JP2009138541A - Refrigerant compressor and bearing - Google Patents
Refrigerant compressor and bearing Download PDFInfo
- Publication number
- JP2009138541A JP2009138541A JP2007313248A JP2007313248A JP2009138541A JP 2009138541 A JP2009138541 A JP 2009138541A JP 2007313248 A JP2007313248 A JP 2007313248A JP 2007313248 A JP2007313248 A JP 2007313248A JP 2009138541 A JP2009138541 A JP 2009138541A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- refrigerant
- less
- mass
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、ルームエアコン,冷蔵庫,給湯機等に用いられる冷媒圧縮機および冷媒圧縮機の構造要素である回転駆動機構に用いられる軸受に関する。 The present invention relates to a refrigerant compressor used in a room air conditioner, a refrigerator, a water heater, and the like, and a bearing used in a rotation drive mechanism that is a structural element of the refrigerant compressor.
ルームエアコンや冷蔵庫等に用いられている冷媒圧縮機では、圧縮機構部に駆動力を伝達するための回転軸を軸受で軸支している。近時、オゾン層破壊防止等の環境問題のへの関心の高まりを背景として、冷媒として従来のフッ素を多く含むフルオロカーボン系冷媒に代えて、ハイドロフルオロカーボン(HFC)や空気等の自然冷媒を用いる動きが加速している。 In a refrigerant compressor used in a room air conditioner, a refrigerator, or the like, a rotary shaft for transmitting a driving force to a compression mechanism is supported by a bearing. Recently, with the growing interest in environmental problems such as prevention of ozone layer destruction, the use of natural refrigerants such as hydrofluorocarbons (HFC) and air instead of conventional fluorocarbon refrigerants containing a large amount of fluorine as refrigerants Is accelerating.
しかし、HFCや自然冷媒を用いて従来のフルオロカーボン系冷媒を用いた場合と同等の冷却性能を得ようとすると、冷媒圧縮機内の内圧を従来よりも高圧にする必要があるため、軸受に対する負荷が増大する。そして、このような環境下では、冷凍機油による潤滑膜が部分的に途切れて、軸受と回転軸とが局部的に直接に接触する、所謂、境界潤滑状態が生じやすくなる。また、冷媒圧縮機の起動時や過大な冷媒の混入によっても、境界潤滑状態が生じやすくなる。境界潤滑状態において回転軸が軸受に対して摺動すると、軸受の摩耗が加速される。そこで、高い耐摩耗性を示す軸受として、摩擦係数の小さい炭素黒鉛質基材の気孔に青銅を溶浸した炭素黒鉛質複合材からなる軸受が提案されている(例えば、特許文献1参照)。
しかしながら、この特許文献1に開示された軸受は、炭素黒鉛質複合材の固定炭素における黒鉛結晶化度が15%〜40%と小さく、残部である60%〜85%が硬度の高い非結晶炭素で構成されているために、切削や研磨等の加工が困難であるという問題がある。一方、軸受に用いる材料の加工性を高めようとすると、耐摩耗性が低下するおそれがある。 However, the bearing disclosed in Patent Document 1 has a low crystallinity of 15% to 40% in the fixed carbon of the carbon graphite composite material, and the remaining 60% to 85% is amorphous carbon having high hardness. Therefore, there is a problem that processing such as cutting and polishing is difficult. On the other hand, if the workability of the material used for the bearing is increased, the wear resistance may be reduced.
本発明はかかる事情に鑑みてなされたものであり、高い耐摩耗性と優れた加工性とを兼ね備えた軸受および当該軸受を用いた信頼性の高い冷媒圧縮機を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a bearing having high wear resistance and excellent workability, and a highly reliable refrigerant compressor using the bearing.
本発明に係る冷媒圧縮機は、回転軸の駆動により冷媒を圧縮する圧縮手段を備え、回転軸は軸受に軸支されている。この軸受として、固定炭素分が90質量%以上99質量%以下、黒鉛結晶化度が50%以上85%以下、面積空隙率が15%以下である炭素黒鉛質基材の開気孔の半分以上が錫(Sn)を含む銅(Cu)のα固溶体で充填された炭素黒鉛質複合材からなるものを用いる。 The refrigerant compressor according to the present invention includes compression means for compressing the refrigerant by driving the rotary shaft, and the rotary shaft is supported by a bearing. The bearing has a fixed carbon content of 90% to 99% by mass, a graphite crystallinity of 50% to 85% and an area porosity of 15% or less, and more than half of the open pores of the carbon graphite base material. A material made of a carbon graphite composite material filled with an α solid solution of copper (Cu) containing tin (Sn) is used.
本発明によれば、高い耐摩耗性と優れた加工性とを兼ね備えた軸受および当該軸受を用いた信頼性の高い冷媒圧縮機を提供することができる。 According to the present invention, it is possible to provide a bearing having both high wear resistance and excellent workability, and a highly reliable refrigerant compressor using the bearing.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
《第1実施形態》
図1に本発明の第1実施形態に係る冷媒圧縮機の概略構造を表した断面図を示す。この冷媒圧縮機10は、所謂、スクロール型圧縮機であり、密閉容器11の内部に固定された固定スクロール12と、固定スクロール12と噛み合うように配置された旋回スクロール13と、旋回スクロール13を固定スクロール12に対して公転運動させるためのクランクシャフト14と、クランクシャフト14を回転させるためのモータ15とを備えている。
<< First Embodiment >>
FIG. 1 is a sectional view showing a schematic structure of a refrigerant compressor according to the first embodiment of the present invention. The
固定スクロール12は、円板形状の鏡板21に渦巻(インボリュート)状のラップ22が立設され、鏡板21の外周部に冷媒を吸入するための吸入口23が形成され、鏡板21の中央に圧縮冷媒を吐出する吐出口24が形成された構造を有しており、ラップ22がモータ15側を向くように密閉容器11のフレーム16に固定されている。旋回スクロール13は、円板形状の鏡板25に渦巻状のラップ26が立設された構造を有している。旋回スクロール13は、ラップ22とラップ26とが噛み合うように、ラップ26を固定スクロール12側に向けて配置され、これによりラップ22,26の立設方向に直交する面での形状が三日月型となる圧縮室が形成される。
In the
クランクシャフト14は、長軸のシャフト部31と、シャフト部31に対して偏芯するようにシャフト部31の先端に設けられた短円柱形状のクランク部32から構成されており、シャフト部31がモータ15に取り付けられている。シャフト部31の中心軸と固定スクロール12の中心軸とが一致するように、クランクシャフト14と固定スクロール12は密閉容器11内に設置される。クランクシャフト14としては、炭素鋼,低合金鋼,浸炭焼入れ鋼,窒化処理した鋼または鋳鉄が好適に用いられる。
The
旋回スクロール13を構成する鏡板25の裏面(ラップ26が立設されていない面)の中央には円筒状の凸部27が形成されており、この凸部27に円筒状の軸受28が圧入されて、クランク部32を係合するための軸受部が形成されている。また、フレーム16には円筒状の孔部が形成されており、この孔部の内周に円筒状の軸受33が圧入されて、シャフト部31を軸支するための軸受部が形成されている。クランク部32は、旋回スクロール13に設けられた軸受部に挿入され、クランクシャフト14の回転により軸受28に対して摺動する。また、シャフト部31はフレーム16に設けられた軸受部に挿通されており、クランクシャフト14の回転により軸受33に対して摺動する。
A
クランク部32の外周面と軸受28の内周面との間には一定の狭い隙間が形成され、また、シャフト部31の外周面と軸受33の内周面との間にも一定の狭い隙間が形成されており、クランクシャフト14はこれらの隙間により許容される範囲内において、径方向における動きの自由度がある。
A constant narrow gap is formed between the outer peripheral surface of the
但し、シャフト部31と軸受33との間の隙間およびクランク部32と軸受28との間の隙間が広すぎると、冷媒の漏洩によって冷却性能が低下したり、振動騒音が大きくなったりする等の問題が生じる。一方、これらの隙間が狭すぎると、クランクシャフト14の回転が妨げられるために、摩擦損失が増大することになる。また、軸受28,33とクランクシャフト14の表面状態(例えば、表面粗さ等)が不均一であると、局所的に摩耗が生じたり、クランクシャフト14の回転速度が変動したりするおそれがある。このため、クランクシャフト14の外形寸法と軸受28,33の内径寸法は、このような問題を回避することができるように適切な寸法に設定され、その表面状態もまた均一かつ平滑な状態とされる。
However, if the gap between the
クランクシャフト14を回転させると、旋回スクロール13はシャフト部31および固定スクロール12に対して偏芯して配置されているために、旋回スクロール13は固定スクロール12に対して公転運動(旋回運動)を行う。その際の旋回スクロール13の自転を防止するために、旋回スクロール13を構成する鏡板25の裏面に設けられたキー溝35とフレーム16に設けられたキー溝36に係合するように、オルダムリング29が配置されている。また、クランクシャフト14の回転時に、クランク部32がシャフト部31に対して偏芯した位置に設けられていることによるクランクシャフト14の回転ぶれを防止するために、クランクシャフト14にはバランスウエイト37が取り付けられている。
When the
クランクシャフト14を回転させると、固定スクロール12と旋回スクロール13によりその外周部に前記した三日月型の圧縮室が形成され、この圧縮室には吸入口23を通して冷媒が取り込まれる。クランクシャフト14の回転に伴って圧縮室が中心部へと次第に容積を縮小させながら移動するにしたがって、圧縮室内の冷媒が圧縮される。そして、圧縮室が固定スクロール12の中心部に形成された吐出口24と連通した際に、圧縮された冷媒がこの吐出口24から放出される。
When the
このように冷媒圧縮機10では、固定スクロール12および旋回スクロール13により形成される圧縮室とモータ15とを1本のクランクシャフト14で結合し、軸受28,33が荷重を支持する構造となっているため、軸受28,33には、冷媒と冷凍機油の共存する潤滑油環境において、高い機械的強度(特に、高い圧縮強さ)が要求される。
Thus, in the
また、クランクシャフト14を回転させると、冷媒の流体圧力によってクランク部32には偏芯方向と直交する径方向に荷重が作用する。この荷重によってクランクシャフト14が傾き、シャフト部31は軸受33に対して、クランク部32は軸受28に対してそれぞれ片あたりの状態で強く押し付けられながら回転する状態が生じ得る。その結果、軸受28,33にはそれぞれ、冷凍機油による油膜反力を上回る荷重が加わり、これらの摺動部に冷凍機油が存在しない境界潤滑状態が生じてしまう。
When the
さらに、クランクシャフト14の回転駆動にインバータ制御方式や多冷媒封入方式を用いた場合には、冷凍機油の粘度とクランクシャフト14の周速と軸荷重が広範囲に変動したり、急速始動では給油遅れ現象が発生したりして、クランクシャフト14と軸受28,33から構成される摺動部の潤滑モードが定常時の流体潤滑状態から中位の混合潤滑状態へ、さらに最も厳しい境界潤滑状態へと移行し、これによって軸受の摩耗量が増加してしまう。この摩耗量の増加は、音や振動を発生させる原因になるとともに、ミスアライメントを引き起こし、圧縮室のシール性を悪化させて容積効率を低下させる。したがって、軸受28,33には、境界潤滑状態のような厳しい摩擦環境下においても、優れた耐摩耗性を有していることが要求される。さらに軸受28,33には、潤滑油環境が変化しても、クランクシャフト14に対して焼付きが起こり難い性質(耐焼付き性)が要求される。
Further, when an inverter control method or a multi-refrigerant sealing method is used for rotational driving of the
このような要求を満たし、長期にわたって高い信頼性を確保するために、軸受28,33として、固定炭素分が90質量%以上99質量%以下,黒鉛結晶化度が50%以上85%以下,面積空隙率が15%以下である炭素黒鉛質基材の開気孔の半分以上が錫を含む銅(以下「青銅」という)のα固溶体で充填された炭素黒鉛質複合材からなるものを用いる。
In order to satisfy such requirements and ensure high reliability over a long period of time, the
炭素黒鉛質複合材を構成する炭素黒鉛質基材は、炭素質粉末,黒鉛質粉末,粘結剤を混練したものを、一軸プレス成形法や冷間静水圧成型法(CIP)により圧縮成形した後、これを1000℃〜1500℃で1〜2ヶ月焼成することにより、製造することができる。炭素黒鉛質基材は、揮発分,固定炭素分,灰分,水分からなるが、ここでは、原料および焼成条件を調整することにより、固定炭素分が90質量%以上99質量%以下の炭素黒鉛質基材を製造する。例えば、揮発分や水分が多い炭素黒鉛質基材の場合、後に炭素黒鉛質基材の開気孔に青銅を溶浸させるために炭素黒鉛質基材が加熱された際に、揮発分のガス化や水分の蒸発等による体積膨張によって炭素黒鉛質基材に亀裂等の欠陥が生じるおそれがある。また、固定炭素分の多い炭素黒鉛質基材は高い圧縮強さを示すため、軸受として好適である。 The carbon-graphite base material constituting the carbon-graphite composite was compression-molded by kneading carbonaceous powder, graphite powder, and a binder by a uniaxial press molding method or a cold isostatic pressing method (CIP). Then, it can manufacture by baking this at 1000 to 1500 degreeC for 1 to 2 months. The carbon graphite base material is composed of volatile matter, fixed carbon content, ash content, and moisture. Here, by adjusting the raw materials and the firing conditions, the carbon graphite material having a fixed carbon content of 90% by mass to 99% by mass. A substrate is produced. For example, in the case of a carbon graphite base material with a large amount of volatile matter and moisture, when the carbon graphite base material is heated to infiltrate bronze into the open pores of the carbon graphite base material later, There is a risk that defects such as cracks may occur in the carbon graphite base material due to volume expansion due to evaporation of moisture or the like. In addition, a carbon graphite base material having a large amount of fixed carbon is suitable as a bearing because it exhibits high compressive strength.
炭素黒鉛質基材における黒鉛結晶化度が50%未満であるということは、結晶黒鉛以外の炭素成分である非結晶炭素(非晶質炭素)が50%以上であるということを意味している。炭素黒鉛質基材における非結晶炭素の含有量が多いと、非結晶炭素の硬度が高いために、切削や研磨等の加工が困難となる。一方、黒鉛結晶化度が85%超の場合には、摩擦係数は小さくなるが、非結晶炭素が少ないために特に境界潤滑状態といった厳しい摩擦環境下における耐摩耗性が低い。そこで、炭素黒鉛質基材における黒鉛結晶化度を50%以上85%以下とすることにより、加工性と耐摩耗性のバランスの取れた軸受を製造することができる。 That the degree of graphite crystallinity in the carbon graphite base material is less than 50% means that amorphous carbon (amorphous carbon), which is a carbon component other than crystalline graphite, is 50% or more. . When the content of amorphous carbon in the carbon graphite base material is large, the hardness of the amorphous carbon is high, so that processing such as cutting and polishing becomes difficult. On the other hand, when the degree of crystallinity of graphite exceeds 85%, the friction coefficient becomes small, but since the amount of amorphous carbon is small, the wear resistance in a severe friction environment such as a boundary lubrication state is low. Thus, by setting the degree of graphite crystallinity in the carbon graphite base material to 50% or more and 85% or less, it is possible to manufacture a bearing having a balance between workability and wear resistance.
炭素黒鉛質基材における黒鉛結晶化度は、炭素黒鉛質基材の粉末X線回折(XRD)チャートをJCPDSデータ(X線回折標準データ集)による検索、照合により、各回折ピークの同定を行った。そして、Graphite(002)ピークのプロファイルフィッティング〔(株)リガク 粉末X線回折解析ソフト JADE7〕によりブロードなピーク(炭素)とシャープなピーク(黒鉛)の積分強度を求め、標準試料(炭素:コークス、黒鉛:土壌黒鉛)より求めた感度係数にて値を補正し、黒鉛結晶化度(積分強度比)を算出した。 Graphite crystallinity in the carbon graphite substrate is identified by searching and collating the powder X-ray diffraction (XRD) chart of the carbon graphite substrate with JCPDS data (X-ray diffraction standard data collection). It was. Then, the integrated strength of the broad peak (carbon) and the sharp peak (graphite) is obtained by Graphite (002) peak profile fitting [Rigaku powder X-ray diffraction analysis software JADE7], and a standard sample (carbon: coke, The value was corrected with the sensitivity coefficient obtained from graphite: soil graphite), and the degree of graphite crystallization (integrated intensity ratio) was calculated.
炭素黒鉛質基材の面積空隙率とは、炭素黒鉛質基材を切断してその切断面を研磨し、研磨面をSEMや光学顕微鏡等で観察した際の観察画像における空孔の面積占有比率を指す。炭素黒鉛質基材における面積空隙率が15%超の場合には、炭素黒鉛質基材の機械的強度が低下する。また、溶浸させる青銅の量が多くなることによって、クランクシャフト14に対する焼付きが起こりやすくなる。そこで、炭素黒鉛質基材における面積空隙率は15%以下とする。
The area porosity of the carbon graphite base material refers to the area occupation ratio of pores in an observation image when the carbon graphite base material is cut and the cut surface is polished and the polished surface is observed with an SEM or an optical microscope. Point to. When the area porosity in the carbon graphite substrate is more than 15%, the mechanical strength of the carbon graphite substrate is lowered. Further, the amount of bronze to be infiltrated increases, and seizure to the
炭素黒鉛質基材の開気孔の半分以上が青銅によって充填されるように、炭素黒鉛質基材に青銅を溶浸(含浸)させる。炭素黒鉛質基材への青銅の溶浸は、例えば、次の方法により行うことができる。まず、真空雰囲気および加圧ガス雰囲気のいずれにも調整可能な耐圧容器の内部に加熱可能な金属溶融用の坩堝を設け、この坩堝に青銅(または一定組成の錫と銅の粉末または塊状物等)を所定量投入して溶融させる。続いて、炭素黒鉛質基材を坩堝中の溶融青銅に浸漬させることなく耐圧容器に収容して耐圧容器内を減圧し、炭素黒鉛質基材の開気孔中の空気を除去する。次いで、炭素黒鉛質基材を坩堝中の溶融青銅に浸漬させた後、窒素ガス等を耐圧容器内に供給して内部加圧することにより、溶融青銅を炭素黒鉛質基材の開気孔へ浸透させる。こうして所定時間の溶浸処理を行った後、坩堝温度を下げて溶融青銅を固化させ(または、炭素黒鉛質基材を引き上げて炭素黒鉛質基材に浸透した溶融青銅を固化させ)、得られた固化物から炭素黒鉛質複合材を切り出す。得られた炭素黒鉛質複合材を所望される軸受の寸法形状に切削加工や研磨加工することによって、軸受を製造することができる。 Bronze is infiltrated (impregnated) into the carbon graphite substrate so that more than half of the open pores of the carbon graphite substrate are filled with bronze. Infiltration of bronze into the carbon graphite base material can be performed, for example, by the following method. First, a heatable metal melting crucible is provided inside a pressure-resistant vessel that can be adjusted to either a vacuum atmosphere or a pressurized gas atmosphere, and bronze (or a tin-copper powder or lump of constant composition, etc.) is provided in this crucible. ) Is charged in a predetermined amount and melted. Subsequently, the carbon graphite base material is housed in a pressure resistant container without being immersed in the molten bronze in the crucible, and the pressure inside the pressure resistant container is reduced to remove air in the open pores of the carbon graphite base material. Next, after immersing the carbon graphite base material in the molten bronze in the crucible, the molten bronze is permeated into the open pores of the carbon graphite base material by supplying nitrogen gas or the like into the pressure vessel and internally pressurizing it. . After performing the infiltration treatment for a predetermined time in this manner, the crucible temperature is lowered to solidify the molten bronze (or the carbon bronze base material is pulled up to solidify the molten bronze that has penetrated into the carbon graphite base material), and obtained. A carbon graphite composite material is cut out from the solidified material. A bearing can be manufactured by cutting or polishing the obtained carbon graphite composite material into a desired size and shape of the bearing.
青銅を用いるのは、純銅では加重変形が起こりやすく、クランクシャフトに対する耐焼付き性も十分とは言えないからであり、銅に錫を添加することによって銅の優れた耐摩耗性を維持しながら硬質化が可能であり、これによって耐焼付き性も向上するからである。なお、銅へ錫を所定量添加すると融点が下がるために、溶浸処理における装置負荷を軽減することができるという利点がある。また、青銅の融点は純銅の融点よりも低くなるが、それでも、軸受において発生が予想される温度よりも十分に高い温度であるため、軸受に対して過酷な摺動状態が継続することによって軸受の温度が上昇しても、耐摩耗性を維持することができる。 Bronze is used because pure copper is prone to weight deformation and the seizure resistance to the crankshaft is not sufficient. Adding tin to copper makes it hard while maintaining the excellent wear resistance of copper. This is because seizure resistance is also improved. In addition, since melting | fusing point falls when a predetermined amount of tin is added to copper, there exists an advantage that the apparatus load in an infiltration process can be reduced. In addition, the melting point of bronze is lower than that of pure copper, but it is still sufficiently higher than the temperature that is expected to occur in the bearing. Even if the temperature rises, the wear resistance can be maintained.
炭素黒鉛質基材の開気孔の半分以上に青銅を充填することにより、炭素黒鉛質基材の開気孔への冷凍機油の浸透による油膜切れの発生を実効的に防止することができる。なお、面積空隙率が一定の炭素黒鉛質基材に対する青銅の充填率を上げようとすると、溶融した青銅を炭素黒鉛質基材へ溶浸させる際に、大きな圧力が必要となって製造設備負荷が増大する。そのため、軸受としての実効的な特性が得られる充填量とその充填量を実現するための設備負荷とのバランスを考慮して、溶浸条件を決定することが好ましい。 Filling more than half of the open pores of the carbon graphite base material with bronze can effectively prevent the occurrence of oil film breakage due to penetration of refrigerating machine oil into the open pores of the carbon graphite base material. In order to increase the filling ratio of bronze to the carbon graphite base material with a constant area porosity, a large pressure is required when infiltrating the molten bronze into the carbon graphite base material. Will increase. Therefore, it is preferable to determine the infiltration conditions in consideration of the balance between the filling amount that provides effective characteristics as a bearing and the equipment load for realizing the filling amount.
後述する実施例に示すように、炭素黒鉛質基材の開気孔に青銅を溶浸させることによって圧縮強さが大きくなるため、大きな荷重に耐えることができるようになり、耐摩耗性も向上する。このような効果を得るために、炭素黒鉛質基材の面積空隙率は、一定量の青銅を溶浸することができるように、5%以上であることが好ましい。 As shown in the examples to be described later, the compression strength is increased by infiltrating bronze into the open pores of the carbon graphite base material, so that it is able to withstand a large load and the wear resistance is also improved. . In order to obtain such an effect, the area porosity of the carbon graphite base material is preferably 5% or more so that a certain amount of bronze can be infiltrated.
図2に銅−錫系における温度と生成相との関係および機械的特性(引張り強さ:σB、硬さ:HB、伸び:δ)の組成依存性を示す。図2から、青銅のα固溶体を炭素黒鉛質基材に充填するためには、錫の含有率を約12質量%以下とする必要のあることがわかる。溶浸処理後に確実にα固溶体を生成させる観点から、錫の添加量の上限値を11質量%とすることが好ましい。 FIG. 2 shows the composition dependence of the relationship between temperature and product phase and mechanical properties (tensile strength: σ B , hardness: H B , elongation: δ) in the copper-tin system. FIG. 2 shows that in order to fill the carbon graphite base material with the bronze α-solid solution, the tin content needs to be about 12 mass% or less. From the viewpoint of reliably producing an α solid solution after the infiltration treatment, it is preferable that the upper limit value of the amount of tin added is 11% by mass.
また、錫の含有率が12質量%以下の領域においては、錫の含有率が増えるにしたがって、引張り強さσBが大きくなり、硬質化され、伸びが小さくなることがわかる。例えば、錫の含有率を10質量%とすることにより、引張強さσBは約1.8倍となり、硬さHBが約1.6倍となることから、炭素黒鉛質基材の開気孔に青銅を充填することにより、炭素黒鉛質複合材の機械的特性を向上させることができる。しかしながら、錫の含有量が5質量%未満の場合には、青銅化による機械的特性の改善効果が十分とは言えず、潤滑油環境が変化して過酷な摩擦環境となった場合に、十分な耐摩耗性が得られないおそれがある。そこで、錫の含有率を5質量%以上とすることが好ましい。 It can also be seen that in the region where the tin content is 12% by mass or less, as the tin content increases, the tensile strength σ B increases and becomes harder and the elongation decreases. For example, by setting the tin content to 10% by mass, the tensile strength σ B is about 1.8 times and the hardness H B is about 1.6 times. By filling the pores with bronze, the mechanical properties of the carbon graphite composite can be improved. However, when the tin content is less than 5% by mass, the improvement effect of the mechanical properties due to bronzing cannot be said to be sufficient, and it is sufficient when the lubricating oil environment changes to become a severe friction environment. May not be able to obtain good wear resistance. Therefore, the tin content is preferably 5% by mass or more.
上述の通りにして製造される炭素黒鉛質複合材の圧縮強さは、後述する実施例に示す通り、300MPa以上であることが好ましく、これにより、境界潤滑状態等の過酷な摩擦環境においても、優れた耐摩耗性を示す。このような炭素黒鉛質複合材は、炭素黒鉛質基材の製造条件および青銅の溶浸条件を適切に設定することにより、作製することができる。 The compressive strength of the carbon graphite composite material produced as described above is preferably 300 MPa or more, as shown in the examples described later. Thereby, even in a severe friction environment such as a boundary lubrication state, Excellent wear resistance. Such a carbon graphite composite material can be produced by appropriately setting the production conditions of the carbon graphite base material and the infiltration conditions of bronze.
軸受28,33は、冷媒圧縮機10の機内圧力が大きい場合にも優れた耐摩耗性と耐焼付き性を示す。このため、冷媒圧縮機10では、冷媒として、オゾン層破壊等の環境問題に配慮したハロゲン化炭化水素系冷媒(HFC)や炭化水素系冷媒(HC),自然系冷媒を積極的に用いることができる。また、このような冷媒に対応して、冷凍機油として、鉱油,ポリオールエステル油,ポリアルキレングリコール油,ポリビニルエーテル油,ポリアルファオレフィン油,ハードアルキルベンゼン油が好適に用いられる。
The
冷凍機油中の水分は、冷凍機油を加水分解劣化させ、これによってクランクシャフト14と軸受28,33との間の摩擦環境が悪化する。特に、冷媒としてR744,R410A,R407C,R134a,R600a,R290を使用した場合に用いられる冷凍機油は、水分を取り込みやすく、取り込まれた水分によって加水分解されやすい。そこで、冷凍機油中の水分は1〜1000ppmとすることが好ましく、1〜500ppmとすることがより好ましい。なお、冷凍機油中の水分が1ppm未満であることは極めて好ましいが、現実的に、冷凍機油中の水分を1ppm未満とすることには、多大な労力が必要となる。
The moisture in the refrigeration oil hydrolyzes and degrades the refrigeration oil, thereby deteriorating the frictional environment between the
《第2実施形態》
図3に本発明の第2実施形態に係る冷媒圧縮機の概略構造を表した断面図を示す。この冷媒圧縮機50は、所謂、ロータリ圧縮機であり、密閉容器51の内部に配置されたモータ52と、モータ52に取り付けられたクランクシャフト53と、クランクシャフト53を軸支するための第1ベアリング54および第2ベアリング55と、第1ベアリング54と第2ベアリング55との間に介在するシリンダ56と、シリンダ56内に設けられたローラ57と、シリンダ56に対してシリンダ56の径方向に摺動自在となるようにローラ57に摺動自在に取り付けられたベーン58とを備えている。
<< Second Embodiment >>
FIG. 3 is a cross-sectional view showing a schematic structure of a refrigerant compressor according to the second embodiment of the present invention. The
クランクシャフト53は、第1シャフト部61と第2シャフト部62の間にクランク部63が設けられた構造を有しており、第1シャフト部61がモータ52に取り付けられている。第1ベアリング54には第1シャフト部61を軸支するための孔部が設けられ、この孔部に軸受71が圧入固定されており、第1シャフト部61はこの軸受71に対して摺動する。同様に、第2ベアリング55には第2シャフト部62を軸支するための孔部が設けられ、この孔部に軸受72が圧入固定されており、第2シャフト部62はこの軸受72に対して摺動する。
The
ローラ57の内側には軸受73が圧入されており、クランクシャフト53の回転によりクランク部63はこの軸受73に対して摺動し、ローラ57に偏芯回転を与え、ローラ57は自転することなくシリンダ56に対して旋回運動する。密閉容器51には吸入口65が設けられており、この吸入口65からシリンダ56内に吸い込まれた冷媒ガスは、ローラ57の旋回運動によって圧縮された後、密閉容器51に設けられた吐出口66から吐出される。
A
冷媒圧縮機50においても、軸受71〜73として、固定炭素分が90質量%以上99質量%以下,黒鉛結晶化度が50%以上85%以下,面積空隙率が15%以下である炭素黒鉛質基材の開気孔の半分以上が青銅のα固溶体で充填された炭素黒鉛質複合材からなるものを用いることによって、境界潤滑状態等の過酷な摩擦環境が生じても、軸受71〜73の摩耗やクランクシャフト53との焼付きを抑制することができる。こうして、冷媒圧縮機50の信頼性および耐久性を向上させることができる。
Also in the
以上、本発明に係る冷媒圧縮機の実施の形態としてスクロール型圧縮機とロータリ型圧縮機について説明したが、これに限られることなく、圧縮機構はレシプロ型やスイング型、スクリュー型であってもよく、これら各種の圧縮機構における軸受として、前記した炭素黒鉛質複合材を用いることができる。また、前記した炭素黒鉛質複合材は、軸受に限定して用いられるものではなく、冷媒圧縮機内のその他の摺動部を構成する部品としても好適に用いられる。例えば、ローラ,ベーン,ピストン等の摺動部品として用いることにより、優れた耐摩耗性に由来して、耐久性を向上させることができる。 As described above, the scroll type compressor and the rotary type compressor have been described as the embodiment of the refrigerant compressor according to the present invention. However, the present invention is not limited thereto, and the compression mechanism may be a reciprocating type, a swing type, or a screw type. Often, the above-described carbon graphite composite material can be used as a bearing in these various compression mechanisms. Moreover, the above-described carbon graphite composite material is not limited to the bearing, but is also suitably used as a component constituting another sliding portion in the refrigerant compressor. For example, by using as sliding parts such as rollers, vanes, and pistons, durability can be improved due to excellent wear resistance.
次に、実施例として、軸受に用いられる炭素黒鉛質複合材の耐摩耗性を評価した結果について説明する。表1に作製した試料の固定炭素分,黒鉛結晶化率,面積空隙率を示す。これらの試料は、前記した通り、炭素質粉末,黒鉛質粉末,粘結剤を混練したものを圧縮成形し、1000℃の焼成炉で1ヶ月間焼成することにより製造した。固定炭素分の評価は灰化法により、黒鉛結晶化率の評価は前記したXRDチャートにおける黒鉛の(002)面の回折ピーク分離により、面積空隙率はSEM観察により、それぞれ求めた。 Next, as an example, the result of evaluating the wear resistance of the carbon graphite composite material used for the bearing will be described. Table 1 shows the fixed carbon content, graphite crystallization rate, and area porosity of the samples prepared. As described above, these samples were produced by compressing and molding a kneaded carbonaceous powder, graphite powder, and binder and firing in a firing furnace at 1000 ° C. for one month. The fixed carbon content was evaluated by an ashing method, the graphite crystallization rate was evaluated by diffraction peak separation on the (002) plane of graphite in the XRD chart, and the area porosity was determined by SEM observation.
作製した炭素黒鉛質基材に表1に示す溶浸材料を溶浸させた。溶浸は、バー材(22〜25mm×22〜25mm×275〜285mm)を含浸炉内にセットし、炉内を脱気(0.5MPa)し、溶浸材料を融点より100℃高い温度に溶融した溶湯中に浸漬後、100kg/cm2の圧力で1〜1.5時間加圧することにより行った。溶浸処理を行った試料の断面をSEM観察したところ、開気孔の約90%が溶浸材料で充填されていることを確認した。 The infiltrated materials shown in Table 1 were infiltrated into the produced carbon graphite base material. For infiltration, a bar material (22-25 mm × 22-25 mm × 275-285 mm) is set in an impregnation furnace, the inside of the furnace is deaerated (0.5 MPa), and the infiltration material is heated to a temperature 100 ° C. higher than the melting point. After immersion in the molten metal, it was performed by pressurizing at a pressure of 100 kg / cm 2 for 1 to 1.5 hours. When the cross section of the infiltrated sample was observed by SEM, it was confirmed that about 90% of the open pores were filled with the infiltrating material.
作製した炭素黒鉛質複合材の圧縮強さを、インストロン製の万能試験機で5mm/sで荷重を負荷して、破壊荷重を接触面積で除して求めた。その結果を表1に併記する。実施例1,2と比較例1,2とを対比すると明らかなように、青銅の溶浸によって、圧縮強さが向上していることがわかる。比較例3,4では、炭素黒鉛質基材の黒鉛結晶化度が大きいため、圧縮強さは低い値にとどまっている。 The compressive strength of the produced carbon graphite composite material was determined by applying a load at 5 mm / s with an universal testing machine manufactured by Instron and dividing the breaking load by the contact area. The results are also shown in Table 1. As is clear from comparison between Examples 1 and 2 and Comparative Examples 1 and 2, it can be seen that the compressive strength is improved by infiltration of bronze. In Comparative Examples 3 and 4, since the degree of crystallinity of the carbon graphite base material is large, the compressive strength remains at a low value.
摩耗試験を高圧雰囲気摩耗試験機〔(株)オリエンテック製(現在、(株)エー・アンド・デイ):AFT−18−800S〕を用いて行った。より詳しくは、炭素黒鉛質複合材を10mm×10mm×36mmの形状に加工して固定試験片とし、これに可動片としてSCM415の浸炭焼入れ材を9.8MPaの面圧で押しあてて、摺動速度:1.2m/秒とし、R410A冷媒雰囲気中(冷凍機油を含まない)で2時間摺動させた。試験後の固定試験片の摩耗量を測定した結果を図4に示す。 The abrasion test was performed using a high-pressure atmosphere abrasion tester [Orientec Co., Ltd. (currently A & D Co., Ltd .: AFT-18-800S)]. More specifically, the carbon graphite composite material is processed into a shape of 10 mm × 10 mm × 36 mm to form a fixed test piece, and a carburized and quenched material of SCM415 is pressed against the movable piece as a movable piece at a surface pressure of 9.8 MPa to slide. The speed was set to 1.2 m / sec, and sliding was performed for 2 hours in an R410A refrigerant atmosphere (excluding refrigerating machine oil). The results of measuring the wear amount of the fixed test piece after the test are shown in FIG.
この摩耗試験では、冷凍機油を用いていないために、固定試験片と可動片の摩擦環境は極めて過酷な条件に設定されている。図4に示される通り、実施例1,2では、摩耗量は約5μmと小さく、良好な耐摩耗性を示すことが確認された。これに対して、圧縮強さが約150MPa前後と低い比較例3,4では他の試料と比較して、摩耗量が極端に多く、実施例1,2の約5倍の摩耗量を示した。また、青銅を溶浸していない比較例1,2では、圧縮強さが270MPa程度あるために、比較的良好な耐摩耗性が得られているが、実施例1,2の約2倍の摩耗量を示している。これらの結果より、軸受に用いる炭素黒鉛質複合材の圧縮強さは、300MPa以上であることが好ましいと判断した。 In this wear test, since the refrigerating machine oil is not used, the frictional environment between the fixed test piece and the movable piece is set to extremely severe conditions. As shown in FIG. 4, in Examples 1 and 2, the amount of wear was as small as about 5 μm, and it was confirmed that good wear resistance was exhibited. On the other hand, in Comparative Examples 3 and 4 where the compressive strength is as low as about 150 MPa, the amount of wear was extremely large compared to other samples, indicating about five times the amount of wear as in Examples 1 and 2. . In Comparative Examples 1 and 2 in which bronze is not infiltrated, the compressive strength is about 270 MPa, and thus relatively good wear resistance is obtained. However, the wear is about twice that of Examples 1 and 2. Indicates the amount. From these results, it was determined that the compressive strength of the carbon graphite composite used for the bearing is preferably 300 MPa or more.
次に、炭素黒鉛質基材に溶浸させる青銅の組成について検討するために、実施例3に係る炭素黒鉛質複合材として、表1に示す炭素黒鉛質基材に、錫が20質量%で残部が銅である青銅を溶浸させたものを新たに作製した。実施例3に係る炭素黒鉛質複合材の圧縮強さを前記した万能試験機を用いて測定した。その結果を表1に併記する。また、前記した高圧雰囲気摩耗試験機による実施例3に係る炭素黒鉛質複合材の摩耗試験を、実施例1,2および比較例1〜4の摩耗試験と同様にして行った。実施例3の摩耗量と圧縮強さとの関係を図4に併記する。また、実施例3の摩耗量を実施例2および比較例1の摩耗量と対比して図5に示す。 Next, in order to examine the composition of bronze infiltrated into the carbon graphite base material, as a carbon graphite composite material according to Example 3, the carbon graphite base material shown in Table 1 has a tin content of 20% by mass. What infiltrated bronze with the remainder being copper was newly produced. The compressive strength of the carbon graphite composite material according to Example 3 was measured using the universal testing machine described above. The results are also shown in Table 1. Moreover, the abrasion test of the carbon graphite composite material according to Example 3 using the above-described high-pressure atmosphere abrasion tester was performed in the same manner as the abrasion tests of Examples 1 and 2 and Comparative Examples 1 to 4. The relationship between the amount of wear and the compressive strength in Example 3 is also shown in FIG. Further, the wear amount of Example 3 is shown in FIG. 5 in comparison with the wear amounts of Example 2 and Comparative Example 1.
実施例3では、実施例2よりもわずかに摩耗量が大きくなったものの、比較例1と対比すると、十分に小さな摩耗量であることがわかる。この結果から、炭素黒鉛質基材に青銅を溶浸させる場合には、錫の含有率を10質量%とすることが、耐摩耗性向上の観点から、最も好ましいと判断される。 In Example 3, although the amount of wear was slightly larger than that in Example 2, it was found that the amount of wear was sufficiently small as compared with Comparative Example 1. From this result, when bronze is infiltrated into the carbon graphite base material, it is judged that the tin content is 10% by mass from the viewpoint of improving wear resistance.
10…冷媒圧縮機、11…密閉容器、12…固定スクロール、13…旋回スクロール、14…クランクシャフト、15…モータ、16…フレーム、21…鏡板、22…ラップ、23…吸入口、24…吐出口、25…鏡板、26…ラップ、27…凸部、28…軸受、29…オルダムリング、31…シャフト部、32…クランク部、33…軸受、35…キー溝、36…キー溝、37…バランスウエイト、50…冷媒圧縮機、51…密閉容器、52…モータ、53…クランクシャフト、54…第1ベアリング、55…第2ベアリング、56…シリンダ、57…ローラ、58…ベーン、61…第1シャフト部、62…第2シャフト部、63…クランク部、65…吸入口、66…吐出口、71…軸受、72…軸受、73…軸受。
DESCRIPTION OF
Claims (11)
前記圧縮手段は、前記回転軸を軸支する軸受を具備し、
前記軸受は、固定炭素分が90質量%以上99質量%以下,黒鉛結晶化度が50%以上85%以下,面積空隙率が15%以下である炭素黒鉛質基材の開気孔の半分以上が錫を含む銅のα固溶体で充填された炭素黒鉛質複合材からなることを特徴とする冷媒圧縮機。 A refrigerant compressor provided with a compression means for compressing refrigerant by rotation of a rotating shaft,
The compression means includes a bearing that supports the rotating shaft,
The bearing has a fixed carbon content of 90% by mass or more and 99% by mass or less, a graphite crystallinity of 50% or more and 85% or less, and an area porosity of 15% or less and more than half of the open pores of the carbon graphite base material. A refrigerant compressor comprising a carbon graphite composite material filled with an α solid solution of copper containing tin.
前記圧縮手段は、前記回転軸を軸支する第1の軸受と、前記クランクと係合する第2の軸受とを有し、
前記第1の軸受および前記第2の軸受のうち少なくとも前記第2の軸受が、固定炭素分が90質量%以上99質量%以下,黒鉛結晶化度が50%以上85%以下,面積空隙率が15%以下である炭素黒鉛質基材の開気孔の半分以上が錫を含む銅のα固溶体で充填された炭素黒鉛質複合材からなることを特徴とする冷媒圧縮機。 A refrigerant compressor provided with a compression means for compressing a refrigerant by driving a rotary shaft and a crank attached to the rotary shaft,
The compression means includes a first bearing that pivotally supports the rotating shaft, and a second bearing that engages with the crank,
At least the second bearing of the first bearing and the second bearing has a fixed carbon content of 90% by mass to 99% by mass, a graphite crystallinity of 50% to 85%, and an area porosity. A refrigerant compressor comprising a carbon graphite composite material in which more than half of the open pores of a carbon graphite base material, which is 15% or less, are filled with an α solid solution of copper containing tin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007313248A JP4839300B2 (en) | 2007-12-04 | 2007-12-04 | Refrigerant compressor and bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007313248A JP4839300B2 (en) | 2007-12-04 | 2007-12-04 | Refrigerant compressor and bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009138541A true JP2009138541A (en) | 2009-06-25 |
JP4839300B2 JP4839300B2 (en) | 2011-12-21 |
Family
ID=40869422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007313248A Active JP4839300B2 (en) | 2007-12-04 | 2007-12-04 | Refrigerant compressor and bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4839300B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013079628A (en) * | 2011-10-05 | 2013-05-02 | Hitachi Appliances Inc | Hermetic refrigerant compressor and bearing member used for the same |
US9902917B2 (en) | 2011-07-01 | 2018-02-27 | Idemitsu Kosan Co., Ltd. | Lubricant oil composition for compression refrigerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10103276A (en) * | 1996-09-27 | 1998-04-21 | Sanyo Electric Co Ltd | Refrigerator |
JP2002213356A (en) * | 2000-10-27 | 2002-07-31 | Hitachi Ltd | Refrigerant compressor, air conditioner and refrigerator using the same, and its bearing |
JP2003314448A (en) * | 2002-04-25 | 2003-11-06 | Hitachi Ltd | Bearing for co2 refrigerant compressor, compressor using the bearing, and application of the compressor |
JP2004035993A (en) * | 2002-07-08 | 2004-02-05 | Hitachi Chem Co Ltd | Metal-impregnated carbon sliding material |
-
2007
- 2007-12-04 JP JP2007313248A patent/JP4839300B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10103276A (en) * | 1996-09-27 | 1998-04-21 | Sanyo Electric Co Ltd | Refrigerator |
JP2002213356A (en) * | 2000-10-27 | 2002-07-31 | Hitachi Ltd | Refrigerant compressor, air conditioner and refrigerator using the same, and its bearing |
JP2003314448A (en) * | 2002-04-25 | 2003-11-06 | Hitachi Ltd | Bearing for co2 refrigerant compressor, compressor using the bearing, and application of the compressor |
JP2004035993A (en) * | 2002-07-08 | 2004-02-05 | Hitachi Chem Co Ltd | Metal-impregnated carbon sliding material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9902917B2 (en) | 2011-07-01 | 2018-02-27 | Idemitsu Kosan Co., Ltd. | Lubricant oil composition for compression refrigerator |
JP2013079628A (en) * | 2011-10-05 | 2013-05-02 | Hitachi Appliances Inc | Hermetic refrigerant compressor and bearing member used for the same |
Also Published As
Publication number | Publication date |
---|---|
JP4839300B2 (en) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3876756B2 (en) | CO2 refrigerant compressor bearing, compressor using the same, and use thereof | |
JP4395159B2 (en) | Refrigeration equipment | |
JP2006283706A (en) | Composition for sliding member, sliding member and fluid machine | |
WO2006098303A1 (en) | Composition for slide member, slide member and fluid machinery | |
KR20080035492A (en) | Refrigerant compressor | |
JPH03281991A (en) | Coolant compressor | |
JP4839300B2 (en) | Refrigerant compressor and bearing | |
WO1999014511A1 (en) | Sliding member and refrigerating compressor using the same | |
JP2009287483A (en) | Refrigerant compressor | |
JP5993559B2 (en) | Hermetic refrigerant compressor and bearing member used therefor | |
JP3878835B2 (en) | Refrigerant compressor, air conditioner and refrigerator using the same, and bearing thereof | |
WO2000006902A1 (en) | Bearing for refrigerating machine compressor and compressor | |
JP4996214B2 (en) | Refrigerant compressor | |
JP4575910B2 (en) | bearing | |
JP5640885B2 (en) | Scroll compressor | |
JPH0861274A (en) | Rotary compressor | |
JP2010084551A (en) | Refrigerant compressor | |
JP4416816B2 (en) | Refrigerant compressor | |
JP5016645B2 (en) | Refrigerant compressor | |
JP5007106B2 (en) | bearing | |
JP4575911B2 (en) | Manufacturing method of bearing | |
JP3866915B2 (en) | Refrigerant compressor and refrigerator and air conditioner using this refrigerant compressor | |
JP2001099502A (en) | Refrigerating device | |
JP2008280846A (en) | Hermetic refrigerant compressor | |
JP2005133586A (en) | Hermetic refrigerant compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091104 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111003 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141007 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4839300 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |