JP2009137130A - Die molding method and molding die - Google Patents

Die molding method and molding die Download PDF

Info

Publication number
JP2009137130A
JP2009137130A JP2007315159A JP2007315159A JP2009137130A JP 2009137130 A JP2009137130 A JP 2009137130A JP 2007315159 A JP2007315159 A JP 2007315159A JP 2007315159 A JP2007315159 A JP 2007315159A JP 2009137130 A JP2009137130 A JP 2009137130A
Authority
JP
Japan
Prior art keywords
mold
molded product
release resistance
molding
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007315159A
Other languages
Japanese (ja)
Other versions
JP5029330B2 (en
Inventor
Katsuyoshi Shimakata
克好 嶋方
Yoshihito Tanaka
喜人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007315159A priority Critical patent/JP5029330B2/en
Publication of JP2009137130A publication Critical patent/JP2009137130A/en
Application granted granted Critical
Publication of JP5029330B2 publication Critical patent/JP5029330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding method and an injection molding die allowing a molded product molded in a first die and a second die by injecting material, to be surely taken out of the second die side. <P>SOLUTION: This die molding method is carried out by allowing a fixed die 10 and a movable die 40 to abut on each other to form a cavity 2, bringing the molded product 92 into close contact with the movable die 40 when separating the movable die 40 from the fixed die 10 after injection-molding a molding material MT, and then separating the molded product 92 from the movable die 40 using an eject pin 50. When the movable die 40 is separated from the fixed die 10, a push-out means 30 provided at the fixed die 10 pushes out the molded product 92 toward the movable die 40 side, and mold release resistance force R when the eject pin 50 separates the molded product 92 from the movable die 40 is measured by a load cell 70. The push-out force F of the push-out means 30 is changed according to the mold release resistance force R measured by the load cell 70. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離する金型成形方法及び成形金型に関するものである。   In this invention, the first mold and the second mold are brought into contact with each other to form a cavity, and after the material is injected and molded, when the second mold is separated from the first mold, The present invention relates to a molding method and a molding die in which a molded product is brought into close contact with the second mold, and then the molded product is separated from the second mold by an eject pin.

従来、固定金型と可動金型とを当接させてキャビティを形成し、材料を射出して成形した後、該可動金型を該固定金型から離間するときに、成形品を該可動金型に密着させた状態とし、その後、エジェクトピンにより成形品を該可動金型から分離する射出成形方法が行われている。
その射出成形方法においては、可動金型を固定金型から離間させるときに、成形品を確実に可動金型に密着させて離間できるようにするため、成形品の形状やランナ形状等を変えて、離型抵抗を増やす工夫をしている。
一方、特許文献1には、一次成形品用固定金型のPL面に臨んで補助突起板15を摺動自在に備え、バネ16で突没可能にして型開き時に一次成形品を可動金型4のキャビティ内に確実に移動保持させるようにしていると、記載されている。すなわち、固定金型側にバネ力で作用する押出ピンを設け、成形品を確実に可動型に密着させる方法が記載されている。
Conventionally, a cavity is formed by bringing a fixed mold and a movable mold into contact with each other, and after molding the material by injection, the molded product is moved to the movable mold when the movable mold is separated from the fixed mold. An injection molding method is performed in which the molded product is brought into close contact with the mold, and then the molded product is separated from the movable mold by an eject pin.
In the injection molding method, when the movable mold is separated from the fixed mold, the molded product is changed in shape, runner shape, etc. in order to ensure that the molded product is closely attached to the movable mold and separated. Devised to increase the mold release resistance.
On the other hand, in Patent Document 1, an auxiliary projection plate 15 is slidably provided facing the PL surface of a fixed mold for a primary molded product, and can be projected and retracted by a spring 16 so that the primary molded product is movable when the mold is opened. It is described that it is surely moved and held in the cavity 4. That is, a method is described in which an extrusion pin that acts by a spring force is provided on the fixed mold side, and the molded product is securely adhered to the movable mold.

特開平8-197578号公報 段落(0010)JP-A-8-197578, paragraph (0010)

しかしながら、特許文献1に開示された発明では、次のような問題があった。
すなわち、金型の経年変化により、キャビティ面の表面粗度が悪化し、固定金型側の離型抵抗が増加するため、可動金型と固定金型とを離間するときに、成形品が固定金型側に残る問題があった。
この問題は以下の理由によって生じる。すなわち、射出成形法による成形品の中でも、ハイブリッド自動車用モータの固定子をモールドする射出成形では、成形品の材料となるモールド材には、例えば、スチレン、飽和ポリエステル等の樹脂材のほか、アルミナ、ガラス繊維等の比較的硬質の混合材料が含まれている。このようなモールド材を金型で成形すると、成形時にモールド材中の混合材料がキャビティ面に触れて、キャビティ面の表面粗度を悪化させる。キャビティ面の表面粗度は、成形ショット数の増加と共に悪化して、固定金型側の離型抵抗がだんだんと大きくなる。
離型抵抗が増大し固定金型に成形品が残った場合には、無理に成形品を取り出すため、成形品を製品として使用することが難しい。ハイブリッド自動車用モータの固定子をモールドする射出成形方法においては、成形品の1個当たりの価格が高いため、この点、大きな問題となる。
However, the invention disclosed in Patent Document 1 has the following problems.
That is, due to the secular change of the mold, the surface roughness of the cavity surface deteriorates and the mold release resistance on the fixed mold side increases, so the molded product is fixed when the movable mold and the fixed mold are separated. There was a problem that remained on the mold side.
This problem occurs for the following reasons. That is, among the molded products by the injection molding method, in the injection molding in which the stator of the motor for a hybrid vehicle is molded, the molding material that is the material of the molded product includes, for example, resin materials such as styrene and saturated polyester, alumina A relatively hard mixed material such as glass fiber is included. When such a molding material is molded with a mold, the mixed material in the molding material touches the cavity surface during molding, thereby deteriorating the surface roughness of the cavity surface. The surface roughness of the cavity surface deteriorates as the number of molding shots increases, and the mold release resistance on the fixed mold side gradually increases.
When the mold release resistance increases and the molded product remains in the fixed mold, the molded product is forcibly taken out, and it is difficult to use the molded product as a product. In the injection molding method for molding a stator of a hybrid vehicle motor, since the price per molded product is high, this is a serious problem.

この発明は上記事情に鑑みてなされたものであって、材料を注入して第1金型及び第2金型とで成形された成形品を、確実に第2金型側から取出すことができる金型成形方法及び成形金型を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to reliably take out the molded product formed by the first mold and the second mold by injecting the material from the second mold side. An object is to provide a mold forming method and a mold.

上記目的を達成するために、本発明の金型成形方法、及び成形金型は、次の構成を有している。
(1)第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離する金型成形方法において、前記第1金型と前記第2金型とが離間するときに、前記第1金型に設けられた押出手段が、前記成形品を前記第2金型側に押し出すこと、前記エジェクトピンが、前記成形品を前記第2金型から分離させるときの離型抵抗力を、離型抵抗計測手段が計測すること、前記離型抵抗計測手段が計測した離型抵抗力に応じて、前記押出手段の押出力を変化させること、を特徴とする。
In order to achieve the above object, a mold forming method and a mold according to the present invention have the following configurations.
(1) The first mold and the second mold are brought into contact with each other to form a cavity, the material is injected and molded, and then the second mold is separated from the first mold. In a mold molding method in which a product is brought into close contact with the second mold, and then the molded product is separated from the second mold by an eject pin, the first mold and the second mold are separated from each other. When the extrusion means provided in the first mold pushes the molded product to the second mold side, the eject pin separates the molded product from the second mold. The mold release resistance force is measured by the mold release resistance measuring means, and the pushing force of the pushing means is changed according to the mold release resistance force measured by the mold release resistance measuring means.

(2)第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離させる成形金型において、前記第1金型に設けられ、前記第1金型と前記第2金型とが離間するときに、前記成形品を前記第2金型側に押し出す押出手段と、前記エジェクトピンが、前記成形品を前記第2金型から分離するときの離型抵抗力を計測する離型抵抗計測手段と、前記離型抵抗計測手段が計測した離型抵抗力に応じて、前記押出手段の押出力を変化させる制御手段と、を有することを特徴とする。 (2) The first mold and the second mold are brought into contact with each other to form a cavity, and after the material is injected and molded, the molding is performed when the second mold is separated from the first mold. In a molding die in which the product is brought into close contact with the second die and then the molded product is separated from the second die by an eject pin, the first die is provided on the first die. Extrusion means for extruding the molded product to the second mold side when the second mold is separated from the second mold, and mold release resistance when the eject pin separates the molded product from the second mold It has a release resistance measuring means for measuring a force, and a control means for changing the pushing force of the pushing means according to the release resistance force measured by the release resistance measuring means.

次に、上記構成を有する本発明の金型成形方法及び成形金型の作用・効果について説明する。
本発明の成形金型を用いた本発明の金型成形方法は、第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離する金型成形方法であって、第1金型と第2金型とが離間するときに、第1金型に設けられた押出手段が、成形品を第2金型側に押し出すこと、エジェクトピンが、成形品を第2金型から分離させるときの離型抵抗力を、離型抵抗計測手段が計測すること、離型抵抗計測手段が計測した離型抵抗力に応じて、押出手段の押出力を変化させること、を特徴としているので、第1金型と第2金型との離間時に、成形品は、離型抵抗計測手段により計測した離型抵抗力に応じて変化させた押出手段の押出力で、第2金型側に押し出される。
Next, the operation and effect of the mold forming method and the mold according to the present invention having the above-described configuration will be described.
In the mold molding method of the present invention using the molding mold of the present invention, the first mold and the second mold are brought into contact with each other to form a cavity, the material is injected and molded, and then the second mold is molded. When the mold is separated from the first mold, the molded product is brought into close contact with the second mold, and then the molded product is separated from the second mold by an eject pin. Then, when the first mold and the second mold are separated from each other, the extrusion means provided in the first mold pushes the molded product to the second mold side, and the eject pin pushes the molded product. The release resistance measuring means measures the release resistance force when separating from the second mold, and the pushing force of the pushing means is changed according to the release resistance force measured by the release resistance measurement means. Therefore, when the first mold and the second mold are separated from each other, the molded product was measured by the mold release resistance measuring means. In extrusion force of the extrusion means is varied depending on the type resistance, is pushed out to the second mold side.

ところで、例えば、ハイブリッド自動車用モータの固定子を樹脂でモールドするにあたり、例えば、スチレン、飽和ポリエステル等の樹脂材のほか、アルミナ、ガラス繊維等の比較的硬質の混合材料を含むモールド材を、射出成形法により射出して固定金型及び可動金型で成形する場合がある。
このような成形の場合、モールド材中の混合材料が両方の金型のキャビティ面に触れて、このキャビティ面を粗くする。キャビティ面の表面粗度は、経年変化によって次第に悪化する。
出願人は、この現象について詳しく解析する実験を行った。実験では、特に成形品の成形回数(成形ショット数)が数万から数十万回程度になってくると、成形ショット数の増加と共に、キャビティ面の表面粗度が極度に悪化して、成形品を固定金型から離間させるときの離型抵抗もかなり増大していることを、新たに確認した。
このような表面粗度の悪化は、固定金型及び可動金型の両側で同じように進行するものと推察される。すなわち、成形品が固定金型から離間するときの離型抵抗力と、エジェクトピンにより成形品を可動金型から分離させるときの離型抵抗力とは、ほぼ同程度の大きさになるものと考えられる。
By the way, when molding the stator of a hybrid vehicle motor with resin, for example, in addition to a resin material such as styrene and saturated polyester, a mold material containing a relatively hard mixed material such as alumina and glass fiber is injected. There is a case where injection is performed by a molding method and molding is performed using a fixed mold and a movable mold.
In such molding, the mixed material in the mold material touches the cavity surfaces of both molds to roughen the cavity surface. The surface roughness of the cavity surface gradually deteriorates with aging.
The applicant conducted an experiment to analyze this phenomenon in detail. In the experiment, especially when the number of moldings (number of molding shots) increases from tens of thousands to hundreds of thousands, the surface roughness of the cavity surface extremely deteriorates as the number of molding shots increases. It was newly confirmed that the mold release resistance when the product is separated from the fixed mold is considerably increased.
Such deterioration of the surface roughness is assumed to proceed in the same way on both sides of the fixed mold and the movable mold. That is, the mold release resistance force when the molded product is separated from the fixed mold and the mold release resistance force when the molded product is separated from the movable mold by the eject pin are approximately the same magnitude. Conceivable.

また、実験を通じて、成形品を固定金型から離間させるときの離型抵抗について、成形ショット数が初回時のときの離型抵抗の大きさを1としたとき、例えば、数千回から一万回前後の時点で初回時の約2倍、数万回の時点で初回時の約5倍等と、成形ショット数の増加数のわりには離型抵抗は急激に大きくなり、その後も、離型抵抗は、成形ショット数の増加と共に増え続け、数十万回にも達すると、その離型抵抗は、実に初回時の10倍超にも及んでいることも、新たに判った。
一般に、固定金型及び可動金型を用いた射出成形では、これらの金型は、その耐用回数として、数十万回を超える成形ショット数まで使用される。
こうした使用事情の下、従来の射出成形方法のように、一定のバネ力で作用する押出ピンを固定金型側に設けても、バネ力を一定にしたままでバネを使用し続けると、固定金型及び可動金型を使用している間に、バネ力が、成形品を固定金型から離間させるときの離型抵抗力より小さくなる場合が、成形ショット数が比較的少ない時点で生じ得る。
すると、可動金型と固定金型とを離間するときに、バネ力との差分、固定金型側に残る離型抵抗力に起因して、成形品が固定金型側に残る虞がある。
Also, through experiments, regarding the mold release resistance when the molded product is separated from the fixed mold, when the magnitude of the mold release resistance when the number of molding shots is the first time is 1, for example, from several thousand times to 10,000 The mold release resistance increases rapidly as the number of molding shots increases, approximately twice as much as the first time before and after the rotation, and approximately five times the first time when tens of thousands of times. The resistance continued to increase with the increase in the number of molding shots, and when it reached hundreds of thousands of times, it was newly found out that its release resistance was actually more than 10 times that of the first time.
In general, in injection molding using a fixed mold and a movable mold, these molds are used up to the number of molding shots exceeding several hundred thousand times as the number of times they can be used.
Under these circumstances, even if an extrusion pin that operates with a constant spring force is provided on the fixed mold side, as in the conventional injection molding method, if the spring is used with the spring force kept constant, it will be fixed. While using the mold and the movable mold, the spring force may be smaller than the resistance to release when the molded product is separated from the fixed mold, which may occur when the number of molding shots is relatively small. .
Then, when the movable mold and the fixed mold are separated from each other, the molded product may remain on the fixed mold side due to the difference from the spring force and the mold release resistance force remaining on the fixed mold side.

これに対し、本発明の成形金型を用いた本発明の金型成形方法では、エジェクトピンにより成形品を第2金型から分離させるときの離型抵抗力を離型抵抗計測手段が計測し、押出手段による押出力を、計測した離型抵抗力に応じて変化させているので、たとえ、経年変化によりキャビティ面の表面粗度が悪化し第1金型側の離型抵抗が増加しても、押出手段による、離型抵抗に打勝つ押出力で、成形品を第2金型側に押し出すことができる。
すなわち、成形品を第1金型から離間するときの離型抵抗は、エジェクトピンにより成形品を第2金型から分離させるときの離型抵抗力と、ほぼ同じ大きさであると考えられる。
このことから、第1金型側の離型抵抗について、成形ショット数が初回時のときの離型抵抗の大きさに対し、約2倍、約5倍等と増加の一途をたどり、数十万回にも達したときの離型抵抗が、初回時の10倍超にも及ぶようであれば、第2金型側の離型抵抗力も、第1金型側の離型抵抗と同様な増加傾向になっているものと推察される。
本発明の成形金型を用いた本発明の金型成形方法では、押出手段は、離型抵抗計測手段により、エジェクトピンが成形品を第2金型から分離させるときの離型抵抗力を計測し、計測した離型抵抗力に応じて変化させた押出力で、成形品を第2金型側に押し出す。
このため、たとえ第1金型側の離型抵抗が、その初回時のときの大きさの約2倍、約5倍等と増え続け、10倍超にまで及んでいたとしても、押出手段は、計測した第2金型側の離型抵抗力に応じて変化させた押出力で、成形品を第2金型側に押し出すので、成形品は、押出手段の押出力で、必然的に第2金型側に押し出されることになる。
したがって、第1金型と第2金型とが離間するときには、成形品を、確実に第2金型側から取出すことができるようになる。
On the other hand, in the mold molding method of the present invention using the molding mold of the present invention, the mold release resistance measuring means measures the mold release resistance force when the molded product is separated from the second mold by the eject pin. Since the pushing force by the pushing means is changed according to the measured release resistance, the surface roughness of the cavity surface deteriorates due to secular change, and the release resistance on the first mold side increases. In addition, the molded product can be pushed out to the second mold side by the pushing force overcoming the mold release resistance by the pushing means.
That is, it is considered that the mold release resistance when the molded product is separated from the first mold is substantially the same as the mold release resistance force when the molded product is separated from the second mold by the eject pin.
From this, the mold release resistance on the first mold side continues to increase to about several times, about five times, etc. with respect to the magnitude of the mold release resistance when the number of molding shots is the first time, and several tens of times. If the release resistance when reaching 10,000 times is more than 10 times the initial value, the release resistance force on the second mold side is the same as the release resistance on the first mold side. It is assumed that the trend is increasing.
In the mold forming method of the present invention using the mold of the present invention, the extrusion means measures the mold release resistance force when the eject pin separates the molded product from the second mold by the mold release resistance measuring means. Then, the molded product is pushed out to the second mold side with the pushing force changed according to the measured release resistance.
For this reason, even if the mold release resistance on the first mold side continues to increase to about 2 times, about 5 times, etc. at the time of the first time, the extrusion means does not exceed 10 times. Since the molded product is pushed out to the second mold side with the pushing force changed according to the measured release resistance on the second die side, the molded product inevitably becomes the first by the pushing force of the pushing means. 2 It will be pushed out to the mold side.
Therefore, when the first mold and the second mold are separated from each other, the molded product can be reliably taken out from the second mold side.

(実施形態)
以下、本発明における成形金型を具体化した一実施形態について図面を参照して詳細に説明する。
図1及び図2は、本実施形態に係る射出成形金型1の構成を説明する断面図であり、図1は成形時の型締め状態、図2は成形後の型開き状態を示す。図3は、図2中、P部を拡大して示す説明図である。図4は、図1に示す射出成形金型1の電気制御回路を示す説明図である。
本実施形態では、射出成形金型1(成形金型)は、ハイブリッド自動車用モータのステータ部を構成する部品であるインサート部材91に、射出成形法により樹脂を射出し、固定金型10(第1金型)及び可動金型40(第2金型)で成形した成形品92をモールドさせた製品90を製造する金型である。インサート部材91は、略円環状のバスバ部と、これより径内側にバスバ部と接続した複数のコイル部とからなる。
(Embodiment)
Hereinafter, an embodiment in which a molding die according to the present invention is embodied will be described in detail with reference to the drawings.
1 and 2 are cross-sectional views illustrating the configuration of an injection mold 1 according to this embodiment. FIG. 1 shows a clamped state during molding, and FIG. 2 shows a mold open state after molding. FIG. 3 is an explanatory diagram showing the P portion in FIG. 2 in an enlarged manner. FIG. 4 is an explanatory view showing an electric control circuit of the injection mold 1 shown in FIG.
In the present embodiment, the injection mold 1 (molding mold) injects resin into the insert member 91 that is a component constituting the stator portion of the motor for a hybrid vehicle by an injection molding method, and the fixed mold 10 (first mold). This is a mold for producing a product 90 obtained by molding a molded product 92 formed by one mold) and a movable mold 40 (second mold). The insert member 91 includes a substantially annular bus bar portion and a plurality of coil portions connected to the bus bar portion on the inner diameter side.

この射出成形金型1は、図1乃至図4に示すように、固定金型10、押出手段30、可動金型40、エジェクトピン50、ロードセル70及び制御手段80等から構成されている。
固定金型10側には、押出手段30が、可動金型40側には、エジェクトピン50及びロードセル70がそれぞれ配設されており、射出成形金型1は、制御手段80で電気的に制御されて動作する。
As shown in FIGS. 1 to 4, the injection mold 1 includes a fixed mold 10, an extrusion means 30, a movable mold 40, an eject pin 50, a load cell 70, a control means 80, and the like.
An extrusion means 30 is disposed on the fixed mold 10 side, and an eject pin 50 and a load cell 70 are disposed on the movable mold 40 side. The injection mold 1 is electrically controlled by the control means 80. To work.

はじめに、制御手段80について説明する。
制御手段80は、図4に示すように、I/O端子81、CPU82、RAM83及びROM84等の公知のマイクロコンピュータを備えている。マイクロコンピュータには、ROM84等に記憶された後述する離型抵抗力計測プログラムや、その他のプログラムをCPU82にロードすることにより、所定の動作、例えば、後述する可動金型取付盤41及びエジェクトピン取付盤60の動作、ロードセル70の作動及び流体供給源25の駆動等を行う。
First, the control means 80 will be described.
As shown in FIG. 4, the control unit 80 includes a known microcomputer such as an I / O terminal 81, a CPU 82, a RAM 83, and a ROM 84. The microcomputer is loaded with a later-described release resistance force measurement program stored in the ROM 84 or the like, or other program on the CPU 82, so that a predetermined operation, for example, a movable mold mounting plate 41 and an eject pin mounting described later are mounted. The operation of the panel 60, the operation of the load cell 70, the driving of the fluid supply source 25, and the like are performed.

次に、固定金型10について説明する。
固定金型10は、型開閉方向(図1,2中、上下方向)に移動しない構造の固定金型取付盤11に固定されている。
この固定金型10は、4つのワーク押出しピン20及び、各ワーク押出しピン20と固定金型取付盤11との間に配設された4つの押出手段30を備えている。
ワーク押出しピン20は、型締め時に、押出手段30による押圧で可動金型40と共に挟持してインサート部材91を保持するピンであり、図5に示すように、固定金型10と可動金型40とが当接して形成されるドーナツ形状のキャビティ2の径方向外側で、周方向に4等分された位置に配置されている。なお、図5は、図1中、パーティング面PLから見た固定金型の平面図である。
Next, the fixed mold 10 will be described.
The fixed mold 10 is fixed to a fixed mold mounting board 11 having a structure that does not move in the mold opening / closing direction (vertical direction in FIGS. 1 and 2).
The fixed mold 10 includes four work push pins 20 and four push means 30 disposed between each work push pin 20 and the fixed mold mounting board 11.
The workpiece extruding pin 20 is a pin that holds the insert member 91 while being clamped together with the movable die 40 by pressing by the extruding means 30 at the time of mold clamping, and as shown in FIG. 5, the fixed die 10 and the movable die 40. Are arranged on the outer side in the radial direction of the doughnut-shaped cavity 2 formed in contact with each other at a position divided into four equal parts in the circumferential direction. FIG. 5 is a plan view of the fixed mold viewed from the parting surface PL in FIG.

押出手段30は、本実施形態では、ガスシリンダであり、その作動ガスの流量等に応じて、可動金型40側への押圧力を可変できる構成となっている。この押出手段30は、型締め時には、ワーク押出しピン20を可動金型40側に所定の押圧値で押圧する一方、可動金型40と固定金型10とが離間するときに、押圧力を所定の押圧値から変化させてワーク押出しピン20を押圧し、成形品92を可動金型40側に押し出す。
具体的には、各押出手段30は、それぞれ独立した4つの流体供給源25に図示しない配管で接続されている。この流体供給源25は、押出手段30に作動ガスを供給する。
各流体供給源25は、制御手段80のI/O端子81と電気的に接続されており、CPU82からの動作指令に基づいて、接続する押出手段30へ作動ガスの流量等を制御して、これを押出手段30に供給する構成となっている。このように、押出手段30は、接続する流体供給源25で制御した作動ガスの流量等に応じて、ワーク押出しピン20への押圧力を変化させる。
In the present embodiment, the pushing means 30 is a gas cylinder, and is configured to be able to vary the pressing force toward the movable mold 40 according to the flow rate of the working gas. When the mold is clamped, the extruding means 30 presses the work extruding pin 20 toward the movable mold 40 with a predetermined pressing value, while the movable mold 40 and the fixed mold 10 are separated from each other by a predetermined pressing force. The workpiece extruding pin 20 is pressed by changing the pressing value of the molded product 92 to the movable mold 40 side.
Specifically, each extrusion means 30 is connected to four independent fluid supply sources 25 by piping (not shown). This fluid supply source 25 supplies working gas to the extrusion means 30.
Each fluid supply source 25 is electrically connected to the I / O terminal 81 of the control means 80, and controls the flow rate of the working gas to the pushing means 30 to be connected based on the operation command from the CPU 82, This is configured to be supplied to the extrusion means 30. Thus, the pushing means 30 changes the pressing force to the workpiece pushing pin 20 according to the flow rate of the working gas controlled by the fluid supply source 25 to be connected.

次に、可動金型40について説明する。
可動金型40は、型開閉方向(図1,2中、上下方向)に移動可能な可動金型取付盤41に中間部材42を介して固定されている。可動金型40は、可動金型取付盤41による型開閉方向の移動により、固定金型10との型締め位置であるパーティング面PLまで移動して固定金型10と当接するようになっている。
可動金型40は、インサート部材91を載置する載置面40aを有し、この載置面40aより固定金型10側に突出した中央円柱部43を有している。中央円柱部43は、図5及び図6に示すように、載置したインサート部材91の径方向中央部に位置し、可動金型40と固定金型10とがパーティング面PL上で当接したときに、固定金型10との間にキャビティ2を形成する。なお、図6は、図1中、パーティング面PLから見た可動金型の平面図である。
キャビティ2には、射出成形時に、成形品92の材料であるモールド材MTが、固定金型10側に設けた図示しないスプルから、ランナ93及び図示しないゲートを通じて射出され、成形品92が成形される(図1参照)。
なお、モールド材MTとしては、本実施形態では、スチレン、飽和ポリエステル等の樹脂材である主材料と、アルミナ、ガラス繊維等の副材料と、離型材とを含む材料が挙げられる。
Next, the movable mold 40 will be described.
The movable mold 40 is fixed via an intermediate member 42 to a movable mold mounting plate 41 that can move in the mold opening / closing direction (vertical direction in FIGS. 1 and 2). The movable mold 40 moves to the parting surface PL which is a mold clamping position with the fixed mold 10 by the movement in the mold opening / closing direction by the movable mold mounting plate 41 and comes into contact with the fixed mold 10. Yes.
The movable mold 40 has a mounting surface 40a on which the insert member 91 is mounted, and has a central cylindrical portion 43 that protrudes from the mounting surface 40a toward the fixed mold 10 side. As shown in FIGS. 5 and 6, the central cylindrical portion 43 is positioned at the radial center portion of the inserted insert member 91, and the movable mold 40 and the fixed mold 10 abut on the parting surface PL. When this is done, the cavity 2 is formed between the fixed mold 10. FIG. 6 is a plan view of the movable mold as viewed from the parting surface PL in FIG.
At the time of injection molding, a molding material MT, which is a material of the molded product 92, is injected into the cavity 2 from a sprue (not shown) provided on the fixed mold 10 side through a runner 93 and a gate (not shown) to form the molded product 92. (See FIG. 1).
In this embodiment, the mold material MT includes a material including a main material that is a resin material such as styrene or saturated polyester, a sub-material such as alumina or glass fiber, and a release material.

また、可動金型40には、成形品92を当該可動金型40から分離させる棒状のエジェクトピン50が8箇所に配設されている。各エジェクトピン50は、インサート部材91のうち、隣り合うコイル部同士の間で、キャビティ2をその周方向に8等分する位置に配置されている(図6参照)。エジェクトピン50は、そのピン下端部51を、中間部材42の径内側に配設されたエジェクトピン取付盤60によって支持されている。
エジェクトピン取付盤60は、制御手段80のI/O端子81と電気的に接続した図示しない油圧シリンダと接続しており、型開閉方向(図1等の中、上下方向)に所定のストロークの範囲で移動可能に構成されている。
エジェクトピン取付盤60が上昇すると、これに伴って各エジェクトピン50も上昇して、各エジェクトピン50の上端面50aに当接した成形品92が、上方に持ち上げられて可動金型40の載置面40aから離間する。これにより、成形品92が可動金型40から分離する。
The movable mold 40 is provided with eight rod-like eject pins 50 for separating the molded product 92 from the movable mold 40. Each eject pin 50 is arrange | positioned in the position which divides the cavity 2 into 8 equally in the circumferential direction between adjacent coil parts among the insert members 91 (refer FIG. 6). The eject pin 50 is supported at its lower end 51 by an eject pin mounting board 60 disposed on the inner side of the intermediate member 42.
The eject pin mounting board 60 is connected to a hydraulic cylinder (not shown) that is electrically connected to the I / O terminal 81 of the control means 80, and has a predetermined stroke in the mold opening / closing direction (the vertical direction in FIG. 1 and the like). It is configured to be movable within a range.
When the eject pin mounting board 60 is raised, the eject pins 50 are also raised accordingly, and the molded product 92 that is in contact with the upper end surface 50a of each eject pin 50 is lifted upward to mount the movable mold 40. Separated from the mounting surface 40a. Thereby, the molded product 92 is separated from the movable mold 40.

次に、ロードセル70(離型抵抗計測手段)について説明する。
各エジェクトピン50のピン下端部51と、エジェクトピン取付盤60の当接部61との間に、ピン下端部51と当接部61とが当接可能な状態で、8つのロードセル70が配設されている。
このロードセル70は、公知の構成のロードセルであり、エジェクトピン50が成形品92(製品90)を可動金型40から分離させるときの離型抵抗力Rを計測する。
具体的には、ロードセル70は、エジェクトピン取付盤60の上昇により、成形品92が可動金型40の載置面40aから持ち上がるまでに、当接部61がロードセル70を介してピン下端部51を押圧したときの当該ロードセル70自身にかかる押圧力を、離型抵抗力Rとして計測する。
各ロードセル70は、制御手段80のI/O端子81と電気的に接続されており、離型抵抗力Rの計測値Rmを制御手段80のRAM83に出力するようになっている。
Next, the load cell 70 (release resistance measuring means) will be described.
Eight load cells 70 are arranged between the lower end 51 of each eject pin 50 and the abutment 61 of the eject pin mounting board 60 in a state where the lower end 51 and the abutment 61 can abut. It is installed.
The load cell 70 is a load cell having a known configuration, and measures the release resistance R when the eject pin 50 separates the molded product 92 (product 90) from the movable mold 40.
Specifically, in the load cell 70, the abutting portion 61 is moved through the load cell 70 until the molded product 92 is lifted from the placement surface 40 a of the movable die 40 due to the elevation of the eject pin mounting plate 60. The pressing force applied to the load cell 70 when the is pressed is measured as the release resistance R.
Each load cell 70 is electrically connected to the I / O terminal 81 of the control means 80, and outputs a measured value Rm of the release resistance R to the RAM 83 of the control means 80.

次に、射出成形金型1を用いた製品90の製造工程について、簡単に説明する。
インサート部材91を、可動金型40の載置面40aの所定位置に載置する。この後、可動金型40を固定金型10とのパーティング面PLまで移動させて、可動金型40と固定金型10とを当接させる。これにより、射出成形金型1にキャビティ2が形成される。
次いで、押出手段30によりワーク押出しピン20を可動金型40側に所定の押圧値で押圧して、キャビティ2内で載置面40aに載置したインサート部材91を保持する。
次いで、射出圧力が例えば10MPaの圧力値で、モールド材MTを、固定金型10側に設けた図示しないスプルから、ランナ93及び図示しないゲートを通じてキャビティ2に射出する。これにより、モールド材MTは、キャビティ2内にあるインサート部材91の周囲を被覆する形態に充填され、この後、この状態のモールド材MTを冷却する。
かくして、キャビティ2内のモールド材MTは、成形された形態の成形品92となり、インサート部材91が成形品92によってモールドされた製品90ができる。
なお、キャビティ2に到達するまでのランナ93及びゲートにおいて、硬化したモールド材MTは、後工程で製品90から除去される。
Next, the manufacturing process of the product 90 using the injection mold 1 will be briefly described.
The insert member 91 is placed at a predetermined position on the placement surface 40 a of the movable mold 40. Thereafter, the movable mold 40 is moved to the parting surface PL with the fixed mold 10 to bring the movable mold 40 and the fixed mold 10 into contact with each other. Thereby, the cavity 2 is formed in the injection mold 1.
Next, the pushing means 30 pushes the workpiece pushing pin 20 toward the movable mold 40 with a predetermined pressing value, and holds the insert member 91 placed on the placement surface 40 a in the cavity 2.
Next, the molding material MT is injected into the cavity 2 through a runner 93 and a gate (not shown) from a sprue (not shown) provided on the fixed mold 10 side at an injection pressure of 10 MPa, for example. Thereby, the mold material MT is filled in a form covering the periphery of the insert member 91 in the cavity 2, and thereafter, the mold material MT in this state is cooled.
Thus, the molding material MT in the cavity 2 becomes a molded product 92 in a molded form, and a product 90 in which the insert member 91 is molded by the molded product 92 is obtained.
Note that the cured molding material MT in the runner 93 and the gate until reaching the cavity 2 is removed from the product 90 in a subsequent process.

次に、射出成形金型1を用いた、本実施形態に係る金型成形方法について、図7乃至図9を用いて説明する。
図7は、射出成形金型1において、可動金型40と固定金型10とが離間する様子を示す図であり、押出手段30によりワーク押出しピン20を介して成形品92を可動金型40側に押し出した後の状態を示す。図8は、離型抵抗力計測プログラムの構成を示すフローチャートである。図9は、各ワーク押出しピン20の押圧力Fnを算出に用いる一覧表である。
Next, a mold forming method according to this embodiment using the injection mold 1 will be described with reference to FIGS.
FIG. 7 is a view showing a state in which the movable mold 40 and the fixed mold 10 are separated from each other in the injection mold 1, and the molded product 92 is moved by the pushing means 30 through the workpiece pushing pins 20. The state after pushing out to the side is shown. FIG. 8 is a flowchart showing the configuration of the release resistance measurement program. FIG. 9 is a table used to calculate the pressing force Fn of each workpiece pushing pin 20.

本実施形態に係る金型成形方法は、前述した製品90の製造工程において、キャビティ2にモールド材MTを射出して成形した後、可動金型40を固定金型10から離間するときに、成形品92を可動金型40に密着させた状態とし、その後、エジェクトピン50により成形品92を可動金型40から分離する射出成形方法を前提としている。
そして、本実施形態に係る金型成形方法は、(1)可動金型40と固定金型10とが離間するときに、固定金型10に設けられた押出手段30が、成形品92を可動金型40側に押し出すこと、(2)エジェクトピン50が、成形品92を可動金型40から分離させるときの離型抵抗力Rを、ロードセル70が計測すること、(3)ロードセル70が計測した離型抵抗力Rの計測値Rmに応じて、押出手段30の押出力Fの押出値Fnを変化させること、を特徴とする方法である。
The mold molding method according to the present embodiment is performed when the movable mold 40 is separated from the fixed mold 10 after the molding material MT is injected into the cavity 2 and molded in the manufacturing process of the product 90 described above. It is premised on an injection molding method in which the product 92 is brought into close contact with the movable mold 40 and then the molded product 92 is separated from the movable mold 40 by the eject pin 50.
In the mold forming method according to the present embodiment, (1) when the movable mold 40 and the fixed mold 10 are separated from each other, the extrusion means 30 provided in the fixed mold 10 moves the molded product 92. Extrusion to the mold 40 side, (2) The load cell 70 measures the release resistance R when the eject pin 50 separates the molded product 92 from the movable mold 40, and (3) the load cell 70 measures. The extrusion value Fn of the pushing force F of the pushing means 30 is changed according to the measured value Rm of the mold release resistance R.

本実施形態に係る金型成形方法について詳細に説明する。
この金型成形方法は、複数の製品90を連続で繰り返し製造するにあたり、図8に示す離型抵抗力計測プログラムの手順に基づいて行われる。
すなわち、この離型抵抗力計測プログラムは、製品90を製造する数量に相当する回数分、制御手段80によって毎回実行される。
離型抵抗力計測プログラムは、初期状態として、成形品92がキャビティ2内で成形された後、可動金型40と固定金型10とが型締めしたままの状態(図1に示す状態)から、開始される。
The mold forming method according to this embodiment will be described in detail.
This mold forming method is performed based on the procedure of the mold release resistance measurement program shown in FIG. 8 when repeatedly manufacturing a plurality of products 90 continuously.
In other words, this release resistance measuring program is executed by the control means 80 every time corresponding to the number of products 90 to be manufactured.
The mold release resistance measurement program starts from a state where the movable mold 40 and the fixed mold 10 are clamped after the molded product 92 is molded in the cavity 2 (the state shown in FIG. 1). To be started.

まず、ステップS10では、1回前に成形した先の成形品92について、可動金型40に密着した状態の成形品92を可動金型40から分離させるときに、8本のエジェクトピン50がそれぞれ受ける離型抵抗力Rを、各ロードセル70により計測する。
具体的には、8本のエジェクトピン50、すなわち、第1乃至第8エジェクトピン51,52,53,54,55,56,57,58がそれぞれ受ける離型抵抗力Rを、これらと個々に当接する8つのロードセル70が計測する。
なお、先の成形品92が存在しない場合、すなわち製品90となる成形品92の成形が初回目になる場合には、例えば、製品90とは異なるテスト品向け等の成形品92を用いて、離型抵抗力Rを計測することが好ましい。
First, in step S10, when the molded product 92 that is in close contact with the movable mold 40 is separated from the movable mold 40 with respect to the previous molded product 92 molded once before, the eight eject pins 50 are respectively provided. The release resistance R received is measured by each load cell 70.
Specifically, the release resistance R received by the eight eject pins 50, that is, the first to eighth eject pins 51, 52, 53, 54, 55, 56, 57, and 58, respectively, is individually received. The eight load cells 70 that abut are measured.
When the previous molded product 92 does not exist, that is, when the molded product 92 to be the product 90 is formed for the first time, for example, a molded product 92 for a test product different from the product 90 is used. It is preferable to measure the release resistance R.

次に、ステップS11では、各ロードセル70は、第1乃至第8エジェクトピン51,52,53,54,55,56,57,58で計測した離型抵抗力Rの計測値Rm(1≦m≦8)を制御手段80に出力し、制御手段80で8つの計測値Rmを読み取り、記憶する。
なお、図9には、計測値Rmとして、第1エジェクトピン51で計測されたものをR、第2エジェクトピン52で計測されたものをR、以下の同様にして、第8エジェクトピン58で計測されたものをRで表記する。
Next, in step S11, each load cell 70 has a measured value Rm (1 ≦ m) of the release resistance R measured by the first to eighth eject pins 51, 52, 53, 54, 55, 56, 57, 58. ≦ 8) is output to the control means 80, and the eight measurement values Rm are read and stored by the control means 80.
In FIG. 9, the measured value Rm is R 1 measured with the first eject pin 51, R 2 measured with the second eject pin 52, and the eighth eject pin in the same manner. those measured at 58 is denoted by R 8.

次に、ステップS12では、1本の押出しピン20に対し、3つのエジェクトピン50にかかる3つ分の離型抵抗力Rであるピン離型抵抗を、3つの計測値Rmを用いて制御手段80で演算する。
3つの計測値Rmは、参照する図6及び図9に示すように、キャビティ2の径方向に対し、4本のワーク押出しピン20(第1,第2,第3,第4ワーク押出しピン21,22,23,24)と隣接するエジェクトピン50、すなわち第2,第4,第6,第8,エジェクトピン52,54,56,58に受ける計測値Rmを、中心値としてまず選択する。その上で、この中心値に対応したエジェクトピン50と、キャビティ2の径方向に隣り合うエジェクトピン50に受ける2つの計測値Rmを、隣接値として用いる。
具体的には、第1ワーク押出しピン21に対し、これと径方向に隣接する第2エジェクトピン52は、第1,第3エジェクトピン51,53と隣り合う。
したがって、第2エジェクトピン52での計測値Rmは計測値Rであり、第1,第3エジェクトピン51,53での計測値Rmはそれぞれ計測値R、Rであるので、第1ワーク押出しピン21にかかるピン離型抵抗の算出では、計測値R、R、Rを用いる。
同様に、第2ワーク押出しピン22にかかるピン離型抵抗の算出では、計測値R、R、Rを、第3ワーク押出しピン23にかかるピン離型抵抗の算出では、計測値R、R、Rを、第4ワーク押出しピン24にかかるピン離型抵抗の算出では、計測値R、R、Rを、それぞれ用いる。
ピン離型抵抗の算出方法としては、例えば、3つの計測値Rmの平均値を演算値Cnとするほか、中心値である計測値に、隣接値である2つの計測値にそれぞれ1/2倍した積を各々加算して、このときの総和を1/2倍した演算値Cn等を算出する方法が挙げられる。
Next, in step S12, the pin release resistance, which is the release resistance force R for the three eject pins 50, is controlled by using the three measured values Rm for one push pin 20. Calculate with 80.
As shown in FIGS. 6 and 9 to be referred to, the three measured values Rm correspond to the four workpiece pushing pins 20 (first, second, third and fourth workpiece pushing pins 21 with respect to the radial direction of the cavity 2. , 22, 23, 24), the measured value Rm received by the eject pin 50 adjacent to the second, fourth, sixth, eighth, eject pins 52, 54, 56, 58 is first selected as the center value. Then, the two measured values Rm received by the eject pin 50 corresponding to the center value and the eject pin 50 adjacent in the radial direction of the cavity 2 are used as adjacent values.
Specifically, the second eject pin 52 that is radially adjacent to the first workpiece pushing pin 21 is adjacent to the first and third eject pins 51 and 53.
Therefore, the measurement value Rm at the second eject pin 52 is the measurement value R 2 , and the measurement values Rm at the first and third eject pins 51 and 53 are the measurement values R 1 and R 2 , respectively. In the calculation of the pin release resistance applied to the workpiece pushing pin 21, the measured values R 1 , R 2 , and R 3 are used.
Similarly, in the calculation of the pin release resistance applied to the second workpiece extrusion pin 22, the measured values R 3 , R 4 and R 5 are used. In the calculation of the pin release resistance applied to the third workpiece extrusion pin 23, the measured value R 5 , R 6 , and R 7 are used to calculate the pin release resistance applied to the fourth workpiece extrusion pin 24, and the measured values R 7 , R 8 , and R 1 are used.
As a method for calculating the pin release resistance, for example, the average value of the three measured values Rm is set as the calculated value Cn, and the measured value as the center value is doubled to the two measured values as adjacent values. There is a method of adding the obtained products and calculating an operation value Cn or the like obtained by multiplying the total at this time by 1/2.

次に、ステップS13では、制御手段80において、可動金型40を固定金型10から離間するとき、4本のワーク押出しピン20を、それぞれの押出手段30で押圧するときの押圧力Fの押圧値Fnを決定する。この押圧値Fnは、ステップS12で算出したピン離型抵抗の演算値Cnに応じて、それぞれの演算値Cnより大きくなるように変化させて設定される。
具体的には、第1ワーク押出しピン21の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより大きく設定する。同様に、第2ワーク押出しピン22の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、第3ワーク押出しピン23の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、第4ワーク押出しピン24の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、いずれも大きく設定する。
Next, in step S <b> 13, when the control unit 80 separates the movable mold 40 from the fixed mold 10, the pressing force F is pressed when the four workpiece pushing pins 20 are pressed by the respective pushing means 30. The value Fn is determined. The pressing value Fn is set so as to be larger than the calculated value Cn according to the calculated value Cn of the pin release resistance calculated in step S12.
Specifically, the pressing value F 1 of the first workpiece pushing pin 21 is set larger than the calculated value C 1 calculated using the measured values R 1 , R 2 , and R 3 . Similarly, the pressing pressure value F 2 of the second workpiece push-out pin 22, from the measurement value R 3, R 4, calculated value C 2 calculated using the R 5, the pressing pressure value F 3 of the third workpiece push-out pin 23, from the measurement value R 5, R 6, R 7 calculated value C 3 calculated using the pressing pressure value F 4 of the fourth work extrusion pin 24, was calculated using the measured values R 7, R 8, R 1 operation than the value C 4, both set large.

次に、ステップS14では、制御手段80のCPU82が、ステップS13で決定した押圧値Fnに基づいて、各流体供給源25を動作指令して、接続する押出手段30へ供給する作動ガスの流量等を制御する。
次に、ステップS15において、可動金型40が固定金型10から離間する際に、流体供給源25で制御された作動ガスの流量等に応じた押出手段30の押圧力F、すなわちステップS13で決定した4つの押圧値Fnで、各ワーク押出しピン20(第1乃至第4ワーク押出しピン21,22, 23, 24)を押して、成形品92を可動金型40側に押し出す。すると、図7に示すように、成形品92は、固定金型10から離間し、可動金型40と密着した状態で、可動金型40とともに型開方向(図7中、下方向)に移動する。
可動金型40が型開き状態になったら、エジェクトピン取付盤60を上昇させ、8つのエジェクトピン50で成形品92(製品90)を持ち上げて、可動金型40から分離する(図2参照)。
Next, in step S14, the CPU 82 of the control means 80 commands each fluid supply source 25 to operate based on the pressing value Fn determined in step S13, and the flow rate of the working gas supplied to the pushing means 30 to be connected. To control.
Next, when the movable mold 40 moves away from the fixed mold 10 in step S15, the pressing force F of the pushing means 30 corresponding to the flow rate of the working gas controlled by the fluid supply source 25, that is, in step S13. Each workpiece push pin 20 (first to fourth workpiece push pins 21, 22, 23, 24) is pushed with the determined four pressing values Fn, and the molded product 92 is pushed to the movable mold 40 side. Then, as shown in FIG. 7, the molded product 92 moves away from the fixed mold 10 and in close contact with the movable mold 40, and moves in the mold opening direction (downward in FIG. 7) together with the movable mold 40. To do.
When the movable mold 40 is in the mold open state, the eject pin mounting plate 60 is raised, and the molded product 92 (product 90) is lifted by the eight eject pins 50 and separated from the movable mold 40 (see FIG. 2). .

次に、ステップS16では、製品90を引き続き連続で製造するにあたり、次の成形品92の成形を継続して行うか否かについて判断する。継続して成形を行う場合は、YESに進んで、ステップS10を実行する。
但し、ステップS15を実行する際に、8本のエジェクトピン50がそれぞれ受ける離型抵抗力Rを各ロードセル70で計測しておけば、YESに進んで、ステップS11を実行すれば良い。
一方、次の成形品92の成形を継続して行なわない場合は、NOに進み、離型抵抗力計測プログラムの実行を終了する。
Next, in step S16, when the product 90 is continuously manufactured, it is determined whether or not the next molded product 92 is continuously formed. When performing shaping | molding continuously, it progresses to YES and performs step S10.
However, if step S15 is performed and the release resistance R received by each of the eight eject pins 50 is measured by each load cell 70, the process proceeds to YES, and step S11 may be performed.
On the other hand, when the next molded product 92 is not continuously molded, the process proceeds to NO, and the execution of the release resistance measuring program is terminated.

ところで、本実施形態に係る金型成形方法のように、ハイブリッド自動車用モータの固定子(インサート部材91に対応)を樹脂でモールドした製品を製造するにあたり、例えば、スチレン、飽和ポリエステル等の樹脂材のほか、アルミナ、ガラス繊維等の比較的硬質の混合材料を含むモールド材を、射出成形法により射出して固定金型及び可動金型で成形する場合がある。
このような成形の場合、モールド材中の混合材料が両方の金型のキャビティ面に触れて、このキャビティ面が粗くなる。キャビティ面の表面粗度は、経年変化によって次第に悪化する。このような表面粗度の悪化は、固定金型及び可動金型の両側で同じように進行するものと推察される。すなわち、成形品が固定金型から離間するときの離型抵抗力と、エジェクトピンにより成形品を可動金型から分離させるときの離型抵抗力とは、ほぼ同程度の大きさになるものと考えられる。
出願人は、この前提の下、表面粗度が悪化していく現象について、可動金型側の離型抵抗力を計測して詳しく解析した。
By the way, in manufacturing a product in which a stator (corresponding to the insert member 91) of a hybrid vehicle motor is molded with a resin as in the mold forming method according to the present embodiment, for example, a resin material such as styrene or saturated polyester. In addition, there is a case where a molding material containing a relatively hard mixed material such as alumina or glass fiber is injected by an injection molding method and molded with a fixed mold and a movable mold.
In such molding, the mixed material in the mold material touches the cavity surfaces of both molds, and the cavity surfaces become rough. The surface roughness of the cavity surface gradually deteriorates with aging. Such deterioration of the surface roughness is assumed to proceed in the same way on both sides of the fixed mold and the movable mold. That is, the mold release resistance force when the molded product is separated from the fixed mold and the mold release resistance force when the molded product is separated from the movable mold by the eject pin are approximately the same magnitude. Conceivable.
Under this assumption, the applicant measured the release resistance on the movable mold side and analyzed in detail the phenomenon that the surface roughness deteriorates.

解析の結果を図10乃至図12に示す。図10は、成形品の成形回数(成形ショット数)、固定金型の面粗度Rz及び、エジェクトピンにより成形品を可動金型から分離させるときの離型抵抗力Rとの関係について、調査した結果を示す。図11は、図10における成形ショット数と離型抵抗力Rとの関係について示したグラフである。図12は、図10における成形ショット数と面粗度Rzとの関係について示したグラフである。
なお、面粗度Rzは、JIS法に規定された十点平均粗さRzである。離型抵抗力Rは、エジェクトピン50が成形品92を可動金型40から分離させるときに、計測した離型抵抗力Rである。
図12から容易に理解できるように、固定金型の面粗度Rzは、成形ショット数の増加に概ね比例して悪化していることが判る。これは、前述したように、モールド材中の混合材料が固定金型側のキャビティ面に触れて、経年変化によって次第に悪化したものみられ、可動金型でも、固定金型と同様に、面粗度Rzの悪化が進行しているものと考えられる。
その一方で、図11に示したグラフを見ると、可動金型側の離型抵抗力Rが図示されているが、この離型抵抗力Rの増加傾向は、固定金型側でも同じになるものと推察される。こうした前提の下、固定金型側のキャビティ面の面粗度Rzは、成形ショット数の増加と共に悪化して、特に成形ショット数が数万から数十万回程度になってくると、成形品を固定金型から離間させるときの離型抵抗は、数千回までの状態に比べて極度に増大することが新たに判った。
The analysis results are shown in FIGS. FIG. 10 shows the relationship between the number of moldings (number of molding shots), the surface roughness Rz of the fixed mold, and the release resistance R when the molded article is separated from the movable mold by the eject pin. The results are shown. FIG. 11 is a graph showing the relationship between the number of molding shots and the release resistance R in FIG. FIG. 12 is a graph showing the relationship between the number of molding shots and the surface roughness Rz in FIG.
The surface roughness Rz is a ten-point average roughness Rz defined in the JIS method. The release resistance force R is the release resistance force R measured when the eject pin 50 separates the molded product 92 from the movable mold 40.
As can be easily understood from FIG. 12, it can be seen that the surface roughness Rz of the fixed mold is deteriorated in proportion to the increase in the number of molding shots. As described above, this is because the mixed material in the mold material touches the cavity surface on the fixed mold side and gradually deteriorates due to secular change. It is considered that the deterioration of the degree Rz is progressing.
On the other hand, when the graph shown in FIG. 11 is seen, the mold release resistance R on the movable mold side is shown, but the increasing tendency of the mold release resistance R is the same on the fixed mold side. Inferred. Under these assumptions, the surface roughness Rz of the cavity surface on the fixed mold side deteriorates as the number of molding shots increases, especially when the number of molding shots increases from tens of thousands to hundreds of thousands of times. It has been newly found that the mold release resistance when the mold is separated from the fixed mold is extremely increased compared to the state up to several thousand times.

さらに、成形品を固定金型から離間させるときの離型抵抗、すなわち可動金型側の離型抵抗力Rについて、成形ショット数が初回時近傍の離型抵抗力Rの大きさを1としたとき、例えば、数千回から一万回前後の時点で初回時の約2倍、数万回の時点で初回時の約5倍等と、成形ショット数の増加数のわりには離型抵抗は急激に大きくなり、その後も、離型抵抗は、成形ショット数の増加と共に増え続け、数十万回にも達すると、その離型抵抗は、実に初回時の10倍超にも及んでいることも、新たに確認できた。
具体的に、図10及び図11に示したデータを用いて説明する。すなわち、成形ショット数が初回、10,000回、100,000回、400,000回のときの離型抵抗力Rは、この順に、3.92×10(N)、9.8×10(N)、29.4×10(N)、49.0×10(N)となっている。初回時の離型抵抗力Rの計測値3.92×10(N)を1とした場合、10,000回でその約2.5倍、100,000回で約7.5倍と、成形ショット数の増加と共に急激に増え続けている。400,000回にもなると49.0×10(N)に達しており、実に12倍以上となっている。
このように、成形ショット数が初回時近傍の離型抵抗力Rの大きさと、数十万回を超えた離型抵抗力Rの大きさとでは、離型抵抗の大きさに10倍超の大きな差異が生じてくる。
Furthermore, regarding the mold release resistance when the molded product is separated from the fixed mold, that is, the mold release resistance force R on the movable mold side, the magnitude of the mold release resistance force R when the number of molding shots is around the first time is set to 1. Sometimes, for example, about twice as many as the first time at the time of several thousand to about 10,000 times, about five times the first time at the time of tens of thousands, etc. The mold release resistance continues to increase as the number of molding shots increases, and after that, when it reaches hundreds of thousands of times, the mold release resistance is actually more than 10 times that of the first time. Also confirmed anew.
Specifically, description will be made using the data shown in FIGS. That is, the release resistance R when the number of forming shots is the first, 10,000 times, 100,000 times, and 400,000 times is 3.92 × 10 3 (N), 9.8 × 10 3 (N), and 29.4 × 10 3 (in this order). N), 49.0 × 10 3 (N). Assuming that the measured value 3.92 × 10 3 (N) of the release resistance R at the first time is 1, the number of molding shots increases as the number of molding shots increases approximately 10,000 times to 10,000 times and approximately 7.5 times to 100,000 times. It continues to increase rapidly. When it reaches 400,000 times, it reaches 49.0 × 10 3 (N), which is more than 12 times.
Thus, the magnitude of the mold release resistance R near the first time and the magnitude of the mold release resistance R exceeding several hundred thousand times are larger than the magnitude of the mold release resistance by more than 10 times. Differences arise.

一般に、本実施形態に係る金型成形方法のような固定金型及び可動金型を用いた射出成形では、これらの金型は、その耐用回数として、数十万回を超える成形ショット数まで使用される。
こうした使用事情の下、従来の射出成形方法のように、一定のバネ力で作用する押出ピンを固定金型側に設けても、バネ力を一定にしたままでバネを使用し続けると、固定金型及び可動金型を使用している間に、バネ力が成形品を固定金型から離間させるときの離型抵抗力より小さくなる場合が、成形ショット数が比較的少ない時点で生じ得る。
すると、可動金型と固定金型とが離間するときに、バネ力との差分、固定金型側に残る離型抵抗力に起因して、成形品が固定金型側に残る虞がある。
In general, in the injection molding using a stationary mold and a movable mold as in the mold molding method according to the present embodiment, these molds are used up to the number of molding shots exceeding hundreds of thousands as the number of times they can be used. Is done.
Under these circumstances, even if an extrusion pin that operates with a constant spring force is provided on the fixed mold side, as in the conventional injection molding method, if the spring is used with the spring force kept constant, it will be fixed. While using the mold and the movable mold, the case where the spring force is smaller than the resistance to release when the molded product is separated from the fixed mold may occur when the number of molding shots is relatively small.
Then, when the movable mold and the fixed mold are separated from each other, the molded product may remain on the fixed mold side due to the difference from the spring force and the mold release resistance force remaining on the fixed mold side.

これに対し、本発明の射出成形金型1を用いた、本実施形態に係る金型成形方法は、エジェクトピン50により成形品92(製品90)を可動金型40から分離させるときの離型抵抗力Rをロードセル70が計測し、押出手段30による押出力Fを、計測した離型抵抗力Fの押圧値Fnに応じて変化させているので、たとえ、経年変化によりキャビティ面2の表面粗度が悪化し固定金型10側の離型抵抗が増加しても、離型抵抗に打勝つ押出手段30による押出力Fで、成形品92を可動金型40側に押し出すことができる。
すなわち、成形品92を固定金型10から離間するときの離型抵抗は、エジェクトピン50により成形品92を可動金型40から分離させるときの離型抵抗力Rと、ほぼ同じ大きさであると考えられる。
このことから、固定金型40側の離型抵抗について、成形ショット数が初回時のときの離型抵抗の大きさに対し、約2倍、約5倍等と増加の一途をたどり、数十万回にも達したときの離型抵抗が、初回時の10倍超にも及ぶようであれば、可動金型40側の離型抵抗力Rも、固定金型10側の離型抵抗と同様な増加傾向になっているものと推察される。
本発明の射出成形金型1を用いた、本実施形態に係る金型成形方法では、押出手段30は、エジェクトピン50が成形品92を可動金型40から分離させるときの離型抵抗力Rを、ロードセル70により成形品92を1回行う度に毎回計測し、計測した離型抵抗力Rの計測値Rmに応じて大きく変化させた押出力Fnで、成形品92を可動金型40側に押し出す。
このため、たとえ固定金型10側の離型抵抗が、その初回時のときの大きさの約2倍、約5倍、10倍超にまで及んでも、押出手段30は、成形ショットを行う毎に毎回計測した可動金型40側の離型抵抗力Rに応じて変化させた押出力Fの押出値Fnで、成形品92を可動金型40側に押し出すので、成形品92は、押出手段30の押出力Fで、必然的に可動金型40側に押し出されることになる。
したがって、可動金型40と固定金型10とが離間するときに、成形品92を、確実に可動金型40側から取出すことができるようになる。
On the other hand, in the mold forming method according to the present embodiment using the injection mold 1 of the present invention, the mold 92 when the molded product 92 (product 90) is separated from the movable mold 40 by the eject pin 50 is used. Since the load cell 70 measures the resistance force R and the pushing force F by the pushing means 30 is changed according to the measured pressing value Fn of the release resistance force F, even if the surface roughness of the cavity surface 2 is changed due to secular change. Even if the degree deteriorates and the mold release resistance on the fixed mold 10 side increases, the molded product 92 can be pushed out to the movable mold 40 side by the pushing force F by the extrusion means 30 that overcomes the mold release resistance.
That is, the mold release resistance when the molded product 92 is separated from the fixed mold 10 is almost the same as the mold release resistance force R when the molded product 92 is separated from the movable mold 40 by the eject pin 50. it is conceivable that.
From this, the mold release resistance on the fixed mold 40 side continues to increase to about several times, about five times, etc. with respect to the magnitude of the mold release resistance when the number of molding shots is the first time. If the release resistance when reaching 10,000 times is more than 10 times the first time, the release resistance R on the movable mold 40 side is also equal to the release resistance on the fixed mold 10 side. It is inferred that the trend is similar.
In the mold forming method according to the present embodiment using the injection mold 1 of the present invention, the extrusion means 30 causes the release force R when the eject pin 50 separates the molded product 92 from the movable mold 40. Is measured each time the molded product 92 is carried out once by the load cell 70, and the molded product 92 is moved to the movable mold 40 side with the pressing force Fn which is greatly changed according to the measured value Rm of the measured release resistance R. Extrude into.
For this reason, even if the mold release resistance on the fixed mold 10 side reaches about twice, about 5 times, or more than 10 times the size at the first time, the extrusion means 30 performs a molding shot. Since the molded product 92 is extruded to the movable mold 40 side with the extrusion value Fn of the pushing force F changed according to the release resistance R on the movable mold 40 side measured every time, the molded product 92 is extruded. The pushing force F of the means 30 inevitably pushes out to the movable mold 40 side.
Therefore, when the movable mold 40 and the fixed mold 10 are separated from each other, the molded product 92 can be reliably taken out from the movable mold 40 side.

また、本実施形態では、製品90は、ハイブリッド自動車用モータのステータ部を構成する部品であるインサート部材91に、射出成形法により樹脂を射出し、固定金型10及び可動金型40で成形した成形品92をモールドさせたものであり、製品90一個当たりの価格が高い。
射出成形金型1を用いた、本実施形態に係る金型成形方法によれば、固定金型10側の離型抵抗が増大し固定金型10に成形品92が残ることもなく、無理に成形品92を固定金型10から取り出すこともない。
したがって、固定金型10に残った成形品92を無理に取り出して、この成形品92を製品90として使用することが困難となり、この製品90を廃棄することに起因した経済的損失の発生を防止することができる。
Further, in the present embodiment, the product 90 is molded by the fixed mold 10 and the movable mold 40 by injecting resin to the insert member 91 which is a component constituting the stator part of the motor for the hybrid vehicle by an injection molding method. The molded product 92 is molded, and the price per product 90 is high.
According to the mold forming method according to the present embodiment using the injection mold 1, the mold release resistance on the fixed mold 10 side is increased, and the molded product 92 does not remain in the fixed mold 10, forcibly. The molded product 92 is not removed from the fixed mold 10.
Therefore, it is difficult to forcibly take out the molded product 92 remaining in the fixed mold 10 and use the molded product 92 as the product 90, thereby preventing the occurrence of economic loss due to the disposal of the product 90. can do.

(変形形態)
実施形態の射出成形金型1を用いた、本変形形態に係る金型成形方法について、参照する図10及び図11と、図13とを用いて説明する。
図13は、本変形形態に係る金型成形方法で行う押圧手段30の点検手順を示すフローチャートである。
本変形形態に係る金型成形方法は、前述した実施形態の金型成形方法とは、押圧手段30の押圧力Fを変化させるのに用いる手法が異なる。また、実施形態では、射出成形金型1に構成された押圧手段30を、ガスシリンダとした。これに対し、本変形形態では、押圧手段30をコイルバネとして構成されている。
しかしながら、本変形形態で用いる射出成形金型1は、押圧手段30がコイルバネであり、流体供給源25を備えていない点以外では、本実施形態の射出成形金型1と同様である。
したがって、本変形形態に係る金型成形方法を中心に説明し、実施形態と同様な部分の説明は、簡単または省略する。
(Deformation)
A mold forming method according to this modification using the injection mold 1 of the embodiment will be described with reference to FIGS. 10 and 11 and FIG.
FIG. 13 is a flowchart showing an inspection procedure of the pressing means 30 performed by the mold forming method according to the present modification.
The mold forming method according to this modified embodiment is different from the mold forming method according to the above-described embodiment in a method used to change the pressing force F of the pressing means 30. In the embodiment, the pressing means 30 configured in the injection mold 1 is a gas cylinder. On the other hand, in this modification, the pressing means 30 is configured as a coil spring.
However, the injection mold 1 used in this modification is the same as the injection mold 1 of the present embodiment except that the pressing means 30 is a coil spring and the fluid supply source 25 is not provided.
Therefore, it demonstrates centering on the metal mold | die shaping | molding method which concerns on this modification, and description of the part similar to embodiment is abbreviate | omitted or abbreviate | omitted.

本変形形態に係る金型成形方法について詳細に説明する。
この金型成形方法は、複数の製品90を繰り返し製造するにあたり、図13に示す押圧手段30の点検に基づいたものとなっている。
この押圧手段30の点検は、成形ショット数の増加に伴う固定金型10及び可動金型40の離型抵抗の増大傾向と、取付けるコイルバネ(押圧手段30)の性能とを考慮した上で実施される定期点検であり、実際には、例えば、一月に一回程度等の頻度で定期的に実施される。
すなわち、一例として挙げた図10及び図11を見ても判るように、固定金型10及び可動金型40の離型抵抗力Rの大きさは、成形ショット数が数千個から約10,000回に達するまでに、例えば、初回時の2倍超と急激に増大し、その後、成形ショット数の増加に伴う離型抵抗力Rの上昇率は、数千個から約10,000回までの上昇率より小さくなる傾向にあるものの、初回時の約2倍、約5倍等と増加の一途をたどり、数十万回にも達したときの離型抵抗は、初回時の10倍超にも及ぶものと推察される。
押圧手段30は、所定のバネ定数を有したコイルバネである。一般に、コイルバネでは、設定されたバネ定数から生じるバネ力において、当該コイルバネにかかる抵抗力として、外力に当該コイルバネが高い信頼性をもって耐えうることができるバネ力の許容範囲は、設定された当該バネ力の数倍までにも及ばないものと考えられる。
The mold forming method according to this modification will be described in detail.
This mold forming method is based on the inspection of the pressing means 30 shown in FIG. 13 when repeatedly manufacturing a plurality of products 90.
The inspection of the pressing means 30 is performed in consideration of the tendency of the mold release resistance of the fixed mold 10 and the movable mold 40 to increase as the number of molding shots increases and the performance of the coil spring (pressing means 30) to be attached. In practice, for example, it is regularly performed at a frequency of about once a month.
That is, as can be seen from FIGS. 10 and 11 given as an example, the magnitude of the mold release resistance R of the fixed mold 10 and the movable mold 40 is from several thousand shots to about 10,000 times. For example, the rate of increase in the release resistance R accompanying the increase in the number of molding shots is higher than the rate of increase from several thousand to about 10,000 times. Although it tends to be small, it has continued to increase to about 2 times, about 5 times, etc. at the first time, and the mold release resistance when reaching hundreds of thousands of times is more than 10 times the first time It is guessed.
The pressing means 30 is a coil spring having a predetermined spring constant. Generally, in the coil spring, the allowable range of the spring force that can withstand the external force with high reliability as the resistance force applied to the coil spring in the spring force generated from the set spring constant is the set spring. It is thought that it does not reach several times the power.

このようなバネの性能上における信頼性の観点から、射出成形金型1に取付けたコイルバネのバネ力で、増大していく離型抵抗力Rに耐えうることができる成形ショット数の許容範囲は、成形ショット数が比較的少ないときと、比較的多いときとではそれぞれ異なるものと考えられる。
すなわち、成形ショット数が比較的少ない時点では、例えば、初回目から数千個回までの成形ショット数で、さらに、その後、たとえ新しいバネに交換したとしても、バネ交換後に成形した数万回の成形ショット数で、バネ力が成形品を固定金型10から離間させるときの離型抵抗力Rより小さくなる場合が生じ得る。
その一方、成形ショット数が比較的多くなってくると、バネ交換後に成形した数万回から数十万回程度の成形ショット数で、バネ力が離型抵抗力Rより小さくなる場合が生じる。
そうすると、成形ショット数が初回時のときに取付けられているコイルバネに対しては、成形ショット数が数千回になったときに、最初の押圧手段30の点検を実施する必要があり、その次に行う押圧手段30の点検は、最初の点検後に成形した成形ショット数が数万回になったときに実施する必要がある。
さらに、2回目以降に行われる点検のタイミングとして、点検は、このような考え方で繰り返し行われ、先の点検からその次の点検を行うまでに成形を予定している成形ショット数を、次回の押圧手段30の点検を行う目安時期として、解析の結果を図10及び図11を参考に予測した設定回数kを設定する。
From the viewpoint of reliability in terms of the performance of such a spring, the allowable range of the number of molding shots that can withstand the increasing release resistance R with the spring force of the coil spring attached to the injection mold 1 is It is considered that the number of molding shots is different when the number is relatively small and when the number is relatively large.
That is, at a time when the number of molding shots is relatively small, for example, the number of molding shots from the first to several thousand, and even after that, even if the spring is replaced with a new spring, the number of molding shots after the spring replacement is tens of thousands of times. Depending on the number of molding shots, there may occur a case where the spring force is smaller than the mold release resistance R when the molded product is separated from the fixed mold 10.
On the other hand, when the number of molding shots is relatively large, the spring force may be smaller than the mold release resistance force R when the number of molding shots is approximately tens of thousands to hundreds of thousands after the spring replacement.
Then, for the coil spring attached when the number of forming shots is the first time, it is necessary to inspect the first pressing means 30 when the number of forming shots reaches several thousand, and then The inspection of the pressing means 30 performed in (1) needs to be performed when the number of molding shots molded after the first inspection reaches tens of thousands.
Furthermore, as the timing of inspections to be performed after the second inspection, inspections are repeatedly performed based on this concept, and the number of molding shots scheduled for molding from the previous inspection to the next inspection is determined next time. As a reference time for inspecting the pressing means 30, a set number k of predicted results of analysis with reference to FIGS. 10 and 11 is set.

定期点検は、初期状態として、先の成形品92を成形した後、その次の成形品92を成形しようとする状態において、開始される。
まず、ステップS20では、先の成形品92の成形が、成形ショット数が(k−1)回目に該当する否かを判別する。(k−1)回目に該当する場合は、YESに進んで、ステップS21を実行する。その反対に、該当せず、(k−1)回目に満たない場合は、NOに進み、ステップS22を実行して、成形ショット数が(k−1)回目になるまで成形品92の成形を繰り返し継続する。
次に、ステップS21では、(k−1)回目の成形品92の成形を終えて、その次となるk回目の成形品92を成形する際、可動金型40に密着した状態の成形品92を可動金型40から分離させるときに、8本のエジェクトピン50がそれぞれ受ける離型抵抗力Rを、各ロードセル70で計測する。具体的には、8本のエジェクトピン50、すなわち、第1乃至第8エジェクトピン51,52,53,54,55,56,57,58がそれぞれ受ける離型抵抗力Rを、これらと個々に当接するロードセル70を用いて計測する。
The periodic inspection is started in a state where the next molded product 92 is to be molded after the previous molded product 92 is molded as an initial state.
First, in step S20, it is determined whether or not the molding of the previous molded product 92 corresponds to the (k-1) th molding shot. When it corresponds to the (k-1) th time, the process proceeds to YES, and Step S21 is executed. On the other hand, if not applicable and less than the (k−1) th time, the process proceeds to NO, and step S22 is executed to mold the molded product 92 until the number of molding shots reaches the (k−1) th time. Continue repeatedly.
Next, in step S21, after the molding of the (k-1) -th molded product 92 is finished and the next k-th molded product 92 is molded, the molded product 92 in close contact with the movable mold 40 is formed. When each of the load cells 70 is separated from the movable mold 40, the release resistance R received by each of the eight eject pins 50 is measured by each load cell 70. Specifically, the release resistance R received by the eight eject pins 50, that is, the first to eighth eject pins 51, 52, 53, 54, 55, 56, 57, and 58, respectively, is individually received. Measurement is performed using the load cell 70 in contact.

次に、ステップS23では、ステップS21において計測した、8箇所分の離型抵抗力Rの計測値Rm(1≦m≦8)を読み取る。
次いで、ステップS24では、1本の押出しピン20に対し、3つのエジェクトピン50にかかる3つ分の離型抵抗力Rであるピン離型抵抗を、3つの計測値Rmを用いて制御手段80で演算する。
なお、3つの計測値Rmを選択する選択手法と、ピン離型抵抗を求めるにあたり、3つの計測値Rmを用いた演算手法とは、実施形態において、図8に示したフローチャートのうち、ステップS12で記載された手法と同じであるため、ここでは、選択手法及び演算手法の説明を省略する。
Next, in step S23, the measured value Rm (1 ≦ m ≦ 8) of the release resistance R for eight places measured in step S21 is read.
Next, in step S24, the pin release resistance, which is the release resistance force R for three ejecting pins 50 applied to the three ejecting pins 50, is controlled by the control means 80 using the three measured values Rm. Calculate with.
Note that the selection method for selecting the three measurement values Rm and the calculation method using the three measurement values Rm for obtaining the pin release resistance are, in the embodiment, step S12 in the flowchart shown in FIG. Therefore, the description of the selection method and the calculation method is omitted here.

次に、ステップS25では、ステップS24で算出したピン離型抵抗の演算値Cnと、予め解析した図10に示す結果のうち、成形ショット数と離型抵抗力Rとの関係を示すデータとを照合した上で、押出手段30による押圧力Fの押圧値Fnを決定する。
すなわち、図10または図11において、成形ショット数がk回目であるときの離型抵抗力Rの大きさを確認する。予め解析した離型抵抗力Rの大きさと、ピン離型抵抗の演算値Cnとを比較し、4本のワーク押出しピン20に対するピン離型抵抗の各演算値Cnに応じて、各押出手段30による押圧力Fの押圧値Fnをそれぞれ決定する。押圧値Fnは、ステップS24で算出したそれぞれの演算値Cnより大きくなるように変化させて決定する。
具体的には、第1ワーク押出しピン21の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより大きく設定する。同様に、第2ワーク押出しピン22の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、第3ワーク押出しピン23の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、第4ワーク押出しピン24の押圧値Fを、計測値R、R、Rを用いて算出した演算値Cより、いずれも大きく設定する。
Next, in step S25, the calculated value Cn of the pin release resistance calculated in step S24 and data indicating the relationship between the number of molding shots and the release resistance R among the results shown in FIG. After collation, the pressing value Fn of the pressing force F by the pushing means 30 is determined.
That is, in FIG. 10 or FIG. 11, the magnitude of the release resistance R when the number of molding shots is k-th is confirmed. The magnitude of the release resistance force R analyzed in advance and the calculated value Cn of the pin release resistance are compared, and each pusher 30 according to each calculated value Cn of the pin release resistance for the four workpiece pushing pins 20. The pressing value Fn of the pressing force F is determined respectively. The pressing value Fn is determined by changing it so as to be larger than the respective calculated values Cn calculated in step S24.
Specifically, the pressing value F 1 of the first workpiece pushing pin 21 is set larger than the calculated value C 1 calculated using the measured values R 1 , R 2 , and R 3 . Similarly, the pressing pressure value F 2 of the second workpiece push-out pin 22, from the measurement value R 3, R 4, calculated value C 2 calculated using the R 5, the pressing pressure value F 3 of the third workpiece push-out pin 23, from the measurement value R 5, R 6, R 7 calculated value C 3 calculated using the pressing pressure value F 4 of the fourth work extrusion pin 24, was calculated using the measured values R 7, R 8, R 1 operation than the value C 4, both set large.

次に、ステップS26では、ステップS25で決定した押圧値Fnに対応したバネ定数のコイルバネを選択し、成形ショット数がk回目になるまで設置されていた古いコイルバネから、選択した新しいコイルバネに交換する。
但し、今回の当該点検において、ステップS25で決定した押圧値Fnが、この点検前に行った前回の当該点検時で決定した押圧値Fnと大差なく同程度である場合、あるいは、古いコイルバネに有するバネ力で許容できるものである場合には、新しいコイルバネに交換する必要はない。
かくして、押圧手段30の点検は終了する。
押圧手段30の点検後、成形ショット数が(k+1)回目以降の成形品92の成形を開始し、前述したように、成形ショット数の増加による増大傾向と、取付けるコイルバネの性能とを考慮した上で新たに設定した設定回数まで、ステップS26で交換したコイルバネを用いる。
Next, in step S26, a coil spring having a spring constant corresponding to the pressing value Fn determined in step S25 is selected, and the old coil spring that has been installed until the number of molding shots is kth is replaced with the selected new coil spring. .
However, in the current inspection, if the pressing value Fn determined in step S25 is almost the same as the pressing value Fn determined in the previous inspection performed before this inspection, or the old coil spring has If the spring force is acceptable, there is no need to replace it with a new coil spring.
Thus, the inspection of the pressing means 30 ends.
After inspecting the pressing means 30, molding of the molded product 92 with the number of molding shots after the (k + 1) th time is started, and as described above, the increase tendency due to the increase in the number of molding shots and the performance of the coil spring to be mounted are taken into consideration. The coil spring replaced in step S26 is used up to the set number newly set in step S26.

前述したように、本発明に係る金型成形方法のような固定金型及び可動金型を用いた射出成形では、これらの金型は、その耐用回数として、数十万回を超える成形ショット数まで使用される。
こうした使用事情の下、固定金型及び可動金型を長期にわたって使用している間に、離型抵抗の大きさが成形ショット数の頻度によって、2倍、5倍そして10倍超もの開きがあっても、本変形形態に係る金型成形方法によれば、離型抵抗力Rの増大量に応じて、押圧手段30による押圧値Fnを変化させる、図13に示す定期点検を行っているので、一定のバネ力のバネを使い続けることはなく、バネ力が、成形品92を固定金型10から離間させるときの離型抵抗力より小さくなることはない。したがって、可動金型40と固定金型10とを離間するときに、バネ力との差分、固定金型10側に残る離型抵抗力に起因して、成形品92が固定金型40側に残る虞もない。
As described above, in the injection molding using the stationary mold and the movable mold as in the mold molding method according to the present invention, these molds have a number of molding shots exceeding hundreds of thousands as the number of times they can be used. Used up to.
Under such usage circumstances, while the fixed mold and the movable mold are used over a long period of time, the size of the mold release resistance may be doubled, five times, and more than ten times depending on the frequency of molding shots. However, according to the mold forming method according to this modification, the periodic inspection shown in FIG. 13 is performed in which the pressing value Fn by the pressing means 30 is changed according to the increase amount of the release resistance R. The spring having a constant spring force is not used continuously, and the spring force does not become smaller than the mold release resistance force when the molded product 92 is separated from the fixed mold 10. Therefore, when the movable mold 40 and the fixed mold 10 are separated from each other, the molded product 92 is moved to the fixed mold 40 side due to the difference from the spring force and the mold release resistance force remaining on the fixed mold 10 side. There is no fear of remaining.

なお、この発明は前記実施形態及び変形形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
例えば、実施形態及び変形形態では、金型成形方法として、固定金型10と可動金型40とを当接させてキャビティ2を形成し、モールド材MTを射出し成形して、キャビティ2内のインサート部材91をモールドする射出成形方法を例示した。
しかしながら、本発明の金型成形方法は、実施形態及び変形形態で例示した射出成形方法に限定されるものではなく、例えば、第1金型と第2金型とを当接させてキャビティを形成し、溶融状態の金属をキャビティに注入して成形する鋳造等、他の金型成形方法にも、適宜適用可能である。
In addition, this invention is not limited to the said embodiment and modification, A part of structure can also be changed suitably and implemented in the range which does not deviate from the meaning of invention.
For example, in the embodiment and the modification, as a mold forming method, the fixed mold 10 and the movable mold 40 are brought into contact with each other to form the cavity 2, and the molding material MT is injected and molded. The injection molding method for molding the insert member 91 is exemplified.
However, the mold forming method of the present invention is not limited to the injection molding method exemplified in the embodiment and the modified embodiment. For example, the cavity is formed by bringing the first mold and the second mold into contact with each other. In addition, the present invention can be appropriately applied to other mold forming methods such as casting in which molten metal is injected into a cavity and formed.

また、実施形態及び変形形態では、固定金型10に押出手段30を設ける一方、可動金型40にエジェクトピン50を配設することにより、成形品92を可動金型40に残留させる射出成形金型1を例示した。
しかしながら、成形金型は、成形品を固定金型に残留させるために、固定金型にエジェクトピンを設け、可動金型に押出手段を設けた構成であっても良い。
In the embodiment and the modified embodiment, the injection mold 30 is provided in the fixed mold 10, while the eject pin 50 is disposed in the movable mold 40, so that the molded product 92 remains in the movable mold 40. The mold 1 was illustrated.
However, the molding die may have a configuration in which an eject pin is provided in the fixed die and an extrusion means is provided in the movable die in order to leave the molded product in the fixed die.

また、実施形態では、押出手段30を、流体供給源25から供給されるガスの流量等を制御して、押圧力Fを変化させる駆動源を例示した。
しかしながら、押出手段は、例えば、供給される作動油の流量等に応じて、押圧力を可変可能な油圧シリンダ等でもよく、成形品を可動金型側に押し出すときの押圧力を可変できる駆動源であれば、種々変更可能である。
Further, in the embodiment, the drive unit that changes the pressing force F by controlling the flow rate of the gas supplied from the fluid supply source 25 is exemplified for the extrusion unit 30.
However, the pushing means may be, for example, a hydraulic cylinder or the like whose pressing force can be changed according to the flow rate of the supplied hydraulic oil, etc., and a driving source that can change the pressing force when the molded product is pushed out to the movable mold side If so, various changes can be made.

また、実施形態及び変形形態では、離型抵抗計測手段としてロードセル70を例示した。
しかしながら、離型抵抗計測手段は、成形品を可動金型から分離させるときの離型抵抗力を計測できるものであれば、種々変更可能である。
In the embodiment and the modification, the load cell 70 is exemplified as the release resistance measuring unit.
However, the mold release resistance measuring means can be variously modified as long as it can measure the mold release resistance force when the molded product is separated from the movable mold.

実施形態に係る射出成形金型の構成を説明する断面図であり、成形時の型締め状態を示す。It is sectional drawing explaining the structure of the injection mold which concerns on embodiment, and shows the clamping state at the time of shaping | molding. 実施形態に係る射出成形金型の構成を説明する断面図であり、成形後の型開き状態を示す。It is sectional drawing explaining the structure of the injection mold which concerns on embodiment, and shows the mold open state after shaping | molding. 図2中、P部を拡大して示す説明図である。It is explanatory drawing which expands and shows the P section in FIG. 実施形態に係る射出成形金型の電気制御を説明する回路図である。It is a circuit diagram explaining the electric control of the injection molding die concerning an embodiment. 図1中、パーティング面PLから見た固定金型の平面図である。FIG. 2 is a plan view of a fixed mold viewed from a parting surface PL in FIG. 1. 図1中、パーティング面PLから見た可動金型の平面図である。FIG. 2 is a plan view of a movable mold viewed from a parting surface PL in FIG. 1. 実施形態に係る射出成形金型において、可動金型と固定金型とが離間する様子を示す図であり、押出手段により成形品を可動金型側に押し出した後の状態を示す。In the injection mold which concerns on embodiment, it is a figure which shows a mode that a movable mold and a stationary mold separate, and shows the state after pushing a molded article to the movable mold side by the extrusion means. 離型抵抗力計測プログラムの構成を示すフローチャートである。It is a flowchart which shows the structure of a mold release resistance force measurement program. 各ワーク押出しピンの押圧力の算出に用いる一覧表である。It is a list used for calculation of the pressing force of each work pushing pin. 成形ショット数、固定金型の面粗度及び離型抵抗力との関係について、調査した結果を示す一覧表である。It is a table | surface which shows the result investigated about the relationship with the number of shaping | molding shots, the surface roughness of a fixed metal mold | die, and mold release resistance. 図10における成形ショット数と離型抵抗力Rとの関係について示したグラフである。11 is a graph showing the relationship between the number of molding shots and the release resistance R in FIG. 10. 図10における成形ショット数と面粗度Rzとの関係について示したグラフである。It is the graph shown about the relationship between the number of shaping | molding shots in FIG. 10, and surface roughness Rz. 変形形態に係る射出成形方法で行う押圧手段の点検手順を示すフローチャートである。It is a flowchart which shows the check procedure of the press means performed with the injection molding method which concerns on a deformation | transformation form.

符号の説明Explanation of symbols

1 射出成形金型(成形金型)
2 キャビティ
10 固定金型(第1金型)
30 押出手段
40 可動金型(第2金型)
50 エジェクトピン
70 ロードセル(離型抵抗計測手段)
80 制御手段
90 製品
91 インサート部材
R 離型抵抗力
MT モールド材MT(材料)
1 Injection mold (molding mold)
2 cavity 10 fixed mold (first mold)
30 Extrusion means 40 Movable mold (second mold)
50 Eject pin 70 Load cell (Release resistance measuring means)
80 Control means 90 Product 91 Insert member R Release resistance MT Mold material MT (material)

Claims (2)

第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離する金型成形方法において、
前記第1金型と前記第2金型とが離間するときに、前記第1金型に設けられた押出手段が、前記成形品を前記第2金型側に押し出すこと、
前記エジェクトピンが、前記成形品を前記第2金型から分離させるときの離型抵抗力を、離型抵抗計測手段が計測すること、
前記離型抵抗計測手段が計測した離型抵抗力に応じて、前記押出手段の押出力を変化させること、
を特徴とする金型成形方法。
A cavity is formed by bringing the first mold and the second mold into contact with each other, and after molding the material by injecting the material, when the second mold is separated from the first mold, the molded product is In a mold molding method in which the molded product is brought into close contact with the second mold and then the molded product is separated from the second mold by an eject pin.
When the first mold and the second mold are separated from each other, the pushing means provided in the first mold pushes the molded product toward the second mold;
The release resistance measuring means measures a release resistance force when the eject pin separates the molded product from the second mold,
Changing the pushing force of the pushing means according to the releasing resistance measured by the releasing resistance measuring means,
A mold forming method characterized by the above.
第1金型と第2金型とを当接させてキャビティを形成し、材料を注入して成形した後、該第2金型を該第1金型から離間するときに、成形品を該第2金型に密着させた状態とし、その後、エジェクトピンにより成形品を該第2金型から分離させる成形金型において、
前記第1金型に設けられ、前記第1金型と前記第2金型とが離間するときに、前記成形品を前記第2金型側に押し出す押出手段と、
前記エジェクトピンが、前記成形品を前記第2金型から分離するときの離型抵抗力を計測する離型抵抗計測手段と、
前記離型抵抗計測手段が計測した離型抵抗力に応じて、前記押出手段の押出力を変化させる制御手段と、
を有することを特徴とする成形金型。
A cavity is formed by bringing the first mold and the second mold into contact with each other, and after molding the material by injecting the material, when the second mold is separated from the first mold, the molded product is In a molding die that is brought into close contact with the second die and then separated from the second die by an eject pin,
An extrusion means provided on the first mold, for extruding the molded product toward the second mold when the first mold and the second mold are separated from each other;
A release resistance measuring means for measuring a release resistance force when the eject pin separates the molded product from the second mold;
Control means for changing the pushing force of the pushing means according to the releasing resistance force measured by the releasing resistance measuring means;
A molding die characterized by comprising:
JP2007315159A 2007-12-05 2007-12-05 Mold forming method and mold Expired - Fee Related JP5029330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315159A JP5029330B2 (en) 2007-12-05 2007-12-05 Mold forming method and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315159A JP5029330B2 (en) 2007-12-05 2007-12-05 Mold forming method and mold

Publications (2)

Publication Number Publication Date
JP2009137130A true JP2009137130A (en) 2009-06-25
JP5029330B2 JP5029330B2 (en) 2012-09-19

Family

ID=40868283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315159A Expired - Fee Related JP5029330B2 (en) 2007-12-05 2007-12-05 Mold forming method and mold

Country Status (1)

Country Link
JP (1) JP5029330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215296B1 (en) 2010-10-25 2013-01-09 대성전기공업 주식회사 Injection molded material ejector divice

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150357A (en) * 1974-10-30 1976-05-01 Hitachi Ltd Jushifuji niokeru ryohinhanbetsuhoho oyobisono sochi
JPS6194734A (en) * 1984-10-15 1986-05-13 Olympus Optical Co Ltd Injection mold for plastic lens
JPH09262879A (en) * 1996-03-28 1997-10-07 Idemitsu Petrochem Co Ltd Production of molded product
JPH10156837A (en) * 1996-12-05 1998-06-16 Nec Corp Measuring method of force of release and mold for molding resin
JP2002178375A (en) * 2000-12-18 2002-06-26 Canon Inc Mold apparatus for injection molding and method for injection molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150357A (en) * 1974-10-30 1976-05-01 Hitachi Ltd Jushifuji niokeru ryohinhanbetsuhoho oyobisono sochi
JPS6194734A (en) * 1984-10-15 1986-05-13 Olympus Optical Co Ltd Injection mold for plastic lens
JPH09262879A (en) * 1996-03-28 1997-10-07 Idemitsu Petrochem Co Ltd Production of molded product
JPH10156837A (en) * 1996-12-05 1998-06-16 Nec Corp Measuring method of force of release and mold for molding resin
JP2002178375A (en) * 2000-12-18 2002-06-26 Canon Inc Mold apparatus for injection molding and method for injection molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101215296B1 (en) 2010-10-25 2013-01-09 대성전기공업 주식회사 Injection molded material ejector divice

Also Published As

Publication number Publication date
JP5029330B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP3162522B1 (en) Insert molding die structure
US7354261B1 (en) Tire vulcanizing apparatus
US8523558B2 (en) Injection mold
CN103025500B (en) The parts of injection molding
JP2010260175A (en) Injection molding machine
JP2015131472A (en) Mold clamping force setting device and mold clamping force setting method for injection molding machine
JPWO2010035840A1 (en) Manufacturing method of injection molded article and injection mold
KR101144120B1 (en) Injection compression mold that have moved core that form cavity
JP5029330B2 (en) Mold forming method and mold
JP2007083273A (en) Metallic mold apparatus for casting
EP3760409B1 (en) Foam molding method and injection molding machine
KR102221394B1 (en) Undercutting assembly of molded injection device
KR101397677B1 (en) Molding apparatus for semiconductor package
JP2022049402A (en) Mold, injection molding system, and method of manufacturing molded product
JP2000301583A (en) Method for injection-compression molding of member of complicated shape precisely, and injection/compression molding device for practicing the method
CN105014880A (en) Forming mold for thick-wall and solid injection products
KR101467426B1 (en) Hybrid Diecasting Molding Method
CN113950401B (en) Control device for injection molding machine and method for setting mold clamping force
KR200384159Y1 (en) A metallic mold with separating function of molding goods having boss
JP2001054924A (en) Injection molding method and apparatus
JP2018065249A (en) Mold moving type molding machine and method for operating ejector of mold moving type molding machine
JP6293198B2 (en) Thin-walled molding method
KR20100136247A (en) A method for producing a door latch cover plate for vehicles, a mold for producing it and door latch cover plates
JP2007015361A (en) Degassing device in injection molding using ejecting pin in two steps
JP4089906B2 (en) Molding monitoring method in pressure filling molding of resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees