter of the fine particles determined by transmission electron microscopy is less than 200 nm. This is because hollow silica having an average particle diameter of 200 nm or more has poor dispersibility in the imide resin varnish and is very poor in stability.

上記シランカップリング剤は、中空シリカ上に吸着することによりイミド系樹脂ワニスとの分散安定作用を発揮するものであれば、化合物として限定されるものではない。具体例を挙げるとすれば、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)− 3−アミノプロピルプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等が好ましい。   The silane coupling agent is not limited as a compound as long as it exhibits a dispersion stabilizing action with the imide resin varnish by adsorbing onto the hollow silica. Specific examples include 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy. Silane, N-2- (aminoethyl) -3-aminopropylpropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like are preferable.

また、シランカップリング剤は、中空シリカのシリカ量に対して0.01重量部以上10重量部未満含まれていることが好ましい。
0.01重量部未満の場合、アミド系極性有機溶媒中でシリカの沈降が発生し、均質な分散が困難となり、10重量部以上の場合、シランカップリング剤の縮合が進行し、絶縁ワニスの安定性の低下が発生するためである。
Further, the silane coupling agent is preferably contained in an amount of 0.01 parts by weight or more and less than 10 parts by weight with respect to the silica amount of the hollow silica.
When the amount is less than 0.01 parts by weight, silica sedimentation occurs in an amide polar organic solvent, and uniform dispersion becomes difficult. When the amount is 10 parts by weight or more, condensation of the silane coupling agent proceeds, and This is because a decrease in stability occurs.

上記アミド系極性有機溶媒は、中空シリカをシランカップリング剤により溶媒中に均一に分散させることができ、かつ上記イミド系樹脂ワニスと可溶であれば、化合物として限定されるものではない。具体例を挙げるとすれば、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジメチルアセトアミド(DMAC)、N− メチルピロリドン(N
MP)などのいずれも用いることができるが、N−メチルピロリドン(NMP)及び/又はジメチルアセトアミド(DMAC)を用いることが特に好ましい。
The amide polar organic solvent is not limited as a compound as long as the hollow silica can be uniformly dispersed in the solvent by a silane coupling agent and is soluble with the imide resin varnish. Specific examples include dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAC), N-methylpyrrolidone (N
MP) and the like can be used, but it is particularly preferable to use N-methylpyrrolidone (NMP) and / or dimethylacetamide (DMAC).

本実施形態における絶縁電線の製造方法について記載する。
上記絶縁電線の製造方法において用いられる中空シリカの製造方法についての一例を以下に示す。
まず、界面活性剤を所定濃度及び所定温度で調整し、分子集合体溶液を作製する。これとは別に、シリカ源を溶媒に溶解あるいは分散させた溶液を作製する。
次に、これらの両液を均一に攪拌混合することにより、この集合体含有液を所定時間100℃以下の温度にし、界面活性剤により形成される分子集合体上でシリカ源を縮合・重合させる。そして焼成処理や、陽イオン交換樹脂を用いて分子集合体を除去することにより、中空シリカを得る。
ここで得られた中空シリカを、アミド系極性有機溶媒とシランカップリング剤の混合溶媒に入れて混合し、中空シリカ分散液を得る。このとき、超音波処理を行い、中空シリカを混合溶媒中に均一に分散させるのが好ましい。中空シリカは相互の凝集力が強く、二次凝集体となってしまうため、超音波処理によりその凝集をほぐす。超音波処理は、20kHzの周波数で、約5〜120分処理することにより良好な分散効果を得ることができるが、本発明の超音波の条件はこれに限定されるものではなく、適宜良好な方法を選択できる。超音波のパワーが大きく、処理時間が長いほど凝集がほぐれるが、中空シリカの破壊も生じるため、誘電率低減効果が低下する。超音波処理時間を約10〜60分とすることで、二次凝集が起こりにくく、均一に中空シリカが分散した中空シリカ分散液を作製することができる。
そして、上記中空シリカ分散液とイミド系樹脂ワニスとを混合攪拌した後、溶剤を最適粘度となるように揮散させ、絶縁ワニスを得る。
最後に、この絶縁ワニスを導体の周りに塗布・焼付して絶縁皮膜を設け、絶縁電線を作製する。
ここで、絶縁電線を複数寄り合わせ、それらを被覆し1本の絶縁電線としてもよい。
It describes about the manufacturing method of the insulated wire in this embodiment.
An example of a method for producing hollow silica used in the method for producing an insulated wire will be described below.
First, a surfactant is adjusted at a predetermined concentration and a predetermined temperature to prepare a molecular assembly solution. Separately, a solution in which a silica source is dissolved or dispersed in a solvent is prepared.
Next, both these liquids are stirred and mixed uniformly to bring the aggregate-containing liquid to a temperature of 100 ° C. or lower for a predetermined time, and the silica source is condensed and polymerized on the molecular aggregate formed by the surfactant. . And a hollow silica is obtained by removing a molecular assembly using a baking process or a cation exchange resin.
The hollow silica obtained here is mixed in an amide polar organic solvent and silane coupling agent mixed solvent to obtain a hollow silica dispersion. At this time, it is preferable to perform ultrasonic treatment to uniformly disperse the hollow silica in the mixed solvent. Since hollow silica has a strong mutual cohesion and becomes a secondary aggregate, the aggregation is loosened by ultrasonic treatment. The ultrasonic treatment can obtain a good dispersion effect by treating at a frequency of 20 kHz for about 5 to 120 minutes, but the ultrasonic conditions of the present invention are not limited to this, and are suitably good. You can choose the method. As the ultrasonic power is higher and the treatment time is longer, the agglomeration is loosened, but the hollow silica is also broken, so the dielectric constant reduction effect is lowered. By setting the ultrasonic treatment time to about 10 to 60 minutes, it is possible to produce a hollow silica dispersion in which secondary aggregation hardly occurs and the hollow silica is uniformly dispersed.
And after mixing and stirring the said hollow silica dispersion and an imide resin varnish, a solvent is volatilized so that it may become optimal viscosity, and an insulating varnish is obtained.
Finally, this insulating varnish is applied and baked around the conductor to provide an insulating film, thereby producing an insulated wire.
Here, a plurality of insulated wires may be brought close together and covered to form a single insulated wire.

本実施形態における絶縁電線のもたらす効果について記載する。
本実施形態における絶縁電線は、シランカップリング剤とアミド系極性有機溶媒からなる混合溶媒中に粒子状の中空シリカを超音波処理により分散させた中空シリカ分散液を作製し、前記中空シリカ分散液を、樹脂ワニスを導体上に塗布し焼付してなる絶縁皮膜を備えることにより、高耐熱で、かつ高周波領域でのコロナ放電の発生抑制や絶縁破壊特性に優れる。上記絶縁電線は、特に、モータや変圧器などのコイル用として好適である。
It describes about the effect which the insulated wire in this embodiment brings.
The insulated wire in the present embodiment is a hollow silica dispersion in which particulate hollow silica is dispersed by ultrasonic treatment in a mixed solvent composed of a silane coupling agent and an amide polar organic solvent, and the hollow silica dispersion Is provided with an insulating film formed by applying a resin varnish on a conductor and baking it, and thus has high heat resistance and excellent suppression of generation of corona discharge and high dielectric breakdown characteristics in a high frequency region. The insulated wire is particularly suitable for coils such as motors and transformers.

以下に、具体的な実施例により、本発明の中空シリカが分散された絶縁皮膜を有する絶縁電線の作製方法を示す。   A method for producing an insulated wire having an insulating film in which the hollow silica of the present invention is dispersed will be described below according to specific examples.

(実施例1〜3)
表1(下記)には、実施例及び比較例における中空シリカの特性、シリカ及びシランカップリングの配合量、絶縁ワニスの安定性、5%重量減少温度、誘電率、絶縁破壊電圧を示す。以下、実施例1について説明する。
表1より、平均粒子径180nm及び空隙率50vol%の中空シリカ(5g)を、NMP(N−メチルピロリドン)溶媒(100g)とシランカップリング剤(3−アミノプロピルトリメトキシシラン)(0.05g)の混合溶媒に入れて混合し、超音波ホモジナイザ(日本精機製)を用いて、周波数20kHz、出力150Wで30分間、超音波処理し、中空シリカ分散液を得た。
次に、上記中空シリカ分散液と、イミド系樹脂ワニスとして無水トリメリット酸とジアミノジフェニルメタンを合成してなる固形分濃度20重量部のポリアミドイミド樹脂10
0gを混合撹拌した。
その後、絶縁電線塗布ワニスとして最適粘度となるよう溶剤を揮散させ、中空シリカが分散されたポリアミドイミド樹脂からなる絶縁ワニスを得た。
そして、平角形状の銅導体の周りに、この絶縁ワニスを塗布した後、焼付を行い、皮膜厚さが30μmの絶縁皮膜を設け、絶縁電線を作製した。
実施例2においては、上記中空シリカ分散液と固形分濃度20重量部のポリアミドイミド樹脂62.5gを混合撹拌したこと以外は、実施例1と同様に絶縁電線を作製した。
実施例3においては、上記中空シリカを、NMP(N−メチルピロリドン)溶媒(100g)とシランカップリング剤(0.005g)の混合溶媒に入れて混合したこと以外は、実施例1と同様に絶縁電線を作製した。
表1に示したように、実施例1〜3における試料の中空シリカは平均粒子径を200nm未満、空隙率を30vol%以上としている。
また、絶縁ワニスの樹脂分100重量部に対する中空シリカの配合量を10重量部以上50重量部未満とし、中空シリカ100重量部に対するシランカップリング剤の配合量を0.01重量部以上1重量部未満としている。
(Examples 1-3)
Table 1 (below) shows the characteristics of hollow silica, blending amounts of silica and silane coupling, stability of insulating varnish, 5% weight loss temperature, dielectric constant, and dielectric breakdown voltage in Examples and Comparative Examples. Example 1 will be described below.
From Table 1, hollow silica (5 g) having an average particle diameter of 180 nm and a porosity of 50 vol% was converted into NMP (N-methylpyrrolidone) solvent (100 g) and a silane coupling agent (3-aminopropyltrimethoxysilane) (0.05 g). ) And mixed with an ultrasonic homogenizer (manufactured by Nippon Seiki Co., Ltd.) for 30 minutes at a frequency of 20 kHz and an output of 150 W to obtain a hollow silica dispersion.
Next, a polyamideimide resin 10 having a solid content concentration of 20 parts by weight obtained by synthesizing trimellitic anhydride and diaminodiphenylmethane as the hollow silica dispersion and an imide resin varnish.
0 g was mixed and stirred.
Then, the solvent was volatilized so that it might become optimal viscosity as an insulated wire application | coating varnish, and the insulating varnish which consists of polyamideimide resin in which the hollow silica was disperse | distributed was obtained.
And after apply | coating this insulating varnish around the rectangular copper conductor, it baked and provided the insulating film whose film thickness is 30 micrometers, and produced the insulated wire.
In Example 2, an insulated wire was produced in the same manner as in Example 1, except that the hollow silica dispersion and 62.5 g of polyamideimide resin having a solid content of 20 parts by weight were mixed and stirred.
In Example 3, the hollow silica was mixed with a mixed solvent of NMP (N-methylpyrrolidone) solvent (100 g) and silane coupling agent (0.005 g) in the same manner as in Example 1. An insulated wire was produced.
As shown in Table 1, the hollow silica of the samples in Examples 1 to 3 has an average particle size of less than 200 nm and a porosity of 30 vol% or more.
Further, the blending amount of the hollow silica with respect to 100 parts by weight of the resin of the insulating varnish is 10 to 50 parts by weight, and the blending amount of the silane coupling agent with respect to 100 parts by weight of the hollow silica is 0.01 to 1 part by weight. Less than.

(比較例1〜5)
比較例1においては、中空シリカもシランカップリング剤も配合されていないポリエステルイミド樹脂を絶縁ワニスとして用いたこと以外は、実施例1と同様に絶縁電線を作製した。
比較例2においては、上記中空シリカ分散液と固形分濃度20重量部のポリアミドイミド塗料40gを混合撹拌したこと以外は、実施例1と同様に絶縁電線を作製した。
比較例3においては、上記中空シリカの空隙率を0vol%、即ち中空を有しない粒状のシリカを用いたこと以外は、実施例1と同様に絶縁電線を作製した。
比較例4においては、上記シランカップリング剤の配合量を0重量部、即ちシランカップリング剤を配合していないこと以外は、実施例1と同様に絶縁電線を作製した。
比較例5においては、上記中空シリカの平均粒子径を200nmとしたこと以外は、実施例1と同様に絶縁電線を作製した。
(Comparative Examples 1-5)
In Comparative Example 1, an insulated wire was produced in the same manner as in Example 1 except that a polyesterimide resin containing neither hollow silica nor a silane coupling agent was used as the insulating varnish.
In Comparative Example 2, an insulated wire was prepared in the same manner as in Example 1 except that the hollow silica dispersion and 40 g of polyamideimide paint having a solid content of 20 parts by weight were mixed and stirred.
In Comparative Example 3, an insulated wire was produced in the same manner as in Example 1 except that the void ratio of the hollow silica was 0 vol%, that is, granular silica having no hollow was used.
In Comparative Example 4, an insulated wire was produced in the same manner as in Example 1 except that the blending amount of the silane coupling agent was 0 parts by weight, that is, no silane coupling agent was blended.
In Comparative Example 5, an insulated wire was produced in the same manner as in Example 1 except that the average particle diameter of the hollow silica was 200 nm.

実施例及び比較例における絶縁ワニス及びそれを用いた絶縁電線の評価を以下の方法により行い、その結果を表1に示した。
(1)絶縁ワニスの安定性
実施例及び比較例において作製した絶縁ワニスを、直射日光が当たらない室温30℃の室内に1ヶ月間置き、ワニスの樹脂分や中空シリカの沈降の有無により判定した。
(2)5%重量減少温度
実施例及び比較例において作製した絶縁電線の絶縁皮膜に対して熱重量天秤中で加温し、重量の5%が失われる際の温度を測定した。
(3)誘電率
実施例及び比較例において作製した絶縁ワニスをフィルム状に成型し、2mm×100mmの試験短冊片を空洞共振器摂動法(S−パラメータネットワークアナライザ8720ES;アジレント製)を用い、周波数10GHzの誘電率を測定した。
(4)絶縁破壊電圧
実施例及び比較例において作製した絶縁電線を黄銅製平行平板電極(直径30mm)で挟み、初期荷電1kVから0.5kV/minで昇圧して課電し、絶縁皮膜が破壊される時点の電圧を測定した。
Insulation varnishes in Examples and Comparative Examples and insulated wires using the varnishes were evaluated by the following methods, and the results are shown in Table 1.
(1) Stability of insulating varnish The insulating varnishes produced in the examples and comparative examples were placed in a room at room temperature of 30 ° C. where they were not exposed to direct sunlight for one month, and were judged by the presence of varnish resin and hollow silica sedimentation. .
(2) 5% weight reduction temperature It heated in the thermogravimetric balance with respect to the insulation film of the insulated wire produced in the Example and the comparative example, and the temperature in case 5% of weight was lost was measured.
(3) Dielectric constant The insulating varnishes produced in the examples and comparative examples were molded into a film, and a 2 mm × 100 mm test strip was measured using the cavity resonator perturbation method (S-parameter network analyzer 8720ES; manufactured by Agilent), and the frequency A dielectric constant of 10 GHz was measured.
(4) Dielectric breakdown voltage Insulated wires produced in the examples and comparative examples are sandwiched between brass parallel plate electrodes (diameter: 30 mm), and the voltage is applied by increasing the initial charge from 1 kV to 0.5 kV / min. The voltage at that time was measured.

Figure 2009140878
Figure 2009140878

実施例1〜3および比較例1、3で得られた絶縁電線では、各々絶縁ワニスの安定性が良好であるが、5%重量減少温度の結果から、実施例1〜3の絶縁電線は、比較例1で得られた従来の絶縁電線よりも耐熱性に優れることがわかる。
また、実施例1〜3では、比較例1、3よりも絶縁皮膜の誘電率が低く、高周波領域でのコロナ放電の発生を従来よりも抑制することができる。
さらに、実施例1〜3では、比較例1、3よりも絶縁破壊電圧が高く、絶縁破壊特性に優れることが分かる。
一方、比較例1、3で得られた絶縁電線では、中空シリカもシランカップリング剤も配合されていない又は空隙のないシリカ微粒子が配合されており、実施例1〜3と比較して誘電率が高くなってしまい、高周波領域でのコロナ放電の発生を効果的に抑制することが難しい。
また、比較例2及び比較例4においては、実施例1〜3と同様の中空シリカを用いているものの、比較例2では、絶縁ワニス樹脂分100重量部に対するシリカ量が、50重量部を超えた62.5重量部であり、比較例4では、シランカップリング剤を配合していないことに起因して絶縁ワニスの安定性が非常に悪くなった。また、比較例5では、実施例1と比較して中空シリカの平均粒子径を200nmとしたことにより、ワニス安定性が非常に悪くなった。
なお、本発明は、上記実施形態及び実施例に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。例えば、実施形態の構成要素の組み合わせは任意に行うことができる。
In the insulated wires obtained in Examples 1 to 3 and Comparative Examples 1 and 3, the stability of the insulating varnish is good, but from the result of the 5% weight loss temperature, the insulated wires of Examples 1 to 3 are It can be seen that the heat resistance is superior to the conventional insulated wire obtained in Comparative Example 1.
Moreover, in Examples 1-3, the dielectric constant of an insulating film is lower than Comparative Examples 1 and 3, and generation | occurrence | production of the corona discharge in a high frequency area | region can be suppressed rather than before.
Furthermore, in Examples 1-3, it turns out that a dielectric breakdown voltage is higher than Comparative Examples 1 and 3, and it is excellent in a dielectric breakdown characteristic.
On the other hand, in the insulated wires obtained in Comparative Examples 1 and 3, silica fine particles containing neither hollow silica nor a silane coupling agent or voids are blended, and the dielectric constant compared to Examples 1-3. It becomes difficult to effectively suppress the occurrence of corona discharge in the high frequency region.
Moreover, in Comparative Example 2 and Comparative Example 4, although the same hollow silica as in Examples 1 to 3 is used, in Comparative Example 2, the amount of silica with respect to 100 parts by weight of the insulating varnish resin exceeds 50 parts by weight. 62.5 parts by weight, and in Comparative Example 4, the stability of the insulating varnish was very poor due to the absence of the silane coupling agent. Moreover, in the comparative example 5, compared with Example 1, the average particle diameter of hollow silica was 200 nm, and varnish stability became very bad.
In addition, this invention is not limited to the said embodiment and Example, A various deformation | transformation is possible within the range which does not change the summary. For example, the combination of the components of the embodiment can be arbitrarily performed.

Claims (6)

導体上にイミド系樹脂ワニスを主成分とする絶縁ワニスを塗布し焼付して絶縁皮膜が形成されている絶縁電線において、前記絶縁ワニスは、アミド系極性有機溶媒とシランカップリング剤との混合溶媒に中空シリカが分散された中空シリカ分散液が、前記イミド系樹脂ワニスに混合されてなることを特徴とする絶縁電線。   In an insulated wire in which an insulating varnish mainly composed of an imide resin varnish is applied and baked on a conductor to form an insulating film, the insulating varnish is a mixed solvent of an amide polar organic solvent and a silane coupling agent. An insulated wire comprising a hollow silica dispersion in which hollow silica is dispersed in the imide resin varnish. 前記中空シリカは30vol%以上の空隙率を有することを特徴とする請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the hollow silica has a porosity of 30 vol% or more. 前記中空シリカは、前記絶縁ワニスの樹脂分100重量部に対して、シリカ量で10重量部以上50重量部未満含まれていることを特徴とする請求項1又は2に記載絶縁電線。   The insulated wire according to claim 1 or 2, wherein the hollow silica is contained in an amount of 10 parts by weight or more and less than 50 parts by weight with respect to 100 parts by weight of the resin content of the insulating varnish. 前記中空シリカは、平均粒子径が200nm未満であることを特徴とする請求項1乃至3のいずれかに記載の絶縁電線。   The insulated wire according to any one of claims 1 to 3, wherein the hollow silica has an average particle diameter of less than 200 nm. 前記シランカップリング剤は、前記中空シリカのシリカ量に対して0.01重量部以上10重量部未満含まれていることを特徴とする請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the silane coupling agent is contained in an amount of 0.01 parts by weight or more and less than 10 parts by weight with respect to the silica amount of the hollow silica. 前記イミド系樹脂ワニスは、ポリアミドイミド樹脂、或いはポリイミド樹脂であることを特徴とする請求項1に記載の絶縁電線。   The insulated wire according to claim 1, wherein the imide-based resin varnish is a polyamide-imide resin or a polyimide resin.
JP2007318989A 2007-12-10 2007-12-10 Enameled wire Active JP5194755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318989A JP5194755B2 (en) 2007-12-10 2007-12-10 Enameled wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318989A JP5194755B2 (en) 2007-12-10 2007-12-10 Enameled wire

Publications (2)

Publication Number Publication Date
JP2009140878A true JP2009140878A (en) 2009-06-25
JP5194755B2 JP5194755B2 (en) 2013-05-08

Family

ID=40871284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318989A Active JP5194755B2 (en) 2007-12-10 2007-12-10 Enameled wire

Country Status (1)

Country Link
JP (1) JP5194755B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226720A1 (en) * 2008-03-06 2009-09-10 Hitachi Magnet Wire Corp. Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP2012232435A (en) * 2011-04-28 2012-11-29 Kyocera Corp Dielectric film, and capacitor using the same
WO2017073551A1 (en) * 2015-10-28 2017-05-04 住友電気工業株式会社 Insulating electric wire and varnish for forming insulating layers
WO2018003844A1 (en) * 2016-07-01 2018-01-04 日産化学工業株式会社 Method for inhibiting occurrence of creeping electrical discharge
CN110800069A (en) * 2017-06-16 2020-02-14 住友电气工业株式会社 Insulated wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123715A (en) * 1990-09-14 1992-04-23 Junkosha Co Ltd Insulated wire and manufacture thereof
JP2007056158A (en) * 2005-08-25 2007-03-08 Nagoya Institute Of Technology Resin composition and wiring circuit board using the same
WO2007102569A1 (en) * 2006-03-08 2007-09-13 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123715A (en) * 1990-09-14 1992-04-23 Junkosha Co Ltd Insulated wire and manufacture thereof
JP2007056158A (en) * 2005-08-25 2007-03-08 Nagoya Institute Of Technology Resin composition and wiring circuit board using the same
WO2007102569A1 (en) * 2006-03-08 2007-09-13 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226720A1 (en) * 2008-03-06 2009-09-10 Hitachi Magnet Wire Corp. Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP2012232435A (en) * 2011-04-28 2012-11-29 Kyocera Corp Dielectric film, and capacitor using the same
JP2018133339A (en) * 2015-10-28 2018-08-23 住友電気工業株式会社 Insulated electric wire
WO2017073551A1 (en) * 2015-10-28 2017-05-04 住友電気工業株式会社 Insulating electric wire and varnish for forming insulating layers
JPWO2017073551A1 (en) * 2015-10-28 2018-03-15 住友電気工業株式会社 Insulated wire and varnish for insulating layer formation
CN109496341A (en) * 2016-07-01 2019-03-19 日产化学株式会社 The method for inhibiting creeping discharge to occur
WO2018003844A1 (en) * 2016-07-01 2018-01-04 日産化学工業株式会社 Method for inhibiting occurrence of creeping electrical discharge
KR20190029620A (en) * 2016-07-01 2019-03-20 닛산 가가쿠 가부시키가이샤 Method for suppressing generation of surface discharge
JPWO2018003844A1 (en) * 2016-07-01 2019-04-18 日産化学株式会社 Method of suppressing generation of creeping discharge
US11177050B2 (en) 2016-07-01 2021-11-16 Nissan Chemical Corporation Method for inhibiting occurrence of creeping electrical discharge
KR102385771B1 (en) * 2016-07-01 2022-04-11 닛산 가가쿠 가부시키가이샤 How to suppress the occurrence of creepage discharge
JP7141639B2 (en) 2016-07-01 2022-09-26 日産化学株式会社 Method for suppressing occurrence of creeping discharge
CN110800069A (en) * 2017-06-16 2020-02-14 住友电气工业株式会社 Insulated wire
EP3640955A4 (en) * 2017-06-16 2020-07-08 Sumitomo Electric Industries, Ltd. Insulated electric wire
CN110800069B (en) * 2017-06-16 2022-06-10 住友电气工业株式会社 Insulated wire

Also Published As

Publication number Publication date
JP5194755B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5243880B2 (en) Insulated wire
JP4542463B2 (en) Partially discharge-resistant insulating paint, insulated wire, and method for producing the same
JP5194755B2 (en) Enameled wire
US9536634B2 (en) Insulating wire having partial discharge resistance and high partial discharge inception voltage
JP5351470B2 (en) Insulated wire
JP6030832B2 (en) High temperature high frequency magnet wire and manufacturing method
WO2013133333A1 (en) Insulated electric wire having bubble layer therein, electric device, and method for producing insulated electric wire having bubble layer therein
JP5447188B2 (en) Insulating paint and insulated wire using the same
US7253357B2 (en) Pulsed voltage surge resistant magnet wire
JP2009212034A (en) Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire
JP2009218201A (en) Insulation wire and insulating varnish used for it
KR20120111255A (en) Corona discharge resistant insulating varnish composition with reinforced flexibility and adhesion, and insulated wire containing insulated layer coated with the same
KR101391235B1 (en) Inorganic nanofiller, partial discharge resistant enameled wire comprising the same, and preparing method of the enameled wire
KR102661175B1 (en) Laminates of conductors and insulating films, coils, rotating electrics, insulating paints, and insulating films
JP2006134813A (en) Insulated covering material and insulating coating conductor
US20150279510A1 (en) Winding Wire and Composition for Wiring Wire
JP2007141507A (en) Insulated wire and electric coil using this
KR20120106076A (en) Corona discharge-resistant insulating varnish composition and insulated wire containing insulated layer coated with the same
JPWO2020049784A1 (en) Laminates of conductors and insulation coatings, coils, rotary machines, insulation paints, and insulation films
WO2022088429A1 (en) Conductive wire material, coil, and apparatus
CN208460427U (en) A kind of flat enamelled winding wire
JP3419243B2 (en) Silica finely dispersed polyimide enameled wire
CN111518468A (en) Polyamide-imide varnish, and preparation method and application thereof
JP4061981B2 (en) Inverter surge resistant coil insulation varnish and inverter surge resistant coil
CN111253856B (en) High-temperature-resistant and corona-resistant polyimide wire enamel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350