JP2009138263A - Method for producing die by metal glass powder sintering, the die, and member produced thereby - Google Patents

Method for producing die by metal glass powder sintering, the die, and member produced thereby Download PDF

Info

Publication number
JP2009138263A
JP2009138263A JP2008267057A JP2008267057A JP2009138263A JP 2009138263 A JP2009138263 A JP 2009138263A JP 2008267057 A JP2008267057 A JP 2008267057A JP 2008267057 A JP2008267057 A JP 2008267057A JP 2009138263 A JP2009138263 A JP 2009138263A
Authority
JP
Japan
Prior art keywords
mold
die
metal glass
glass powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008267057A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsubara
慶明 松原
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008267057A priority Critical patent/JP2009138263A/en
Publication of JP2009138263A publication Critical patent/JP2009138263A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/06Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a method for producing a die by metal glass powder sintering, the die, and a member subjected to molding by the die. <P>SOLUTION: Disclosed is a method for producing a metal glass powder sintered compact die 10 where, under a state in which metal glass powder 4 is held in the range from a glass transition temperature (Tg) or above to a recrystallization temperature (Tx) or below by a hot press apparatus, the metal glass powder 4 is pressurized using a punch 6 and is sintered, and simultaneously, the surface of the punch 6 for sintering is transferred, so as to produce a die molding face, for this purpose, the temperature of the molding face is made higher than the powder sintering temperature. Also disclosed are the die and a member produced thereby. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属ガラス粉末を用いた金型の製造方法と金型およびその金型によって成形加工された部材に関するものである。より具体的には、金属ガラス粉末のみを用いて、機械加工を行うことなく、金属ガラス粉末をホットプレスにて焼結と同時にプレス成形することで製造することができる金型とその金型によって成形加工される精密部材に関するものである。   The present invention relates to a mold manufacturing method using metal glass powder, a mold, and a member molded by the mold. More specifically, by using a metal mold and a mold that can be manufactured by using metal glass powder only and press-molding the metal glass powder simultaneously with sintering in a hot press without machining. The present invention relates to a precision member to be molded.

一般に金属ガラスは従来のアモルファス合金に比べ、硬度、強度、耐熱性、耐食性に優れ、また、ガラス遷移温度(Tg)と結晶化温度(Tx)の間の過冷却液体領域では粘性流動体となり、非常に容易に加工ができる。   In general, metallic glass is superior in hardness, strength, heat resistance and corrosion resistance compared to conventional amorphous alloys, and becomes a viscous fluid in the supercooled liquid region between the glass transition temperature (Tg) and the crystallization temperature (Tx). It can be processed very easily.

近年、この金属ガラスの応用事例として、その加工性、耐久性を活かして金型に使用することが期待されている。しかしながら、金属ガラスの製造には成分によって異なるが10〜1000℃/secの冷却速度が必要となるため、作製可能なバルク体の大きさ及び厚さに限界があった。そこで、アトマイズ等によって作製した金属ガラス粉末を固化成形し金型として利用することが考えられている。この粉末冶金の方法を用いることで、大型の金型への適用も考えられる。例えば、特開2005−272254号公報(特許文献1)では水アトマイズで作製したFe基金属ガラス粉末を放電プラズマ焼結法で焼結成型しガラス成型用金型とすることが提案されている。   In recent years, as an application example of this metallic glass, it is expected that it will be used in a metal mold taking advantage of its workability and durability. However, the production of metallic glass requires a cooling rate of 10 to 1000 ° C./sec depending on the components, but there is a limit to the size and thickness of the bulk material that can be produced. Therefore, it has been considered that the metallic glass powder produced by atomization or the like is solidified and used as a mold. By using this powder metallurgy method, application to a large mold is also conceivable. For example, Japanese Patent Laid-Open No. 2005-272254 (Patent Document 1) proposes that a Fe-based metal glass powder produced by water atomization is sintered by a discharge plasma sintering method to form a glass molding die.

また、特開2004−90434号公報(特許文献2)では板状の金属ガラス表面をプレス成形し金型の成型面を作製し、金属ガラス粉末と焼結し積層することで厚みのあるプラスチックやガラス成形用金型の製造方法が提案されている。これらは、いずれも金属ガラスの高い加工性や型転写性を活かして金型面を作製すること、またその強度、耐食性を活かして耐久性のある金型とすることを特徴としている。   In JP 2004-90434 A (Patent Document 2), a plate-shaped metallic glass surface is press-molded to form a molding surface of a mold, and sintered with a metallic glass powder and laminated to form a thick plastic or A method for manufacturing a glass molding die has been proposed. These are all characterized in that a metal mold surface is produced by taking advantage of the high workability and mold transferability of metallic glass, and that a durable mold is produced by taking advantage of its strength and corrosion resistance.

しかしながら、特許文献1にあるパルス放電焼結法は従来のホットプレス法の欠点を解決する手段として提案されているが、電流による粉末界面の過熱温度上昇によって界面部分が結晶化する恐れがあることや、装置が複雑かつ高価となるため現実的な解決手段とはいえないのが現状である。また、特許文献2では粉末などと積層するため、工程が複雑であり、コストがかかる。
特開2005−272254号公報 特開2004−90434号公報
However, although the pulse discharge sintering method disclosed in Patent Document 1 has been proposed as a means for solving the disadvantages of the conventional hot press method, there is a possibility that the interface portion may crystallize due to the overheating temperature of the powder interface due to current. In addition, since the apparatus is complicated and expensive, it is not a practical solution. Moreover, since it is laminated with powder etc. in patent document 2, a process is complicated and cost starts.
JP 2005-272254 A JP 2004-90434 A

上述したように、金属ガラスの特徴を活かした粉末焼結による微細な凹凸をもつ金型を得るためには、加工中の結晶化を防いで非晶質構造を保ちつつ高密度化、特に金型となる加工表面の高密度化をする必要がある。本発明は、金属ガラスの金型を工業的に安価に、かつ大型の金型にも適用可能な製造法で提供することを課題としている。   As described above, in order to obtain a metal mold having fine irregularities by powder sintering utilizing the characteristics of metallic glass, it is possible to prevent crystallization during processing and increase the density while maintaining an amorphous structure, in particular, gold. It is necessary to increase the density of the processing surface to be the mold. An object of the present invention is to provide a metal glass mold at a low cost industrially and by a manufacturing method applicable to a large mold.

前記の問題を解消するために、本発明者らは鋭意検討を重ねた結果、金型の工業的な製造において問題となっていたこれらの課題について、金属ガラス粉末をホットプレスにより加圧焼結する際に、同時に母型となるパンチを用いて温度や圧力を精密に制御しつつ焼結することによって非晶質相を保ったまま高密度かつ高精度な金型を作製する方法を見出した。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result of these problems that have been a problem in the industrial production of molds, the metal glass powder is subjected to pressure sintering by hot pressing. At the same time, we found a method to produce a high-density and high-precision mold while maintaining the amorphous phase by sintering while precisely controlling the temperature and pressure using the punch that becomes the mold at the same time .

本発明によると、金属ガラス粉末をホットプレス装置を用いてガラス遷移温度以上、結晶化温度以下に昇温して焼結する際に、同時に母型となる金型を用いて、その中にガスアトマイズにより作製された粉末を充填し、金型成形面近傍の粉末の粘性流動性が高くするため、金型成形面の温度を焼結温度よりも高くすることにより非晶質相の特徴を保った表面が高密度、高精度の金型が得られるものである。   According to the present invention, when a metallic glass powder is sintered at a temperature higher than the glass transition temperature and lower than the crystallization temperature using a hot press apparatus, a metal mold is simultaneously used as a matrix, and gas atomization is performed therein. In order to increase the viscous fluidity of the powder in the vicinity of the molding surface of the mold, the amorphous phase was maintained by making the temperature of the molding surface higher than the sintering temperature. A mold having a high density and high accuracy on the surface can be obtained.

その発明の要旨とするところは、
(1)ホットプレス装置にて金属ガラス粉末をガラス遷移温度(Tg)以上、結晶化温度(Tx)以下に保った状態でパンチを用いて加圧して焼結すると同時に、焼結用パンチの表面を転写し金型成形面を作製するために、成形面の温度を粉末焼結温度よりも高くすることを特徴とする金属ガラス粉末焼結体金型の製造方法。
(2)前記(1)に記載された金属ガラス粉末焼結体金型の製造方法によって製造された金属ガラス粉末焼結体金型。
(3)前記(2)に記載された金属ガラス粉末焼結体金型によって作製された部材にある。
The gist of the invention is that
(1) The surface of the sintering punch is simultaneously pressed and sintered with a punch while the metal glass powder is maintained at a glass transition temperature (Tg) or higher and a crystallization temperature (Tx) or lower in a hot press apparatus. A method for producing a metal glass powder sintered body mold, wherein the temperature of the molding surface is made higher than the powder sintering temperature in order to transfer the mold and produce the mold molding surface.
(2) A metal glass powder sintered body mold manufactured by the method for manufacturing a metal glass powder sintered body mold described in (1) above.
(3) The member is produced by the metal glass powder sintered body mold described in (2).

以上述べたように、本発明により金属ガラス粉末の焼結と母型の型転写加工を同時に行うことで金型を工業的に安価で量産できる。しかも、その金型は金属ガラスの特徴である非晶質相を保持しているために耐食性や強度に優れ、耐久性が良い極めて優れた効果を奏するものである。   As described above, according to the present invention, metal molds can be mass-produced industrially at low cost by simultaneously performing sintering of metal glass powder and mold transfer processing of a mother mold. In addition, since the metal mold retains the amorphous phase that is characteristic of metallic glass, it has excellent corrosion resistance and strength, and has excellent durability and excellent effects.

以下、本発明について図面に従って詳細に説明する。
図1は、金属ガラス合金粉末加工装置を示す図である。この図に示すように、金属ダイ5中に金属ガラス合金粉末4を挿入し、上加圧用ラム2と一体となった表面を所望の形状に加工した母型となるパンチ6および下加圧用ラム3に挟み上加圧用ラム2をラム駆動用モーター1の駆動により金属ガラス合金粉末4を加圧する。この場合に上下加圧用ラム2、3に挟まれた金属ガラス合金粉末4の温度を調整せるための加熱用ヒーター7、8をそれぞれ上下加圧用ラム2、3に埋設し、この加熱用ヒーター7、8により、加圧温度を最適温度に制御する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a metallic glass alloy powder processing apparatus. As shown in this figure, a punch 6 and a lower pressurizing ram that serve as a mother die in which a metal glass alloy powder 4 is inserted into a metal die 5 and the surface integrated with the upper pressurizing ram 2 is processed into a desired shape. The metal glass alloy powder 4 is pressed by driving the ram driving motor 1 with the pressing ram 2 sandwiched between the three. In this case, heating heaters 7 and 8 for adjusting the temperature of the metal glass alloy powder 4 sandwiched between the vertical pressurizing rams 2 and 3 are embedded in the vertical pressurizing rams 2 and 3, respectively. , 8 to control the pressurizing temperature to the optimum temperature.

図2は、本発明に係る金型製造工程を模式的に示した図である。図2(a)は金型および金属ガラス粉末をホットプレス装置に設置した加工前の状態を示す。この状態で加熱用ヒーター7、8により、金型パンチ6および金属ガラス合金粉末4の加熱を行う。ここで、金属ガラス合金粉末4の設定温度は金属ガラスのガラス遷移温度(Tg)から結晶化温度(Tx)までの過冷却液体領域のなかで、結晶化開始までの時間が長いガラス遷移温度近傍とする。一方、金型パンチ6の設定温度は、粉末焼結の金型表面の転写性を高めるために、ガラス遷移温度(Tg)から結晶化温度(Tx)の中間温度よりも高い温度に設定する。   FIG. 2 is a diagram schematically showing a mold manufacturing process according to the present invention. Fig.2 (a) shows the state before the process which installed the metal mold | die and the metal glass powder in the hot press apparatus. In this state, the die punch 6 and the metal glass alloy powder 4 are heated by the heaters 7 and 8 for heating. Here, the set temperature of the metal glass alloy powder 4 is near the glass transition temperature in the supercooled liquid region from the glass transition temperature (Tg) to the crystallization temperature (Tx) of the metal glass, which takes a long time to start crystallization. And On the other hand, the set temperature of the mold punch 6 is set to a temperature higher than the intermediate temperature from the glass transition temperature (Tg) to the crystallization temperature (Tx) in order to improve the transferability of the powder sintered mold surface.

図2(b)は金属ガラス粉末を加圧焼結し、焼結体を作製する工程を示す。金属ガラス粉末がガラス遷移温度近傍で加圧されることにより焼結が促進される。ここでパンチ表面9はガラス遷移温度近傍より高温になっているため、その近傍の粉末も加熱され、強度が低下し粘性流動性が増すことで金型パンチを精密に転写できる。   FIG.2 (b) shows the process of pressure-sintering metallic glass powder and producing a sintered compact. Sintering is promoted by pressing the metal glass powder near the glass transition temperature. Here, since the punch surface 9 is hotter than the vicinity of the glass transition temperature, the powder in the vicinity thereof is also heated, and the die punch can be accurately transferred by decreasing the strength and increasing the viscous fluidity.

図2(c)は加圧焼結後、冷却し金型パンチを取り外した状態を示す。金属ガラス粉末焼結体が金型パンチ6の表面を転写し、金属ガラス粉末焼結金型10が得られる。その場合、金型パンチ、およびダイは金属ガラス加工温度である500〜600℃にて充分な強度を持つ金型用鋼や超硬合金及びその表面にPVDもしくはメッキなどの方法でCrNなどを成膜したものが用いられる。   FIG. 2 (c) shows a state in which the die punch is removed after cooling by pressure sintering. The metal glass powder sintered body transfers the surface of the mold punch 6 to obtain the metal glass powder sintered mold 10. In that case, the mold punch and die are made of mold steel or cemented carbide having sufficient strength at a metal glass processing temperature of 500 to 600 ° C., and CrN or the like is formed on the surface by a method such as PVD or plating. A film is used.

以下、本発明について実施例によって具体的に説明する。
(実施例1)
ガスアトマイズによって流動性と充填性に優れた球状のNi基金属ガラス合金粉末(成分:Ni60Nb15Ti20Zr5 )を作製した。該粉末をX線回折により、非晶質を示すハローパターンとなった粒度(53μm)以下に分級し、これを用いて金型を作製した。このNi基金属ガラス合金粉末をDSC(示差熱分析)で測定したところ、ガラス遷移温度(Tg)は565℃、結晶化温度(Tx)は615℃であった。
Hereinafter, the present invention will be specifically described with reference to examples.
(Example 1)
A spherical Ni-based metallic glass alloy powder (component: Ni 60 Nb 15 Ti 20 Zr 5 ) having excellent fluidity and filling properties was produced by gas atomization. The powder was classified by X-ray diffraction to a particle size (53 μm) or less having a halo pattern showing an amorphous shape, and a mold was produced using this. When this Ni-based metallic glass alloy powder was measured by DSC (differential thermal analysis), the glass transition temperature (Tg) was 565 ° C. and the crystallization temperature (Tx) was 615 ° C.

一方、金属ガラス粉末を金型に焼結成形するためのパンチおよび、ダイをステライトにて作製した。上パンチ表面は、放電加工により幅0.5mm、深さ0.5mmの溝を0.5mm間隔で作製したのち、鏡面研磨加工により、表面粗さRy=0.1μmに仕上げた。この金型に金属ガラス合金粉末2gを充填後、プレス温度を上パンチが600℃、下パンチが570℃、プレス圧200MPaなる条件で加圧焼結し、焼結体金型(φ10mm×3mmt)を得た。得られた金型はX線回折により、アモルファス相である事を確認し、レーザー顕微鏡により、金属ガラス金型に深さ0.5mm幅0.5mmの溝が作製されていることを確認した。また、金属ガラス金型表面の粗さはRy=0.1〜0.12μmで、パンチの表面状態を転写していた。その結果、レーザー顕微鏡で10枚を観察し、深さ0.5mm幅0.5mmの溝部の角が丸くなっている領域があったものを不良として評価したところ、10枚中不良は0枚であった。一方、上記と同様の粉末を金型を用いて上下パンチの温度を同じ570℃で加工した場合には、10枚中不良が4枚発生した。 On the other hand, a punch and a die for sintering metal glass powder into a mold were produced with stellite. On the surface of the upper punch, grooves having a width of 0.5 mm and a depth of 0.5 mm were formed at intervals of 0.5 mm by electric discharge machining, and then finished to a surface roughness Ry = 0.1 μm by mirror polishing. After filling this metal mold with 2 g of metal glass alloy powder, press sintering was performed under the conditions that the press temperature was 600 ° C. for the upper punch, 570 ° C. for the lower punch, and 200 MPa press pressure, and the sintered body mold (φ10 mm × 3 mm t ) It was confirmed by X-ray diffraction that the obtained mold was an amorphous phase, and it was confirmed by a laser microscope that a groove having a depth of 0.5 mm and a width of 0.5 mm was formed in the metal glass mold. The surface roughness of the metal glass mold was Ry = 0.1 to 0.12 μm, and the surface state of the punch was transferred. As a result, 10 sheets were observed with a laser microscope, and when there was an area where the corner of the groove portion having a depth of 0.5 mm and a width of 0.5 mm was rounded, the defect was evaluated as 0. there were. On the other hand, when the same powder as above was processed at the same upper and lower punch temperatures of 570 ° C. using a mold, four defects out of 10 occurred.

(実施例2)
ガスアトマイズによって流動性と充填性に優れた球状のFe−Co基金属ガラス合金粉末(成分:Fe36Co3619.2Si4.8 Nb4 )を作製した。該粉末をX線回折により、非晶質を示すハローパターンとなった粒度(150μm)以下に分級し、これを用いて金型を作製した。このFe−Co基金属ガラス合金粉末をDSC(示差熱分析)で測定したところ、ガラス遷移温度(Tg)は540℃、結晶化温度(Tx)は595℃であった。
(Example 2)
A spherical Fe—Co based metallic glass alloy powder (component: Fe 36 Co 36 B 19.2 Si 4.8 Nb 4 ) having excellent fluidity and filling properties was produced by gas atomization. The powder was classified by X-ray diffraction to a particle size (150 μm) or less having a halo pattern showing an amorphous shape, and a mold was produced using this. When this Fe—Co based metal glass alloy powder was measured by DSC (differential thermal analysis), the glass transition temperature (Tg) was 540 ° C. and the crystallization temperature (Tx) was 595 ° C.

一方、金属ガラス粉末を金型に焼結成形するためのパンチおよび、ダイをステライトにて作製した。上パンチ表面は、放電加工により幅0.3mm、深さ0.3mmの溝を0.9mm間隔で作製したのち、鏡面研磨加工により、表面粗さRy=0.1μmに仕上げた。この金型にFe−Co基金属ガラス合金粉末1gを充填後、プレス温度を上パンチが580℃、下パンチが560℃、プレス圧400MPaなる条件で加圧焼結し、焼結体金型(φ10mm×1.5mmt)を得た。得られた金型はX線回折により、アモルファス相である事を確認し、レーザー顕微鏡により、金属ガラス金型に深さ0.5mm幅0.5mmの溝が作製されていることを確認した。また、金属ガラス金型表面の粗さはRy=0.1〜0.12μmで、パンチの表面状態を転写していた。その結果、レーザー顕微鏡で10枚を観察し、10枚中不良は0枚であった。一方、上記と同様の粉末を金型を用いて上下パンチの温度を同じ560℃で加工した場合には、10枚中不良が6枚発生した。 On the other hand, a punch and a die for sintering metal glass powder into a mold were produced with stellite. On the surface of the upper punch, grooves having a width of 0.3 mm and a depth of 0.3 mm were produced at intervals of 0.9 mm by electric discharge machining, and then finished to a surface roughness Ry = 0.1 μm by mirror polishing. After filling this mold with 1 g of Fe—Co-based metallic glass alloy powder, press sintering was performed under the conditions that the press temperature was 580 ° C. for the upper punch, 560 ° C. for the lower punch, and the press pressure was 400 MPa. φ10 mm × 1.5 mm t ) was obtained. It was confirmed by X-ray diffraction that the obtained mold was an amorphous phase, and it was confirmed by a laser microscope that a groove having a depth of 0.5 mm and a width of 0.5 mm was formed in the metal glass mold. The surface roughness of the metal glass mold was Ry = 0.1 to 0.12 μm, and the surface state of the punch was transferred. As a result, 10 sheets were observed with a laser microscope, and the number of defects among the 10 sheets was 0. On the other hand, when the same powder as described above was processed at the same upper and lower punch temperatures of 560 ° C. using a mold, 6 defects out of 10 occurred.

このように、ガスアトマイズにより作製した金属ガラス合金粉末をホットプレスにより加圧焼結する際に、同時に母型となるパンチを用いて温度と圧力を精密に制御しつつ焼結することによって、非晶質相を保ったまま、高密度かつ高精度な金型を工業的に安価に製造することが可能となり、しかも、その金型は金属ガラスの特性である非晶質相を保持しているために耐食性や強度に優れ、かつ耐久性の優れた金型を提供するものである。   In this way, when the metal glass alloy powder produced by gas atomization is pressure-sintered with a hot press, it is simultaneously sintered with precise control of temperature and pressure using a punch that becomes a matrix, thereby making amorphous It is possible to manufacture high-density and high-precision molds industrially at low cost while maintaining the quality phase, and the mold retains the amorphous phase that is characteristic of metallic glass. In addition, the present invention provides a mold having excellent corrosion resistance and strength and excellent durability.

金属ガラス合金粉末加工装置を示す図である。It is a figure which shows a metallic glass alloy powder processing apparatus. 本発明に係る金型製造工程を模式的に示した図である。It is the figure which showed typically the metal mold | die manufacturing process which concerns on this invention.

符号の説明Explanation of symbols

1 ラム駆動用モーター
2 上加圧用ラム
3 下加圧用ラム
4 金属ガラス合金粉末
5 金属ダイ
6 金型パンチ
7 加熱用上ヒーター
8 加熱用下ヒーター
9 金型パンチ表面
10 金属ガラス粉末焼結金型


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
DESCRIPTION OF SYMBOLS 1 Ram drive motor 2 Upper pressurization ram 3 Lower pressurization ram 4 Metal glass alloy powder 5 Metal die 6 Mold punch 7 Heating upper heater 8 Heating lower heater 9 Mold punch surface 10 Metal glass powder sintering mold


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (3)

ホットプレス装置にて金属ガラス粉末をガラス遷移温度(Tg)以上、結晶化温度(Tx)以下に保った状態でパンチを用いて加圧して焼結すると同時に、焼結用パンチの表面を転写し金型成形面を作製するために、成形面の温度を粉末焼結温度よりも高くすることを特徴とする金属ガラス粉末焼結体金型の製造方法。 With a hot press machine, the metal glass powder is pressed and sintered with a punch while maintaining the glass transition temperature (Tg) or higher and the crystallization temperature (Tx) or lower. At the same time, the surface of the sintering punch is transferred. A method for producing a metal glass powder sintered body mold, characterized in that the temperature of the molding surface is made higher than the powder sintering temperature in order to produce the mold molding surface. 請求項1に記載された金属ガラス粉末焼結体金型の製造方法によって製造された金属ガラス粉末焼結体金型。 The metal glass powder sintered compact metal mold | die manufactured by the manufacturing method of the metal glass powder sintered compact metal mold | die described in Claim 1. 請求項2に記載された金属ガラス粉末焼結体の金型によって作製された部材。 The member produced by the metal glass powder sintered compact metal mold | die described in Claim 2.
JP2008267057A 2007-11-16 2008-10-16 Method for producing die by metal glass powder sintering, the die, and member produced thereby Pending JP2009138263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267057A JP2009138263A (en) 2007-11-16 2008-10-16 Method for producing die by metal glass powder sintering, the die, and member produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007297652 2007-11-16
JP2008267057A JP2009138263A (en) 2007-11-16 2008-10-16 Method for producing die by metal glass powder sintering, the die, and member produced thereby

Publications (1)

Publication Number Publication Date
JP2009138263A true JP2009138263A (en) 2009-06-25

Family

ID=40869164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267057A Pending JP2009138263A (en) 2007-11-16 2008-10-16 Method for producing die by metal glass powder sintering, the die, and member produced thereby

Country Status (1)

Country Link
JP (1) JP2009138263A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090434A (en) * 2002-08-30 2004-03-25 Sumitomo Metal Ind Ltd Mold and method for manufacturing that
JP2005272254A (en) * 2004-03-26 2005-10-06 Olympus Corp Die for molding optical element, its manufacturing method and optical element
JP2008133516A (en) * 2006-11-29 2008-06-12 Nissan Motor Co Ltd Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090434A (en) * 2002-08-30 2004-03-25 Sumitomo Metal Ind Ltd Mold and method for manufacturing that
JP2005272254A (en) * 2004-03-26 2005-10-06 Olympus Corp Die for molding optical element, its manufacturing method and optical element
JP2008133516A (en) * 2006-11-29 2008-06-12 Nissan Motor Co Ltd Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor

Similar Documents

Publication Publication Date Title
US11642644B2 (en) Microreactor systems and methods
JP2009138266A (en) Amorphous metal glass powder sintered compact having high density, and the sintered compact
EP2744611B1 (en) Composite and preparation method of joining amorphous alloy material to heterogeneous material
CN112334253B (en) Method and device for manufacturing additive manufactured body
KR101647890B1 (en) Method to manufacture cooling block for hot stamping metallic pattern using three dimensional metal-print
EP2521631A1 (en) Amorphous alloy seal and bonding
CN101939122A (en) Method of blow molding a bulk metallic glass
CN104349851A (en) Multi step processing method for the fabrication of complex articles made of metallic glasses
JP2008073763A (en) Method of manufacturing vehicle wheel
KR20200003316A (en) Laminated molding method for metallic materials with controlling the microstructure
GB2479616A (en) Powder layer manufacturing of an article using a preform to support the article
KR20190074535A (en) A three dimensional printing method using metal powder
WO2018121314A1 (en) Method for shaping amorphous alloy
JP2009138263A (en) Method for producing die by metal glass powder sintering, the die, and member produced thereby
EP3520916A1 (en) HOT EXTRUSION-MOLDING METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY AND PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY EXTRUSION MATERIAL
JP3964188B2 (en) Mold for optical element molding
JP2009097084A (en) Method for producing precise metal member having fine shape and fine surface property
CN111606554A (en) Amorphous alloy glass compression molding die, manufacturing method and application thereof
JP2009138264A (en) Method for producing die by metal glass powder sintering, the die, and member thereby
CN109036829A (en) A kind of magnetic links rapid shaping stage process process
US10668529B1 (en) Systems and methods for processing bulk metallic glass articles using near net shape casting and thermoplastic forming
JP2007217723A (en) Method for manufacturing pressure-sintered target material
JP2010188373A (en) Bonding method of metallic member and composite member
JP2008231569A (en) Method for manufacturing precision parts
WO2016031074A1 (en) Metal-member manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611