JP2009139637A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2009139637A
JP2009139637A JP2007315811A JP2007315811A JP2009139637A JP 2009139637 A JP2009139637 A JP 2009139637A JP 2007315811 A JP2007315811 A JP 2007315811A JP 2007315811 A JP2007315811 A JP 2007315811A JP 2009139637 A JP2009139637 A JP 2009139637A
Authority
JP
Japan
Prior art keywords
direct current
current
layer
image forming
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315811A
Other languages
Japanese (ja)
Inventor
Hideki Moriya
秀樹 守屋
Hidehiko Yamaguchi
英彦 山口
Masao Omori
雅夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007315811A priority Critical patent/JP2009139637A/en
Publication of JP2009139637A publication Critical patent/JP2009139637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect present electrical state of an image holder at high precision. <P>SOLUTION: The image holder 22 includes a cylindrical conductive supporting body 96 and a photoreceptor layer 98 covering an outer surface of the conductive supporting layer 96. The photoreceptor layer 98 is comprised of a charge generating layer 100, a charge transporting layer (CT layer) 102 and a protective layer (OC layer) 104. A control unit 66 contains a correction section 90 composed as a program, a charge amount detection section 92 and a layer thickness calculating section 94. The correction section 90 corrects the present direct current which is detected by a direct current detection section 86 according to the direct current stored within the latest prescribed period by a memory 76, alternating current detected by an alternating current detection section 88, rotational speed (process speed) of the image holder 22 and the calculated result by the layer thickness calculating section 94. For example, the correction section 90 corrects direct current Idc detected by the direct current detection section 86 by using a correction term which is varied according to passage of time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、画像形成装置に関するものである。   The present invention relates to an image forming apparatus.

特許文献1は、像担持体の膜厚に応じた電流量を検知して記憶し、環境条件の変化などの時間推移に基づいて検知結果を補正してプロセス設定条件を制御する画像形成装置を開示する。   Patent Document 1 discloses an image forming apparatus that detects and stores a current amount according to the film thickness of an image carrier and corrects a detection result based on a temporal transition such as a change in environmental conditions to control process setting conditions. Disclose.

特開2004−334063号公報JP 2004-334063 A

本発明は、現在の像保持体の電気的状態を精度よく検出することができる画像形成装置を提供することを目的とする。   An object of the present invention is to provide an image forming apparatus capable of accurately detecting the current electrical state of an image carrier.

上記目的を達成するため、請求項1に係る本発明は、複数の被覆層により被覆され、回転する像保持体と、この像保持体に接触又は近接して該像保持体を帯電させる帯電部材と、この帯電部材に対し、交流電圧と直流電圧とを重畳させた電圧を印加する給電手段と、前記帯電部材に流れる直流電流を検出する直流電流検出手段と、この直流電流検出手段が所定期間に検出した直流電流を記憶する記憶手段と、前記直流電流検出手段が検出した現在の直流電流を、前記記憶手段が直近の所定期間内に記憶した直流電流に基づいて補正する補正手段とを有する画像形成装置である。   In order to achieve the above object, the present invention according to claim 1 is directed to a rotating image carrier that is coated with a plurality of coating layers, and a charging member that charges the image carrier in contact with or in proximity to the image carrier. A power supply means for applying a voltage obtained by superimposing an alternating voltage and a direct current voltage to the charging member, a direct current detection means for detecting a direct current flowing through the charging member, and the direct current detection means for a predetermined period. Storage means for storing the DC current detected at the time, and correction means for correcting the current DC current detected by the DC current detection means based on the DC current stored in the most recent predetermined period by the storage means. An image forming apparatus.

請求項2に係る本発明は、前記像保持体の周囲の温度及び湿度の少なくともいずれかを環境条件として検出する環境条件検出手段をさらに有し、前記補正手段は、前記環境条件検出手段の検出結果に基づいて、現在の直流電流を補正する請求項1記載の画像形成装置である。   The present invention according to claim 2 further includes environmental condition detection means for detecting at least one of temperature and humidity around the image carrier as an environmental condition, and the correction means is detected by the environmental condition detection means. The image forming apparatus according to claim 1, wherein the current direct current is corrected based on the result.

請求項3に係る本発明は、前記補正手段が、前記像保持体の回転速度に基づいて、現在の直流電流を補正する請求項1又は2記載の画像形成装置である。   According to a third aspect of the present invention, in the image forming apparatus according to the first or second aspect, the correction unit corrects a current direct current based on a rotation speed of the image carrier.

請求項4に係る本発明は、前記帯電部材に流れる交流電流を検出する交流電流検出手段をさらに有し、前記補正手段は、前記交流電流検出手段が検出した交流電流に基づいて、現在の直流電流を補正する請求項1乃至3いずれか記載の画像形成装置である。   The present invention according to claim 4 further includes an alternating current detecting means for detecting an alternating current flowing through the charging member, wherein the correcting means is based on the alternating current detected by the alternating current detecting means. The image forming apparatus according to claim 1, wherein the current is corrected.

請求項5に係る本発明は、前記像保持体の帯電電荷量を検出する電荷量検出手段と、この電荷量検出手段の検出結果に基づいて、前記複数の被覆層の層厚を算出する層厚算出手段とをさらに有する請求項1乃至4いずれか記載の画像形成装置である。   According to a fifth aspect of the present invention, there is provided a charge amount detection means for detecting a charge amount of the image carrier, and a layer for calculating a layer thickness of the plurality of coating layers based on a detection result of the charge amount detection means. The image forming apparatus according to claim 1, further comprising a thickness calculating unit.

請求項6に係る本発明は、前記補正手段が、前記層厚算出手段の算出結果に基づいて、現在の直流電流を補正する請求項5記載の画像形成装置である。   The present invention according to claim 6 is the image forming apparatus according to claim 5, wherein the correction unit corrects a current direct current based on a calculation result of the layer thickness calculation unit.

請求項1に係る本発明によれば、本構成を有していない場合に比較して、現在の像保持体の電気的状態を精度よく検出することができる。   According to the first aspect of the present invention, the current electrical state of the image carrier can be detected with higher accuracy than when the present configuration is not provided.

請求項2に係る本発明によれば、請求項1に係る本発明の効果に加えて、像保持体の周囲の温度及び湿度の少なくともいずれかが変化しても、現在の像保持体の電気的状態を精度よく検出することができる。   According to the second aspect of the present invention, in addition to the effect of the present invention according to the first aspect, even if at least one of the temperature and the humidity around the image carrier changes, the electricity of the current image carrier is changed. The target state can be detected with high accuracy.

請求項3に係る本発明によれば、請求項1又は2に係る本発明の効果に加えて、像保持体の回転速度の影響を考慮して、現在の像保持体の電気的状態を精度よく検出することができる。   According to the third aspect of the present invention, in addition to the effect of the present invention according to the first or second aspect, the electrical state of the current image carrier is accurately determined in consideration of the influence of the rotation speed of the image carrier. Can be detected well.

請求項4に係る本発明によれば、請求項1乃至3いずれかに係る本発明の効果に加えて、帯電部材に流れる交流電流の影響を考慮して、現在の像保持体の電気的状態を精度よく検出することができる。   According to the fourth aspect of the present invention, in addition to the effect of the present invention according to any one of the first to third aspects, the electrical state of the current image carrier is considered in consideration of the influence of the alternating current flowing through the charging member. Can be detected with high accuracy.

請求項5に係る本発明によれば、請求項1乃至4いずれかに係る本発明の効果に加えて、本構成を有していない場合に比較して、複数の被覆層の層厚を精度よく算出することができる。   According to the present invention of claim 5, in addition to the effects of the present invention of any one of claims 1 to 4, the thickness of the plurality of coating layers is more accurate than when the present configuration is not provided. It can be calculated well.

請求項6に係る本発明によれば、請求項5に係る本発明の効果に加えて、複数の被覆層の層厚が変化しても、現在の像保持体の電気的状態を精度よく検出することができる。   According to the sixth aspect of the present invention, in addition to the effect of the present invention according to the fifth aspect, even if the thickness of the plurality of coating layers changes, the current electrical state of the image carrier is accurately detected. can do.

次に本発明の実施形態を図面に基づいて説明する。
図1及び図2において、本発明の実施形態に係る画像形成装置10の概要が示されている。画像形成装置10は、画像形成部12と、原稿読取装置14とを有する。画像形成部12は、例えばゼログラフィ方式のもので、用紙などの記録媒体が積載された例えば4段の給紙トレイ16a,16b,16c,16d及び手差しトレイ18とを有し、これらトレイ16a〜16d、18から記録媒体搬送路20に供給された記録媒体に画像を形成するようになっている。
Next, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an outline of an image forming apparatus 10 according to an embodiment of the present invention. The image forming apparatus 10 includes an image forming unit 12 and a document reading device 14. The image forming unit 12 is of a xerographic type, for example, and has, for example, four stages of paper feed trays 16a, 16b, 16c, 16d on which recording media such as paper are stacked, and a manual feed tray 18, and these trays 16a to 16a. An image is formed on the recording medium supplied to the recording medium conveyance path 20 from 16d and 18.

即ち、画像形成部12は、例えば円筒状の回転する像保持体22と、この像保持体22を一様に接触帯電する例えば帯電ロールからなる帯電部材24と、この帯電部材24により一様に帯電された像保持体22に静電潜像を形成する露光装置(光書込み装置)26と、この露光装置26により形成された像保持体22上の潜像を現像剤で可視化する現像装置28と、この現像装置28により形成された現像剤像を記録媒体に転写する転写装置30と、像保持体22に残った現像剤をクリーニングするクリーナ32とを有する。   In other words, the image forming unit 12 includes, for example, a cylindrical rotating image holding body 22, a charging member 24 made of, for example, a charging roll that uniformly charges the image holding body 22, and the charging member 24. An exposure device (optical writing device) 26 that forms an electrostatic latent image on the charged image carrier 22 and a developing device 28 that visualizes the latent image on the image carrier 22 formed by the exposure device 26 with a developer. And a transfer device 30 that transfers the developer image formed by the developing device 28 to a recording medium, and a cleaner 32 that cleans the developer remaining on the image carrier 22.

帯電部材24は、例えばゴムなどの弾性を有する部材を表面に有し、像保持体22に接触して回転する。露光装置26は、レーザ走査方式のもので、例えば原稿読取装置14で読み取った原稿の画像をレーザのオンオフ信号に変えて出力する。転写装置30は例えば転写ロールから構成され、この転写装置30により現像剤像が転写された記録媒体が定着装置34に送られ、この定着装置34により現像剤像が記録媒体に定着される。現像剤像が定着された記録媒体は、排出トレイ36に排出される。   The charging member 24 has a member having elasticity, such as rubber, on the surface thereof, and rotates in contact with the image carrier 22. The exposure device 26 is of a laser scanning type and outputs, for example, an image of a document read by the document reading device 14 instead of a laser on / off signal. The transfer device 30 is composed of, for example, a transfer roll, and the recording medium onto which the developer image has been transferred by the transfer device 30 is sent to the fixing device 34, and the developer image is fixed to the recording medium by the fixing device 34. The recording medium on which the developer image is fixed is discharged to the discharge tray 36.

記録媒体搬送路20には、複数の記録媒体搬送ロール38が設けられている。この記録媒体搬送ロール38の一つとして、転写装置30上流側近傍には、レジストロール40が配置されている。このレジストロール40は、供給された記録媒体を一時停止させ、像保持体22に潜像が形成されるタイミングと同期して記録媒体を転写装置30に供給するように制御される。   A plurality of recording medium conveying rolls 38 are provided in the recording medium conveying path 20. As one of the recording medium transport rolls 38, a registration roll 40 is disposed in the vicinity of the upstream side of the transfer device 30. The registration roll 40 is controlled so as to temporarily stop the supplied recording medium and supply the recording medium to the transfer device 30 in synchronization with the timing at which the latent image is formed on the image holding member 22.

原稿読取装置14は、原稿を光学的に読み取る光学系42と、自動原稿送り装置44とを有する。
光学系42は、自動原稿送り装置44により送られた原稿を流し読みする機能と、反射ミラー等を走査して原稿台ガラス54上に載置された原稿を読み取る機能とを備えている。
The document reading device 14 includes an optical system 42 that optically reads a document and an automatic document feeder 44.
The optical system 42 has a function of flowing and reading a document sent by the automatic document feeder 44 and a function of reading a document placed on the document table glass 54 by scanning a reflection mirror or the like.

自動原稿送り装置44は、多数の原稿が載置される原稿載置台56と、原稿を搬送する原稿搬送路58と、画像を読み取った後の原稿が排出される排出台60とを有する。   The automatic document feeder 44 includes a document placement table 56 on which a large number of documents are placed, a document conveyance path 58 that conveys the document, and a discharge table 60 that ejects the document after the image is read.

また、画像形成装置10は、制御ユニット66、温度湿度センサ67、表示装置及びキーボードなどを含むユーザインタフェース装置(UI装置)68、HDD・CD装置などの記憶装置70及び通信装置72などを有する。制御ユニット66は、CPU74及びメモリ76などを含み、画像形成装置10を構成する各部を制御する。メモリ76は、例えば後述する直流電流検出部86が所定期間に検出した直流電流を記憶するようにされている。温度湿度センサ67は、画像形成装置10の周囲の温度及び湿度(環境条件)を検出し、制御ユニット66に対して出力する。
このように、画像形成装置10は、コンピュータとしての機能を含み、記憶媒体78又は通信装置72を介して受け入れたプログラムを実行することにより、印刷などの処理を行う。
The image forming apparatus 10 includes a control unit 66, a temperature / humidity sensor 67, a user interface device (UI device) 68 including a display device and a keyboard, a storage device 70 such as an HDD / CD device, a communication device 72, and the like. The control unit 66 includes a CPU 74, a memory 76, and the like, and controls each unit constituting the image forming apparatus 10. The memory 76 is configured to store, for example, a direct current detected by a direct current detection unit 86 described later during a predetermined period. The temperature / humidity sensor 67 detects the ambient temperature and humidity (environmental conditions) of the image forming apparatus 10 and outputs them to the control unit 66.
As described above, the image forming apparatus 10 includes a function as a computer, and performs processing such as printing by executing the program received via the storage medium 78 or the communication device 72.

次に、像保持体22、帯電部材24及びその周辺について詳述する。
図3は、像保持体22、帯電部材24及びその周辺の構成の詳細を示す模式図である。帯電部材24には、高圧電源82が接続されている。高圧電源82は、交流電源(AC)及び直流電源(DC)を有し、制御ユニット66の制御に応じて、所定の直流電圧Vdcに交流電圧Vacを重畳した電圧を帯電部材24に印加する。例えば、高圧電源82は、1000Hzの周波数でピーク間電圧Vppが800〜2500V程度の交流電圧を帯電部材24に対して印加し、−750V程度の直流電圧Vdcを帯電部材24に対して印加して、所定の電流を帯電部材24に供給するようにされている。電流検出部84は、直流電流検出部86及び交流電流検出部88を有し、高圧電源82が帯電部材24に対して流す直流電流及び交流電流を検出し、制御ユニット66に対して出力する。
Next, the image carrier 22, the charging member 24, and the periphery thereof will be described in detail.
FIG. 3 is a schematic diagram showing details of the configuration of the image carrier 22, the charging member 24, and the periphery thereof. A high voltage power source 82 is connected to the charging member 24. The high voltage power supply 82 has an AC power supply (AC) and a DC power supply (DC), and applies a voltage obtained by superimposing the AC voltage Vac on the predetermined DC voltage Vdc to the charging member 24 in accordance with the control of the control unit 66. For example, the high voltage power supply 82 applies an AC voltage with a frequency of 1000 Hz and a peak-to-peak voltage Vpp of about 800 to 2500 V to the charging member 24, and applies a DC voltage Vdc of about −750 V to the charging member 24. A predetermined current is supplied to the charging member 24. The current detection unit 84 includes a DC current detection unit 86 and an AC current detection unit 88. The current detection unit 84 detects a DC current and an AC current that the high-voltage power supply 82 passes through the charging member 24, and outputs the DC current and the AC current to the control unit 66.

制御ユニット66は、例えばプログラムとして構成された補正部90、電荷量検出部92及び層厚算出部94を含む。補正部90は、直流電流検出部86が検出した現在の直流電流を、メモリ76が直近の所定期間内に記憶した直流電流、交流電流検出部88が検出した交流電流、像保持体22の回転速度(プロセススピード)、及び後述する層厚算出部94の算出結果に応じて補正する。電荷量検出部92は、直流電流検出部86又は交流電流検出部88の検出結果に応じて、帯電部材24の帯電電荷量を検出する。層厚算出部94は、電荷量検出部92の検出結果に応じて、後述する感光層98の層厚を算出する。   The control unit 66 includes, for example, a correction unit 90, a charge amount detection unit 92, and a layer thickness calculation unit 94 configured as a program. The correction unit 90 includes the current DC current detected by the DC current detection unit 86, the DC current stored in the memory 76 within the most recent predetermined period, the AC current detected by the AC current detection unit 88, and the rotation of the image carrier 22. Correction is performed according to the speed (process speed) and the calculation result of a layer thickness calculation unit 94 described later. The charge amount detection unit 92 detects the charge amount of the charging member 24 according to the detection result of the direct current detection unit 86 or the alternating current detection unit 88. The layer thickness calculation unit 94 calculates the layer thickness of the photosensitive layer 98 described later according to the detection result of the charge amount detection unit 92.

像保持体22は、例えば接地されたアルミニウムなどからなる円筒状の導電性支持体96と、この導電性支持体96の外面を覆う感光層98とを有する。感光層98は、図4に示すように、例えば電荷発生層100、電荷輸送層(CT層)102及び保護層(OC層)104から構成される。電荷発生層100は、例えば層厚(膜厚)が0.15μmにされており、電荷キャリア生成材料を含んで導電性支持体96を被覆している。電荷輸送層102は、電荷キャリア輸送材料を含み例えば比誘電率が3である部材からなり、層厚が約20μmにされ、電荷発生層100外側に積層されている。保護層104は、例えば比誘電率が4.5である部材からなり、層厚が約5μmにされ、電荷輸送層102の外側に積層されている。また、保護層104は、電荷輸送層102よりも硬度が高くされている。例えば、電荷輸送層102が1000サイクルの処理で約30nmの摩耗となるのに対し、保護層104は1000サイクルの処理で約3nmの摩耗となるようにされている。   The image carrier 22 includes a cylindrical conductive support 96 made of, for example, grounded aluminum, and a photosensitive layer 98 that covers the outer surface of the conductive support 96. As shown in FIG. 4, the photosensitive layer 98 includes, for example, a charge generation layer 100, a charge transport layer (CT layer) 102, and a protective layer (OC layer) 104. The charge generation layer 100 has a layer thickness (film thickness) of 0.15 μm, for example, and covers the conductive support 96 including a charge carrier generating material. The charge transport layer 102 is made of a member containing a charge carrier transport material, for example, having a relative dielectric constant of 3, has a layer thickness of about 20 μm, and is laminated outside the charge generation layer 100. The protective layer 104 is made of, for example, a member having a relative dielectric constant of 4.5, has a thickness of about 5 μm, and is laminated outside the charge transport layer 102. The protective layer 104 has a higher hardness than the charge transport layer 102. For example, the charge transport layer 102 has about 30 nm of wear after 1000 cycles of processing, whereas the protective layer 104 has about 3 nm of wear after 1000 cycles of processing.

図5は、一定の環境(所定の温度湿度)において、像保持体22を所定期間使用した場合に、直流電流検出部86が検出した直流電流Idcを示すグラフである。
像保持体22の感光層98が単層である場合には、直流電流検出部86が検出する直流電流Idcは下式1により表され、数十分の時間では直流電流検出部86が検出する直流電流は図5に示したようには変化しないものと考えられる。
FIG. 5 is a graph showing the direct current Idc detected by the direct current detector 86 when the image carrier 22 is used for a predetermined period in a constant environment (predetermined temperature and humidity).
When the photosensitive layer 98 of the image carrier 22 is a single layer, the direct current Idc detected by the direct current detection unit 86 is expressed by the following formula 1, and the direct current detection unit 86 detects it for several tens of minutes. It is considered that the direct current does not change as shown in FIG.

Idc=(V−V0)・ε0・ε・L・VP/D ・・・(1)
Idc:直流電流値(現在の値)
V:高圧電源82の印加電圧
V0:像保持体22の初期表面電位
ε0:真空の誘電率
ε:感光層98の比誘電率
VP:プロセススピード
D:感光層98の層厚
L:像保持体22の帯電有効長
Idc = (V−V0) · ε0 · ε · L · VP / D (1)
Idc: DC current value (current value)
V: Applied voltage of high-voltage power supply 82
V0: initial surface potential of the image carrier 22
ε0: Dielectric constant of vacuum
ε: relative dielectric constant of photosensitive layer 98
VP: Process speed
D: Layer thickness of photosensitive layer 98
L: Effective charging length of the image carrier 22

ここでそれぞれの値がとりうる範囲はおおよそ以下のようになる。
Idc:直流電流値(現在の値) 0〜200μA
V:高圧電源82の印加電圧 −300〜−1000V
V0:像保持体22の初期表面電位 0〜−300V
ε0:真空の誘電率 8.85E−12
ε:感光層98の比誘電率 1〜10
VP:プロセススピード 50〜400mm/s
D:感光層98の層厚 10〜40μm
L:像保持体22の帯電有効長 100〜400mm
Here, the range that each value can take is roughly as follows.
Idc: DC current value (current value) 0 to 200 μA
V: Applied voltage of high-voltage power supply 82 -300 to -1000 V
V0: Initial surface potential of the image carrier 22 0 to −300V
ε0: Dielectric constant of vacuum 8.85E-12
ε: relative dielectric constant of photosensitive layer 98 1-10
VP: Process speed 50-400mm / s
D: Layer thickness of photosensitive layer 98: 10 to 40 μm
L: Effective charging length of the image carrier 22 100 to 400 mm

一方、像保持体22の感光層98が上述したように電荷発生層100、電荷輸送層102及び保護層104から構成される(複数層から構成される)場合、像保持体22の表面電位が変化しなくても、直流電流検出部86が検出する直流電流Idcが図5に示したように変化することを本発明者は発見した。したがって、制御ユニット66内に設けられた補正部90は、直流電流検出部86が検出した直流電流Idcを例えば下式2などによって補正する必要がある。   On the other hand, when the photosensitive layer 98 of the image carrier 22 is composed of the charge generation layer 100, the charge transport layer 102, and the protective layer 104 (consisting of a plurality of layers) as described above, the surface potential of the image carrier 22 is The present inventor has found that the DC current Idc detected by the DC current detector 86 changes as shown in FIG. 5 even if it does not change. Therefore, the correction unit 90 provided in the control unit 66 needs to correct the DC current Idc detected by the DC current detection unit 86 using, for example, the following equation 2.

Idc=(V−V0)・ε0・ε・L・VP/D+A ・・・(2)
Idc:直流電流値(現在の補正値)
V:高圧電源82の印加電圧
V0:像保持体22の初期表面電位
ε0:真空の誘電率
ε:感光層98の比誘電率
VP:プロセススピード
D:感光層98の層厚
L:像保持体22の帯電有効長
A:補正項
Idc = (V−V0) · ε0 · ε · L · VP / D + A (2)
Idc: DC current value (current correction value)
V: Applied voltage of high-voltage power supply 82
V0: initial surface potential of the image carrier 22
ε0: Dielectric constant of vacuum
ε: relative dielectric constant of photosensitive layer 98
VP: Process speed
D: Layer thickness of photosensitive layer 98
L: Effective charging length of the image carrier 22
A: Correction term

ここで、補正項Aは、例えば下式3によって表される。   Here, the correction term A is expressed by the following equation 3, for example.

Figure 2009139637
Figure 2009139637

図6は、式3に示した係数a(t)の経過時間tに対する変化を示すグラフである。図6に示すように、係数a(t)は、経過時間tが短い場合には1に近い値になり、経過時間tが長くなると急激に0に近い値になるようにされている。したがって、t分前の直流電流Idcの補正値は、経過時間tが短いほど補正項Aに対する影響が大きい。
なお、補正部90が補正した直流電流Idcは、少なくとも直近の所定期間分(例えば60分の間に補正部90が補正した直流電流Idcそれぞれ)がメモリ76に記憶されるようになっている。
ここで、補正部90は、直流電流Idcが検出された後に所定期間(例えば60分)よりも長い時間経過した場合、検出後に所定期間よりも長い時間を経過した直流電流Idcの値は、現在の直流電流Idcを補正するためには不要である(影響を与えない)としている。
FIG. 6 is a graph showing the change of the coefficient a (t) shown in Equation 3 with respect to the elapsed time t. As shown in FIG. 6, the coefficient a (t) has a value close to 1 when the elapsed time t is short, and suddenly becomes a value close to 0 when the elapsed time t becomes long. Therefore, the correction value of the DC current Idc before t minutes has a greater influence on the correction term A as the elapsed time t is shorter.
Note that the DC current Idc corrected by the correcting unit 90 is stored in the memory 76 at least for the most recent predetermined period (for example, each DC current Idc corrected by the correcting unit 90 during 60 minutes).
Here, when a time longer than a predetermined period (for example, 60 minutes) has elapsed after the DC current Idc is detected, the correction unit 90 determines that the value of the DC current Idc that has passed a predetermined time after the detection is the current value. In order to correct the direct current Idc, it is unnecessary (does not affect).

図7は、補正部90が補正してメモリ76が記憶した直流電流Idcと、補正部90が経過時間に応じて補正した補正量との関係を示すグラフである。
画像形成装置10において画像が形成される場合、像保持体22には直流電流Idcが流れ、補正部90が補正した直流電流Idcをメモリ76が記憶する。補正部90が経過時間に応じて補正した補正量は、画像が形成された時間よりも遅れて増加し、画像形成が中止された時間よりも遅れて減少する。
FIG. 7 is a graph showing the relationship between the DC current Idc corrected by the correction unit 90 and stored in the memory 76, and the correction amount corrected by the correction unit 90 according to the elapsed time.
When an image is formed in the image forming apparatus 10, a direct current Idc flows through the image carrier 22, and the direct current Idc corrected by the correction unit 90 is stored in the memory 76. The correction amount corrected by the correction unit 90 according to the elapsed time increases after the image formation time and decreases after the image formation stop time.

さらに、直流電流値Idcは、温度湿度センサ67が検出した温度及び湿度(環境条件)、像保持体22の回転速度(プロセススピード)、交流電流検出部88が検出した交流電流Iac、及び層厚算出部94が算出した感光層98の層厚の変化に応じて変化する直流電流Idc(t)に対する係数をそれぞれ用いて補正項Aが変化するように補正されることにより、補正精度が向上する。   Further, the direct current value Idc includes the temperature and humidity (environmental conditions) detected by the temperature / humidity sensor 67, the rotational speed (process speed) of the image carrier 22, the alternating current Iac detected by the alternating current detector 88, and the layer thickness. The correction accuracy is improved by correcting the correction term A to change using the coefficient for the direct current Idc (t) that changes in accordance with the change in the layer thickness of the photosensitive layer 98 calculated by the calculation unit 94. .

図8は、補正項Aを算出するために用いられる直流電流Idc(t)に対する係数をそれぞれ示すグラフである。
図8(A)に示すように、温度の変化に応じて変化する直流電流Idc(t)に対する係数は、温度が低い場合には1に近い値になり、温度が高くなると急激に0に近い値になるようにされている。
図8(B)に示すように、湿度の変化に応じて変化する直流電流Idc(t)に対する係数は、湿度が低い場合には1に近い値になり、湿度が高くなると急激に0に近い値になるようにされている。
図8(C)に示すように、感光層98の層厚の変化に応じて変化する直流電流Idc(t)に対する係数は、感光層98の層厚が厚い場合には1に近い値になり、感光層98の層厚が薄くなるにつれて0に近い値になるようにされている。
図8(D)に示すように、像保持体22の回転速度(プロセススピード)の変化に応じて変化する直流電流Idc(t)に対する係数は、プロセススピードが遅い場合には1に近い値になり、プロセススピードが速くなるにつれて小さな値になるようにされている。
図8(E)に示すように、交流電流検出部88が検出した交流電流Iacの変化に応じて変化する直流電流Idc(t)に対する係数は、交流電流Iacが大きい場合には1に近い値になり、交流電流Iacが小さくなるにつれて小さな値になるようにされている。
FIG. 8 is a graph showing coefficients for the direct current Idc (t) used to calculate the correction term A.
As shown in FIG. 8A, the coefficient for the direct current Idc (t) that changes according to the change in temperature is close to 1 when the temperature is low, and rapidly close to 0 when the temperature is high. To be value.
As shown in FIG. 8B, the coefficient for the direct current Idc (t) that changes according to the change in humidity is close to 1 when the humidity is low, and rapidly close to 0 when the humidity is high. To be value.
As shown in FIG. 8C, the coefficient for the direct current Idc (t) that changes according to the change in the layer thickness of the photosensitive layer 98 is close to 1 when the layer thickness of the photosensitive layer 98 is thick. As the layer thickness of the photosensitive layer 98 decreases, the value becomes closer to zero.
As shown in FIG. 8D, the coefficient for the direct current Idc (t) that changes according to the change in the rotation speed (process speed) of the image carrier 22 is close to 1 when the process speed is slow. As the process speed increases, the value becomes smaller.
As shown in FIG. 8E, the coefficient for the direct current Idc (t) that changes according to the change in the alternating current Iac detected by the alternating current detector 88 is a value close to 1 when the alternating current Iac is large. As the alternating current Iac becomes smaller, the value becomes smaller.

図9に図5で示された特性に対し上記補正をした場合の検出直流電流値、補正項A、補正後直流電流値を示す。検出される直流電流は増加するが補正をすることでほぼ一定の値とすることができる。   FIG. 9 shows the detected DC current value, the correction term A, and the corrected DC current value when the above-described correction is performed on the characteristics shown in FIG. Although the detected direct current increases, it can be set to a substantially constant value by correction.

本発明の実施形態に係る画像形成装置の概要を示す側面図である。1 is a side view illustrating an outline of an image forming apparatus according to an embodiment of the present invention. 本発明の実施形態に係る画像形成装置の概要を示す構成図である。1 is a configuration diagram illustrating an overview of an image forming apparatus according to an embodiment of the present invention. 像保持体、帯電部材及びその周辺の構成の詳細を示す模式図である。FIG. 2 is a schematic diagram illustrating details of an image carrier, a charging member, and the surrounding configuration. 感光層の構成を示す模式図である。It is a schematic diagram which shows the structure of a photosensitive layer. 一定の環境(所定の温度湿度)において、像保持体を所定期間使用した場合に、直流電流検出部が検出した直流電流Idcを示すグラフである。It is a graph which shows the direct current Idc which the direct current detection part detected when the image holding body was used for a predetermined period in a fixed environment (predetermined temperature and humidity). 式3に示した係数a(t)の経過時間tに対する変化を示すグラフである。It is a graph which shows the change with respect to the elapsed time t of the coefficient a (t) shown in Formula 3. 補正部が補正してメモリが記憶した直流電流Idcと、補正部が経過時間に応じて補正した補正量との関係を示すグラフである。It is a graph which shows the relationship between the direct current Idc which the correction | amendment part correct | amended and memorize | stored in memory, and the correction amount which the correction | amendment part correct | amended according to elapsed time. 補正項Aを算出するために用いられる直流電流Idc(t)に対する係数をそれぞれ示すグラフである。It is a graph which respectively shows the coefficient with respect to the direct current Idc (t) used in order to calculate the correction | amendment term A. FIG. 一定の環境(所定の温度湿度)において、像保持体を所定期間使用した場合に、直流電流検出部が検出した直流電流Idcとそのときの補正項Aと補正された直流電流Idcを示すグラフである。FIG. 5 is a graph showing a DC current Idc detected by a DC current detector, a correction term A at that time, and a corrected DC current Idc when the image carrier is used for a predetermined period in a constant environment (predetermined temperature and humidity). is there.

10 画像形成装置
14 画像形成部
22 像保持体
24 帯電部材
66 制御ユニット
67 温度湿度センサ
74 CPU
76 メモリ
82 高圧電源
84 電流検出部
86 直流電流検出部
88 交流電流検出部
90 補正部
92 電荷量検出部
94 層厚算出部
96 導電性支持体
98 感光層
100 電荷発生層
102 電荷輸送層
104 保護層
DESCRIPTION OF SYMBOLS 10 Image forming apparatus 14 Image forming part 22 Image holding body 24 Charging member 66 Control unit 67 Temperature / humidity sensor 74 CPU
76 Memory 82 High-voltage power supply 84 Current detection unit 86 DC current detection unit 88 AC current detection unit 90 Correction unit 92 Charge amount detection unit 94 Layer thickness calculation unit 96 Conductive support 98 Photosensitive layer 100 Charge generation layer 102 Charge transport layer 104 Protection layer

Claims (6)

複数の被覆層により被覆され、回転する像保持体と、この像保持体に接触又は近接して該像保持体を帯電させる帯電部材と、この帯電部材に対し、交流電圧と直流電圧とを重畳させた電圧を印加する給電手段と、前記帯電部材に流れる直流電流を検出する直流電流検出手段と、この直流電流検出手段が所定期間に検出した直流電流を記憶する記憶手段と、前記直流電流検出手段が検出した現在の直流電流を、前記記憶手段が直近の所定期間内に記憶した直流電流に基づいて補正する補正手段とを有する画像形成装置。   An image holding body that is coated and rotated by a plurality of coating layers, a charging member that charges the image holding body in contact with or close to the image holding body, and an AC voltage and a DC voltage are superimposed on the charging member. A power supply means for applying the applied voltage; a direct current detection means for detecting a direct current flowing through the charging member; a storage means for storing the direct current detected by the direct current detection means for a predetermined period; and the direct current detection An image forming apparatus comprising: a correction unit that corrects a current direct current detected by the unit based on a direct current stored in the most recent predetermined period by the storage unit. 前記像保持体の周囲の温度及び湿度の少なくともいずれかを環境条件として検出する環境条件検出手段をさらに有し、前記補正手段は、前記環境条件検出手段の検出結果に基づいて、現在の直流電流を補正する請求項1記載の画像形成装置。   An environmental condition detection unit that detects at least one of a temperature and humidity around the image carrier as an environmental condition, and the correction unit is configured to detect a current direct current based on a detection result of the environmental condition detection unit. The image forming apparatus according to claim 1, wherein the correction is performed. 前記補正手段は、前記像保持体の回転速度に基づいて、現在の直流電流を補正する請求項1又は2記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the correction unit corrects a current direct current based on a rotation speed of the image carrier. 前記帯電部材に流れる交流電流を検出する交流電流検出手段をさらに有し、前記補正手段は、前記交流電流検出手段が検出した交流電流に基づいて、現在の直流電流を補正する請求項1乃至3いずれか記載の画像形成装置。   4. An AC current detection unit that detects an AC current flowing through the charging member, and the correction unit corrects the current DC current based on the AC current detected by the AC current detection unit. Any one of the image forming apparatuses. 前記像保持体の帯電電荷量を検出する電荷量検出手段と、この電荷量検出手段の検出結果に基づいて、前記複数の被覆層の層厚を算出する層厚算出手段とをさらに有する請求項1乃至4いずれか記載の画像形成装置。   The charge amount detection means for detecting the charge amount of the image carrier, and the layer thickness calculation means for calculating the layer thickness of the plurality of coating layers based on the detection result of the charge amount detection means. The image forming apparatus according to any one of 1 to 4. 前記補正手段は、前記層厚算出手段の算出結果に基づいて、現在の直流電流を補正する請求項5記載の画像形成装置。   The image forming apparatus according to claim 5, wherein the correction unit corrects a current direct current based on a calculation result of the layer thickness calculation unit.
JP2007315811A 2007-12-06 2007-12-06 Image forming apparatus Pending JP2009139637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315811A JP2009139637A (en) 2007-12-06 2007-12-06 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315811A JP2009139637A (en) 2007-12-06 2007-12-06 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2009139637A true JP2009139637A (en) 2009-06-25

Family

ID=40870302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315811A Pending JP2009139637A (en) 2007-12-06 2007-12-06 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP2009139637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117673A (en) * 2011-12-05 2013-06-13 Ricoh Co Ltd Image forming apparatus and image forming method
JP2017044957A (en) * 2015-08-28 2017-03-02 キヤノン株式会社 Image forming apparatus
CN112683905A (en) * 2020-12-22 2021-04-20 威海华菱光电股份有限公司 Control method and control device of sheet object detection device and processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117673A (en) * 2011-12-05 2013-06-13 Ricoh Co Ltd Image forming apparatus and image forming method
JP2017044957A (en) * 2015-08-28 2017-03-02 キヤノン株式会社 Image forming apparatus
CN112683905A (en) * 2020-12-22 2021-04-20 威海华菱光电股份有限公司 Control method and control device of sheet object detection device and processor

Similar Documents

Publication Publication Date Title
US7684719B2 (en) Charging apparatus and image forming apparatus
US7764888B2 (en) Image formation apparatus and charging control method of charging roll
JP4882364B2 (en) Image forming apparatus
US20140348521A1 (en) Image forming apparatus and image density control method employed by the image forming apparatus
JP5207023B2 (en) Total layer thickness detection device, charging device, image forming apparatus, total layer thickness detection method, and total layer thickness detection program
US7693433B2 (en) Image forming apparatus and layer thickness calculating method
JP4842031B2 (en) Image forming apparatus
JP2009139637A (en) Image forming apparatus
JP5106034B2 (en) Image forming apparatus
JP6525644B2 (en) Image forming device
US20180024474A1 (en) Image forming apparatus and transfer device
JP6241365B2 (en) Image forming apparatus and image forming apparatus control method
JP7350536B2 (en) Image forming device
CN106940518B (en) Transfer device and image forming apparatus
JP6614781B2 (en) Image forming apparatus
US10073369B2 (en) Image forming apparatus
US7426351B2 (en) Image forming apparatus and layer thickness calculating method
JP6028648B2 (en) Image forming apparatus and program
JP2009042433A (en) Image forming apparatus, layer thickness detecting method, and layer thickness detecting program
JP7240600B2 (en) image forming device
US10520859B2 (en) Image forming apparatus controlling surface potential of image bearing member
JP2008304646A (en) Developing device and image forming apparatus
JP2007065485A (en) Image forming apparatus
JP2010164748A (en) Image forming apparatus and image forming method
JP2009020388A (en) Covering layer wear state decision device, charging device, image forming apparatus, covering layer wear state decision method and covering layer wear-out decision program