JP2009138216A - Method for manufacturing white gold alloy, and jewel using this white gold alloy - Google Patents

Method for manufacturing white gold alloy, and jewel using this white gold alloy Download PDF

Info

Publication number
JP2009138216A
JP2009138216A JP2007314116A JP2007314116A JP2009138216A JP 2009138216 A JP2009138216 A JP 2009138216A JP 2007314116 A JP2007314116 A JP 2007314116A JP 2007314116 A JP2007314116 A JP 2007314116A JP 2009138216 A JP2009138216 A JP 2009138216A
Authority
JP
Japan
Prior art keywords
alloy
white gold
weight
gold alloy
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314116A
Other languages
Japanese (ja)
Other versions
JP4184418B1 (en
Inventor
Takaaki Nakayama
貴晶 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLOBAL CORP KK
Original Assignee
GLOBAL CORP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GLOBAL CORP KK filed Critical GLOBAL CORP KK
Priority to JP2007314116A priority Critical patent/JP4184418B1/en
Application granted granted Critical
Publication of JP4184418B1 publication Critical patent/JP4184418B1/en
Publication of JP2009138216A publication Critical patent/JP2009138216A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adornments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white gold alloy (white gold) which hardly causes crack and blow hole and has clear color and glass (mirror plane nature), at the time of forming a jewel (accessaries). <P>SOLUTION: In a method for manufacturing the white gold alloy (Au-Pt-Pd-Ag-Cu alloy), Pt, Pd, Ag and Cu are mixed in Au in a fixed ratio, and melted, and then cooling is applied, wherein the following (A) process and (B) process are performed before and further, (C) process and (D) process are performed in order. The (A) process: Pt and Pd are melted to obtain Pt-Pd alloy. The (B) process: Ag and Cu are melted to obtain Ag-Cu alloy. The (C) process: the Pt-Pd alloy in the above (A) process is melted in Au to obtain Au-Pt-Pd alloy. The (D) process: in the Au-Pt-Pd alloy in the above (C) process, further, Ag-Cu alloy in the above (B) process is melted to obtain the white gold (Au-Pt-Pd-Ag-Cu alloy). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、指輪、ブローチ等の宝飾品(身飾品)を成型した際に、割れや巣の発生が少なく、かつ明白色で、照り(鏡面性)を有する白色金合金(ホワイトゴールド)に関し、特に、金の含有量が75%前後のK18(18金)であって、パラジウムが配合されて白色化された宝飾品用のパラジウム配合系白色金合金(地金)の製造方法、及びこの白色金合金(地金)を使用した宝飾品に関するものである。   The present invention relates to a white gold alloy (white gold) having a brilliant (mirror surface) appearance, with few occurrences of cracks and nests when molding jewelry (jewelry) such as rings and brooches, In particular, a method for producing a palladium-containing white gold alloy (base metal) for jewelery that has a gold content of about 18% K18 (18 gold) and is whitened with palladium. It relates to jewelry using gold alloys (bullion).

金は、空気中で酸化されず、長期間にわたって光沢を失わない金属であるが、単独では硬度および強度が低いために、通常は、他の金属との合金(金合金(ホワイトゴールド))として使用する方が、耐久性、加工性等に優れている。
そして、指輪、ブローチ等の宝飾品用の原料(地金)に使用される金合金としては、金の含有率が約75%(実際には75%を下回ることなく、75.0〜75.5%)のK18(18金)の白色金合金(ホワイトゴールド)がよく知られている。
この白色金合金は、比重が大きく軟質、かつ高価なプラチナ(白金)と比べて、白金と銀との中間的位置を占める素材であり、さらに、色彩が白色であるため、宝飾品材料として適しているものである。
白色金合金においては、金の色調を白色に導くために、白金(Pt)と共に(に代えて)、通常パラジウム(Pd)、銀(Ag)、銅(Cu)、ニッケル(Ni)、亜鉛(Zn)、錫(Sn),マンガン(Mn)等の元素が使用されるが、ニッケル(Ni)を配合した白色金合金には、金属アレルギーの問題がある。
Gold is a metal that does not oxidize in the air and does not lose its luster over a long period of time, but because it has low hardness and strength alone, it is usually an alloy with other metals (gold alloy (white gold)). The one used is superior in durability and workability.
And as a gold alloy used for the raw material (jewelry) for jewelry, such as a ring and a brooch, the content rate of gold is about 75% (actually less than 75%, 75.0-75. 5%) K18 (18 gold) white gold alloy (white gold) is well known.
This white gold alloy is a material that occupies an intermediate position between platinum and silver compared to platinum, which has a large specific gravity, is soft and expensive, and is suitable for jewelery materials because of its white color. It is what.
In the white gold alloy, in order to lead the color of gold to white, together with (in place of) platinum (Pt), usually palladium (Pd), silver (Ag), copper (Cu), nickel (Ni), zinc ( Elements such as Zn), tin (Sn), and manganese (Mn) are used, but white gold alloys containing nickel (Ni) have a problem of metal allergy.

発明者は、Auの色調を白色に導くための元素として、白金(Pt)、パラジウム(Pd)、銀(Ag)、銅(Cu)に注目して、これらを従来知られていなかった一定の割合に配合して鋳造(合金)すれば、既知の白色金合金よりも、明白色で、照り(鏡面性)を有する白色金合金を得ることができることを知り、特許出願した事実がある(特許文献1)。   The inventor pays attention to platinum (Pt), palladium (Pd), silver (Ag), and copper (Cu) as elements for guiding the color tone of Au to white, and these have not been conventionally known. There is a fact that a patent application has been made to know that a white gold alloy having a clear color and shining (specularity) can be obtained by casting (alloy) by mixing in a proportion (patent) Reference 1).

特願2007−228563Japanese Patent Application No. 2007-228563 特開2004−60045JP2004-60045 特開平9−137240JP-A-9-137240 特開2001−207226JP 2001-207226 A 特開平9−78160JP-A-9-78160 特開平10−60558JP-A-10-60558 特開2006−265597JP 2006-265597 A 特開2006−346377JP 2006-346377 A 特開2000−80423JP2000-80423

白色金合金(地金)を鋳造(合金)するには、通常下記の方法が採用されている。
(イ)主成分であるAuと、Au除く従成分である金属(Pt,Pd,Ag,及びCu)の全てを同時に溶融して鋳造する方法
(ロ)従成分である金属(Pt,Pd,Ag,及びCu)のみを同時に溶融して鋳造し、得られる合金(割金)を、主成分であるAuと再度合金加工(鋳造)して、目的とする白色金合金を得る方法
In order to cast (alloy) a white gold alloy (base metal), the following method is usually employed.
(A) Method of simultaneously melting and casting all of Au as a main component and subordinate components excluding Au (Pt, Pd, Ag, and Cu) (b) Subordinate component metals (Pt, Pd, A method of obtaining the target white gold alloy by simultaneously melting and casting only Ag and Cu), and alloying (casting) the obtained alloy (split) with Au as the main component again.

ところが、前記(イ)に限らず、これを改良した(ロ)により得られる白色金合金(地金)を用いて、指輪、ネックレース、イヤリング等を成型(キャスティング)すると、高頻度で割れや筋が発生する欠点があった。そしてこれらの欠陥品は再加工せざるを得ない。
そこで、発明者は、以上の欠点を解消するために鋭意研究したところ、(a)従成分である金属を、その融点を考慮して、PtとPd,及びAgとCuとに分けてそれぞれ鋳造(合金)してPt−Pd合金及びAg−Cu合金を得た後、(b)最初にAuとPt−Pdを鋳造してAu−Pt−Pd合金とし、(c)続いて、Ag−Cu合金を加えて鋳造(合金)して、Au−Pt−Pd−Ag−Cu合金(白色金合金)とするか、叉は(b)と(c)の順序を逆にして、Au−Ag−Cu合金を得た後、Au−Pt−Pd−Ag−Cu合金とすれば、前記欠点を解消することができることを知り本発明が完成した。
更に、前記白色金合金の原料であるAu、Pt、Pd、Ag、Cuは、鋳造する前に、それぞれを単独で溶融し、金属(間)結合中に包摂されている微量の窒素ガス等を放出させた(ガス抜きし)ものを使用すると、前記欠点をほぼ完全に解消することを知り本発明が完成した。
However, it is not limited to the above (a), and when a white gold alloy (base metal) obtained by improving (b) is used to mold a ring, necklace, earring, etc. (casting), cracking occurs frequently. There was a drawback that streaks occurred. These defective products must be reworked.
Therefore, the inventor diligently studied to eliminate the above disadvantages. As a result, (a) the secondary metal was divided into Pt and Pd, and Ag and Cu in consideration of the melting point, respectively. (Alloy) After obtaining a Pt—Pd alloy and an Ag—Cu alloy, (b) First, Au and Pt—Pd are cast to form an Au—Pt—Pd alloy. (C) Subsequently, Ag—Cu An alloy is added and cast (alloy) to obtain an Au—Pt—Pd—Ag—Cu alloy (white gold alloy), or the order of (b) and (c) is reversed, and Au—Ag— After obtaining the Cu alloy, the present invention was completed by knowing that the Au-Pt-Pd-Ag-Cu alloy could eliminate the above-mentioned drawbacks.
Furthermore, Au, Pt, Pd, Ag, and Cu, which are the raw materials of the white gold alloy, are melted individually before casting, and a small amount of nitrogen gas or the like contained in the metal (inter) bond is removed. It was found that the use of the released (degassed) material almost completely eliminated the above-mentioned drawbacks, and the present invention was completed.

本願発明は、下記の請求項1〜請求項7により構成されている。
<請求項1> Auに対し、Pt,Pd,Ag,及びCuを一定の割合に配合して溶融した後冷却する白色金合金(Au−Pt−Pd−Ag−Cu合金)の製造方法において、下記の(A)工程及び(B)工程を先に行い、更に(C)工程及び(D)工程を順次経ることを特徴とする白色金合金の製造方法。
(A)工程:PtとPdを溶融して、Pt−Pd合金を得る工程
(B)工程:AgとCuを溶融して、Ag−Cu合金を得る工程
(C)工程:Auに前記(A)のPt−Pd合金を溶融して、Au−Pt−Pd合金を得る工程
(D)工程:前記(C)で得られるAu−Pt−Pd合金に、更に前記(B)のAg−Cu合金を溶融して、白色金合金(Au−Pt−Pd−Ag−Cu合金)を得る工程
<請求項2> Auに対し、Pt,Pd,Ag,及びCuを一定の割合に配合して溶融した後冷却する白色金合金(Au−Pt−Pd−Ag−Cu合金)の製造方法において、下記の(A)工程及び(B)工程を先に行い、更に(E)工程及び(F)工程を順次経ることを特徴とする白色金合金の製造方法。
(A)工程:PtとPdを溶融して、Pt−Pd合金を得る工程
(B)工程:AgとCuを溶融して、Ag−Cu合金を得る工程
(E)工程:Auに前記(B)のAg−Cu合金を溶融して、Au−Ag−Cu合金を得る工程
(F)工程:前記(E)で得られるAu−Ag−Cu合金に、更に前記(A)のPt−Pd合金を溶融して、白色金合金(Au−Pt−Pd−Ag−Cu合金)を得る工程
<請求項3> Au,Pt,Pd,Ag,及びCuを下記の(イ)〜(ヘ)に示す割合で配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが70〜78.0重量%
(ロ)Ptが4.5重量%以上
(ハ)Pdが8.0重量%以上
(ニ)PtとPdの和が19.0重量%以下
(ホ)Agが0,5〜3.0重量%
(ヘ)Cuが2.0〜8.0重量%
<請求項4> Au、Pt,Pd,及びCuを下記の(イ)〜(ホ)に示す割合、かつ残部が実質的にAgとなるように配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが75.0重量%
(ロ)Ptが4.5重量%以上
(ハ)Pdが8.0重量%以上
(ニ)PtとPdの和が19.0重量%以下
(ホ)Cuが2.0〜8.0重量%
<請求項5> Au,Pt,Pd,Ag,及びCuを下記の(イ)〜(ホ)に示す割合で配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが75.0重量%
(ロ)Ptが7.0重量%
(ハ)Pdが11.0重量%
(ニ)Agが1.5重量%
(ホ)Cuが5.5重量%
<請求項6> Au,Pt,Pd,Ag,及びCuは,各々の単体を溶融し、金属結合中に包摂されているガス(気体)を放出させて除去したものを使用する請求項1〜請求項5に記載する白色金合金の製造方法。
<請求項7> 請求項1〜請求項6記載の製造方法により得られる白色金合金を使用した宝飾品。
This invention is comprised by the following Claims 1-7.
<Claim 1> In the method for producing a white gold alloy (Au—Pt—Pd—Ag—Cu alloy), in which Pt, Pd, Ag, and Cu are mixed at a certain ratio with respect to Au and melted and then cooled. A method for producing a white gold alloy, wherein the following steps (A) and (B) are performed first, and steps (C) and (D) are sequentially performed.
(A) Step: Step of melting Pt and Pd to obtain a Pt—Pd alloy (B) Step: Step of melting Ag and Cu to obtain an Ag—Cu alloy Step (C) Step: The above (A Step (D) for melting Au-Pt-Pd alloy by melting Pt—Pd alloy of ()): In addition to the Au—Pt—Pd alloy obtained in (C) above, the Ag—Cu alloy of (B) above A step of obtaining a white gold alloy (Au—Pt—Pd—Ag—Cu alloy) <Claim 2> Pt, Pd, Ag, and Cu are blended in a certain ratio to Au and melted. In the method of producing a white gold alloy (Au—Pt—Pd—Ag—Cu alloy) to be post-cooled, the following steps (A) and (B) are performed first, and further, steps (E) and (F) are performed. A method for producing a white gold alloy, characterized by sequentially passing.
(A) Step: Step of melting Pt and Pd to obtain a Pt—Pd alloy (B) Step: Step of melting Ag and Cu to obtain an Ag—Cu alloy Step (E) Step: The above (B Step (F) for obtaining an Au—Ag—Cu alloy by melting the Ag—Cu alloy (): In addition to the Au—Ag—Cu alloy obtained in (E), the Pt—Pd alloy (A) Step of obtaining white gold alloy (Au—Pt—Pd—Ag—Cu alloy) <Claim 3> Au, Pt, Pd, Ag, and Cu are shown in the following (a) to (f) The manufacturing method of the white gold alloy of Claim 1 or Claim 2 mix | blended in a ratio.
(B) 70 to 78.0 wt% of Au
(B) Pt is 4.5% by weight or more (c) Pd is 8.0% by weight or more (d) The sum of Pt and Pd is 19.0% by weight or less (e) Ag is 0.5 to 3.0% by weight %
(F) Cu is 2.0 to 8.0% by weight
<Claim 4> Claim 1 or Claim 2 which mix | blends Au, Pt, Pd, and Cu so that the ratio shown to following (a)-(e) and the remainder may become substantially Ag. A method for producing a white gold alloy.
(B) Au is 75.0% by weight
(B) Pt is 4.5% by weight or more (c) Pd is 8.0% by weight or more (d) The sum of Pt and Pd is 19.0% by weight or less (e) Cu is 2.0 to 8.0% by weight %
<Claim 5> The method for producing a white gold alloy according to claim 1 or 2, wherein Au, Pt, Pd, Ag, and Cu are blended in proportions shown in the following (a) to (e).
(B) Au is 75.0% by weight
(B) Pt is 7.0% by weight
(C) Pd is 11.0% by weight
(D) 1.5% by weight of Ag
(E) Cu is 5.5% by weight
<Claim 6> The Au, Pt, Pd, Ag, and Cu used are those obtained by melting each simple substance and releasing and removing the gas (gas) contained in the metal bond. A method for producing a white gold alloy according to claim 5.
<Claim 7> A jewelery using a white gold alloy obtained by the production method according to any one of claims 1 to 6.

本願発明を以上のように構成する理由は、次のとおりである。
(イ)AuとPt−Pd合金からAu−Pt−Pd合金を鋳造し、更に、Ag−Cu合金を加えて鋳造してAu−Pt−Pd−Ag−Cu合金とした地金を用いて、指輪、ネックレース、イヤリング等の宝飾品を成型(キャスティング)すれば、割れや、筋の発生を防止できること(請求項1)。
(ロ)AuとAg−Cu合金からAu−Ag−Cu合金を鋳造し、更に、Pt−Pd合金を加えて鋳造してAu−Pt−Pd−Ag−Cu合金とした地金を用いて、指輪、ネックレース、イヤリング等の宝飾品を成型(キャスティング)すれば、割れや、筋の発生を防止できること(請求項2)。
(ハ)前記(イ)、(ロ)に加えて、原料であるAu、Pt、Pd、Ag、Cuは、それぞれ単独でガス抜きしたものを使用することにより、ほぼ完全に割れや、筋の発生を防止できること(請求項5)。
(ニ)従来品の白色金合金は、Pdが5%〜7%配合された、地金が主流で、そのΔE(後述)は、10〜14の範囲で、肉眼で見た感じは、薄茶色である。そのため、その白色金合金の上にロジウム(Rh)鍍金(メッキ)をかけて白色にして使用しているのが一般である。
しかしながら、これを指輪、ブローチ等に加工して使用を継続していると、鍍金が剥がれ、茶色く変色した感じになる欠点があった。
これに対し、Au、Pt、Pd、Ag、Cuを、請求項3〜請求項5に記載した一定の割合で配合し、前記(イ)、(ロ)、(ハ)等の方法により鋳造した地金を用いて宝飾品を鋳造すれば、従来品とは異なる明白色で、照り(鏡面性)を有する白色金合金製の宝飾品が、極めて効率よく得られること(請求項3〜請求項5、請求項7)。
The reason why the present invention is configured as described above is as follows.
(A) An Au—Pt—Pd alloy is cast from Au and a Pt—Pd alloy, and further, an Ag—Cu alloy is added and cast to form an Au—Pt—Pd—Ag—Cu alloy. If jewelry such as rings, necklaces, and earrings is molded (casting), cracks and streaks can be prevented (claim 1).
(B) An Au-Ag-Cu alloy is cast from Au and an Ag-Cu alloy, and further, a Pt-Pd alloy is added and cast to form an Au-Pt-Pd-Ag-Cu alloy. If jewelry such as rings, necklaces, and earrings is molded (casting), cracks and streaks can be prevented (claim 2).
(C) In addition to (a) and (b) above, the raw materials Au, Pt, Pd, Ag, and Cu are almost completely cracked and Generation | occurrence | production can be prevented (Claim 5).
(D) The conventional white gold alloy is mainly ingots containing 5% to 7% Pd. The ΔE (described later) is in the range of 10 to 14, and the feeling seen with the naked eye is light brown. Color. Therefore, in general, rhodium (Rh) plating (plating) is applied to the white gold alloy to make it white.
However, if this was processed into a ring, brooch or the like and continued to be used, there was a drawback that the plating peeled off and the color turned brown.
On the other hand, Au, Pt, Pd, Ag, and Cu are blended at a constant ratio described in claims 3 to 5 and cast by the methods (a), (b), and (c). If jewelry is cast using a bullion, jewelry made of white gold alloy having a clear color different from conventional products and having shine (mirror finish) can be obtained very efficiently. 5. Claim 7).

本願発明に係る金合金を請求項3〜請求項5に記載した一定の割合で配合する理由は、次のとおりである。
(イ)Auの金色の脱色(白色化)作用がある元素はPdであるが、Pdは含有量が増すと、黒っぽくなるので、それを抑える為に、Ptを一定量配合すれば白さをだすことができること。
(ロ)PdとPtの配合割合が、下記の(a)〜(c)のとき、色バランスが良好となること。
(a)Ptが4.5重量%以上
(b)Pdが8重量%以上
(c)Pt+Pd<19重量%
(ハ)Pt+Pd>19重量%になる(を超える)と、仕上げ工程でのバフ(研磨処理)のノリが非常に悪くなり、その結果、照りが(鏡面性)がなくなること。これは、白金族の特徴である粘りが大きく影響しているからと思われる。
(ニ)バフのノリを良くするために、Cuを一定量加える必要があること。Cuを加えることにより、Cu合金の特徴である、硬さと磨耗性が増し、融点を下げることができる。
(ホ)Cuの添加効果を高めるために、Agの併用が重要であること。
The reason why the gold alloy according to the present invention is blended at a certain ratio described in claims 3 to 5 is as follows.
(B) The element that has a gold decoloring (whitening) action of Au is Pd, but as the content of Pd increases, it becomes darker. Therefore, in order to suppress it, whiteness can be reduced by adding a certain amount of Pt. What you can do.
(B) When the blending ratio of Pd and Pt is the following (a) to (c), the color balance is good.
(A) Pt is 4.5 wt% or more (b) Pd is 8 wt% or more (c) Pt + Pd <19 wt%
(C) When Pt + Pd> 19% by weight (exceeds), the buffing (polishing treatment) in the finishing process becomes very poor, and as a result, the shine (mirror finish) is lost. This seems to be because the stickiness, which is a characteristic of the platinum group, is greatly influenced.
(D) It is necessary to add a certain amount of Cu in order to improve the buffing. By adding Cu, the hardness and wear characteristics, which are the characteristics of the Cu alloy, can be increased, and the melting point can be lowered.
(E) In order to enhance the effect of adding Cu, the combined use of Ag is important.

本願発明において、白色金合金の白さを表す「ΔE(合金の色差)」とは、その合金の色を色差計によりLab方式で計測し、示された3つの数値(L,a,b)を、ロジウム鍍金色(L=87.05,a=1.18,b=2.68)を基準値0として、Δ数値(ΔL,Δa,Δb)に換算し、3つのΔ数値をそれぞれ2乗して加えた合計を√2で割った数値をいう。
具体的には、市販の色差計(例:紫外−可視分光光度計〔日本分光株式会社V−570〕で測定する。
白色金合金(ホワイトゴールド)の色の範囲は、ΔE0〜ΔE14までとする。
In the present invention, “ΔE (alloy color difference)” representing the whiteness of a white gold alloy is the color of the alloy measured by the Lab method using a color difference meter, and the indicated three numerical values (L, a, b) Is converted into Δ numerical values (ΔL, Δa, Δb) with a rhodium gold color (L = 87.05, a = 1.18, b = 2.68) as a reference value 0, and each of the three Δ numerical values is 2 This is the value obtained by dividing the sum added by multiplication by √2.
Specifically, it is measured with a commercially available color difference meter (eg, UV-visible spectrophotometer [JASCO Corporation V-570]).
The color range of the white gold alloy (white gold) is from ΔE0 to ΔE14.

(a)指輪、ネックレース、イヤリング等の宝飾品を成型(キャスティング)する際に、割れや、筋の発生を生じない白色金合金の地金を得ることができる。
又、この地金を用いて、巣や割れのない種々の宝飾品を効率よく製造することができる。
(b)一般的な、白色金合金(ホワイトゴールド)は、硬く・脆く・照り(鏡面性)がでにくい合金が多く、白さはあっても照り(鏡面性)が無いため明るく見えず、その結果ΔEの値も、K18K(WG)=ΔE7程度である。
これに対し、本願発明に係る白色金合金は、ΔEの値が7以下(好ましくは6.0以下)の白色金合金を容易に得ることができる。
(c)ロジウム鍍金(メッキ)をかけないで、特有の白さを持った地金を得ることができる。
(d)良好な鋳造・加工性、良好な磨き具合・照り(鏡面性)のでき具合等を合わせ持った地金を得ることができる。
(e)従来のPd割(系)、Ni割(系)、Mn割(系)では、出せない白さを出すことができる。
(g)本願発明に係る白色金合金は、加工に適した硬さ(ビッカース硬さ(Hv)で、120〜140HV程度)を有している。
(f)通常金系の地金と同様に磨きを行うことができる。
(A) When a jewelry such as a ring, a necklace, and an earring is molded (casting), a white gold alloy bullion that does not crack or generate streaks can be obtained.
Moreover, various jewelry without a nest and a crack can be efficiently manufactured using this bullion.
(B) Many common white gold alloys (white gold) are hard, brittle, and hard to shine (specularity). As a result, the value of ΔE is about K18K (WG) = ΔE7.
On the other hand, the white gold alloy according to the present invention can easily obtain a white gold alloy having a ΔE value of 7 or less (preferably 6.0 or less).
(C) A bullion with specific whiteness can be obtained without applying rhodium plating (plating).
(D) It is possible to obtain a bullion having a good casting / workability and a good polishing / shine (mirror finish).
(E) Whiteness that cannot be produced with the conventional Pd split (system), Ni split (system), and Mn split (system) can be obtained.
(G) The white gold alloy according to the present invention has a hardness suitable for processing (Vickers hardness (Hv), about 120 to 140 HV).
(F) Polishing can be performed in the same manner as ordinary gold-based bullion.

本願発明に係る白色金合金の製造方法において、地金を合金する際に必要とする温度は、概ね次のとおりである。
a)Au−Pt−Pd−Ag−Cu
上昇温度 :1390℃〜1550℃
型に流す温度:1200℃〜1300℃
b)Pt−Pd
上昇温度: 1770℃〜1880℃
型に流す温度:1550℃〜1650℃
c)Ag−Cu
上昇温度: 1100℃〜1200℃
型に流す温度: 950℃〜1080℃
d)Au−Pd−Pt
上昇温度: 1450℃〜1650℃
型に流す温度:1350℃〜1450℃
e)Au−Ag−Cu
上昇温度: 1100℃〜1250℃
型に流す温度:1020℃〜1150℃
In the method for producing a white gold alloy according to the present invention, the temperature required for alloying the base metal is generally as follows.
a) Au-Pt-Pd-Ag-Cu
Rise temperature: 1390 ° C to 1550 ° C
Temperature flowing through the mold: 1200 ° C to 1300 ° C
b) Pt-Pd
Rise temperature: 1770 ° C to 1880 ° C
Temperature flowing through mold: 1550 ° C to 1650 ° C
c) Ag-Cu
Rise temperature: 1100 ° C to 1200 ° C
Temperature flowing through the mold: 950 ° C to 1080 ° C
d) Au-Pd-Pt
Rise temperature: 1450 ° C to 1650 ° C
Temperature flowing through the mold: 1350 ° C to 1450 ° C
e) Au-Ag-Cu
Rise temperature: 1100 ° C to 1250 ° C
Temperature flowing through the mold: 1020 ° C to 1150 ° C

下記に記載する配合と方法により地金を鋳造し、得られた地金について、割れと筋の発生状態を調べた。
(1)地金(合金)の配合
Au:75.0重量%
Pt: 7.0重量%
Pd:11.0重量%
Ag: 1.5重量%
Cu: 5.5重量%
Ingots were cast by the composition and method described below, and the resulting ingots were examined for cracking and streaking.
(1) Blending of bare metal (alloy) Au: 75.0% by weight
Pt: 7.0% by weight
Pd: 11.0% by weight
Ag: 1.5% by weight
Cu: 5.5% by weight

(2)地金の鋳造(合金)の順序
(a)Au、Pt、Pd、Ag、Cuを同時に鋳造してAu−Pt−Pd−Ag−Cu合金とする。
(b)Pt、Pd、Ag、Cuを鋳造して、Pt−Pd−Ag−Cu合金(割金)とした後、Auと鋳造してAu−Pt−Pd−Ag−Cu合金とする。
(c)予めPt−Pd、及びAg−Cu合金とした後、Au−Pd−Pt合金とし、次にAu−Pt−Pd−Ag−Cu合金とする。
(d)予めPt−Pd、及びAg−Cu合金とした後、Au−Ag−Cu合金とし、次にAu−Pt−Pd−Ag−Cu合金とする。
なお、Au、Pt、Pd、Ag、Cuを予め単体で溶融・精錬した元素を使用し、(a)〜(d)の方法で合金した地金を、それぞれ(A)、(B)、(C)、(D)とする。単体の溶融・精錬温度は、単体の融点プラス100〜250℃程度である。
(2) Order of casting (alloy) of metal (a) Au, Pt, Pd, Ag, and Cu are cast simultaneously to form an Au—Pt—Pd—Ag—Cu alloy.
(B) Pt, Pd, Ag, and Cu are cast to form a Pt—Pd—Ag—Cu alloy (split), and then cast to Au to obtain an Au—Pt—Pd—Ag—Cu alloy.
(C) Pt—Pd and Ag—Cu alloy are made in advance, then Au—Pd—Pt alloy, and then Au—Pt—Pd—Ag—Cu alloy.
(D) Pt—Pd and Ag—Cu alloy are made in advance, then Au—Ag—Cu alloy is made, and then Au—Pt—Pd—Ag—Cu alloy is made.
In addition, using an element in which Au, Pt, Pd, Ag, and Cu are previously melted and refined alone, alloys (A), (B), ( C) and (D). The melting and refining temperature of a single substance is about the melting point of the single substance plus about 100 to 250 ° C.

(3)地金の合金温度
Au−Pt−Pd−Ag−Cu:1400℃まで上昇させ、その後1260℃まで下げ、型に流した
Pt−Pd:1780℃まで上昇させ、その後1600℃まで下げ、型に流した
Ag−Cu:1150℃まで上昇させ、その後1020℃まで下げ、型に流した
Au−Pd−Pt:1580℃まで上昇させ、その後1400℃まで下げ、型に流した
Au−Ag−Cu:1150℃まで上昇させ、その後1060℃まで下げ、型に流した
(3) Alloy temperature of bare metal Au-Pt-Pd-Ag-Cu: raised to 1400 ° C, then lowered to 1260 ° C, raised to 1780 ° C Pt-Pd flowed into the mold, then lowered to 1600 ° C, Ag-Cu flowed into the mold: raised to 1150 ° C, then lowered to 1020 ° C, Au-Pd-Pt flowed into the mold: raised to 1580 ° C, then lowered to 1400 ° C, and flowed into the mold Au-Ag- Cu: raised to 1150 ° C., then lowered to 1060 ° C. and poured into mold

(4)1.1mm丸線試験
(イ)検体の作製
検体の寸法:直径1mm×4cmの円線
検体数:各20本
使用合金量:120.00g
使用鋳造機:TR式高周波発振器 型式NTR−0502SHI−S 出力5Kw 周波数50KHz カーボン坩堝使用(株)日精販売 メーカー(株)日電高周波
電気炉:(株)安井インターテック
鋳型温度:各740℃
鋳造温度:各1340℃
鋳型へセットしてから鋳造までの時間:3分30秒
(4) 1.1 mm round wire test (a) Preparation of specimen Specimen dimensions: Circular line with a diameter of 1 mm x 4 cm Number of specimens: 20 each Amount of alloy used: 120.00 g
Casting machine used: TR type high frequency oscillator Model NTR-0502SHI-S Output 5Kw Frequency 50KHz Using carbon crucible Nissei Sales Co., Ltd. Manufacturer Niden High Frequency Electric furnace: Yasui Intertec Co., Ltd. Mold temperature: 740 ° C each
Casting temperature: 1340 ° C each
Time from casting to casting: 3 minutes 30 seconds

前記8種類((a)〜(d)、(A)〜(D))のツリー形状(鋳型になる形状)、埋没方法、脱漏方法、及び鋳造方法は、下記により全て同一の条件で行った。
ツリー形状:直径8mm,高さ120mmの円柱に、試験資材を円柱に対して、上方向へ角度25度で上から4本ずつ配置し、20mm下の段から付けて、5段のツリー形状とした。
埋没方法:(株)ノリタケカンパニー社のギフトを使用し、水との混合比38%で、(株)愛工舎製作所の混和器で2分混合し、(株)安井インターテックの脱法器で1分空気を抜き、1時間乾燥の為放置した(室温25℃,湿度60%)。
脱漏方法:(株)カトーの温風ヒーターを使用し、温度設定150℃、1時間タイマーオフで中のワックスを抜いた。
鋳造方法:鋳型温度740℃,鋳造温度1340℃に設定した。その後真空状態にして、ゆっくり温度を上昇させ、設定温度に達したら、窒素ガスを使用し3気圧の圧力で地金を押し込んで鋳造した(鋳型セットから約3分30秒を要した)。
The eight types ((a) to (d), (A) to (D)) of the tree shape (shape to be a mold), the burying method, the leakage method, and the casting method were all performed under the same conditions as described below. .
Tree shape: Four columns of test materials are arranged on a cylinder with a diameter of 8 mm and a height of 120 mm from the top at an angle of 25 degrees upward with respect to the cylinder, and attached from the lower stage of 20 mm. did.
Method of burying: Using a gift from Noritake Co., Ltd., mixing with water at a mixing ratio of 38% for 2 minutes with a mixer at Aikosha Seisakusho Co., Ltd. The air was evacuated and left to dry for 1 hour (room temperature 25 ° C., humidity 60%).
Leakage method: Using a hot air heater of Kato Co., Ltd., the wax was removed by setting the temperature at 150 ° C. for 1 hour with the timer off.
Casting method: The mold temperature was set to 740 ° C and the casting temperature was set to 1340 ° C. After that, a vacuum was applied, the temperature was slowly raised, and when the set temperature was reached, casting was performed by using a nitrogen gas and pushing the metal at a pressure of 3 atm (approximately 3 minutes 30 seconds from the mold set).

(ロ)割れと筋の判別方法
検体の表面を10倍のルーペにより肉眼で観察した。
(B) Method for discriminating cracks and muscles The surface of the specimen was observed with the naked eye using a 10-times magnifier.

(5)2.20×20×1mm板材試験
(イ)検体の作製
検体の寸法:(2.20×20×1)mm板材
検体数:各20枚
使用合金量:140.00g
使用鋳造機:TR式高周波発振器 型式NTR−0502SHI−S 出力5Kw 周波数50KHz カーボン坩堝使用(株)日精販売 メーカー(株)日電高周波
電気炉:(株)安井インターテック
鋳型温度:各740℃
鋳造温度:各1340℃
鋳型へセットしてから鋳造までの時間:3分30秒
なお、前記8種類((a)〜(d)、(A)〜(D))のツリー形状、埋没方法、脱漏方法、電気炉温度、及び鋳造方法は前記全て同一の条件で行った。
ツリー形状:直径8mm,高さ120mmの円柱に、試験資材を円柱に対して、上方向へ角度25度、上から4本ずつ配置し、20mm下の段から付けて、5段のツリー形状とした。
埋没方法:(株)ノリタケカンパニー社のギフト(埋没材)を使用し、水との混合比38%(株)愛工舎製作所の混和器で2分混合し、(株)安井インターテックの脱法器で1分間空気を抜き、その後混合した埋没材をツリーの型に流し込み、再度脱法器で1分間空気を抜き1時間乾燥の為放置した(室温25℃,湿度60%)。
脱漏方法:(株)カトーの温風ヒーターを使用し、温度設定150℃,1時間タイマーオフで脱漏器の中で、ワックスを溶かした。
電気炉温度:(株)安井インターテック社製の電気炉を使用し、10時間かけて、温度を740℃までゆっくり上昇させた。
鋳造方法:鋳型温度を740℃,鋳造温度1340℃に設定した。真空状態にし、ゆっくり温度を上昇させ、設定温度に達したら、窒素ガスを使用し、3気圧の圧力で地金を押し込んで鋳造した(鋳型セットから3分30秒)。
(5) 2.20 × 20 × 1 mm plate material test (a) Preparation of specimen Specimen dimensions: (2.20 × 20 × 1) mm plate material Number of specimens: 20 for each Amount of alloy used: 140.00 g
Casting machine used: TR type high frequency oscillator Model NTR-0502SHI-S Output 5Kw Frequency 50KHz Using carbon crucible Nissei Sales Co., Ltd. Manufacturer Niden High Frequency Electric furnace: Yasui Intertec Co., Ltd. Mold temperature: 740 ° C each
Casting temperature: 1340 ° C each
Time from setting to mold to casting: 3 minutes 30 seconds In addition, the above-mentioned 8 types ((a) to (d), (A) to (D)) of tree shape, burying method, leakage method, electric furnace temperature The casting method was performed under the same conditions.
Tree shape: A test material is placed on a cylinder having a diameter of 8 mm and a height of 120 mm, and four test pieces are arranged from the top at an angle of 25 degrees with respect to the cylinder. did.
Method of burying: Using gift (buried material) from Noritake Co., Ltd., mixing with water for 38%, mixing for 2 minutes with a mixer at Aikosha Seisakusho Co., Ltd. The mixture was poured into a tree mold for 1 minute, and then poured again into the mold of the tree, and again for 1 minute with the devolatilizer and left to dry for 1 hour (room temperature 25 ° C., humidity 60%).
Leakage method: Wax was melted in a leaker using a warm air heater of Kato Co., Ltd., with a temperature setting of 150 ° C. and a timer off for 1 hour.
Electric furnace temperature: Using an electric furnace manufactured by Yasui Intertec Co., Ltd., the temperature was slowly raised to 740 ° C. over 10 hours.
Casting method: mold temperature was set to 740 ° C. and casting temperature 1340 ° C. When the temperature was slowly raised and reached the set temperature, nitrogen gas was used and the metal was pushed in at a pressure of 3 atm to cast (3 minutes 30 seconds from the mold set).

以下、通常の磨き仕上げ工程(電解研磨、磁気バレル、表面処理、形状成型、磨き工程等)を経て検体をえた。   Hereinafter, the specimen was obtained through a normal polishing finishing process (electrolytic polishing, magnetic barrel, surface treatment, shape molding, polishing process, etc.).

(ロ)割れと筋の判別方法
検体の表面を10倍のルーペにより肉眼で観察した。
(B) Method for discriminating cracks and muscles The surface of the specimen was observed with the naked eye using a 10-times magnifier.

(6)割れと筋の発生状況を表1に示す。   (6) Table 1 shows the occurrence of cracks and streaks.

表1の結果によれば、割れと筋の発生は、(C)、又は(D)の方法によれば、ほぼ完全に防止することができる。   According to the results in Table 1, the occurrence of cracks and streaks can be almost completely prevented by the method (C) or (D).

下記の表2に、前記(C)の方法を用い、請求項3の範囲の配合を中心として、種々の配合で鋳造した白色金合金のΔEの値を示す。   Table 2 below shows ΔE values of white gold alloys cast using various methods, centering on the range of claim 3 using the method (C).

表2中、Auの含有量が78.0重量%を超えるもの(No.1,2,4,5,7,10,19,22)は、Auの含有量が多すぎて、ΔEを7.0以下とすることができない。
又、Pt+Pd>19重量%である配合(No.31〜36)は、加工性が悪く、本願発明の範囲(請求項1)には入らないものである。
In Table 2, when the content of Au exceeds 78.0% by weight (No. 1, 2, 4, 5, 7, 10, 19, 22), the content of Au is too large, and ΔE is 7 Cannot be less than 0.0.
Further, the formulation (No. 31 to 36) in which Pt + Pd> 19% by weight has poor processability and does not fall within the scope of the present invention (Claim 1).

表3に、請求項4に記載した条件の配合で鋳造した白色金合金の配合とΔEの値を示す。   Table 3 shows the composition of the white gold alloy cast under the composition described in claim 4 and the value of ΔE.

表3中、No.71に示す配合が、金含有量75重量%(K18)において最良の結果を示すものである(請求項5)。   In Table 3, No. The formulation shown in 71 shows the best results at a gold content of 75% by weight (K18) (Claim 5).

なお、下記の表4(No.91〜95)に従来の白色金合金のΔEの値の例を示す。いずれもΔEの値が7.0を超えている。   Table 4 below (Nos. 91 to 95) shows examples of ΔE values of conventional white gold alloys. In both cases, the value of ΔE exceeds 7.0.

実施例1の配合で、(D)の方法を用いて得られた地金から、真空吸引加圧鋳造法にて、宝飾品である指輪を試作した。ホワイトクリスタルバライト系埋没材、セラミック系埋没材、燐酸塩系埋没材が使用可能であった。
得られた指輪は、割れや筋等の欠陥、及び鋳巣が全くない良好な鋳造物が得られた。
又、この鋳造物を切削加工、バフ研磨を経て鏡面性(照り、金属光沢)を有する状態まで仕上げたところ、この工程でも割れや、筋等の欠陥、鋳巣は全く生じなかった。
A ring, which is a jewelery, was prototyped from the bare metal obtained using the method (D) in the formulation of Example 1 by the vacuum suction pressure casting method. White crystal barite-based investment material, ceramic-based investment material, and phosphate-based investment material could be used.
The obtained ring was a good casting with no defects such as cracks and streaks, and no casting hole.
Moreover, when this cast was finished to a state having specularity (shining, metallic luster) through cutting and buffing, cracks, defects such as streaks, and cast holes did not occur at all in this process.

前記段落〔0018〕(5)の「2.20×20×1mm板材」を試験体とし、下記の試験を行った。
(1)耐酸性
試験体:板材3枚のうち、1枚を保存用とし、2枚に下記の処理をした。
虐待試験:5%希硫酸に10分間浸漬後、水洗し、4週間、紫外線の当たる窓際に放置。
判定方法:10倍のルーペで肉眼により、確認した。
試験結果:変化なし。
(2)耐アルカリ性
試験体:板材3枚のうち、1枚を保存用とし、2枚に下記の処理をした。
虐待試験:28%アンモニア水に10分間浸漬後、水洗し、4週間、紫外線のあたる窓際に放置。
判定方法:10倍のルーペで肉眼により、確認した。
試験結果:変化なし。
(3)変色状況
確認の結果、変色は現われず、極めて、耐酸性・耐アルカリ性に優れた合金であルことが確認された。
Using the “2.20 × 20 × 1 mm plate” in paragraph [0018] (5) as a test specimen, the following tests were conducted.
(1) Acid resistance Specimen: One of three sheets was used for storage, and the following treatment was applied to two sheets.
Abuse test: Soaked in 5% dilute sulfuric acid for 10 minutes, washed with water, and left at the window exposed to ultraviolet rays for 4 weeks.
Judgment method: It confirmed with the naked eye with a 10 times magnifier.
Test result: No change.
(2) Alkali resistance Specimen: Of the three plate materials, one was used for storage, and the following treatment was performed on two plates.
Abuse test: Soaked in 28% aqueous ammonia for 10 minutes, washed with water, and left at the window exposed to ultraviolet rays for 4 weeks.
Judgment method: It confirmed with the naked eye with a 10 times magnifier.
Test result: No change.
(3) Discoloration As a result of confirmation, discoloration did not appear and it was confirmed that the alloy was extremely excellent in acid resistance and alkali resistance.

表3のNo.71の白色金合金のΔEの測定結果を示す図である。No. in Table 3 It is a figure which shows the measurement result of (DELTA) E of 71 white gold alloy.

Claims (7)

Auに対し、Pt,Pd,Ag,及びCuを一定の割合に配合して溶融した後冷却する白色金合金(Au−Pt−Pd−Ag−Cu合金)の製造方法において、下記の(A)工程及び(B)工程を先に行い、更に(C)工程及び(D)工程を順次経ることを特徴とする白色金合金の製造方法。
(A)工程:PtとPdを溶融して、Pt−Pd合金を得る工程
(B)工程:AgとCuを溶融して、Ag−Cu合金を得る工程
(C)工程:Auに前記(A)のPt−Pd合金を溶融して、Au−Pt−Pd合金を得る工程
(D)工程:前記(C)で得られるAu−Pt−Pd合金に、更に前記(B)のAg−Cu合金を溶融して、白色金合金(Au−Pt−Pd−Ag−Cu合金)を得る工程
In the method for producing a white gold alloy (Au—Pt—Pd—Ag—Cu alloy) in which Pt, Pd, Ag, and Cu are mixed in a certain ratio with respect to Au and melted and then cooled, the following (A) A method for producing a white gold alloy, wherein the step and the step (B) are performed first, and then the step (C) and the step (D) are sequentially performed.
(A) Step: Step of melting Pt and Pd to obtain a Pt—Pd alloy (B) Step: Step of melting Ag and Cu to obtain an Ag—Cu alloy Step (C) Step: The above (A Step (D) for melting Au-Pt-Pd alloy by melting Pt—Pd alloy of ()): In addition to the Au—Pt—Pd alloy obtained in (C) above, the Ag—Cu alloy of (B) above A white gold alloy (Au—Pt—Pd—Ag—Cu alloy) by melting
Auに対し、Pt,Pd,Ag,及びCuを一定の割合に配合して溶融した後冷却する白色金合金(Au−Pt−Pd−Ag−Cu合金)の製造方法において、下記の(A)工程及び(B)工程を先に行い、更に(E)工程及び(F)工程を順次経ることを特徴とする白色金合金の製造方法。
(A)工程:PtとPdを溶融して、Pt−Pd合金を得る工程
(B)工程:AgとCuを溶融して、Ag−Cu合金を得る工程
(E)工程:Auに前記(B)のAg−Cu合金を溶融して、Au−Ag−Cu合金を得る工程
(F)工程:前記(E)で得られるAu−Ag−Cu合金に、更に前記(A)のPt−Pd合金を溶融して、白色金合金(Au−Pt−Pd−Ag−Cu合金)を得る工程
In the method for producing a white gold alloy (Au—Pt—Pd—Ag—Cu alloy) in which Pt, Pd, Ag, and Cu are mixed in a certain ratio with respect to Au and melted and then cooled, the following (A) A method for producing a white gold alloy, wherein the step and the step (B) are performed first, and the step (E) and the step (F) are sequentially performed.
(A) Step: Step of melting Pt and Pd to obtain a Pt—Pd alloy (B) Step: Step of melting Ag and Cu to obtain an Ag—Cu alloy Step (E) Step: The above (B Step (F) for obtaining an Au—Ag—Cu alloy by melting the Ag—Cu alloy (): In addition to the Au—Ag—Cu alloy obtained in (E), the Pt—Pd alloy (A) A white gold alloy (Au—Pt—Pd—Ag—Cu alloy) by melting
Au,Pt,Pd,Ag,及びCuを下記の(イ)〜(ヘ)に示す割合で配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが70〜78.0重量%
(ロ)Ptが4.5重量%以上
(ハ)Pdが8.0重量%以上
(ニ)PtとPdの和が19.0重量%以下
(ホ)Agが0,5〜3.0重量%
(ヘ)Cuが2.0〜8.0重量%
The method for producing a white gold alloy according to claim 1 or 2, wherein Au, Pt, Pd, Ag, and Cu are blended in proportions shown in the following (a) to (f).
(B) 70 to 78.0 wt% of Au
(B) Pt is 4.5% by weight or more (c) Pd is 8.0% by weight or more (d) The sum of Pt and Pd is 19.0% by weight or less (e) Ag is 0.5 to 3.0% by weight %
(F) Cu is 2.0 to 8.0% by weight
Au、Pt,Pd,及びCuを下記の(イ)〜(ホ)に示す割合に、かつ残部が実質的にAgとなるように配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが75.0重量%
(ロ)Ptが4.5重量%以上
(ハ)Pdが8.0重量%以上
(ニ)PtとPdの和が19.0重量%以下
(ホ)Cuが2.0〜8.0重量%
The white gold alloy according to claim 1 or 2, wherein Au, Pt, Pd, and Cu are blended in proportions shown in the following (a) to (e), and the balance is substantially Ag. Manufacturing method.
(B) Au is 75.0% by weight
(B) Pt is 4.5% by weight or more (c) Pd is 8.0% by weight or more (d) The sum of Pt and Pd is 19.0% by weight or less (e) Cu is 2.0 to 8.0% by weight %
Au,Pt,Pd,Ag,及びCuを下記の(イ)〜(ホ)に示す割合で配合する請求項1、又は請求項2に記載する白色金合金の製造方法。
(イ)Auが75.0重量%
(ロ)Ptが7.0重量%
(ハ)Pdが11.0重量%
(ニ)Agが1.5重量%
(ホ)Cuが5.5重量%
The method for producing a white gold alloy according to claim 1 or 2, wherein Au, Pt, Pd, Ag, and Cu are blended in proportions shown in the following (a) to (e).
(B) Au is 75.0% by weight
(B) Pt is 7.0% by weight
(C) Pd is 11.0% by weight
(D) 1.5% by weight of Ag
(E) Cu is 5.5% by weight
Au,Pt,Pd,Ag,及びCuは,各々の単体を溶融し、金属結合中に包摂されているガス(気体)を放出させて除去したものを使用する請求項1〜請求項5に記載する白色金合金の製造方法。 The Au, Pt, Pd, Ag, and Cu are used by melting each simple substance and releasing and removing the gas (gas) contained in the metal bond. A method for producing a white gold alloy. 請求項1〜請求項6記載の製造方法により得られる白色金合金を使用した宝飾品。
The jewelry using the white gold alloy obtained by the manufacturing method of Claims 1-6.
JP2007314116A 2007-12-05 2007-12-05 Method for producing white gold alloy and jewelry using this white gold alloy Expired - Fee Related JP4184418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314116A JP4184418B1 (en) 2007-12-05 2007-12-05 Method for producing white gold alloy and jewelry using this white gold alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314116A JP4184418B1 (en) 2007-12-05 2007-12-05 Method for producing white gold alloy and jewelry using this white gold alloy

Publications (2)

Publication Number Publication Date
JP4184418B1 JP4184418B1 (en) 2008-11-19
JP2009138216A true JP2009138216A (en) 2009-06-25

Family

ID=40148585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314116A Expired - Fee Related JP4184418B1 (en) 2007-12-05 2007-12-05 Method for producing white gold alloy and jewelry using this white gold alloy

Country Status (1)

Country Link
JP (1) JP4184418B1 (en)

Also Published As

Publication number Publication date
JP4184418B1 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
Cretu et al. Coloured gold alloys
JP2019108614A (en) Discoloration-resistant gold alloy
US10471486B2 (en) Method for fabrication of a gold alloy wire
US20200308672A1 (en) Sterling silver alloy and articles made from same
US6841012B2 (en) Anti-tarnish silver alloy
JP2007520632A (en) Platinum alloy and method for producing the same
JP4058101B1 (en) Decorative and dental gold alloys
CN110791678A (en) Copper-based joint coating alloy and preparation method thereof
CN107164651B (en) A kind of jewellery pink colour silver alloy and preparation method thereof
RU2561562C1 (en) Platinum alloy for jewellery and alloy manufacture method
US9194024B1 (en) Jewelry article of white precious metals and methods for making the same
JP4184418B1 (en) Method for producing white gold alloy and jewelry using this white gold alloy
JP2017122249A (en) Color gold alloy having enhanced processability and purity of 22 gold and manufacturing method therefor
JP2009057625A (en) White gold alloy, method for producing the same, and jewel using white gold alloy
CN108624777A (en) One kind having saturation rosiness and corrosion resistant cheap rose copper alloy
JP2018090909A (en) Palladium-based alloy
KR102234078B1 (en) Method for producing palladium-containing white gold alloy
JP3389361B2 (en) Decorative member and method of manufacturing the same
RU2349660C1 (en) Jewelry alloy on basis of palladium
CH709923B1 (en) Golden alloy.
JP4435984B2 (en) Jewelry composition
CN108728685A (en) Jewellery rub resistance high intensity has rose gold color and luster 14K rose silver alloy
JP2024039783A (en) SWEAT-RESISTANT Au ALLOY FOR JEWELRY AND METHOD FOR PRODUCING THE SAME
RU2575526C2 (en) Gold based alloy and method for its production
RU2349659C1 (en) Jewelry alloy of white color on basis of palladium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees