JP2009136975A - Organic nanotube encapsulating low molecular weight compound - Google Patents

Organic nanotube encapsulating low molecular weight compound Download PDF

Info

Publication number
JP2009136975A
JP2009136975A JP2007317092A JP2007317092A JP2009136975A JP 2009136975 A JP2009136975 A JP 2009136975A JP 2007317092 A JP2007317092 A JP 2007317092A JP 2007317092 A JP2007317092 A JP 2007317092A JP 2009136975 A JP2009136975 A JP 2009136975A
Authority
JP
Japan
Prior art keywords
molecular weight
low molecular
cyclodextrin
organic
weight compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007317092A
Other languages
Japanese (ja)
Inventor
Susumu Aoyanagi
将 青柳
Masumi Asakawa
真澄 浅川
Maki Ogiso
真樹 小木曽
Ayuko Iijima
鮎子 飯嶋
Toshimi Shimizu
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007317092A priority Critical patent/JP2009136975A/en
Publication of JP2009136975A publication Critical patent/JP2009136975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for encapsulating organic and inorganic materials in tubes of organic nanotubes that can be inexpensively and easily synthesized, without using an organic solvent, and a method for discharging the encapsulated material. <P>SOLUTION: A low molecular weight compound is encapsulated in inner pores of organic nanotubes by adding and stirring organic nanotubes formed by aggregating molecules of an amphiphilic compound to an aqueous solution in which the low molecular weight compound and cyclodextrin are coexistent. The organic nanotubes encapsulating the low molecular weight compound are mixed with water to discharge the low molecular weight compound encapsulated in the inner pores of the organic nanotubes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内部に低分子量化合物を内包してなる有機ナノチューブ、及びその製造方法、並びに該有機ナノチューブから低分子量化合物を放出させる方法に関するものである。   The present invention relates to an organic nanotube containing a low molecular weight compound therein, a method for producing the same, and a method for releasing a low molecular weight compound from the organic nanotube.

医療、健康、食品、衛生、農業分野においては薬剤、香料、風味成分など有効成分の安定保存、放出濃度制御がきわめて重要な課題である。その解決法として種々の基質を無機材料又は有機材料へ内包化し、該基質を徐放させる研究がされ、今日までに数多く実用化されている。   In the medical, health, food, hygiene, and agricultural fields, stable preservation of active ingredients such as drugs, fragrances, and flavor components, and control of the release concentration are extremely important issues. As a solution to this problem, studies have been made to encapsulate various substrates in inorganic or organic materials and to release the substrates slowly, and many have been put to practical use to date.

例えば、特許文献1では、多孔性アパタイト誘導体にヒト成長ホルモンおよび水溶性2価金属化合物を含有させることにより、生体内分解性および徐放性能を併せ持つヒト成長ホルモンの徐放性微粒子製剤が得られることが報告されている。
このように、アパタイトやシリカなどの無機材料からなるナノ多孔質粒子は、その生物不活性性と孔径の大きさから、タンパク質製剤などの応用が期待されているが高価である。
For example, in Patent Document 1, a sustained-release fine particle preparation of human growth hormone having both biodegradability and sustained-release performance can be obtained by incorporating human growth hormone and a water-soluble divalent metal compound into a porous apatite derivative. It has been reported.
Thus, nanoporous particles made of an inorganic material such as apatite and silica are expected to be applied to protein preparations and the like due to their bioinertness and pore size, but are expensive.

一方、有機系材料では、シクロデキストリンは、1nm未満の分子を内孔に取り込んで徐放効果を示すことが知られており、例えば、特許文献2には、即効性を示す種々の血管収縮薬成分とシクロデキストリンを配合した点鼻剤液を調製した結果、水溶性の塩酸オキシメタゾリンの場合において持効性を示したこと、さらにこの検体を透析膜に封入し、疑似鼻汁液に浸して透過したオキシメタゾリン量を測定したところ、シクロデキストリンの濃度依存的にオキシメタゾリンの放出が遅延したことが報告されている。   On the other hand, in organic materials, cyclodextrin is known to have a sustained release effect by incorporating molecules of less than 1 nm into the inner pore. For example, Patent Document 2 discloses various vasoconstrictors that exhibit immediate effects. As a result of preparing a nasal solution containing an ingredient and cyclodextrin, it showed a long-lasting effect in the case of water-soluble oxymetazoline hydrochloride. When the amount of permeated oxymetazoline was measured, it was reported that the release of oxymetazoline was delayed depending on the concentration of cyclodextrin.

シクロデキストリンは、難水溶性の分子を取り込んで水溶化させることもできるが、その場合は徐放能を発現しない場合も多く、リボゾームに取り込ませて徐放させる等の工夫がなされている。
たとえば、特許文献3は、難水溶性の抗腫瘍などの医薬化合物を内包したシクロデキストリンをさらに球状分子集合体の内水相に被包したリポソームと、その医薬化合物の徐放性が報告されている。
しかしながら、放製剤として利用されているがリポソームの製造が煩雑なうえ、リポソームを形成している分子膜が比較的不安定な液晶相のため適用範囲が限定的である。
Cyclodextrins can take in poorly water-soluble molecules to be water-solubilized, but in that case, they often do not exhibit sustained release ability, and are devised such as taking them into ribosomes and releasing them slowly.
For example, Patent Document 3 reports a liposome in which a cyclodextrin encapsulating a pharmaceutical compound such as a poorly water-soluble antitumor is further encapsulated in the inner aqueous phase of a spherical molecular assembly, and the sustained release of the pharmaceutical compound. Yes.
However, although it is used as a release preparation, the production of liposomes is complicated, and the application range is limited because the molecular film forming the liposomes is a relatively unstable liquid crystal phase.

有機系材料では、両親媒性分子が集合してできる有機ナノチューブが、その毛細管現象を利用して基質をその一次元内部空孔へ内包できることから、安定化剤、徐放剤としての応用が期待される。
例えば、本発明者らは、糖脂質を有機溶媒中で再沈殿させることにより、カーボンナノチューブに代表される無機ナノチューブにはない特性を持ち、且つシクロデキストリンより約10倍以上大きい内径と高い軸費を持つ中空繊維状有機ナノチューブを簡便且つ大量に合成し、その中空シリンダー内に毛細管現象を利用して金属ナノ粒子やタンパク質を導入できることを見いだしている(特許文献4)。また、ペプチド脂質を用いて同様の性質をもつ中空繊維状有機ナノチューブを簡便且つ大量に合成できることを見いだしている(特許文献5)。
しかしながら、上記有機ナノチューブは中空構造を有し、その内孔サイズは、10〜500nmであるため、その内孔サイズより小さい3〜500nmのタンパク質、ウイルス、金属微粒子やその他の無機微粒子等をその内部に導入できるが、1nm程度の小さい有機化合物等の基質を安定に内包すること、及び内包された基質を放出させることは困難であった。
特開2005−8545号公報 特開2006−213700号公報 特表平8−509230号公報 特願2006−164269号 特願2006−174713号
In organic materials, organic nanotubes formed by the assembly of amphiphilic molecules can encapsulate the substrate in its one-dimensional internal vacancies by utilizing the capillary phenomenon, so it is expected to be applied as a stabilizer and sustained release agent. Is done.
For example, the present inventors re-precipitated glycolipids in an organic solvent to have characteristics not found in inorganic nanotubes typified by carbon nanotubes, and have an inner diameter that is about 10 times more than cyclodextrin and a high axial cost. It has been found that hollow fiber-like organic nanotubes having a large amount can be synthesized easily and in large quantities, and metal nanoparticles and proteins can be introduced into the hollow cylinder by utilizing capillary action (Patent Document 4). Further, it has been found that hollow fiber-like organic nanotubes having the same properties can be synthesized easily and in large quantities using peptide lipids (Patent Document 5).
However, since the organic nanotube has a hollow structure and the inner pore size is 10 to 500 nm, proteins, viruses, metal fine particles and other inorganic fine particles having a size smaller than the inner pore size of 3 to 500 nm are contained therein. However, it is difficult to stably encapsulate a substrate such as an organic compound as small as 1 nm and to release the encapsulated substrate.
JP 2005-8545 A JP 2006-213700 A Japanese National Patent Publication No. 8-509230 Japanese Patent Application No. 2006-164269 Japanese Patent Application No. 2006-174713

汎用であって、且つ生体組織や環境への負荷の少ない徐放基材を得るためには、用いる基材に生体への安全性、環境分解性が求められる。また、基材が、安価に合成され、比較的安定性が高いことが望まれる。さらに、基材と徐放材との複合化においても、有機溶媒の使用を極力避けるべきである。
本発明は、以上のような事情に鑑みてなされたものであって、安価且つ簡便に合成可能な有機ナノチューブのチューブ内に、有機溶媒を用いることなく、有機及び無機材料を内包化する方法、及びその内包された材料を放出する方法を提供することを目的とするものである。
In order to obtain a sustained-release substrate that is general-purpose and has a low burden on living tissue and the environment, the substrate to be used is required to have safety to the living body and environmental degradability. Further, it is desired that the base material is synthesized at low cost and has relatively high stability. Furthermore, the use of organic solvents should be avoided as much as possible in the composite of the substrate and the sustained release material.
The present invention has been made in view of the circumstances as described above, and a method for encapsulating organic and inorganic materials without using an organic solvent in an organic nanotube tube that can be synthesized inexpensively and easily, And a method for releasing the encapsulated material.

本発明者らは、上記目的を達成すべく、低分子量化合物とシクロデキストリンを水中で混合することにより、低分子量化合物を有機ナノチューブへ複合化させることを検討した結果、有機ナノチューブと低分子量化合物が複合体を形成し、シクロデキストリンを共存させることによってその含有量が増加することを見いだした。また、水中でこの複合体から低分子量化合物が放出されることを見いだした。   In order to achieve the above-mentioned object, the present inventors have studied that a low molecular weight compound and a cyclodextrin are mixed in water to form a composite of a low molecular weight compound into an organic nanotube. It was found that the content is increased by forming a complex and coexisting cyclodextrin. We have also found that low molecular weight compounds are released from this complex in water.

本発明は、これらの知見に基づいて完成に至ったものであり、以下のとおりのものである。
(1)両親媒性化合物の分子が集合して形成された有機ナノチューブの内孔に低分子量化合物を内包してなる有機ナノチューブ。
(2)前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、Rは炭素数が10〜39の不飽和炭化水素基を表す。)で表わされるN−グリコシド型糖脂質である(1)に記載の有機ナノチューブ。
(3)低分子量化合物とシクロデキストリンとが共存する水溶液に、両親媒性化合物の分子が集合して形成された有機ナノチューブを添加、撹拌することにより、有機ナノチューブの内孔に低分子量化合物を内包させる方法。
(4)前記シクロデキストリンが、α−シクロデキストリン、β−シクロデキストリン又はγ−シクロデキストリンのいずれかである(3)に記載の方法。
(5)前記シクロデキストリンの量が、前記低分子量化合物に対して、1/10当量以下である(3)又は(4)に記載の方法。
(6)(1)又は(2)に記載された、低分子量化合物を内包してなる有機ナノチューブを、水に混合し、該有機ナノチューブの内孔に内包された低分子化合物を放出する方法。
The present invention has been completed based on these findings, and is as follows.
(1) An organic nanotube formed by encapsulating a low molecular weight compound in an inner hole of an organic nanotube formed by aggregation of amphiphilic compound molecules.
(2) The amphiphilic compound is
The following general formula (1)
G-NHCO-R 1 (1)
(Wherein G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 39 carbon atoms). The organic nanotube according to (1), which is a glycoside glycolipid.
(3) By adding and stirring organic nanotubes formed by the assembly of amphiphilic compounds in an aqueous solution in which a low molecular weight compound and cyclodextrin coexist, the low molecular weight compound is included in the inner pores of the organic nanotube. How to make.
(4) The method according to (3), wherein the cyclodextrin is any one of α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
(5) The method according to (3) or (4), wherein the amount of the cyclodextrin is 1/10 equivalent or less with respect to the low molecular weight compound.
(6) A method of releasing the low molecular weight compound encapsulated in the inner pore of the organic nanotube by mixing the organic nanotube described in (1) or (2) with the low molecular weight compound encapsulated in water.

本発明によれば、安価且つ簡便に合成可能な有機ナノチューブを用いて、そのチューブ内に、有機溶媒を用いることなく、基質を内包させることができるとともに、該内包された基質を放出させることでき、特に、1nm程度の小さい有機化合物であっても、安定に内包させることができ、且つ放出させることができるものである。また、基材に用いる有機ナノチューブは、生体への安全性、及び環境分解性を有しているために、生体、環境に対して負荷が低い。   According to the present invention, an organic nanotube that can be synthesized inexpensively and simply can be used to encapsulate a substrate in the tube without using an organic solvent, and the encapsulated substrate can be released. In particular, even a small organic compound of about 1 nm can be stably encapsulated and released. Moreover, since the organic nanotube used for a base material has the safety | security to a biological body, and environmental decomposability, the load with respect to a biological body and an environment is low.

本発明は、低分子量化合物とシクロデキストリンが共存する溶液に、両親媒性分子からなる有機ナノチューブを添加し、撹拌することにより、有機ナノチューブ内に低分子量化合物を内包させるものである。また、該方法により得られた、低分子量化合物を内包してなる有機ナノチューブを、水に混合し、撹拌することにより、該有機ナノチューブに内包された低分子化合物を放出するものである。   In the present invention, an organic nanotube comprising an amphiphilic molecule is added to a solution in which a low molecular weight compound and cyclodextrin coexist, and the low molecular weight compound is encapsulated in the organic nanotube by stirring. Moreover, the low molecular weight compound included in this organic nanotube is discharge | released by mixing the organic nanotube obtained by this method and encapsulating the low molecular weight compound in water, and stirring.

本発明において用いる有機ナノチューブは、疎水基および親水基を有する両親媒性化合物からなるものであって、一般式X−NH−CO−Yで表され、X、Yのいずれかが、疎水基又は親水基からなる両親媒性化合物の分子が自己集合してチューブを形成したものである。
両親媒性化合物における疎水基としては、直鎖又は分岐型の飽和もしくは不飽和アルキル基が挙げられる。また、親水基としては、単糖、オリゴ糖及びその類縁体、アミノ酸、及びオリゴペプチドやその類縁体などが挙げられるが、特に、両親媒性化合物として、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、Rは炭素数が10〜39の不飽和炭化水素基を表す。)で表わされるN−グリコシド型糖脂質、又は
下記一般式(2)
CO(NH−CHR−CO)OH (2)
(式中、Rは炭素数6〜24の炭化水素基、Rはアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質、又は
下記一般式(3)
H(NH−CHR−CO)NHR (3)
(式中、Rは炭素数6〜24の炭化水素基、Rはアミノ酸側鎖、mは1〜10の整数を表す。)で表わされるペプチド脂質が、好ましく用いられる。
The organic nanotube used in the present invention is composed of an amphiphilic compound having a hydrophobic group and a hydrophilic group, and is represented by the general formula X—NH—CO—Y, wherein either X or Y is a hydrophobic group or A tube of an amphiphilic compound comprising a hydrophilic group is self-assembled to form a tube.
Examples of the hydrophobic group in the amphiphilic compound include a linear or branched saturated or unsaturated alkyl group. In addition, examples of hydrophilic groups include monosaccharides, oligosaccharides and analogs thereof, amino acids, oligopeptides and analogs thereof, etc.
The following general formula (1)
G-NHCO-R 1 (1)
(Wherein G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 39 carbon atoms). Glycoside glycolipid or the following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(Wherein R 2 is a hydrocarbon group having 6 to 24 carbon atoms, R 3 is an amino acid side chain, and m is an integer of 1 to 10), or the following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
A peptide lipid represented by the formula (wherein R 2 represents a hydrocarbon group having 6 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 10) is preferably used.

本発明において用いるシクロデキストリン類は、数分子のD−グルコースが、α−1,4グルコシド結合によって結合して環状構造をとった環状オリゴ糖の一種であって、グルコースが5個以上結合したものが知られている。一般的なものは、グルコースが6個から8個結合したものであり、それぞれ6個結合しているものがα−シクロデキストリン、7個結合しているものがβ−シクロデキストリン、8個結合しているものがγ−シクロデキストリンと呼ばれているが、本発明では、α、β、γのいずれでも良く、また1つ以上の水酸基が他の官能基で修飾されていても良い。
また、本発明の方法において、用いられるシクロデキストリンの量は、低分子量化合物に対して、1/10当量以下で充分である。
The cyclodextrins used in the present invention are a kind of cyclic oligosaccharides in which several molecules of D-glucose are linked by α-1,4 glucoside bonds to form a cyclic structure, and 5 or more glucoses are bonded. It has been known. In general, 6 to 8 glucoses are bonded, each having 6 bonded α-cyclodextrin, 7 bonded β-cyclodextrin, and 8 bonded. In the present invention, any of α, β and γ may be used, and one or more hydroxyl groups may be modified with other functional groups.
In the method of the present invention, the amount of cyclodextrin used is 1/10 equivalent or less with respect to the low molecular weight compound.

本発明において、内包される基質は、シクロデキストリンと何らかの相互作用により、有機ナノチューブの内孔に内包されるものであって、その大きさは、有機チューブの内径より小さく、有機系、無機系、或いはその複合体のいずれでも良い。またその物性は、親水性、疎水性および両親媒性のいずれでもよい。   In the present invention, the substrate to be encapsulated is encapsulated in the inner pores of the organic nanotube by some interaction with cyclodextrin, the size of which is smaller than the inner diameter of the organic tube, organic, inorganic, Or any of the complex may be sufficient. The physical properties may be any of hydrophilic, hydrophobic and amphiphilic properties.

以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
(実施例1)
p−ニトロフェノール水溶液(64mg、0.46mmol/4mL)を4サンプル調製する。それぞれに(1)α−シクロデキストリン(40mg、0.041mmol)、(2)β−シクロデキストリン(40mg、0.035mmol)、(3)γ−シクロデキストリン(40mg、0.031mmol)を添加し、比較として(4)シクロデキストリン無添加とした。(1)〜(4)の溶液に下記の化学式で示される糖脂質から調製された有機ナノチューブ(200mg、糖脂質0.45mmol)を加え、この混合物を室温で3時間撹拌した後、遠心処理(4000回転、30分)を行った。残渣に水4mLを加えて洗浄した後、凍結乾燥して粉末状のサンプルを得た。このサンプルについて電界放出型走査型電子顕微鏡観(FE−SEM)による形態観察をし、プロトン核磁気共鳴(H−NMR)測定をおこなった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
Four samples of p-nitrophenol aqueous solution (64 mg, 0.46 mmol / 4 mL) are prepared. (1) α-cyclodextrin (40 mg, 0.041 mmol), (2) β-cyclodextrin (40 mg, 0.035 mmol), (3) γ-cyclodextrin (40 mg, 0.031 mmol) was added to each, For comparison, (4) cyclodextrin was not added. Organic nanotubes (200 mg, glycolipid 0.45 mmol) prepared from the glycolipid represented by the following chemical formula were added to the solutions (1) to (4), and the mixture was stirred at room temperature for 3 hours, and then centrifuged ( 4000 revolutions, 30 minutes). The residue was washed with 4 mL of water, and then freeze-dried to obtain a powdery sample. The sample was observed for morphology by field emission scanning electron microscopy (FE-SEM), and proton nuclear magnetic resonance ( 1 H-NMR) measurement was performed.

各サンプルの固体回収重量は、それぞれ(1)120mg、(2)125mg、(3)148mg、(4)122mgであった。H−NMRから算出した組成を下記の表1に示す。
また、各サンプルから得られた集合体の走査型電子顕微鏡写真を、図1ないし図4に示す。
回収固体中のp−ニトロフェノールの含有量は、シクロデキストリンの添加により、シクロデキストリン無添加の場合に比べて、約2倍増加した。また、α、β、γによる含有量の明確な違いはみられなかった。
この結果から、p−ニトロフェノールが有機ナノチューブに導入される際にシクロデキストリンが何らかの影響を及ぼしていることが分かる。p−ニトロフェノールは、シクロデキストリンに包接されることが知られているが、有機ナノチューブとの複合体中ではp−ニトロフェノールがシクロデキストリンに対して大過剰に存在している。すなわち1対1の包接錯体として有機ナノチューブ中に存在しているわけはないことが分かる。
The solid recovered weight of each sample was (1) 120 mg, (2) 125 mg, (3) 148 mg, and (4) 122 mg, respectively. The composition calculated from 1 H-NMR is shown in Table 1 below.
In addition, scanning electron micrographs of the aggregate obtained from each sample are shown in FIGS.
The content of p-nitrophenol in the recovered solid was increased by about 2 times with the addition of cyclodextrin as compared to the case without addition of cyclodextrin. Moreover, the clear difference of content by (alpha), (beta), and (gamma) was not seen.
This result shows that cyclodextrin has some influence when p-nitrophenol is introduced into the organic nanotube. Although p-nitrophenol is known to be included in cyclodextrin, p-nitrophenol is present in a large excess with respect to cyclodextrin in a complex with organic nanotubes. That is, it can be seen that the one-to-one inclusion complex does not exist in the organic nanotube.

(実施例2)
実施例1で得たp−ニトロフェノール/α−シクロデキストリン/有機ナノチューブ複合体5mgに水(50mL)を加えた。この懸濁液をスターラーで撹拌しながら、15分、30分、1時間後に約1.5mLをシリンジで抜き取り、メンブレンフィルター(孔径0.2ミクロン)で懸濁物を濾過した後、紫外可視吸収スペクトル測定を行った。
その結果、いずれの測定についてもp−ニトロフェノールのスペクトルが観測され、318nmにおける吸光度は同じだった。すなわち15分以内に放出が完了していた。
(Example 2)
Water (50 mL) was added to 5 mg of the p-nitrophenol / α-cyclodextrin / organic nanotube complex obtained in Example 1. While stirring this suspension with a stirrer, about 1.5 mL was extracted with a syringe after 15 minutes, 30 minutes, and 1 hour, and the suspension was filtered with a membrane filter (pore size 0.2 micron), followed by UV-visible absorption. Spectrum measurement was performed.
As a result, the spectrum of p-nitrophenol was observed for all measurements, and the absorbance at 318 nm was the same. That is, the release was completed within 15 minutes.

(実施例3)
実施例1で得たp−ニトロフェノール/β−シクロデキストリン/有機ナノチューブ複合体5mgに水(50mL)を加えた。この懸濁液をスターラーで撹拌しながら、5分、15分、30分、1時間後に約1.5mLをシリンジで抜き取り、メンブレンフィルター(孔径0.2ミクロン)で懸濁物を濾過した後、紫外可視吸収スペクトル測定を行った。
その結果、いずれの測定についてもp−ニトロフェノールのスペクトルが観測され、318nmにおける吸光度は同じだった。すなわち5分以内に放出が完了していた。また残った固体にp−ニトロフェノールが存在していないことをH−NMRにより確認した。
(Example 3)
Water (50 mL) was added to 5 mg of the p-nitrophenol / β-cyclodextrin / organic nanotube complex obtained in Example 1. While stirring this suspension with a stirrer, about 1.5 mL was extracted with a syringe after 5 minutes, 15 minutes, 30 minutes, and 1 hour, and the suspension was filtered with a membrane filter (pore size 0.2 micron). UV-visible absorption spectrum measurement was performed.
As a result, the spectrum of p-nitrophenol was observed for all measurements, and the absorbance at 318 nm was the same. That is, the release was completed within 5 minutes. Further, it was confirmed by 1 H-NMR that no p-nitrophenol was present in the remaining solid.

(実施例4)
実施例1で得たp−ニトロフェノール/γ−シクロデキストリン/有機ナノチューブ複合体5mgに水(50mL)を加えた。この懸濁液をスターラーで撹拌しながら、5分、15分、30分、1時間後に約1.5mLをシリンジで抜き取り、メンブレンフィルター(孔径0.2ミクロン)で懸濁物を濾過した後、紫外可視吸収スペクトル測定を行った。
その結果、いずれの測定についてもp−ニトロフェノールのスペクトルが観測され、318nmにおける吸光度は同じだった。すなわち5分以内に放出が完了していた。
Example 4
Water (50 mL) was added to 5 mg of the p-nitrophenol / γ-cyclodextrin / organic nanotube complex obtained in Example 1. While stirring this suspension with a stirrer, about 1.5 mL was extracted with a syringe after 5 minutes, 15 minutes, 30 minutes, and 1 hour, and the suspension was filtered with a membrane filter (pore size 0.2 micron). UV-visible absorption spectrum measurement was performed.
As a result, the spectrum of p-nitrophenol was observed for all measurements, and the absorbance at 318 nm was the same. That is, the release was completed within 5 minutes.

本発明に用いる有機ナノチューブは、シクロデキストリンより大きい空孔を持つことから、サイズ的に広い用途が期待できる。さらに、膜構造が安定な結晶性のため取り扱いが容易である。したがって、これに種々の基質を入れ、徐放させることができれば、医療、食品、化粧品をはじめ農薬、建築材などさまざまな用途が期待できる。   Since the organic nanotube used in the present invention has pores larger than cyclodextrin, it can be expected to have a wide application in size. Furthermore, the film structure is easy to handle because of its stable crystallinity. Therefore, if various substrates can be put into this and sustained release, various uses such as medical treatment, food, cosmetics, agricultural chemicals, and building materials can be expected.

実施例1の(1)α−シクロデキストリン添加で得られた集合体の走査型電子顕微鏡写真Scanning electron micrograph of the assembly obtained by adding (1) α-cyclodextrin in Example 1 実施例1の(2)β−シクロデキストリン添加で得られた集合体の走査型電子顕微鏡写真Scanning electron micrograph of the assembly obtained by adding (2) β-cyclodextrin in Example 1 実施例1の(3)γ−シクロデキストリン添加で得られた集合体の走査型電子顕微鏡写真Scanning electron micrograph of the assembly obtained by adding (3) γ-cyclodextrin in Example 1 実施例1の(4)シクロデキストリン無添加で得られた集合体の走査型電子顕微鏡写真Scanning electron micrograph of the assembly obtained in Example 1 (4) without addition of cyclodextrin

Claims (6)

両親媒性化合物の分子が集合して形成された有機ナノチューブの内孔に低分子量化合物を内包してなる有機ナノチューブ。   Organic nanotubes formed by encapsulating low molecular weight compounds in the inner pores of organic nanotubes formed by the assembly of amphiphilic compound molecules. 前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、Rは炭素数が10〜39の不飽和炭化水素基を表す。)で表わされるN−グリコシド型糖脂質である請求項1に記載の有機ナノチューブ。
The amphiphilic compound is
The following general formula (1)
G-NHCO-R 1 (1)
(Wherein G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 39 carbon atoms). The organic nanotube according to claim 1, which is a glycoside glycolipid.
低分子量化合物とシクロデキストリンとが共存する水溶液に、両親媒性化合物集合して構成される有機ナノチューブを添加、撹拌することにより、有機ナノチューブの内孔に低分子量化合物を内包させる方法。   A method in which an organic nanotube composed of an amphiphilic compound is added to an aqueous solution in which a low molecular weight compound and cyclodextrin coexist, and the resulting mixture is stirred to enclose the low molecular weight compound in the inner pores of the organic nanotube. 前記シクロデキストリンが、α−シクロデキストリン、β−シクロデキストリン又はγ−シクロデキストリンのいずれかである請求項3に記載の方法。   The method according to claim 3, wherein the cyclodextrin is any one of α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. 前記シクロデキストリンの量が、前記低分子量化合物に対して、1/10当量以下である請求項3又は4に記載の方法。   The method according to claim 3 or 4, wherein the amount of the cyclodextrin is 1/10 equivalent or less with respect to the low molecular weight compound. 請求項1又は2に記載された、低分子量化合物を内包してなる有機ナノチューブを、水に混合し、該有機ナノチューブの内孔に内包された低分子化合物を放出する方法。   A method for releasing the low molecular weight compound encapsulated in the inner pores of the organic nanotube by mixing the organic nanotube encapsulating the low molecular weight compound according to claim 1 or 2 with water.
JP2007317092A 2007-12-07 2007-12-07 Organic nanotube encapsulating low molecular weight compound Pending JP2009136975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317092A JP2009136975A (en) 2007-12-07 2007-12-07 Organic nanotube encapsulating low molecular weight compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317092A JP2009136975A (en) 2007-12-07 2007-12-07 Organic nanotube encapsulating low molecular weight compound

Publications (1)

Publication Number Publication Date
JP2009136975A true JP2009136975A (en) 2009-06-25

Family

ID=40868156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317092A Pending JP2009136975A (en) 2007-12-07 2007-12-07 Organic nanotube encapsulating low molecular weight compound

Country Status (1)

Country Link
JP (1) JP2009136975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143382A1 (en) 2009-06-08 2010-12-16 パナソニック株式会社 Shutoff valve unit
US9018156B2 (en) 2011-05-09 2015-04-28 National Institute Of Advanced Industrial Science And Technology Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
WO2023223787A1 (en) * 2022-05-17 2023-11-23 リンテック株式会社 Adhesive composition, adhesive, adhesive sheet, display body, and repeated bending device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231100A (en) * 2002-02-13 2003-08-19 Japan Science & Technology Corp Surface modified nanotube
JP2004261885A (en) * 2003-02-18 2004-09-24 Japan Science & Technology Agency Method of leading functional material to organic nanotube
JP2005239632A (en) * 2004-02-26 2005-09-08 Japan Science & Technology Agency Polymerizable bicephalic glycolipid, tube-shaped aggregate thereof and its polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231100A (en) * 2002-02-13 2003-08-19 Japan Science & Technology Corp Surface modified nanotube
JP2004261885A (en) * 2003-02-18 2004-09-24 Japan Science & Technology Agency Method of leading functional material to organic nanotube
JP2005239632A (en) * 2004-02-26 2005-09-08 Japan Science & Technology Agency Polymerizable bicephalic glycolipid, tube-shaped aggregate thereof and its polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143382A1 (en) 2009-06-08 2010-12-16 パナソニック株式会社 Shutoff valve unit
US9018156B2 (en) 2011-05-09 2015-04-28 National Institute Of Advanced Industrial Science And Technology Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
WO2023223787A1 (en) * 2022-05-17 2023-11-23 リンテック株式会社 Adhesive composition, adhesive, adhesive sheet, display body, and repeated bending device

Similar Documents

Publication Publication Date Title
Xiao et al. Cyclodextrins as carriers for volatile aroma compounds: A review
Budhwar Cyclodextrin complexes: An approach to improve the physicochemical properties of drugs and applications of cyclodextrin complexes
Zhang et al. Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications
CN103450361B (en) Carboxymethyl cellulose grafted polylactic acid amphipathic nature polyalcohol and preparation method thereof and application
JP4566739B2 (en) Aqueous dispersions consisting of nanometer or micrometer size particles for compound encapsulation
WO2001083564A1 (en) Amphiphilic macrocyclic derivatives and their analogues
Xu et al. Synthesis and potential applications of cyclodextrin-based metal–organic frameworks: a review
JP2010095697A (en) Hollow spheres from amphiphilic chitosan derivative and amphiphilic chitosan derivative complex for medical use
Ahmed et al. Effect of cyclodextrins on the physicochemical properties and antimycotic activity of clotrimazole
US20210161830A1 (en) Active substance carrier comprising biopolymer
Terekhova et al. Inclusion complex formation of α-and β-cyclodextrins with riboflavin and alloxazine in aqueous solution: thermodynamic study
Liu et al. Molecular-level understanding of the encapsulation and dissolution of poorly water-soluble ibuprofen by functionalized organic nanotubes using solid-state NMR spectroscopy
Li et al. Controlled ibuprofen release from Pickering emulsions stabilized by pH-responsive cellulose-based nanofibrils
JP2019521147A (en) Pharmaceutical composition of tecobilimat for injection and method for its preparation
JP2009136975A (en) Organic nanotube encapsulating low molecular weight compound
Sui et al. Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin
EP1293248B1 (en) Novel calixarene based dispersible colloidal system in the form of nanoparticles
US9018156B2 (en) Organic nanotube having hydrophobized inner surface, and encapsulated medicinal agent prepared using the nanotube
JP4925128B2 (en) Chemical decomposition method of organic nanotube
CN114304143A (en) Pesticide delivery system and preparation method thereof
Sakran et al. Investigation and physicochemical characterization of binary febuxostat-sulfobutyl ether β-cyclodextrin inclusion complexes
Goh et al. Mini review on synthesis and characterization methods for ternary inclusion complexes of cyclodextrins with drugs
Onyeji et al. Dissolution properties and characterization of halofantrine-2-hydroxypropyl-β-cyclodextrin binary systems
CN102504280B (en) Method for preparing biofilm-imitated vesicle structure by utilizing modified hyper-branched polymer
Dejeu et al. Preparation and characterization of liposomes loaded with polyphenols extracted from callendulae flos.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814