JP2009139524A - Light deflection method and device - Google Patents

Light deflection method and device Download PDF

Info

Publication number
JP2009139524A
JP2009139524A JP2007314434A JP2007314434A JP2009139524A JP 2009139524 A JP2009139524 A JP 2009139524A JP 2007314434 A JP2007314434 A JP 2007314434A JP 2007314434 A JP2007314434 A JP 2007314434A JP 2009139524 A JP2009139524 A JP 2009139524A
Authority
JP
Japan
Prior art keywords
light
guide member
magnetic field
deflection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314434A
Other languages
Japanese (ja)
Other versions
JP5142100B2 (en
Inventor
Atsushi Shoji
篤 東海林
Hajime Ishihara
一 石原
Takuya Iida
琢也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
National Institute of Information and Communications Technology
Osaka Prefecture University
Original Assignee
Osaka University NUC
National Institute of Information and Communications Technology
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, National Institute of Information and Communications Technology, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2007314434A priority Critical patent/JP5142100B2/en
Publication of JP2009139524A publication Critical patent/JP2009139524A/en
Application granted granted Critical
Publication of JP5142100B2 publication Critical patent/JP5142100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of freely controlling an advancing direction of light by an external field, and to provide a device contributing to an active element such as an optical switch and a light modulator for constituting an optical network system, by executing the method. <P>SOLUTION: The method controls the advancing direction of light by the constitution of the device including an input part for receiving light, an output part for emitting light, a guide member positioned in an optical path between the input part and the output part to guide the light, and a magnetic field applying means for applying a magnetic field onto the guide member. In the method, a substance with a nondiagonal component of a refractive index tensor responding to the magnetic field is used as a raw material of the guide member, the guide member is constituted of an aggregate of small pieces, micro-fine structure is formed by arraying the small pieces in arrangement thereof regularly and periodically with a prescribed interval of about a wavelength of the light received in the input part or less, the guide member is applied with the magnetic field to change a refractive index of the light passed therethrough, and the advancing direction is changed by interference of the light in the micro-fine structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光の進行方向を制御する方法及びその方法を実施する装置に関する。   The present invention relates to a method for controlling the traveling direction of light and an apparatus for implementing the method.

これまで、光を偏向させるためには、光音響効果、電気光学効果、熱光学効果、そして
、機械的なミラーといった手法がとられてきた。
しかし、それらの従来技術による光の偏向角度は、ミラーを除けば10°程度と小さく
、原理的に90°には達しなかった。また、受信機側から返答される復路の光が、往路と
同一の経路となるため、混線の危惧が伴っていた。
In the past, in order to deflect light, methods such as a photoacoustic effect, an electro-optic effect, a thermo-optic effect, and a mechanical mirror have been used.
However, the deflection angle of light according to these conventional techniques is as small as about 10 ° except for the mirror, and in principle, it does not reach 90 °. In addition, since the return light returned from the receiver side is the same as the forward path, there is a risk of crosstalk.

このような光を用いたネットワークシステムでは、スイッチや、フィルタ、合分波器、
変調器など、様々な光デバイスが使用されていて、高速化や、大容量化、高信頼化、小型
化、低コスト化などを実現するための技術開発が進められている。
In a network system using such light, a switch, filter, multiplexer / demultiplexer,
Various optical devices such as modulators are used, and technological developments for realizing high speed, large capacity, high reliability, miniaturization, cost reduction, etc. are being promoted.

光デバイスの小型化に対するブレイクスルーとして、数マイクロメートルの大きさでプ
リズムやフィルタなどのデバイスを形成できるフォトニック結晶が注目されている。
フォトニック結晶とは、屈折率の異なる複数の物質を光の波長以下のサイズで規則正し
く周期的に配列させた構造体である。
As a breakthrough for miniaturization of optical devices, photonic crystals that can form devices such as prisms and filters with a size of several micrometers are drawing attention.
A photonic crystal is a structure in which a plurality of substances having different refractive indexes are regularly and periodically arranged with a size equal to or smaller than the wavelength of light.

フォトニック結晶中における光の伝搬は、半導体中における電子の伝導と基礎方程式が
同じタイプであり、波動性も類似している。半導体中における電子の波に、伝導帯や、価
電子帯、禁制帯があるのと同様に、フォトニック結晶中でも電磁波の伝搬が許される波長
帯域や禁制帯域が存在する。
フォトニック結晶は、ナノ構造内部における光の回折や、散乱、干渉を利用するので、
可視光帯で用いるフォトニック結晶の構造の周期は、光の波長の半分程度、すなわち、20
0 nm程度で極めて微細である。
フォトニック結晶中では、その配列周期や、形状、屈折率などに応じて、半導体等にお
ける電子のバンド構造と同様に、光のバンド構造が変調され、特異なバンド構造を形成さ
れる。例えば、ブリュアンゾーン近傍では、フォトニックバンドギャップと呼ばれる光の
禁制帯が形成され、その周波数帯域ではフォトニック結晶の内部で光が存在できなくなる
。また、フォトニックバンドギャップ近傍のバンドが大きく変調され、その周波数分散面
は通常の光学結晶とは大きく異なることになる。
The propagation of light in a photonic crystal has the same basic equation as the conduction of electrons in a semiconductor, and the wave nature is also similar. Similar to the conduction band, valence band, and forbidden band of electrons in a semiconductor, there are wavelength bands and forbidden bands in which propagation of electromagnetic waves is allowed in photonic crystals.
Photonic crystals use light diffraction, scattering, and interference inside the nanostructure,
The period of the structure of the photonic crystal used in the visible light band is about half the wavelength of light, that is, 20
It is extremely fine at around 0 nm.
In the photonic crystal, the light band structure is modulated in the same manner as the electron band structure in a semiconductor or the like according to the arrangement period, shape, refractive index, etc., and a unique band structure is formed. For example, in the vicinity of the Brillouin zone, a light forbidden band called a photonic band gap is formed, and light cannot exist inside the photonic crystal in that frequency band. In addition, the band in the vicinity of the photonic band gap is greatly modulated, and its frequency dispersion plane is greatly different from that of a normal optical crystal.

フォトニック結晶は、従来の光デバイスを数ミクロンサイズまで小型化する要素技術と
して期待されている。
例えば、光導波路型光スイッチでは、高速化及び多チャネル化に対応して、光の偏向角
度を調節することが必須である。光導波路型の光スイッチにおいて、大きな偏向角度を得
るために、フォトニック結晶を用いることが着目されている。
A photonic crystal is expected as an elemental technology for downsizing a conventional optical device to a size of several microns.
For example, in an optical waveguide type optical switch, it is essential to adjust the deflection angle of light in response to speeding up and multi-channeling. In an optical waveguide type optical switch, attention has been paid to using a photonic crystal in order to obtain a large deflection angle.

2次元周期のフォトニック結晶の応用製品として、フォトニック結晶ファイバが知られ
ている。
非線形効果が高く、分散特性の設計自由度が高く、急峻な屈曲でも光が洩れないなどの特
性を有している。
2次元フォトニック結晶のバンド端における光の群速度零を利用して、大面積コヒーレ
ント発振するレーザも開発されつつある。
2次元フォトニック結晶を光デバイスに適用する研究として、その構造中に共振器や導
波路を作り、光を数十万サイクル蓄積したり、進行速度を真空中速度より2桁程度低くで
きることが確
かめられ、量子通信や演算、スローライト、ストッピングライトへの応用が期待されてい
る。
A photonic crystal fiber is known as an application product of a two-dimensional periodic photonic crystal.
The nonlinear effect is high, the degree of freedom in design of the dispersion characteristics is high, and the light is not leaked even if it is steeply bent.
Lasers that oscillate in a large area using a group velocity of light at the band edge of a two-dimensional photonic crystal are also being developed.
As a research to apply two-dimensional photonic crystals to optical devices, it is confirmed that resonators and waveguides can be created in the structure to accumulate hundreds of thousands of cycles of light, and the traveling speed can be reduced by about two orders of magnitude from that in vacuum. Application to quantum communication, computation, slow light, and stopping light is expected.

3次元フォトニック結晶の光デバイスに適用としては、バイアススパッタリングの特性
を利用する自己成形プロセスが開発され、撮像素子や、光ディスクの記録再生素子、計測
システム、通信デバイスなどへの応用が期待されている。
As a 3D photonic crystal optical device, a self-molding process that utilizes the characteristics of bias sputtering has been developed, and is expected to be applied to image sensors, optical disk recording / reproducing elements, measurement systems, and communication devices. Yes.

フォトニック結晶を用いた光デバイスに関する従来技術には、特許文献1〜3などがあ
る。
Conventional techniques related to optical devices using photonic crystals include Patent Documents 1-3.

特開2005−49705「フォトニック結晶を用いた光学デバイス、およびフォトニック結晶に光線を入射させる際の入射角の決定方法」Japanese Patent Application Laid-Open No. 2005-49705 “Optical Device Using Photonic Crystal and Method for Determining Incidence Angle when Light is Incident to Photonic Crystal” 特開2003−279762「光偏向素子」JP 2003-279762 “Optical deflection element” 特開2004−145317「光偏向装置、該光偏向装置によって構成した光スイッチ、光走査装置、および光偏向方法」Japanese Patent Application Laid-Open No. 2004-145317 “Optical Deflector, Optical Switch Constructed by Optical Deflector, Optical Scanning Apparatus, and Optical Deflection Method”

しかしながら、従来技術によるフォトニック結晶は、主に受動型素子であり、光の偏光
角や透
過帯域などの特性を自由に変化させることができなかった。
However, photonic crystals according to the prior art are mainly passive elements, and it has not been possible to freely change characteristics such as the polarization angle and transmission band of light.

そこで、本発明は、光の進行方向を外場によって自在に制御する方法と、その方法を実
施し、
光ネットワークシステムを構成するための光スイッチや光変調器などの能動素子に寄与す
る装
置を提供することを課題とする。
Therefore, the present invention implements a method for freely controlling the traveling direction of light by an external field, and the method,
It is an object of the present invention to provide an apparatus that contributes to active elements such as an optical switch and an optical modulator for configuring an optical network system.

上記課題を解決するために、本発明の光の偏向装置は次の構成を備える。
すなわち、光の進行方向を制御する素子であって、光を受入する入力部と、光を射出す
る出力部と、入力部と出力部との間の光路に位置して光を誘導する誘導部材と、誘導部材
に磁場を印加する磁場印加手段とを備え、誘導部材が小片の集合体で構成され、その小片
の配置が、入力部で受入する光の波長と同程度か或いはそれ以下の所定間隔で、規則正し
く周期的に配列させた構造であり、誘導部材の素材が、屈折率テンソルの非対角成分が磁
場に応答する物質であることを特徴とする。
In order to solve the above-described problems, the light deflection apparatus of the present invention has the following configuration.
That is, an element that controls the traveling direction of light, and includes an input unit that receives light, an output unit that emits light, and a guide member that is positioned in an optical path between the input unit and the output unit to guide light And a magnetic field applying means for applying a magnetic field to the induction member, the induction member is composed of a collection of small pieces, and the arrangement of the small pieces is equal to or less than the wavelength of light received by the input unit. It is a structure that is regularly and periodically arranged at intervals, and the material of the guiding member is a substance in which the off-diagonal component of the refractive index tensor responds to a magnetic field.

ここで、誘導部材の素材が誘電体であると、磁場の印加に好適である。   Here, when the material of the induction member is a dielectric, it is suitable for application of a magnetic field.

また、誘導部材小片の周期構造において繰り返される単位構造が、その単位構造を構成
するいずれかの誘導部材小片の間隔をdとし、光が偏向される角度をθとし、光の波長を
λとしたとき、2dsinθ=nλ(nは整数)を満たす構造であると偏向が精確である。
In the unit structure repeated in the periodic structure of the guide member pieces, the interval between any of the guide member pieces constituting the unit structure is d, the angle at which the light is deflected is θ, and the wavelength of the light is λ. When the structure satisfies 2dsinθ = nλ (n is an integer), the deflection is accurate.

このような光の偏向装置は、光通信用デバイスの構成要素として有用に用いられる。   Such an optical deflecting device is usefully used as a component of an optical communication device.

光通信用デバイスとしては、3端子を有し各端子で入力した信号を隣の端子へ誘導して
循環させるサーキュレータや光導波路型光スイッチが挙げられる。
Examples of the optical communication device include a circulator and an optical waveguide type optical switch that have three terminals and guide and circulate a signal input at each terminal to an adjacent terminal.

誘導部材小片の周期的配列が、点状の欠陥を導入された配列であると、発光の制御に利
用できる。
If the periodic arrangement of the guide member pieces is an arrangement in which dot-like defects are introduced, it can be used to control light emission.

そのようなデバイスとしては、単一モード発光ダイオードや零閾値レーザが挙げられる
Such devices include single mode light emitting diodes and zero threshold lasers.

本発明の光の偏向方法は次の構成を備える。
すなわち、光を受入する入力部と、光を射出する出力部と、入力部と出力部との間の光
路に位置して光を誘導する誘導部材と、誘導部材に磁場を印加する磁場印加手段とを備え
た構成で、光の進行方向を制御する方法であって、誘導部材の素材に、屈折率テンソルの
非対角成分が磁場に応答する物質を用い、誘導部材を小片の集合体で構成し、その小片の
配置を、入力部で受入する光の波長と同程度か或いはそれ以下の所定間隔で、規則正しく
周期的に配列させることで、微細構造を形成し、誘導部材に磁場を印加して、そこを通る
光の屈折率を変化させると共に、微細構造における光の干渉によって、その進行方向を変
化させることを特徴とする。
The light deflection method of the present invention has the following configuration.
That is, an input unit that receives light, an output unit that emits light, a guide member that guides light in an optical path between the input unit and the output unit, and a magnetic field applying unit that applies a magnetic field to the guide member And a method of controlling the traveling direction of light, using a material whose off-diagonal component of the refractive index tensor responds to a magnetic field as a material of the guiding member, and the guiding member is a collection of small pieces. The fine structure is formed by arranging and arranging the small pieces regularly and regularly at a predetermined interval equal to or less than the wavelength of light received at the input unit, and a magnetic field is applied to the induction member And while changing the refractive index of the light which passes there, the advancing direction is changed by interference of the light in a fine structure, It is characterized by the above-mentioned.

ここで、誘導部材に対する磁場の印加方向を、光の進行方向と垂直にして、偏向の効率
化に寄与させてもよい。
Here, the direction in which the magnetic field is applied to the guiding member may be perpendicular to the light traveling direction, thereby contributing to the efficiency of deflection.

また、誘導部材の素材に誘電体を用いて、磁場の印加効率に寄与させてもよい。   Moreover, you may make it contribute to the application efficiency of a magnetic field using a dielectric material for the raw material of an induction | guidance | derivation member.

誘導部材小片の配置を、その周期構造において繰り返される単位構造が、その単位構造
を構成するいずれかの誘導部材小片の間隔をdとし、光が偏向される角度をθとし、光の
波長をλとしたとき、2dsinθ=nλ(nは整数)を満たすように設定して、偏向の精
確化に寄与させてもよい。
In the unit structure in which the arrangement of the guide member pieces is repeated in the periodic structure, the interval between any of the guide member pieces constituting the unit structure is d, the angle at which the light is deflected is θ, and the wavelength of the light is λ. , It may be set so as to satisfy 2dsinθ = nλ (n is an integer) to contribute to the accuracy of deflection.

誘導部材小片の屈折率または配置の調整に応じて、光の偏向角を360°までの広角度
制御可能にして、偏向の用途増大に寄与させてもよい。
Depending on the adjustment of the refractive index or the arrangement of the guide member pieces, the light deflection angle may be controlled to a wide angle up to 360 °, thereby contributing to an increase in the application of deflection.

誘導部材小片の周期的配列に点状の欠陥を導入し、そのバンドギャップ中に欠陥準位を
形成して、その欠陥準位で発光制御可能にして、光デバイスの多様化に寄与させてもよい
Even if a point-like defect is introduced into the periodic arrangement of the guiding member pieces, a defect level is formed in the band gap, and light emission can be controlled at the defect level, thereby contributing to diversification of optical devices. Good.

誘導部材小片の配置を円軌道状にして、光をサイクロトロン運動させて、研究用プロー
ブ等の用途に寄与させてもよい。
The arrangement of the guide member pieces may be circular orbital, and the light may be cyclotron moved to contribute to the use of a research probe or the like.

その場合、ランダウ準位を光の波長によって決めてもよい。   In that case, the Landau level may be determined by the wavelength of light.

本発明は、上記構成を備えることにより次の効果を奏する。
すなわち、誘電体等の誘導部材の小片が、結晶のように配列されるので、磁場の印加に
よって屈折率を変化させられ、光の進行方向を制御することが可能になる。特に、進行方
向を広角度に曲げられるので、通信用光デバイスへの応用に寄与する。
The present invention has the following effects by providing the above configuration.
That is, since the small pieces of the inductive member such as a dielectric are arranged like a crystal, the refractive index can be changed by applying a magnetic field, and the traveling direction of light can be controlled. In particular, the traveling direction can be bent at a wide angle, which contributes to application to optical devices for communication.

以下、本発明の実施形態を、図面に示す実施例を基に説明する。なお、実施形態は下記
の例示に限らず、本発明の趣旨から逸脱しない範囲で、前記特許文献など従来公知の技術
を用いて適宜設計変更可能である。
図1及び2は、屈折率の分布による光の偏向を示す模式図である。
屈折率は通常、図1(イ)のようにスカラー量であり、図1(ロ)のようgradで表現さ
れる。ここに、光を入射させると、図1(ハ)のように、屈折率勾配を示す矢印に逆らっ
て進む。その出射位置から再び光を入射させると、図1(ニ)のように、元の入射位置に
戻ることになり、光の往路と復路が同一になる。
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings. The embodiment is not limited to the following examples, and the design can be changed as appropriate using a conventionally known technique such as the above-mentioned patent document without departing from the gist of the present invention.
1 and 2 are schematic diagrams showing light deflection by refractive index distribution.
The refractive index is usually a scalar quantity as shown in FIG. 1 (a) and expressed as grad as shown in FIG. 1 (b). When light is incident here, the light travels against an arrow indicating a refractive index gradient as shown in FIG. When light is incident again from the emission position, it returns to the original incident position as shown in FIG. 1 (d), and the light forward path and return path are the same.

それに対し、図2(イ)のようにベクトル型の屈折率分布があるとすると、図2(ロ)
のようrotで表現される。ここに、光を入射させると、図2(ハ)のように、屈折率勾配
を示す矢印に逆らって進み、その出射位置から再び光を入射させると、図2(ニ)のよう
に、元の入射位置には戻らず、光の往路と復路が異なることになる。
進行光と戻り光の経路を変えられると、通信における混線の抑止などに有用に用いられ
る。
On the other hand, if there is a vector-type refractive index distribution as shown in FIG.
It is expressed as rot. When light is incident here, it proceeds against the arrow indicating the refractive index gradient as shown in FIG. 2C, and when light is incident again from its exit position, the original is obtained as shown in FIG. Thus, the light outgoing path and the return path are different.
If the path of traveling light and return light can be changed, it is useful for suppressing crosstalk in communications.

このような屈折率の分布をもたらす手段に、外場が挙げられる。
物質に、電場や、磁場、応力、熱などの外場を印加すると、その電子状態が変化し、分
極率の変化に伴い、屈折率の変化も生じ得る。例えば、等方的な液体や固体も、外場の印
加によって異方性が現れ、異方性のある物質についても、外場の印加によって主屈折率が
変化する。
A means for providing such a refractive index distribution is an external field.
When an external field such as an electric field, a magnetic field, stress, or heat is applied to a substance, its electronic state changes, and a change in refractive index can occur with a change in polarizability. For example, anisotropy of an isotropic liquid or solid appears when an external field is applied, and the main refractive index of an anisotropic material changes when the external field is applied.

本発明者は、外場のうち磁場による影響に着目した。
磁場が光に及ぼす効果は、光磁気ディスクに代表されるような磁気記録の光による読み
出しや、通信デバイスとして光アイソレータなどに応用されている。
磁場による物質への影響としては、磁気光学効果が知られている。これは、磁場の印加
によって、電子スピンが偏極したり、電子の軌道運動が右回りと左回りで非対称になるこ
とに基づく現象である。
また、ファラデー効果や、コットンムートン効果(フォークト効果)、磁気カー効果、
ゼーマン効果等も知られている。
The inventor paid attention to the influence of the magnetic field in the external field.
The effect of a magnetic field on light is applied to reading of magnetic recording light represented by a magneto-optical disk, and an optical isolator as a communication device.
A magneto-optic effect is known as an effect on a substance by a magnetic field. This is a phenomenon based on the fact that electron spin is polarized by application of a magnetic field, and orbital motion of electrons becomes asymmetrical in the clockwise and counterclockwise directions.
Also, Faraday effect, cotton mouton effect (forked effect), magnetic car effect,
The Zeeman effect is also known.

ファラデー効果は、磁場と平行に進む光に関して、左右円偏光に対する複素屈折率に違
いが生じるものである。これにより、旋光性や円二色性と似た現象が見られる。キラルな
物質の自然旋光性とは、磁化方向によって偏光が回転することである。光が媒質を通って
ミラーで反射されて再び媒質を通って戻ってくる場合、自然旋光性では、往路と復路でk
ベクトルが逆転するため、偏光の回転方向が打ち消されるが、ファラデー回転では回転角
が2倍になって戻ってくる。
そのため、レーザ光を光ファイバに導入する際に反射光を遮断するための光アイソレー
タ等に用いることができる。
The Faraday effect is a difference in the complex refractive index for left and right circularly polarized light with respect to light traveling parallel to the magnetic field. As a result, a phenomenon similar to optical rotation and circular dichroism is observed. The natural optical rotation of a chiral substance means that polarized light rotates depending on the magnetization direction. When light is reflected by the mirror through the medium and returns through the medium again, for natural optical rotation, k
Since the vector is reversed, the rotation direction of the polarized light is canceled, but in Faraday rotation, the rotation angle is doubled and returned.
Therefore, it can be used for an optical isolator or the like for blocking reflected light when laser light is introduced into an optical fiber.

コットンムートン効果は、磁場と垂直に進む光に関して、電場の振動方向が磁場と平行
な直線偏光と直交する直線偏光が存在することになる。これにより、複屈折や線二色性が
現れるものである。
The Cotton Mouton effect involves the presence of linearly polarized light in which the direction of vibration of the electric field is orthogonal to the linearly polarized light parallel to the magnetic field for light traveling perpendicular to the magnetic field. Thereby, birefringence and linear dichroism appear.

磁気カー効果は、ファラデー効果やコットンムートン効果ともに、屈折率の磁場による
変化を光の透過で観察したものであり、屈折率の変化が反射係数にも現れるものである。
すなわち、反射光の状態が磁場によって変化する現象であり、入射光、反射光の偏光の関
係によって、極カー、縦カー、横カーと分類される。例えば、光磁気ディスクのディスク
面に垂直に記録された磁化の方向を、半導体レーザの極カー回転によって読み取ることな
どに用いられている。
In the magnetic Kerr effect, both the Faraday effect and the Cotton Mouton effect are obtained by observing changes in the refractive index due to light transmission, and changes in the refractive index also appear in the reflection coefficient.
That is, it is a phenomenon in which the state of the reflected light changes depending on the magnetic field, and is classified into polar kerr, vertical kerr, and horizontal kerr according to the relationship between the polarization of incident light and reflected light. For example, it is used for reading the direction of magnetization recorded perpendicularly to the disk surface of a magneto-optical disk by the polar Kerr rotation of a semiconductor laser.

図3は、光の誘導部材小片に磁場を印加する状態を示す斜視説明図であり、図4及び5
は、その際の光の進行を示す平面説明図である。
偏向対象の光を受入する端子等の入力部と、その光を射出する端子等の出力部との間の
光路に位置して光を誘導する誘導部材としての誘電体に、磁石等により磁場を印加した状
態で、光を入射する。磁場の印加方向は、入射光に垂直が好ましい。
誘導部材の素材としては、誘電体など、屈折率テンソルの非対角成分が磁場に応答する
任意の物質が利用可能である。誘電体としては、常誘電体や、圧電体、焦電体、強誘電体
のいずれも利用できる。
3 is a perspective explanatory view showing a state in which a magnetic field is applied to the light guiding member piece, and FIGS.
These are top | planar explanatory drawing which shows the advance of the light in that case.
A magnetic field is applied by a magnet or the like to a dielectric serving as a guiding member that guides light positioned in an optical path between an input unit such as a terminal that receives light to be deflected and an output unit such as a terminal that emits the light. Light is incident in the applied state. The application direction of the magnetic field is preferably perpendicular to the incident light.
As a material of the induction member, any substance such as a dielectric material whose off-diagonal component of the refractive index tensor responds to a magnetic field can be used. As the dielectric, any of a paraelectric, a piezoelectric, a pyroelectric, and a ferroelectric can be used.

磁場を印加しない場合は、図4のように、電子のエネルギー準位が二重縮退したままで
、入射光は偏向されず直進する。
磁場を印加した場合は、図5のように、ゼーマン効果によって電子のエネルギー準位の
縮退が解け振動数に差が生じ、輻射寿命に関係して出射光が偏向される。
When no magnetic field is applied, as shown in FIG. 4, the energy level of electrons remains double degenerate and incident light travels straight without being deflected.
When a magnetic field is applied, as shown in FIG. 5, the degeneracy of the energy level of electrons is solved by the Zeeman effect and a difference occurs in the frequency, and the emitted light is deflected in relation to the radiation lifetime.

図6は、誘電体を線状に配列した場合の光の進行を示す平面説明図であり、図7は、誘
電体を格子状に配列した場合の光の進行を示す平面説明図である。
図5における出射光の偏向方向に、更に誘電体を配置すると、偏向方向を更に変えるこ
とができる。このように偏向先に、誘電体を次々と配置していくことで、偏向角度を大き
く設定することができる。
光は常に進行方向に対して垂直な偏向を受けるため、図7のように360°までの偏向
が可能である。
FIG. 6 is an explanatory plan view showing the progress of light when the dielectrics are arranged in a line, and FIG. 7 is an explanatory plan view showing the progress of light when the dielectrics are arranged in a grid.
If a dielectric is further arranged in the deflection direction of the emitted light in FIG. 5, the deflection direction can be further changed. In this way, by arranging the dielectrics one after another at the deflection destination, the deflection angle can be set large.
Since light always undergoes deflection perpendicular to the traveling direction, it can be deflected up to 360 ° as shown in FIG.

この広角度の偏向は、磁場中の荷電粒子の運動に相応するので、同様の設備を用いて、
磁場を印加した誘電体の所定配列によって光の進行を制御しサイクロトロン運動させるこ
とが可能である。その運動を量子化しエネルギー準位を離散化すれば、ランダウ準位が光
の波長で決められる。
This wide angle deflection corresponds to the movement of charged particles in a magnetic field, so using similar equipment,
It is possible to perform cyclotron motion by controlling the progress of light by a predetermined arrangement of dielectrics to which a magnetic field is applied. If the motion is quantized and the energy level is discretized, the Landau level is determined by the wavelength of light.

また、この屈折率による偏向は、時間反転対称性が破れているため、図2に示したよう
に、入射光と戻り光は別な経路を辿り元へは戻らない。
そのため、受信機側からの返答の光は別の経路となるため、混線しにくい特徴がある。
例えば、複数の回線を順に接続していくサーキュレータなどに利用できる。サーキュレー
タは3端子の高周波部品であり、各端子に進入した信号を隣に誘導して循環させる回路素
子であり、移動体通信の基地局においては送受信信号を整流させるために必要な重要部品
である。
Further, since the time-reversal symmetry is broken in the deflection by the refractive index, as shown in FIG. 2, the incident light and the return light do not return to the original path through different paths.
For this reason, the response light from the receiver side has a different path, and thus has a feature that it is difficult to cross-link.
For example, it can be used for a circulator that sequentially connects a plurality of lines. The circulator is a three-terminal high-frequency component, which is a circuit element that guides and circulates the signal that has entered each terminal next to it. .

図8は、バルク結晶中での偏向を示す模式図である。
離散的なフォトニック結晶と異なり、バルク結晶は連続体のため、光は横へシフトする
のみで方向は変化しない。そのため、誘電体に磁場を印加して光を偏向する本発明は、コ
ットンムートン効果とは異なる。
FIG. 8 is a schematic diagram showing deflection in a bulk crystal.
Unlike discrete photonic crystals, bulk crystals are a continuum, so light only shifts sideways and does not change direction. Therefore, the present invention that deflects light by applying a magnetic field to a dielectric is different from the Cotton Mouton effect.

本発明では、誘電体を所定の格子状配列にすればよいので、狭義の結晶とは異なるが、
その構造はフォトニック結晶に相応している。
図9は、誘電体の配列例を示す説明図である。
図示の例では、正方形状に4体の誘電体が配列されている。ここで、光の進行方向に垂
直な面において隣接する2体の誘電体から、光の進行方向における下流側に隣接する誘電
体への光路差(a√2−a)が、光の波長の整数倍となるように設定し、誘電体の間隔を、
光の波長と同程度か或いはそれ以下の所定間隔で、規則正しく周期的に配列させることで
、微細構造を形成する。
In the present invention, the dielectric is only required to have a predetermined lattice arrangement, which is different from a narrowly defined crystal.
Its structure corresponds to a photonic crystal.
FIG. 9 is an explanatory diagram showing an example of the arrangement of dielectrics.
In the illustrated example, four dielectrics are arranged in a square shape. Here, the optical path difference (a√2−a) from two dielectrics adjacent to each other in the plane perpendicular to the light traveling direction to the dielectric adjacent to the downstream side in the light traveling direction is the light wavelength. Set to be an integer multiple and set the dielectric spacing to
A fine structure is formed by regularly and periodically arranging at predetermined intervals equal to or less than the wavelength of light.

図10は、誘電体が三角格子状に配列された例を示す説明図である。
図示の例では、3通りの偏向形態が示されている。三角格子状に配列されるいずれかの
誘電体の間隔(d)が、
光の偏向される角度(θ)と光の波長(λ)との関係において、2dsinθ=nλを満た
すように配列して微細構造を形成すればよい。ここで、nは整数である。
FIG. 10 is an explanatory diagram showing an example in which dielectrics are arranged in a triangular lattice shape.
In the illustrated example, three types of deflection are shown. The interval (d) between any of the dielectrics arranged in a triangular lattice shape is
The fine structure may be formed by arranging so as to satisfy 2dsinθ = nλ in the relationship between the angle (θ) of light deflection and the wavelength (λ) of light. Here, n is an integer.

図11及び12は、誘電体が四角格子状に配列された例を示す説明図である。
図11の例では、5通りの偏向形態が示されている。図12では、同じ四角格子状配列
に対して、光の入射方向が異なる。どちらの場合も、四角格子状に配列されるいずれかの
誘電体の間隔(d)が、光の偏向される角度(θ)と光の波長(λ)との関係において、
2dsinθ=nλを満たすように配列して微細構造を形成すればよい。ここで、nは整数
である。
11 and 12 are explanatory views showing an example in which dielectrics are arranged in a square lattice pattern.
In the example of FIG. 11, five types of deflection are shown. In FIG. 12, the incident direction of light is different for the same square lattice array. In either case, the distance (d) between the dielectrics arranged in the form of a square lattice is the relationship between the light deflection angle (θ) and the light wavelength (λ).
A fine structure may be formed by arranging so as to satisfy 2dsinθ = nλ. Here, n is an integer.

このように、誘導部材小片の周期構造において繰り返される単位構造と、それによって
偏向される光には多様なパターンがあるが、X線結晶回折におけるブラッグ条件と同様の
条件を満たせばよい。
そのため、本発明の誘導部材には、三斜晶、単斜晶、斜方晶、六方晶、三方晶、正方晶
、立方晶の7晶系、単純三斜、単純単斜、底心単斜、単純斜方、体心斜方、面心斜方、底
心斜方、単純六方、単純菱面体、単純正方、体心正方、単純立方、体心立方、面心立方の
14種のブラベー格子を形成するいずれも利用可能である。
As described above, there are various patterns in the unit structure repeated in the periodic structure of the guide member piece and the light deflected by the unit structure, but it is only necessary to satisfy the same conditions as the Bragg conditions in X-ray crystal diffraction.
Therefore, the induction member of the present invention includes triclinic, monoclinic, orthorhombic, hexagonal, trigonal, tetragonal, cubic 7-crystal, simple triclinic, simple monoclinic, bottom monoclinic , Simple oblique, body-centered oblique, face-centered oblique, bottom-centered oblique, simple hexagonal, simple rhombohedral, simple square, body-centered square, simple cube, body-centered cube, face-centered cubic Any of which can be used.

フォトニック結晶に相応する上記微細構造によって、その内部での光の干渉で進行方向
が変化する現象は、光の回折に類似している。回折は、光を波長毎に分ける分光技術、レ
ーザの発振波長を選択するデバイスや、ホログラフィ、光フィルタなど様々な用途に応用
されている。そのため、本発明による素子によっても同様に、様々な光機能の制御が可能
である。
The phenomenon in which the traveling direction changes due to the interference of light inside the fine structure corresponding to the photonic crystal is similar to light diffraction. Diffraction is applied to various applications such as spectroscopic techniques that divide light into wavelengths, devices that select laser oscillation wavelengths, holography, and optical filters. Therefore, various optical functions can be similarly controlled by the element according to the present invention.

上記微細構造を有する本発明による素子は、フォトニック結晶同様、3次元的な屈折率
分布をもつ構造体や、2次元的な屈折率分布をもつ構造体が製造可能である。
そのような構造では、半導体において原子核の周期ポテンシャルによって電子波がブラ
ッグ反射を受け、バンドギャップが形成されるのと同様に、周期的な屈折率分布によって
光波がブラッグ反射を受け、光に対するバンドギャップが形成される。
The device according to the present invention having the above-described fine structure can produce a structure having a three-dimensional refractive index distribution and a structure having a two-dimensional refractive index distribution, as in the case of a photonic crystal.
In such a structure, the electron wave is subjected to Bragg reflection due to the periodic potential of the nucleus in the semiconductor, and a band gap is formed. Is formed.

そのバンドギャップでは光が存在できないため、光を自在に制御可能になる。例えば、
素子中にバンドギャップと等しい波長で発光する材料を導入することで、自然放出光の抑
制が行える。
また、素子中の周期性を一部乱しバンドギャップ中に欠陥準位を形成すれば、その欠陥
準位でのみ発光が許容されることになるので、高効率の単一モード発光ダイオードや、零
閾値レーザなどに応用可能である。
Since no light can exist in the band gap, the light can be freely controlled. For example,
Spontaneous emission light can be suppressed by introducing a material that emits light with a wavelength equal to the band gap into the device.
Also, if the periodicity in the device is partially disturbed and a defect level is formed in the band gap, light emission is allowed only at the defect level, so a highly efficient single mode light emitting diode, It can be applied to a zero threshold laser.

本発明によると、磁場印加により光の進行方向を広角度で制御できるので、光通信用の
スイッチや、光コンピュータ用の論理ゲート、モニター用の光ビーム制御装置など、多様
な光デバイスに応用可能であり産業上利用価値が高い。
According to the present invention, the light traveling direction can be controlled at a wide angle by applying a magnetic field, so that it can be applied to various optical devices such as switches for optical communication, logic gates for optical computers, and light beam control devices for monitors. And industrial value is high.

スカラーの屈折率の分布による光の偏向を示す模式図Schematic diagram showing light deflection by scalar refractive index distribution ベクトル型の屈折率の分布による光の偏向を示す模式図Schematic diagram showing deflection of light by vector-type refractive index distribution 光の誘導部材小片に磁場を印加する状態を示す斜視説明図Perspective explanatory view showing a state in which a magnetic field is applied to the light guiding member piece 磁場を印加しない場合の光の進行を示す平面説明図Plane explanatory diagram showing the progression of light when no magnetic field is applied 磁場を印加した場合の光の進行を示す平面説明図Plane explanatory diagram showing the progression of light when a magnetic field is applied 誘電体を線状に配列した場合の光の進行を示す平面説明図Plane explanatory drawing showing the progression of light when dielectrics are arranged in a line 誘電体を格子状に配列した場合の光の進行を示す平面説明図Plane explanatory diagram showing the progression of light when dielectrics are arranged in a grid バルク結晶中での偏向を示す模式図Schematic showing deflection in bulk crystal 誘電体の配列例を示す説明図Explanatory drawing showing an example of the arrangement of dielectrics 誘電体が三角格子状に配列された例を示す説明図Explanatory drawing showing an example in which dielectrics are arranged in a triangular lattice shape 誘電体が四角格子状に配列された例を示す説明図Explanatory drawing showing an example in which dielectrics are arranged in a square lattice pattern 誘電体が四角格子状に配列され入射方向が異なる例を示す説明図Explanatory drawing showing an example in which dielectrics are arranged in a square lattice and the incident directions are different

Claims (17)

光の進行方向を制御する素子であって、
光を受入する入力部と、光を射出する出力部と、入力部と出力部との間の光路に位置し
て光を誘導する誘導部材と、誘導部材に磁場を印加する磁場印加手段とを備え、
誘導部材が小片の集合体で構成され、その小片の配置が、入力部で受入する光の波長と
同程度か或いはそれ以下の所定間隔で、規則正しく周期的に配列させた構造であり、
誘導部材の素材が、屈折率テンソルの非対角成分が磁場に応答する物質である
ことを特徴とする光の偏向装置。
An element for controlling the traveling direction of light,
An input unit that receives light; an output unit that emits light; a guide member that guides light positioned in an optical path between the input unit and the output unit; and a magnetic field application unit that applies a magnetic field to the guide member Prepared,
The guiding member is composed of a collection of small pieces, and the arrangement of the small pieces is a structure that is regularly and periodically arranged at a predetermined interval equal to or less than the wavelength of light received by the input unit,
The light deflecting device, wherein the material of the guiding member is a substance whose off-diagonal component of the refractive index tensor responds to a magnetic field.
誘導部材の素材が、誘電体である
請求項1に記載の光の偏向装置。
The light deflecting device according to claim 1, wherein a material of the guide member is a dielectric.
誘導部材小片の周期構造において繰り返される単位構造が、
その単位構造を構成するいずれかの誘導部材小片の間隔をdとし、光が偏向される角度を
θとし、光の波長をλとしたとき、2dsinθ=nλ(nは整数)を満たす構造である
請求項1または2に記載の光の偏向装置。
The unit structure repeated in the periodic structure of the guide member pieces is
It is a structure that satisfies 2dsinθ = nλ (n is an integer), where d is the interval between any of the guiding member pieces constituting the unit structure, θ is the angle at which the light is deflected, and λ is the wavelength of the light. The light deflection apparatus according to claim 1 or 2.
請求項1ないし3に記載の偏向装置が、光通信用デバイスの構成要素である
ことを特徴とする光の偏向装置。
The deflection apparatus according to claim 1, wherein the deflection apparatus is a component of an optical communication device.
光通信用デバイスが、
3端子を有し各端子で入力した信号を隣の端子へ誘導して循環させるサーキュレータで
ある
請求項4に記載の光の偏向装置。
Optical communication device
The light deflecting device according to claim 4, wherein the light deflecting device is a circulator that has three terminals and circulates a signal input at each terminal by guiding it to an adjacent terminal.
光通信用デバイスが、光導波路型光スイッチである
請求項4に記載の光の偏向装置。
The light deflection apparatus according to claim 4, wherein the optical communication device is an optical waveguide type optical switch.
誘導部材小片の周期的配列が、点状の欠陥を導入された配列である
請求項1ないし4に記載の光の偏向装置。
The light deflecting device according to claim 1, wherein the periodic arrangement of the guide member pieces is an arrangement into which point-like defects are introduced.
請求項7に記載の偏向装置が、単一モード発光ダイオードの構成要素である
ことを特徴とする光の偏向装置。
The light deflecting device according to claim 7, wherein the light deflecting device is a component of a single mode light emitting diode.
請求項7に記載の偏向装置が、零閾値レーザの構成要素である
ことを特徴とする光の偏向装置。
The deflecting device according to claim 7 is a component of a zero threshold laser. An optical deflecting device.
光を受入する入力部と、光を射出する出力部と、入力部と出力部との間の光路に位置し
て光を誘導する誘導部材と、誘導部材に磁場を印加する磁場印加手段とを備えた構成で、
光の進行方向を制御する方法であって、
誘導部材の素材に、屈折率テンソルの非対角成分が磁場に応答する物質を用い、
誘導部材を小片の集合体で構成し、その小片の配置を、入力部で受入する光の波長と同
程度か或いはそれ以下の所定間隔で、規則正しく周期的に配列させることで、微細構造を
形成し、
誘導部材に磁場を印加して、そこを通る光の屈折率を変化させると共に、微細構造にお
ける光の干渉によって、その進行方向を変化させる
ことを特徴とする光の偏向方法。
An input unit that receives light; an output unit that emits light; a guide member that guides light positioned in an optical path between the input unit and the output unit; and a magnetic field application unit that applies a magnetic field to the guide member With the configuration
A method for controlling the direction of travel of light,
For the material of the induction member, a substance whose off-diagonal component of the refractive index tensor responds to a magnetic field is used.
The guiding member is composed of a collection of small pieces, and the arrangement of the small pieces is regularly and periodically arranged at predetermined intervals equal to or less than the wavelength of light received by the input unit, thereby forming a fine structure. And
A method of deflecting light, comprising: applying a magnetic field to an induction member to change a refractive index of light passing therethrough, and changing a traveling direction thereof by interference of light in a fine structure.
誘導部材に対する磁場の印加方向を、光の進行方向と垂直にする
請求項10に記載の光の偏向方法。
The light deflection method according to claim 10, wherein a direction in which a magnetic field is applied to the guide member is perpendicular to a light traveling direction.
誘導部材の素材に、誘電体を用いる
請求項10または11に記載の光の偏向方法。
The light deflection method according to claim 10, wherein a dielectric is used as a material of the guide member.
誘導部材小片の配置を、
その周期構造において繰り返される単位構造が、その単位構造を構成するいずれかの誘導
部材小片の間隔をdとし、光が偏向される角度をθとし、光の波長をλとしたとき、2d
sinθ=nλ(nは整数)を満たすように設定する
請求項10ないし12に記載の光の偏向方法。
The arrangement of the guide member pieces
The unit structure repeated in the periodic structure is 2d when the interval between any of the guiding member pieces constituting the unit structure is d, the angle at which the light is deflected is θ, and the wavelength of the light is λ.
The light deflection method according to claim 10, wherein it is set so as to satisfy sin θ = nλ (n is an integer).
誘導部材小片の屈折率または配置の調整に応じて、光の偏向角を360°までの広角度
制御可能にする
請求項10ないし13に記載の光の偏向方法。
The light deflection method according to claim 10, wherein the deflection angle of the light can be controlled to a wide angle up to 360 ° in accordance with the adjustment of the refractive index or the arrangement of the guide member pieces.
誘導部材小片の周期的配列に点状の欠陥を導入し、そのバンドギャップ中に欠陥準位を
形成して、その欠陥準位で発光制御可能にする
請求項10ないし14に記載の光の偏向方法。
The light deflection according to any one of claims 10 to 14, wherein a point-like defect is introduced into the periodic arrangement of the guiding member pieces, a defect level is formed in the band gap, and light emission can be controlled at the defect level. Method.
誘導部材小片の配置を円軌道状にして、光をサイクロトロン運動させる
請求項10ないし15に記載の光の偏向方法。
The light deflection method according to any one of claims 10 to 15, wherein the guide member small pieces are arranged in a circular orbit to cause the light to perform cyclotron motion.
ランダウ準位を光の波長によって定める
請求項16に記載の光の偏向方法。
The light deflection method according to claim 16, wherein the Landau level is determined by a wavelength of light.
JP2007314434A 2007-12-05 2007-12-05 Light deflection method and apparatus Expired - Fee Related JP5142100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314434A JP5142100B2 (en) 2007-12-05 2007-12-05 Light deflection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314434A JP5142100B2 (en) 2007-12-05 2007-12-05 Light deflection method and apparatus

Publications (2)

Publication Number Publication Date
JP2009139524A true JP2009139524A (en) 2009-06-25
JP5142100B2 JP5142100B2 (en) 2013-02-13

Family

ID=40870210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314434A Expired - Fee Related JP5142100B2 (en) 2007-12-05 2007-12-05 Light deflection method and apparatus

Country Status (1)

Country Link
JP (1) JP5142100B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266947A (en) * 1999-03-19 2000-09-29 Univ Tokyo Light isolator
JP2002350908A (en) * 2001-03-22 2002-12-04 Matsushita Electric Works Ltd Ray deflector using photonic crystal, optical switch suing this device and ray deflection method
JP2005250429A (en) * 2004-03-06 2005-09-15 Shinichiro Inoue Optical element with photonic crystal structure
JP2007034093A (en) * 2005-07-29 2007-02-08 Japan Science & Technology Agency Optical device
JP2007213004A (en) * 2006-01-10 2007-08-23 Ricoh Co Ltd Magneto-optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266947A (en) * 1999-03-19 2000-09-29 Univ Tokyo Light isolator
JP2002350908A (en) * 2001-03-22 2002-12-04 Matsushita Electric Works Ltd Ray deflector using photonic crystal, optical switch suing this device and ray deflection method
JP2005250429A (en) * 2004-03-06 2005-09-15 Shinichiro Inoue Optical element with photonic crystal structure
JP2007034093A (en) * 2005-07-29 2007-02-08 Japan Science & Technology Agency Optical device
JP2007213004A (en) * 2006-01-10 2007-08-23 Ricoh Co Ltd Magneto-optical element

Also Published As

Publication number Publication date
JP5142100B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
Hsu et al. Bound states in the continuum
Noda et al. Semiconductor three-dimensional and two-dimensional photonic crystals and devices
Cheng et al. Observation and tuning of hypersonic bandgaps in colloidal crystals
Fan et al. A review of magneto-optical microstructure devices at terahertz frequencies
Maleki et al. Crystalline whispering gallery mode resonators in optics and photonics
JP7162266B2 (en) Optical scanning device, optical receiving device, and optical detection system
EP1857845B1 (en) Optical waveguide structures
US20130314784A1 (en) Grating-based polarizers and optical isolators
US4859013A (en) Magneto-optical waveguide device with artificial optical anisotropy
Poveda et al. Semiconductor optical waveguide devices modulated by surface acoustic waves
Ho et al. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal
Zhao et al. Surface acoustic waves in two-dimensional phononic crystals: Dispersion relation and the eigenfield distribution of surface modes
JP2020526792A (en) Acoustic optical beam steering system
Inoue et al. Magnetophotonic crystals: Experimental realization and applications
Sheikh Ansari et al. Asymmetric transmission in nanophotonics
JP5142100B2 (en) Light deflection method and apparatus
Tsukanov Quantum dots in photonic molecules and quantum informatics. Part I
JP2005049705A (en) Optical device using photonic crystal and method for determining angle of incidence when light beam is made incident on photonic crystal
Christina et al. Ultra compact all optical logic gates using photonic band-gap materials
Soltani et al. Effect of the elliptic rods orientations on the asymmetric light transmission in photonic crystals
JP6290741B2 (en) Grating coupler forming method
Poveda et al. Optical waveguide devices modulated by surface acoustic waves
JP4369802B2 (en) Optical devices using photonic crystals
Sharma Multilayer optical waveguides as isolators, polarizers and other optical devices: a review
Yu Photonic Integration Platform with Bound State in the Continuum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees