JP2009135386A - Cmp abrasive for semiconductor insulating film and substrate polishing method - Google Patents

Cmp abrasive for semiconductor insulating film and substrate polishing method Download PDF

Info

Publication number
JP2009135386A
JP2009135386A JP2008015150A JP2008015150A JP2009135386A JP 2009135386 A JP2009135386 A JP 2009135386A JP 2008015150 A JP2008015150 A JP 2008015150A JP 2008015150 A JP2008015150 A JP 2008015150A JP 2009135386 A JP2009135386 A JP 2009135386A
Authority
JP
Japan
Prior art keywords
insulating film
polishing
cerium oxide
polyethylene resin
semiconductor insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008015150A
Other languages
Japanese (ja)
Inventor
Tadahiro Kimura
忠広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008015150A priority Critical patent/JP2009135386A/en
Publication of JP2009135386A publication Critical patent/JP2009135386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CMP abrasive for a semiconductor insulating film and a substrate polishing method, polishing a semiconductor insulating film at a high speed without a polishing damage and suppressing dishing. <P>SOLUTION: The CMP abrasive for a semiconductor insulating film contains cerium oxide particles, a high-density polyethylene resin, a dispersant, and water. Then, the particle diameter of D50 volume% of the cerium oxide particle is set to 50 to 300 nm and the particle diameter of D99 volume% is set to 200 to 1,000 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体素子製造技術である基板表面の平坦化工程において使用される半導体絶縁膜用CMP研磨剤及び基板の研磨方法に関する。   The present invention relates to a CMP polishing agent for a semiconductor insulating film used in a planarization process of a substrate surface, which is a semiconductor element manufacturing technique, and a substrate polishing method.

現在の超々大規模集積回路では、実装密度を高める傾向にあり種々の微細加工技術が研究、開発されている。既にデザインルールは、サブハーフミクロンのオーダーになっている。このような厳しい微細化の要求を満足するために開発されている技術の一つにCMP(ケミカルメカニカルポリッシング)技術がある。   In the present ultra-large scale integrated circuit, various fine processing techniques have been researched and developed in order to increase the mounting density. The design rules are already in the order of sub-half microns. One of the techniques that have been developed in order to satisfy such demands for strict miniaturization is a CMP (chemical mechanical polishing) technique.

CMP技術は、半導体装置の製造工程において露光を施す層を完全に平坦化し、露光技術の負担を軽減し歩留まりを安定させることができるため、例えば、層間絶縁膜、BPSG膜の平坦化、シャロー・トレンチアイソレーション分離等を行う際に必須となる技術である。   The CMP technique can completely planarize the layer to be exposed in the manufacturing process of the semiconductor device, reduce the burden of the exposure technique, and stabilize the yield. For example, planarization of an interlayer insulating film, BPSG film, shallow This technique is essential when performing trench isolation and the like.

半導体装置の製造工程において、プラズマ−CVD(Chemical Vapor Deposition、化学的蒸着法)、低圧−CVD等の方法で形成される酸化珪素絶縁膜等の無機絶縁膜層を平坦化するためのCMP研磨剤として、酸化セリウム系の研磨剤の適用が検討されている。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。   CMP polishing agent for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD (Chemical Vapor Deposition) or low-pressure CVD in a manufacturing process of a semiconductor device Application of a cerium oxide-based abrasive is being studied. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finishing mirror polishing because they do not easily scratch the polished surface.

また、酸化セリウムは、強い酸化剤として知られるように化学的活性な性質を有している。この利点を活かし高速研磨が可能な絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、現在使用されている酸化セリウム系研磨剤は高速研磨が可能であるが、絶縁膜表面に多くの研磨傷がついてしまうといった問題があった。   Moreover, cerium oxide has a chemically active property as known as a strong oxidizing agent. Taking advantage of this advantage, it is useful to apply it to a chemical mechanical polishing agent for an insulating film capable of high speed polishing. However, currently used cerium oxide-based abrasives can perform high-speed polishing, but have a problem that many polishing scratches are attached to the surface of the insulating film.

一方で、CMP技術は、ダマシンプロセスなどで用いられる配線用材料の銅、銅の拡散防止などに用いられるTa、TaNやW、Ru等の金属を研磨する場合もある。その場合、研磨する対象である金属により研磨剤の組成物が適宜選ばれるが、使用される研磨剤の砥粒はおもにコロイダルシリカなどのシリカ粒子であり層間絶縁膜、STI形成用に用いられるCMP研磨剤とはその組成が大幅に異なる。   On the other hand, the CMP technique sometimes polishes copper, which is a wiring material used in a damascene process, and metals such as Ta, TaN, W, and Ru, which are used for preventing diffusion of copper. In that case, the composition of the abrasive is appropriately selected depending on the metal to be polished, but the abrasive grains used are mainly silica particles such as colloidal silica and are used for forming the interlayer insulating film and STI. Its composition is significantly different from that of abrasives.

CMP研磨剤への熱可塑性ポリマーの適用例は、特許文献1には、バリア層を選択的に研磨する研磨剤として、ポリビニルアルコールコポリマー及び熱可塑性ポリマーを含む研磨組成物を用いた場合は、熱可塑性ポリマーを含まない研磨組成物を用いた場合よりも、半導体基材の被研磨面に対し低い表面粗さ及び少ないスクラッチ性が得られることが記載されている。かかる研磨剤の研磨対象はバリア層であり、絶縁膜の研磨に用いることに関しては説明されていない。   An example of application of a thermoplastic polymer to a CMP abrasive is disclosed in Patent Document 1, in which a polishing composition containing a polyvinyl alcohol copolymer and a thermoplastic polymer is used as an abrasive for selectively polishing a barrier layer. It is described that lower surface roughness and less scratching properties can be obtained with respect to the surface to be polished of the semiconductor substrate than when a polishing composition containing no plastic polymer is used. The polishing target of such an abrasive is a barrier layer, and there is no description about using it for polishing an insulating film.

また、樹脂を砥粒とするCMP研磨剤の例としては、特許文献2に示されるように、官能基を有すると共に、一次粒子径が0.05μm以上、5μm以下のメタクリル樹脂、ポリスチレン樹脂、ユリア樹脂、メラミン樹脂、ポリアセタール樹脂及びポリカーボネイト樹脂から選択される樹脂粒子を含有するCMP研磨剤が示されているが、当該研磨剤はレジスト膜という樹脂を研磨するためであり層間絶縁膜の研磨への適用は示されていない。   Examples of CMP abrasives using resin as abrasive grains include, as disclosed in Patent Document 2, a methacrylic resin, polystyrene resin, urea having a functional group and a primary particle diameter of 0.05 μm or more and 5 μm or less. A CMP abrasive containing resin particles selected from a resin, a melamine resin, a polyacetal resin and a polycarbonate resin is shown, but the abrasive is for polishing a resin called a resist film and is used for polishing an interlayer insulating film. Application is not shown.

また、研磨傷の低減手法としては特許文献3にpH調整による欠陥抑制方法が示されている。また、特許文献4では高温下で研磨を行うことによりスクラッチなどの欠陥を低減できるとしている。さらに、特許文献5ではスラリー流量の制御によりスクラッチなどの欠陥密度が下げられるとしている。
特開2006−186356号公報 特開2004−363191号公報 特開平10−321588号公報 特開2004−128319号公報 特開2002−367938号公報
Further, as a method for reducing polishing scratches, Patent Document 3 discloses a defect suppression method by pH adjustment. Patent Document 4 states that defects such as scratches can be reduced by polishing at a high temperature. Further, in Patent Document 5, the density of defects such as scratches is reduced by controlling the slurry flow rate.
JP 2006-186356 A JP 2004-363191 A Japanese Patent Laid-Open No. 10-321588 JP 2004-128319 A JP 2002-367938

本発明の目的は、半導体絶縁膜を研磨傷なく高速に研磨し、ディッシングを抑制することが可能な半導体絶縁膜用CMP研磨剤及び基板の研磨方法を提供することである。   An object of the present invention is to provide a CMP polishing agent for a semiconductor insulating film and a method for polishing a substrate, which can polish a semiconductor insulating film at high speed without scratching and suppress dishing.

すなわち、本発明は、(1)酸化セリウム粒子、高密度ポリエチレン樹脂、分散剤及び水を含有してなる半導体絶縁膜用CMP研磨剤に関する。   That is, the present invention relates to (1) a CMP abrasive for a semiconductor insulating film comprising cerium oxide particles, a high-density polyethylene resin, a dispersant, and water.

また、本発明は、(2)酸化セリウム粒子、超高分子量ポリエチレン樹脂、分散剤及び水を含有してなる半導体絶縁膜用CMP研磨剤に関する。   The present invention also relates to (2) a CMP abrasive for a semiconductor insulating film comprising cerium oxide particles, an ultrahigh molecular weight polyethylene resin, a dispersant and water.

また、本発明は、(3)前記酸化セリウム粒子のD50体積%の粒子径が50〜300nm、D99体積%の粒子径が200〜1000nmであることを特徴とする前記(1)又は(2)記載の半導体絶縁膜用CMP研磨剤に関する。   The present invention is also characterized in that (3) the particle diameter of D50 volume% of the cerium oxide particles is 50 to 300 nm, and the particle diameter of D99 volume% is 200 to 1000 nm, (1) or (2) The present invention relates to the CMP polishing agent for a semiconductor insulating film.

また、本発明は、(4)前記高密度ポリエチレン樹脂の最大粒径が、1μm以下であることを特徴とする前記(1)又は(3)記載の半導体絶縁膜用CMP研磨剤に関する。   The present invention also relates to (4) the CMP polishing slurry for semiconductor insulating films according to (1) or (3), wherein the high-density polyethylene resin has a maximum particle size of 1 μm or less.

また、本発明は、(5)前記高密度ポリエチレン樹脂の最大粒径が、500nm以下であることを特徴とする前記(1)又は(3)記載の半導体絶縁膜用CMP研磨剤に関する。   The present invention also relates to (5) the CMP polishing slurry for semiconductor insulating films according to (1) or (3), wherein the high-density polyethylene resin has a maximum particle size of 500 nm or less.

また、本発明は、(6)前記超高分子量ポリエチレン樹脂の最大粒径が、1μm以下であることを特徴とする前記(2)又は(3)記載の半導体絶縁膜用CMP研磨剤に関する。   The present invention also relates to (6) the CMP polishing agent for a semiconductor insulating film according to (2) or (3), wherein the ultra high molecular weight polyethylene resin has a maximum particle size of 1 μm or less.

また、本発明は、(7)前記超高分子量ポリエチレン樹脂の最大粒径が、500nm以下であることを特徴とする前記(2)又は(3)記載の半導体絶縁膜用CMP研磨剤に関する。   The present invention also relates to (7) the CMP polishing slurry for a semiconductor insulating film according to (2) or (3), wherein the ultra high molecular weight polyethylene resin has a maximum particle size of 500 nm or less.

また、本発明は、(8)研磨する膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、前記(1)〜(7)のいずれか一項に記載の半導体絶縁膜用CMP研磨剤を膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして膜を研磨することを特徴とする基板の研磨方法に関する。   In the present invention, (8) CMP for a semiconductor insulating film according to any one of (1) to (7), wherein the substrate on which a film to be polished is formed is pressed against a polishing cloth on a polishing platen and pressed. The present invention relates to a method for polishing a substrate, wherein the film is polished by relatively moving a substrate and a polishing surface plate while supplying an abrasive between the film and a polishing cloth.

本発明によれば、半導体絶縁膜を研磨傷なく高速に研磨し、ディッシングを抑制することが可能な半導体絶縁膜用CMP研磨剤及び基板の研磨方法を提供することができる。   According to the present invention, it is possible to provide a CMP polishing agent for a semiconductor insulating film and a method for polishing a substrate capable of polishing a semiconductor insulating film at high speed without polishing scratches and suppressing dishing.

本発明の半導体絶縁膜用CMP研磨剤は、酸化セリウム粒子、高密度ポリエチレン樹脂、分散剤及び水を含有してなる研磨剤である。   The CMP abrasive | polishing agent for semiconductor insulating films of this invention is an abrasive | polishing agent formed by containing a cerium oxide particle, a high density polyethylene resin, a dispersing agent, and water.

また、本発明の半導体絶縁膜用CMP研磨剤は、酸化セリウム粒子、超高分子量ポリエチレン樹脂、分散剤及び水を含有してなる研磨剤である。   Moreover, the CMP abrasive | polishing agent for semiconductor insulating films of this invention is an abrasive | polishing agent formed by containing a cerium oxide particle, ultra high molecular weight polyethylene resin, a dispersing agent, and water.

(酸化セリウム粒子)
本発明で用いる酸化セリウム粒子は、その製造方法を制限するものではないが、例えば、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を焼成することによって得られる。焼成温度は、400℃以上、900℃以下が好ましく、酸化セリウムの粒径を小さくするために700℃以上、900℃以下がより好ましい。
(Cerium oxide particles)
The production method of the cerium oxide particles used in the present invention is not limited, but can be obtained, for example, by firing a cerium compound of carbonate, nitrate, sulfate, or oxalate. The firing temperature is preferably 400 ° C. or higher and 900 ° C. or lower, and more preferably 700 ° C. or higher and 900 ° C. or lower in order to reduce the particle size of cerium oxide.

酸化して得られた酸化セリウム粒子は通常凝集しているため、機械的に粉砕することが好ましい。粉砕方法として、例えば、ジェットミル、ボールミル等の乾式粉砕法、ビーズミル、ボールミル等の湿式粉砕法が挙げられる。ジェットミルは、例えば、化学工業論文集第6巻第5号(1980)527〜532頁に説明されている。また酸化セリウム粒子は必要に応じてフィルタ等で分級することができる。   Since the cerium oxide particles obtained by oxidation are usually agglomerated, it is preferably mechanically pulverized. Examples of the pulverization method include a dry pulverization method such as a jet mill and a ball mill, and a wet pulverization method such as a bead mill and a ball mill. The jet mill is described, for example, in Chemical Industrial Papers Vol. 6 No. 5 (1980) pp. 527-532. The cerium oxide particles can be classified with a filter or the like as necessary.

半導体絶縁膜用CMP研磨剤中に分散している酸化セリウム粒子のD50体積%の粒子径は、好ましくは50〜300nm、より好ましくは100〜200nmである。前記酸化セリウム粒子のD50体積%の粒子径が50nm未満では半導体絶縁膜を高速に研磨することができ難い傾向があり、300nmを超えると被研磨面に研磨傷が発生しやすくなる。   The particle diameter of D50 volume% of the cerium oxide particles dispersed in the CMP polishing agent for semiconductor insulating film is preferably 50 to 300 nm, more preferably 100 to 200 nm. If the particle diameter of D50 volume% of the cerium oxide particles is less than 50 nm, the semiconductor insulating film tends to be difficult to polish at high speed, and if it exceeds 300 nm, polishing scratches are likely to occur on the surface to be polished.

また、半導体絶縁膜用CMP研磨剤中に分散している酸化セリウム粒子のD99体積%の粒子径は、好ましくは200〜1000nm、より好ましくは250〜500nmである。前記酸化セリウム粒子のD99体積%の粒子径が200nm未満では半導体絶縁膜を高速に研磨することができ難い傾向があり、1000nmを超えると被研磨面に研磨傷が発生しやすくなる。   Moreover, the particle diameter of D99 volume% of the cerium oxide particle disperse | distributed in CMP abrasive | polishing agent for semiconductor insulating films becomes like this. Preferably it is 200-1000 nm, More preferably, it is 250-500 nm. If the particle diameter of D99 volume% of the cerium oxide particles is less than 200 nm, the semiconductor insulating film tends to be difficult to polish at high speed, and if it exceeds 1000 nm, polishing scratches are likely to occur on the surface to be polished.

本発明の半導体絶縁膜用CMP研磨剤においては、研磨剤中に分散している酸化セリウム粒子は二次粒子を形成しているので、前記D50体積%の粒子径及びD99体積%の粒子径は二次粒子に関する粒子径である。   In the CMP polishing slurry for semiconductor insulation film of the present invention, since the cerium oxide particles dispersed in the polishing slurry form secondary particles, the particle diameter of D50 volume% and the particle diameter of D99 volume% are It is a particle diameter regarding secondary particles.

半導体絶縁膜用CMP研磨剤中の酸化セリウム粒子のD50体積%及びD99体積%は、レーザー回折法、例えば、レーザー回折式粒度分布計(屈折率:1.93、吸収0)を用いて測定することができる。レーザー回折式粒度分布計としては、例えば、マルバーン インストルメンツ社製、マスターサイザーや株式会社堀場製作所製、LAシリーズを使用することができる。   The D50 volume% and D99 volume% of the cerium oxide particles in the CMP polishing agent for semiconductor insulating film are measured using a laser diffraction method, for example, a laser diffraction particle size distribution meter (refractive index: 1.93, absorption 0). be able to. As the laser diffraction particle size distribution analyzer, for example, Malvern Instruments, Mastersizer, Horiba, Ltd., LA series can be used.

また、D50体積%の粒子径は、体積粒子径分布の中央値であり粒子径の細かいものからその粒子の体積割合を積算していき50%になったときの粒子径を意味する。すなわち、ある区間Δの粒子径の範囲に体積割合Vi%の量の粒子が存在するとき、区間Δの平均粒子径をdiとすると粒子径diの粒子がVi体積%存在するとする。粒子径diの小さい方から粒子の存在割合VI(体積%)を積算していき、Vi=50%になったときのdiをD50体積%の粒子径とする。またVi=99%になったときのdiをD99体積%の粒子径とする。   Further, the particle diameter of D50 volume% is the median value of the volume particle diameter distribution, and means the particle diameter when the volume ratio of the particles is accumulated from the fine particle diameter to 50%. That is, when particles having an amount of volume ratio Vi% exist in a range of particle diameters in a certain section Δ, assuming that the average particle diameter in the section Δ is di, particles having a particle diameter di exist in Vi volume%. The particle abundance ratio VI (volume%) is accumulated from the smaller particle diameter di, and di when Vi = 50% is taken as the particle diameter of D50 volume%. Further, di when Vi = 99% is set to a particle size of D99 volume%.

(高密度ポリエチレン樹脂)
本発明で用いる高密度ポリエチレン樹脂は、エチレン単独又はエチレンと炭素数が3〜12個のα−オレフィンとを所謂フィリップス系触媒又はチーグラー触媒の存在下で単独重合あるいは共重合させることにより得られるものであり、一般には常圧〜約100kg/cmの圧力で製造されるものである。α−オレフィンは好ましくは炭素数が3〜8のものであり、プロピレン、ブテン−1、ヘキセン−1、4−メチルペンテン−1、オクテン−1などが例示される。α−オレフィンとの共重合の割合が多くなると密度が低下するので、多くても6.0重量%程度が好ましい。また、α−オレフィンとの共重合体における分岐数が多くなると密度が低下するので、エチレンモノマー1000に対し1〜5個程度であることが好ましい。
(High density polyethylene resin)
The high-density polyethylene resin used in the present invention is obtained by homopolymerizing or copolymerizing ethylene alone or ethylene and an α-olefin having 3 to 12 carbon atoms in the presence of a so-called Phillips catalyst or Ziegler catalyst. In general, it is produced at a pressure of normal pressure to about 100 kg / cm 2 . The α-olefin preferably has 3 to 8 carbon atoms, and examples thereof include propylene, butene-1, hexene-1, 4-methylpentene-1, and octene-1. Since the density decreases as the proportion of copolymerization with α-olefin increases, it is preferably at most about 6.0% by weight. Further, since the density decreases as the number of branches in the copolymer with α-olefin increases, it is preferably about 1 to 5 with respect to the ethylene monomer 1000.

本発明で用いる高密度ポリエチレン樹脂の密度は、0.942(g/cm)以上であることが好ましく、0.942〜0.970(g/cm)であることがより好ましく、0.950〜0.970(g/cm)であることが特に好ましい。前記密度が0.970(g/cm)を超えると脆くなり、0.942(g/cm)未満ではディッシング抑制効果を得られなくなる可能性がある。本発明では、高密度ポリエチレン樹脂の密度が0.942(g/cm)を下回らない範囲で、エチレン鎖がα−オレフィン由来の分岐構造を有していてもよい。ここで、密度はJIS K 7112(1999年)及びJIS K6922−1(1999年)に準拠して、密度勾配管法(23℃)で測定した値である。
また、本発明で用いる高密度ポリエチレン樹脂のメルトフローインデックス(MFR)は、40g/10分以下であることが好ましく、10g/10分以下であることがより好ましい。前記メルトフローインデックスが40g/10分を超えると平均分子量が低い傾向にある。メルトフローインデックスは平均分子量を表すものであり、メルトフローインデックスが低ければ、平均分子量は一般的に高くなる。ここで、メルトフローインデックスはJIS K 7210(1999年)及びJISK6922−1(1999年)に準拠して測定した値である。
また、分子量が大きくメルトフローインデックスを測定できない場合、JIS K7367−3に順じ極限粘度数を求め分子量を算出することもできる。
The density of the high-density polyethylene resin used in the present invention is preferably 0.942 (g / cm 3 ) or more, more preferably 0.942 to 0.970 (g / cm 3 ), and It is especially preferable that it is 950-0.970 (g / cm < 3 >). If the density exceeds 0.970 (g / cm 3 ), it becomes brittle, and if it is less than 0.942 (g / cm 3 ), the dishing suppression effect may not be obtained. In the present invention, the ethylene chain may have a branched structure derived from an α-olefin as long as the density of the high-density polyethylene resin does not fall below 0.942 (g / cm 3 ). Here, the density is a value measured by a density gradient tube method (23 ° C.) based on JIS K 7112 (1999) and JIS K6922-1 (1999).
The melt flow index (MFR) of the high-density polyethylene resin used in the present invention is preferably 40 g / 10 minutes or less, and more preferably 10 g / 10 minutes or less. When the melt flow index exceeds 40 g / 10 min, the average molecular weight tends to be low. The melt flow index represents the average molecular weight. If the melt flow index is low, the average molecular weight is generally high. Here, the melt flow index is a value measured according to JIS K 7210 (1999) and JIS K6922-1 (1999).
When the melt flow index cannot be measured due to the large molecular weight, the molecular weight can be calculated by obtaining the intrinsic viscosity in accordance with JIS K7367-3.

本発明では、高密度ポリエチレン樹脂を単独で、又は2種類以上を組み合わせて用いることができる。   In the present invention, the high-density polyethylene resin can be used alone or in combination of two or more.

本発明で用いることのできる高密度ポリエチレン樹脂の市販品としては、例えば、日本ポリエチレン株式会社製のノバテック(登録商標)HD、株式会社プライムポリマー製のハイゼックス(登録商標)等が挙げられる。   Examples of commercially available high-density polyethylene resins that can be used in the present invention include Novatec (registered trademark) HD manufactured by Nippon Polyethylene Co., Ltd. and Hi-Zex (registered trademark) manufactured by Prime Polymer Co., Ltd.

また、半導体絶縁膜用CMP研磨剤中に分散している高密度ポリエチレン樹脂の最大粒径は、好ましくは1μm以下、より好ましくは500nm以下である。前記高密度ポリエチレン樹脂の最大粒径が1μmを超えると研磨傷等が発生しやすくなり欠陥検査などで異物として認識されやすくなる傾向にある。   The maximum particle size of the high-density polyethylene resin dispersed in the CMP polishing agent for semiconductor insulating film is preferably 1 μm or less, more preferably 500 nm or less. When the maximum particle size of the high-density polyethylene resin exceeds 1 μm, polishing scratches or the like are likely to occur, and it tends to be recognized as a foreign substance in a defect inspection or the like.

また、半導体絶縁膜用CMP研磨剤中に分散している高密度ポリエチレン樹脂の最大粒径は、研磨傷の発生を防止する観点で酸化セリウム粒子のD99体積%の粒子径よりも小さいことが好ましく、500nm以下であることがより好ましい。   In addition, the maximum particle size of the high-density polyethylene resin dispersed in the CMP abrasive for the semiconductor insulating film is preferably smaller than the particle size of D99 volume% of the cerium oxide particles from the viewpoint of preventing the occurrence of polishing flaws. More preferably, it is 500 nm or less.

本発明で用いられる高密度ポリエチレン樹脂は、固体であり、磨耗性としゅう動性がよいことが好ましい。高密度ポリエチレン樹脂は結晶性高分子であるが、無機物である酸化セリウムなどに比べ比較的粉砕されやすいと考えられる。酸化セリウム粒子を粉砕する際に同じ系で高密度ポリエチレン樹脂を一緒に粉砕すると、酸化セリウム粒子の粒径と同等かそれ以下の粒径の高密度ポリエチレン樹脂を容易に得ることが可能となる。粉砕方法にはとくに制限されるものではないが、より微細な粒子を生成しやすい湿式粉砕法が好ましい。高密度ポリエチレン樹脂の最大粒径を所望の値に調整する方法としては、例えばフィルターを用いて分級する方法が挙げられる。
高密度ポリエチレン樹脂を酸化セリウム粒子と同じ系で一緒に粉砕した場合、高密度ポリエチレン樹脂の最大粒径を凡そ確認する方法は、湿式粉砕によって粉砕された高密度ポリエチレン樹脂を含む酸化セリウム分散水溶液にポリアクリル酸アンモニウム塩などの凝集剤を混合し、30〜90日静置後、上澄みを取り除き沈降層を静置する。沈降層の表面に見える黒色状物は、高密度ポリエチレン樹脂の析出物と高密度ポリエチレン樹脂とポリアクリル酸アンモニウム塩などの凝集物であるので、黒色状物を採取し、メンブレンフィルタを用い吸引ろ過を行い、フィルタ上の残渣を確認することで高密度ポリエチレン樹脂の最大粒径を確認することができる。例えば、採取した黒色状物を0.5μmのメンブレンフィルタで吸引ろ過し、フィルタ上を光学顕微鏡で観察したところ析出物がなければ、黒色状物の最大粒径が0.5μm以下であることが確認できる。
The high-density polyethylene resin used in the present invention is preferably a solid and has good wear and sliding properties. A high-density polyethylene resin is a crystalline polymer, but is considered to be relatively easily pulverized compared to inorganic substances such as cerium oxide. When pulverizing the cerium oxide particles, if the high-density polyethylene resin is pulverized together in the same system, a high-density polyethylene resin having a particle size equal to or smaller than the particle size of the cerium oxide particles can be easily obtained. The pulverization method is not particularly limited, but a wet pulverization method that easily generates finer particles is preferable. As a method for adjusting the maximum particle size of the high-density polyethylene resin to a desired value, for example, a method of classification using a filter can be mentioned.
When high-density polyethylene resin is pulverized together in the same system as cerium oxide particles, the maximum particle diameter of high-density polyethylene resin can be confirmed by using a cerium oxide-dispersed aqueous solution containing high-density polyethylene resin pulverized by wet pulverization. A flocculant such as ammonium polyacrylate is mixed and allowed to stand for 30 to 90 days, after which the supernatant is removed and the sedimented layer is allowed to stand. The black-colored material that appears on the surface of the sedimentation layer is a precipitate of high-density polyethylene resin and aggregates of high-density polyethylene resin and ammonium polyacrylate. Therefore, the black-colored material is collected and suction filtered using a membrane filter. The maximum particle size of the high density polyethylene resin can be confirmed by confirming the residue on the filter. For example, when the collected black substance is suction filtered with a 0.5 μm membrane filter and the filter is observed with an optical microscope, if there is no precipitate, the maximum particle size of the black substance may be 0.5 μm or less. I can confirm.

本発明における高密度ポリエチレン樹脂の濃度は、半導体絶縁膜用CMP研磨剤中の酸化セリウム粒子の重量に対して、好ましくは0.001ppm〜100ppm、より好ましくは0.01ppm〜10ppmである。前記高密度ポリエチレン樹脂の濃度が100ppmを超えると、高密度ポリエチレン樹脂そのものが凝集し研磨傷などの要因となる可能性があり、0.001ppm未満であると研磨に使用した際の平坦性や低研磨傷の効果が得られにくくなる。本発明では、高密度ポリエチレン樹脂が半導体絶縁膜用CMP研磨剤中に少量存在することにより、分散剤などの添加剤や研磨パッドと作用して、酸化セリウム粒子の絶縁膜上への研磨傷の生成を緩衝する作用があると考えられる。   The concentration of the high-density polyethylene resin in the present invention is preferably 0.001 ppm to 100 ppm, more preferably 0.01 ppm to 10 ppm with respect to the weight of the cerium oxide particles in the CMP abrasive for semiconductor insulating films. If the concentration of the high-density polyethylene resin exceeds 100 ppm, the high-density polyethylene resin itself may agglomerate and cause factors such as polishing scratches. It becomes difficult to obtain the effect of polishing scratches. In the present invention, since a high-density polyethylene resin is present in a small amount in the CMP polishing agent for a semiconductor insulating film, it acts on an additive such as a dispersant and a polishing pad to cause polishing scratches on the insulating film of the cerium oxide particles. It is thought that it has the effect | action which buffers production | generation.

本発明で用いる超高分子量ポリエチレン樹脂は、粘度法による平均分子量が100万以上、好ましくは100万〜700万のポリエチレンである。前記平均分子量が100万未満であるものは一般に超高分子量ポリエチレン樹脂と呼ばない。超高分子量ポリエチレン樹脂は、低圧の懸濁重合法を利用し反応時間を長くすることにより分子量を高め得ることができる。ここで平均分子量は、ASTM D2857またはJIS K7367−3に準拠して求めた値である。   The ultra high molecular weight polyethylene resin used in the present invention is polyethylene having an average molecular weight of 1,000,000 or more, preferably 1,000,000 to 7,000,000, as determined by the viscosity method. Those having an average molecular weight of less than 1 million are generally not called ultrahigh molecular weight polyethylene resins. The ultrahigh molecular weight polyethylene resin can be increased in molecular weight by using a low-pressure suspension polymerization method and extending the reaction time. Here, the average molecular weight is a value determined according to ASTM D2857 or JIS K7367-3.

本発明では、超高分子量ポリエチレン樹脂を単独で、又は2種類以上を組み合わせて用いることができる。   In the present invention, the ultrahigh molecular weight polyethylene resin can be used alone or in combination of two or more.

本発明で用いることのできる超高分子量ポリエチレン樹脂の市販品としては、例えば、作新工業株式会社製のSaxinニューライト(登録商標)、三井化学株式会社製のハイゼックスミリオン(登録商標)、旭化成ケミカルズ株式会社製のサンファイン(登録商標)UH、住友ベークライト社製サンモラー(登録商標)、サンフリック(登録商標)等が挙げられる。   Examples of commercially available ultra-high molecular weight polyethylene resins that can be used in the present invention include Saxin Newlite (registered trademark) manufactured by Sakushin Kogyo Co., Ltd., Hi-X Million (registered trademark) manufactured by Mitsui Chemicals, Inc., Asahi Kasei Chemicals Corporation Examples thereof include Sun Fine (registered trademark) UH manufactured by Sumitomo Bakelite Co., Ltd., Sun Moller (registered trademark), and Sun Flick (registered trademark).

また、半導体絶縁膜用CMP研磨剤中に分散している超高分子量ポリエチレン樹脂の最大粒径は、好ましくは1μm以下、より好ましくは500nm以下である。前記超高分子量ポリエチレン樹脂の最大粒径が1μmを超えると研磨傷等が発生しやすくなり欠陥検査などで異物として認識されやすくなる傾向にある。   Further, the maximum particle size of the ultrahigh molecular weight polyethylene resin dispersed in the CMP polishing agent for semiconductor insulating film is preferably 1 μm or less, more preferably 500 nm or less. When the maximum particle size of the ultrahigh molecular weight polyethylene resin exceeds 1 μm, polishing scratches or the like are likely to occur, and it tends to be recognized as a foreign substance in a defect inspection or the like.

また、半導体絶縁膜用CMP研磨剤中に分散している超高分子量ポリエチレン樹脂の最大粒径は、研磨傷の発生を防止する観点で酸化セリウム粒子のD99体積%の粒子径よりも小さいことが好ましく、500nm以下であることがより好ましい。   In addition, the maximum particle size of the ultrahigh molecular weight polyethylene resin dispersed in the CMP polishing agent for semiconductor insulating film is smaller than the particle size of D99 volume% of the cerium oxide particles from the viewpoint of preventing the occurrence of polishing flaws. Preferably, it is 500 nm or less.

本発明で用いられる超高分子量ポリエチレン樹脂は、固体であり、磨耗性としゅう動性がよいことが好ましい。超高分子量ポリエチレン樹脂は結晶性高分子であるが、無機物である酸化セリウムなどに比べ比較的粉砕されやすいと考えられる。酸化セリウム粒子を粉砕する際に同じ系で超高分子量ポリエチレン樹脂を一緒に粉砕すると、酸化セリウム粒子の粒径と同等かそれ以下の粒径の超高分子量ポリエチレン樹脂を容易に得ることが可能となる。粉砕方法にはとくに制限されるものではないが、より微細な粒子を生成しやすい湿式粉砕法が好ましい。超高分子量ポリエチレン樹脂の最大粒径を所望の値に調整する方法としては、例えばフィルターを用いて分級する方法が挙げられる。
超高分子量ポリエチレン樹脂を酸化セリウム粒子と同じ系で一緒に粉砕した場合、超高分子量ポリエチレン樹脂の最大粒径を凡そ確認する方法は、湿式粉砕によって粉砕された超高分子量ポリエチレン樹脂を含む酸化セリウム分散水溶液にポリアクリル酸アンモニウム塩などの凝集剤を混合し、30〜90日静置後、上澄みを取り除き沈降層を静置する。沈降層の表面に見える黒色状物は、超高分子量ポリエチレン樹脂の析出物と超高分子量ポリエチレン樹脂とポリアクリル酸アンモニウム塩などの凝集物であるので、黒色状物を採取し、メンブレンフィルタを用い吸引ろ過を行い、フィルタ上の残渣を確認することで超高分子量ポリエチレン樹脂の最大粒径を確認することができる。例えば、採取した黒色状物を0.5μmのメンブレンフィルタで吸引ろ過し、フィルタ上を光学顕微鏡で観察したところ析出物がなければ、黒色状物の最大粒径が0.5μm以下であることが確認できる。
The ultra high molecular weight polyethylene resin used in the present invention is preferably a solid, and has good wear and slidability. The ultrahigh molecular weight polyethylene resin is a crystalline polymer, but is considered to be relatively easily pulverized compared to inorganic cerium oxide. When pulverizing cerium oxide particles, if ultra high molecular weight polyethylene resin is pulverized together in the same system, it is possible to easily obtain ultra high molecular weight polyethylene resin having a particle size equal to or smaller than that of cerium oxide particles. Become. The pulverization method is not particularly limited, but a wet pulverization method that easily generates finer particles is preferable. Examples of a method for adjusting the maximum particle size of the ultrahigh molecular weight polyethylene resin to a desired value include a method of classifying using a filter.
When ultra high molecular weight polyethylene resin is pulverized together in the same system as cerium oxide particles, the maximum particle size of ultra high molecular weight polyethylene resin is confirmed by cerium oxide containing ultra high molecular weight polyethylene resin pulverized by wet pulverization. A flocculant such as ammonium polyacrylate is mixed with the aqueous dispersion, and after standing for 30 to 90 days, the supernatant is removed and the sedimented layer is allowed to stand. The black material that appears on the surface of the sedimentation layer is a precipitate of ultra high molecular weight polyethylene resin and an aggregate of ultra high molecular weight polyethylene resin and ammonium polyacrylate, so collect the black material and use a membrane filter. By performing suction filtration and confirming the residue on the filter, the maximum particle size of the ultra-high molecular weight polyethylene resin can be confirmed. For example, when the collected black substance is suction filtered with a 0.5 μm membrane filter and the filter is observed with an optical microscope, if there is no precipitate, the maximum particle size of the black substance may be 0.5 μm or less. I can confirm.

本発明における超高分子量ポリエチレン樹脂の濃度は、半導体絶縁膜用CMP研磨剤中の酸化セリウム粒子の重量に対して、好ましくは0.001ppm〜100ppm、より好ましくは0.01ppm〜10ppmである。前記超高分子量ポリエチレン樹脂の濃度が100ppmを超えると、超高分子量ポリエチレン樹脂そのものが凝集し研磨傷などの要因となる可能性があり、0.001ppm未満であると研磨に使用した際の平坦性や低研磨傷の効果が得られにくくなる。本発明では、超高分子量ポリエチレン樹脂が半導体絶縁膜用CMP研磨剤中に少量存在することにより、分散剤などの添加剤や研磨パッドと作用して、酸化セリウム粒子の絶縁膜上への研磨傷の生成を緩衝する作用があると考えられる。   The concentration of the ultrahigh molecular weight polyethylene resin in the present invention is preferably 0.001 ppm to 100 ppm, more preferably 0.01 ppm to 10 ppm, based on the weight of the cerium oxide particles in the CMP abrasive for semiconductor insulating films. When the concentration of the ultra high molecular weight polyethylene resin exceeds 100 ppm, the ultra high molecular weight polyethylene resin itself may aggregate and cause a factor such as polishing scratches, and if it is less than 0.001 ppm, flatness when used for polishing. And the effect of low polishing scratches is difficult to obtain. In the present invention, since the ultra high molecular weight polyethylene resin is present in a small amount in the CMP polishing slurry for semiconductor insulating film, it acts on additives such as a dispersant and polishing pad to cause polishing scratches on the insulating film of cerium oxide particles. It is considered that there is an action to buffer the production of.

超高分子量ポリエチレン樹脂や高密度ポリエチレン樹脂は高強度且つ、しゅう動性の高いプラスチックであり、高圧ホモジナイザーなどの粉砕装置や、スラリを分散させる為の撹拌装置などのしゅう動部の部品などに用いられる場合があるが、これらに用いられている超高分子量ポリエチレン樹脂や高密度ポリエチレン樹脂などが意図せず混入した場合でも本発明と同様の効果が得られる。   Ultra-high molecular weight polyethylene resin and high-density polyethylene resin are high-strength and highly-slidable plastics, and are used for pulverizing equipment such as high-pressure homogenizers and parts of sliding parts such as agitation equipment for dispersing slurry. Even if the ultrahigh molecular weight polyethylene resin or high density polyethylene resin used in these is mixed unintentionally, the same effect as the present invention can be obtained.

本発明では、前記高密度ポリエチレン樹脂と超高分子量ポリエチレン樹脂とを併用してもよく、その場合は高密度ポリエチレン樹脂と超高分子量ポリエチレン樹脂総量の濃度が、半導体絶縁膜用CMP研磨剤中の酸化セリウム粒子の重量に対して、好ましくは0.001ppm〜100ppm、より好ましくは0.01ppm〜10ppmとなるようにする。前記高密度ポリエチレン樹脂と超高分子量ポリエチレン樹脂総量の濃度が100ppmを超えると、高密度ポリエチレン樹脂と超高分子量ポリエチレン樹脂が凝集し研磨傷などの要因となる可能性があり、0.001ppm未満であると研磨に使用した際の平坦性や低研磨傷の効果が得られにくくなる。   In the present invention, the high-density polyethylene resin and the ultra-high molecular weight polyethylene resin may be used in combination, and in that case, the concentration of the high-density polyethylene resin and the ultra-high-molecular weight polyethylene resin in the CMP polishing slurry for semiconductor insulating film Preferably it is 0.001 ppm to 100 ppm, more preferably 0.01 ppm to 10 ppm, based on the weight of the cerium oxide particles. If the concentration of the high-density polyethylene resin and the ultra-high-molecular-weight polyethylene resin exceeds 100 ppm, the high-density polyethylene resin and the ultra-high-molecular-weight polyethylene resin may agglomerate and cause factors such as polishing scratches, and less than 0.001 ppm. When it exists, it becomes difficult to obtain the effect of flatness and low polishing scratches when used for polishing.

(分散剤)
本発明で用いる分散剤としては、ナトリウムイオン、カリウムイオン等のアルカリ金属及びハロゲン、イオウの含有率が10ppm以下であることが好ましく、例えば、アクリル酸系ポリマー、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤並びにモノエタノールアミン、ジエタノールアミン等の水溶性アミン類等が挙げられる。なお、アクリル酸系ポリマーには、例えばアクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩並びにアクリル酸アンモニウム塩とアクリル酸アルキル(メチル、エチル又はプロピル)との共重合体などが挙げられる。これらのうち、ポリアクリル酸アンモニウム塩又はアクリル酸アンモニウム塩とアクリル酸メチルとの共重合体が好ましい。後者を用いる場合、アクリル酸アンモニウム塩とアクリル酸メチルとのモル比は、アクリル酸アンモニウム塩/アクリル酸メチルが、10/90〜90/10であることが好ましい。前記アクリル酸アンモニウム塩とアクリル酸メチルとのモル比において、アクリル酸アンモニウム塩が10未満の場合や90を超えると分散性が維持できなくなる傾向がある。
(Dispersant)
As the dispersant used in the present invention, the content of alkali metals such as sodium ions and potassium ions, and halogens and sulfur is preferably 10 ppm or less, for example, water-soluble organic polymers such as acrylic acid polymers and polyvinyl alcohol. Water-soluble anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene lauryl ether ammonium sulfate, polyoxyethylene lauryl ether ammonium sulfate, and water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate And water-soluble amines such as monoethanolamine and diethanolamine. Examples of acrylic polymers include acrylic acid polymers and ammonium salts thereof, methacrylic acid polymers and ammonium salts thereof, and copolymers of ammonium acrylate salts with alkyl acrylates (methyl, ethyl or propyl). Can be mentioned. Of these, polyacrylic acid ammonium salt or a copolymer of ammonium acrylate salt and methyl acrylate is preferred. When the latter is used, the molar ratio of ammonium acrylate salt to methyl acrylate is preferably 10/90 to 90/10 for ammonium acrylate salt / methyl acrylate. When the ammonium acrylate salt is less than 10 or more than 90 in the molar ratio of the ammonium acrylate salt to methyl acrylate, the dispersibility tends not to be maintained.

また、アクリル酸系ポリマーの重量平均分子量は、1000〜20000であることが好ましい。アクリル酸系ポリマーの重量平均分子量が20000を超えると酸化セリウム粒子の再凝集による粒度分布の経時変化が生じやすくなる傾向があり、1000未満では酸化セリウム粒子の分散性及び沈降防止の効果が充分でない場合がある。   Moreover, it is preferable that the weight average molecular weights of an acrylic acid polymer are 1000-20000. If the weight average molecular weight of the acrylic polymer exceeds 20000, the particle size distribution tends to change over time due to reaggregation of the cerium oxide particles, and if it is less than 1000, the dispersibility of the cerium oxide particles and the effect of preventing sedimentation are not sufficient. There is a case.

また、分散剤の配合量は、研磨剤中の酸化セリウム粒子の分散性及び沈降防止性などの観点から、酸化セリウム粒子100重量部に対して0.01重量部〜5重量部の範囲が好ましい。前記分散剤の配合量が0.01重量部未満では酸化セリウム粒子が沈降しやすく、5重量部を超えると酸化セリウム粒子の再凝集による粒度分布の経時変化が生じやすい。   Further, the blending amount of the dispersant is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles from the viewpoint of dispersibility of the cerium oxide particles in the abrasive and anti-settling property. . When the blending amount of the dispersant is less than 0.01 parts by weight, the cerium oxide particles tend to settle, and when it exceeds 5 parts by weight, the particle size distribution tends to change with time due to reaggregation of the cerium oxide particles.

分散剤の酸化セリウム粒子に対する分散効果を高めるためには、分散処理時に分散機の中に酸化セリウム粒子と同時に入れることが好ましい。   In order to enhance the dispersion effect of the dispersant on the cerium oxide particles, it is preferable to place the dispersant in the disperser at the same time as the cerium oxide particles.

本発明の半導体絶縁膜用CMP研磨剤は、酸化セリウム粒子、高密度ポリエチレン樹脂及び/又は超高分子量ポリエチレン樹脂、分散剤を水中にスラリー状に分散させたものであり、分散させる方法は、通常の攪拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミル等を用いることができる。サブμmオーダーの酸化セリウム粒子を分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体攪拌式ミル等の湿式分散機を用いることが好ましい。また、必要に応じて分散操作に先立って酸化セリウム粒子を分級してもよく、分級方法としては通常の自然沈降法、液体サイクロン法、遠心沈降法などが挙げられる。   The CMP polishing slurry for a semiconductor insulating film of the present invention is a slurry in which cerium oxide particles, high-density polyethylene resin and / or ultrahigh molecular weight polyethylene resin, and a dispersant are dispersed in water. In addition to the dispersion treatment using a stirrer, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used. In order to disperse the sub-μm order cerium oxide particles, it is preferable to use a wet disperser such as a ball mill, a vibration ball mill, a planetary ball mill, a medium stirring mill or the like. Further, the cerium oxide particles may be classified prior to the dispersing operation as necessary, and examples of the classification method include a normal natural sedimentation method, a hydrocyclone method, and a centrifugal sedimentation method.

半導体絶縁膜用CMP研磨剤中の酸化セリウム粒子の濃度に制限はないが、研磨剤の取り扱い易さから0.5〜10重量%の範囲が好ましい。   Although there is no restriction | limiting in the density | concentration of the cerium oxide particle in CMP abrasive | polishing agent for semiconductor insulating films, The range of 0.5 to 10 weight% is preferable from the ease of handling of abrasive | polishing agent.

本発明の半導体絶縁膜用CMP研磨剤のpHは、4.5〜10であることが好ましい。前記pHが4.5未満であると粒子の凝集などがおこる傾向があり、10を超えると研磨速度の安定性が悪化する傾向がある。半導体絶縁膜用CMP研磨剤のpHを調製する方法としては、分散処理時又は処理後に、アンモニア水などの金属イオンを含まないアルカリ性物質を添加する方法などが挙げられる。   The pH of the CMP abrasive for semiconductor insulating film of the present invention is preferably 4.5-10. If the pH is less than 4.5, particles tend to aggregate, and if it exceeds 10, the polishing rate stability tends to deteriorate. Examples of a method for adjusting the pH of the CMP polishing agent for semiconductor insulating film include a method of adding an alkaline substance not containing metal ions such as aqueous ammonia during or after the dispersion treatment.

また、本発明の半導体絶縁膜用CMP研磨剤は、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、アミノエチルエタノールアミン等の水溶性アミン;ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の陰イオン性界面活性剤;ポリビニルアルコール、ポリビニルピロリドン等の水溶性有機高分子類等の添加剤を使用形態に応じ適宜添加することができる。   In addition, the CMP polishing slurry for semiconductor insulating film of the present invention includes water-soluble amines such as N, N-diethylethanolamine, N, N-dimethylethanolamine, and aminoethylethanolamine; ammonium lauryl sulfate, ammonium polyoxyethylene lauryl ether sulfate, and the like. An anionic surfactant; additives such as water-soluble organic polymers such as polyvinyl alcohol and polyvinylpyrrolidone can be appropriately added depending on the form of use.

本発明の基板の研磨方法は、研磨する膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、本発明の半導体絶縁膜用CMP研磨剤を膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして膜を研磨することを特徴とする。研磨対象である被研磨膜は半導体絶縁膜であり、酸化珪素絶縁膜や窒化珪素絶縁膜などの無機絶縁膜が好適であり、例えば、SiH又はテトラエトキシシランをSi源とし、酸素又はオゾンを酸素源としたCVD法により形成されたSiO膜が挙げられる。基板としては、回路素子とアルミニウム配線が形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上にSiO絶縁膜層が形成された基板等が使用できる。また、半導体分離(シャロー・トレンチ分離)の目的で形成されたSiO絶縁膜を含有する基板も使用できる。 In the substrate polishing method of the present invention, the substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing surface plate, and the CMP abrasive for semiconductor insulating film of the present invention is supplied between the film and the polishing cloth. However, the film is polished by relatively moving the substrate and the polishing surface plate. The film to be polished is a semiconductor insulating film, and is preferably an inorganic insulating film such as a silicon oxide insulating film or a silicon nitride insulating film. For example, SiH 4 or tetraethoxysilane is used as a Si source, and oxygen or ozone is used. Examples thereof include a SiO 2 film formed by a CVD method using an oxygen source. As the substrate, a substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element and an aluminum wiring are formed, a semiconductor substrate in a stage in which a circuit element is formed, and the like can be used. A substrate containing a SiO 2 insulating film formed for the purpose of semiconductor isolation (shallow trench isolation) can also be used.

このような基板上に形成されたSiO絶縁膜層を、本発明の半導体絶縁膜用CMP研磨剤で研磨することによって、SiO絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、被研磨膜を有する基板を保持するホルダーと研磨布(パッド)を張り付けた(回転数が変更可能なモータなどを取り付けてある)定盤を有する一般的な研磨装置が使用できる。 By polishing the SiO 2 insulating film layer formed on such a substrate with the CMP polishing agent for semiconductor insulating film of the present invention, unevenness on the surface of the SiO 2 insulating film layer is eliminated, and the entire surface of the semiconductor substrate is removed. Make the surface smooth. Here, as an apparatus for polishing, a general polishing having a surface plate with a holder for holding a substrate having a film to be polished and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations is attached). The device can be used.

研磨布としては、特に制限はないが、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等を使用することが好ましい。また、研磨布には研磨剤が溜まるような溝加工を施すことが好ましい。   Although there is no restriction | limiting in particular as abrasive cloth, It is preferable to use a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. Further, it is preferable that the polishing cloth is subjected to groove processing so that an abrasive is collected.

研磨条件に制限はないが、定盤の回転速度は、基板が飛び出さないように100min−1以下の低回転が好ましく、基板にかける圧力は、研磨後に研磨傷が発生しないように1kg/cm以下が好ましい。 The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 min −1 or less so that the substrate does not jump out, and the pressure applied to the substrate is 1 kg / cm so that polishing scratches do not occur after polishing. 2 or less is preferable.

基板の被研磨膜を研磨布に押圧した状態で研磨布と被研磨膜とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせばよい。研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨してもよい。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でもよい。これらの研磨方法は、研磨布と被研磨膜とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。研磨している間、研磨布にはスラリー状の本発明の半導体絶縁膜用CMP研磨剤をポンプなどで連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。具体的には、研磨布面積1cm当たり、0.02〜0.25ミリリットル供給されることが好ましい。 In order to move the polishing cloth and the film to be polished relatively with the polishing film on the substrate pressed against the polishing cloth, specifically, at least one of the substrate and the polishing surface plate may be moved. In addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder. Further, a polishing method in which a polishing surface plate is rotated on a planetary surface, a polishing method in which a belt-like polishing cloth is moved linearly in one direction in the longitudinal direction, and the like can be mentioned. The holder may be in any state of being fixed, rotating and swinging. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing cloth and the film to be polished are moved relatively. During polishing, the slurry-like CMP abrasive for semiconductor insulating film of the present invention is continuously supplied to the polishing cloth by a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the abrasive | polishing agent. Specifically, it is preferable to supply 0.02 to 0.25 ml per 1 cm 2 of the polishing pad area.

研磨終了後の半導体基板は、流水中でよく洗浄後、スピンドライヤなどを用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化されたSiO絶縁膜層の上に第2層目の金属配線を形成し、その配線間及び配線上に再度上記方法により、SiO絶縁膜を形成後、上記半導体絶縁膜用CMP研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer metal wiring is formed on the thus planarized SiO 2 insulating film layer, and after the SiO 2 insulating film is formed again between the wirings and on the wiring by the above method, the semiconductor insulating film is formed. By polishing using a CMP polishing agent for a film, unevenness on the surface of the insulating film is eliminated, and a smooth surface is obtained over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.

本発明の半導体絶縁膜用CMP研磨剤は、半導体基板に形成されたSiO絶縁膜だけでなく、所定の配線を有する配線板に形成されたSiO絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO(Indium Tin Oxide)等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザー単結晶、青色レーザー用LEDサファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。 The CMP abrasive for a semiconductor insulating film according to the present invention is not limited to an SiO 2 insulating film formed on a semiconductor substrate, but also an inorganic insulating material such as SiO 2 insulating film formed on a wiring board having predetermined wiring, glass, silicon nitride, etc. Optical glass such as films, photomasks, lenses, and prisms, inorganic conductive films such as ITO (Indium Tin Oxide), glass and crystalline materials, optical integrated circuits, optical switching elements, optical waveguides, optical fiber end faces, scintillators It is used for polishing optical single crystals such as, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads and the like.

本発明において所定の基板とは、SiO絶縁膜が形成された半導体基板、SiO絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザー単結晶、青色レーザー用LEDサファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。 The predetermined substrate in the present invention, a semiconductor substrate which SiO 2 insulating film is formed, SiO 2 insulating film is formed wiring board, glass, inorganic insulating films such as silicon nitride, optical such as a photo mask lenses and prisms Optical integrated circuits, optical switching elements and optical waveguides composed of inorganic conductive films such as glass and ITO, glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, solid state laser single crystals, blue laser LEDs Including sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like.

以下、実施例により本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
(1−1)酸化セリウム粒子の調製
炭酸セリウム水和物4kgを白金容器に入れ、800℃で、2時間空気中で焼成することにより2kgの黄白色の粉末を得た。この粉末をX線回折法で相同定を行ったところ酸化セリウムであることを確認した。
Example 1
(1-1) Preparation of cerium oxide particles 4 kg of cerium carbonate hydrate was placed in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 2 kg of yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide.

焼成粉末粒子径は30〜100μmであった。   The fired powder particle size was 30 to 100 μm.

上記により得られた酸化セリウム粉末2kgに高密度ポリエチレン樹脂(日本ポリエチレン株式会社製、商標名:ノバテックHD、品番:HJ560、JISK6922−1,2に準拠して測定した密度:0.964(g/cm))0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が155nm、D99体積%の粒子径が450nmであった。 High density polyethylene resin (trade name: Novatec HD, product number: HJ560, JISK6922-1, 2 measured according to JISK6922-1, 2 was added to 2 kg of the cerium oxide powder obtained as described above, and density: 0.964 (g / cm 3 )) After 0.02 g was mixed, wet grinding was performed using a high-pressure homogenizer under conditions of a grinding pressure of 100 MPa and a circulation time of 520 minutes required for grinding. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution analyzer (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 155 nm, and the particle size of D99 volume% was 450 nm.

(1−2)半導体絶縁膜用CMP研磨剤の調製
上記(1−1)で得られた酸化セリウム粒子と高密度ポリエチレン樹脂の混合物1kg、重量平均分子量5000のポリアクリル酸アンモニウム塩水溶液(40重量%)23g及び脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを3ミクロンフィルターでろ過した後に0.5ミクロンフィルターでろ過し、固形分濃度が1重量%になるように、脱イオン水で希釈して半導体絶縁膜用CMP研磨剤を得た。半導体絶縁膜用CMP研磨剤のpHは8.3であった。半導体絶縁膜用CMP研磨剤をレーザー回折式粒度分布計(HORIBA社製、LA−920)を用い、測定したところ、酸化セリウム粒子(二次粒子)のD50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(1-2) Preparation of CMP Polishing Agent for Semiconductor Insulating Film 1 kg of mixture of cerium oxide particles and high-density polyethylene resin obtained in (1-1) above, aqueous solution of ammonium polyacrylate having a weight average molecular weight of 5000 (40 wt. %) 23 g and deionized water 8977 g were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered with a 3 micron filter, then with a 0.5 micron filter, and diluted with deionized water so that the solid content concentration was 1% by weight to obtain a CMP abrasive for a semiconductor insulating film. . The pH of the CMP polishing agent for semiconductor insulating film was 8.3. When measuring the CMP abrasive for semiconductor insulating film using a laser diffraction particle size distribution analyzer (LA-920, manufactured by HORIBA), the particle diameter of D50 volume% of cerium oxide particles (secondary particles) is 155 nm, D99 volume. % Particle size was 350 nm.

(1−3)絶縁膜の研磨
(1−3−1)
ホルダーに貼り付けられた基板取り付け用吸着パッドに、TEOS−プラズマCVD法でSiO絶縁膜を形成したSiウエハを吸着させて固定した。このホルダーを、Siウエハを保持したまま絶縁膜を下にして、多孔質ウレタン樹脂製の研磨パッドを貼り付けた直径600mmの定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工荷重を30kPaに設定した。定盤上に上記(1−2)で作製した半導体絶縁膜用CMP研磨剤(固形分:1重量%)を100ml/minの速度で滴下しながら、定盤及びウエハをそれぞれ75min−1及び76min−1の条件で1分間回転させSiO絶縁膜を研磨した。
(1-3) Polishing of insulating film (1-3-1)
The Si wafer on which the SiO 2 insulating film was formed was adsorbed and fixed to the adsorption pad for substrate attachment affixed to the holder by the TEOS-plasma CVD method. Place this holder on the surface plate with a diameter of 600 mm with a porous urethane resin polishing pad affixed with the insulating film face down while holding the Si wafer. Was set to 30 kPa. While the CMP polishing slurry for semiconductor insulating film (solid content: 1% by weight) prepared in (1-2) above was dropped on the surface plate at a rate of 100 ml / min, the surface plate and the wafer were respectively 75 min −1 and 76 min. The SiO 2 insulating film was polished by rotating for 1 minute under the condition of -1 .

研磨後のウエハを純水で良く洗浄後、乾燥した。ナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、610nm/minであった。 The polished wafer was thoroughly washed with pure water and then dried. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing using an interference-type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and found to be 610 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、明確な傷は見られなかった。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, no clear scratch was found.

(1−3−2)
上記(1−2)で作製した半導体絶縁膜用CMP研磨剤に添加剤としてCMPスラリー(日立化成工業株式会社製、商品名:HS−7303GP)100g及び超純水700gを混合し、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。それを用いてSEMATECH社製、商品名パタンウエハS754を上記の(1−3−1)と同様の方法で70秒研磨した。
(1-3-2)
100 g of CMP slurry (manufactured by Hitachi Chemical Co., Ltd., trade name: HS-7303GP) as an additive and 700 g of ultrapure water are mixed with the CMP abrasive for semiconductor insulating film produced in (1-2) above, and the solid content concentration is mixed. 1% by weight of a CMP abrasive for a semiconductor insulating film was obtained. Using this, a product name pattern wafer S754 manufactured by SEMATECH was polished for 70 seconds by the same method as in (1-3-1) above.

このときの、100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ17nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ20nmであり、良好な結果が得られた。   At this time, the remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 17 nm. Moreover, when the remaining film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner and the dishing amount was evaluated, it was 20 nm, and a good result was obtained.

実施例2
(2−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Example 2
(2-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 μm.

上記により得られた酸化セリウム粉末2kgに超高分子量ポリエチレン樹脂(作新工業株式会社製、商標名:Saxinニューライト、品番:NL−AS、ASTMD1505に準拠して測定した密度:950(kg/cm)、粘度法ASTMD2857に準拠して測定した分子量:550万)0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が160nm、D99体積%の粒子径が450nmであった。 Ultrahigh molecular weight polyethylene resin (made by Sakushin Kogyo Co., Ltd., trade name: Saxin New Light, product number: NL-AS, ASTM D1505) density measured to 2 kg of the cerium oxide powder obtained as described above: 950 (kg / cm 3 ), molecular weight measured according to viscosity method ASTM D2857: 5.5 million) After mixing 0.02 g, wet grinding is performed using a high-pressure homogenizer at a grinding pressure of 100 MPa and a circulation time of 520 minutes required for grinding. went. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution analyzer (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 160 nm, and the particle size of D99 volume% was 450 nm.

(2−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代わりに上記(2−1)で得られた酸化セリウム粒子と超高分子量ポリエチレン樹脂の混合物を用いること以外は実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(2-2) Preparation of CMP Abrasive for Semiconductor Insulating Film Instead of the mixture of cerium oxide particles and high density polyethylene resin, the mixture of cerium oxide particles and ultrahigh molecular weight polyethylene resin obtained in (2-1) above is used. Except for this, the same operation as in (1-2) of Example 1 was carried out to obtain a CMP abrasive for semiconductor insulating film having a pH of 8.3 and a solid content concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 155 nm, and the particle diameter of D99 volume% was 350 nm.

(2−3)絶縁膜の研磨
(2−3−1)
半導体絶縁膜用CMP研磨剤として上記(2−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、620nm/minであった。
(2-3) Polishing of insulating film (2-3-1)
The SiO 2 insulating film is operated in the same manner as (1-3-1) in Example 1 except that the CMP polishing agent for semiconductor insulating film prepared in (2-2) above is used as the CMP polishing agent for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing, and it was 620 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、明確な傷は見られなかった。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, no clear scratch was found.

(2−3−2)
半導体絶縁膜用CMP研磨剤として上記(2−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ14nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ18nmであり、良好な結果が得られた。
(2-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film prepared in (2-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 14 nm. Further, the remaining film thicknesses of the active region and the trench portion of 500 μm / 500 μm were measured in the same manner, and the dishing amount was evaluated. As a result, the result was 18 nm.

実施例3
(3−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Example 3
(3-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgに高密度ポリエチレン樹(脂株式会社プライムポリマー製、商標名:ハイゼックス、品番:2100JH、JISK7112に準拠して測定した密度:952(kg/cm))0.01gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間500分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が160nm、D99体積%の粒子径が450nmであった。 2 kg of the cerium oxide powder obtained above was added to a high density polyethylene tree (manufactured by Prime Polymer Co., Ltd., trade name: Hi-Zex, product number: 2100JH, density measured according to JISK7112: 952 (kg / cm 3 )) After mixing 01 g, wet grinding was performed using a high-pressure homogenizer under conditions of a grinding pressure of 100 MPa and a circulation time of 500 minutes required for grinding. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 160 nm, and the particle size of D99 volume% was 450 nm.

(3−2)研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物として上記(3−1)で得られた酸化セリウム粒子と高密度ポリエチレン樹脂の混合物を用いること以外は、実施例1の(1−2)と同様に操作を行い、pH8.4、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(3-2) Preparation of polishing agent Example 1 except that the mixture of cerium oxide particles and high density polyethylene resin obtained in (3-1) above was used as a mixture of cerium oxide particles and high density polyethylene resin. The same operation as in (1-2) was performed to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.4 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 155 nm, and the particle diameter of D99 volume% was 350 nm.

(3−3)絶縁膜の研磨
(3−3−1)
半導体絶縁膜用CMP研磨剤として上記(3−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は、実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、640nm/minであった。
(3-3) Polishing of insulating film (3-3-1)
The SiO 2 insulation is operated in the same manner as (1-3-1) in Example 1 except that the CMP abrasive for semiconductor insulating film prepared in (3-2) above is used as the CMP abrasive for semiconductor insulating film. The film was polished, the difference in thickness of the SiO 2 insulating film before and after polishing was measured to calculate the polishing rate, and it was 640 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、明確な研磨傷は見られなかった。 Further, observation of the SiO 2 insulating film surface after polishing using an optical microscope, clear scratches were observed.

(3−3−2)
上記(3−2)で作製した半導体絶縁膜用CMP研磨剤に添加剤としてCMPスラリー(日立化成工業株式会社製、商品名:HS−7303GP)150g及び超純水650gを混合し、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。それを用いてSEMATECH社製、商品名:パタンウエハS754を実施例1の(1−3−2)と同様の方法で70秒研磨した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ11nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ19nmであり、良好な結果が得られた。
(3-3-2)
CMP slurry for semiconductor insulating film produced in (3-2) above was mixed with 150 g of CMP slurry (manufactured by Hitachi Chemical Co., Ltd., trade name: HS-7303GP) and 650 g of ultrapure water as additives, and the solid content concentration was mixed. 1% by weight of a CMP abrasive for a semiconductor insulating film was obtained. Using this, a product name: pattern wafer S754 manufactured by SEMATECH was polished for 70 seconds in the same manner as in (1-3-2) of Example 1. The remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 11 nm. Further, the remaining film thicknesses of the active region and the trench portion of 500 μm / 500 μm were measured in the same manner, and the dishing amount was evaluated. As a result, the result was 19 nm.

実施例4
(4−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Example 4
(4-1) Preparation of cerium oxide particles The same procedure as in Example 1-1 (1-1) was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgに高密度ポリエチレン樹脂(株式会社プライムポリマー製、商標名:ハイゼックス、品番:2200J、JIK7112に準拠して測定した密度:964(kg/cm))0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が160nm、D99体積%の粒子径が450nmであった。 High-density polyethylene resin obtained cerium oxide powder 2kg by the (Prime Polymer Co., Ltd., Ltd., trade name: Hizex, No.: 2200J, density was measured according to JIK7112: 964 (kg / cm 3 )) 0.02g After mixing, wet pulverization was performed using a high-pressure homogenizer under conditions of a pulverization pressure of 100 MPa and a circulation time of 520 minutes required for the pulverization. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 160 nm, and the particle size of D99 volume% was 450 nm.

(4−2)研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物として上記(4−1)で得られた酸化セリウム粒子と高密度ポリエチレン樹脂の混合物を用いること以外は実施例1の(1−2)と同様に操作を行い、pH8.4、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウムの多結晶一次粒子(二次粒子とする)の粒子径を測定したところ、D50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(4-2) Preparation of polishing agent (Example 1) except that the mixture of cerium oxide particles and high-density polyethylene resin obtained in (4-1) above was used as a mixture of cerium oxide particles and high-density polyethylene resin. The same operation as in 1-2) was performed to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.4 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide polycrystalline primary particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 155 nm, and the particle diameter of D99 volume% was 350 nm. there were.

(4−3)絶縁膜の研磨
(4−3−1)
半導体絶縁膜用CMP研磨剤として上記(4−2)で作製した半導体絶縁膜用CMP研磨剤を用いること、研磨剤の滴下速度を200ml/minとすること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、600nm/minであった。
(4-3) Polishing of insulating film (4-3-1)
Example (1-3) of Example 1 except that the CMP polishing agent for semiconductor insulating film prepared in (4-2) above is used as the CMP polishing agent for semiconductor insulating film, and the dropping rate of the polishing agent is 200 ml / min. The SiO 2 insulating film was polished in the same manner as in -1), the difference in thickness of the SiO 2 insulating film before and after polishing was measured, and the polishing rate was calculated to be 600 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、明確な研磨傷は見られなかった。 Further, observation of the SiO 2 insulating film surface after polishing using an optical microscope, clear scratches were observed.

(4−3−2)
半導体絶縁膜用CMP研磨剤として上記(4−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ13nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ18nmであり、良好な結果が得られた。
(4-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film produced in (4-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region and the trench portion of 100 μm / 100 μm was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 13 nm. Further, the remaining film thicknesses of the active region and the trench portion of 500 μm / 500 μm were measured in the same manner, and the dishing amount was evaluated. As a result, the result was 18 nm.

実施例5
(5−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Example 5
(5-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgに超高分子量ポリエチレン樹脂(旭化成ケミカルズ株式会社製、商標名:サンファイン、品番:UH-950、JISK7112に準拠して測定した密度:940(kg/cm)、粘度法に準拠して測定した分子量:450万))0.01gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が150nm、D99体積%の粒子径が450nmであった。 Ultrahigh molecular weight polyethylene resin (trade name: Sunfine, product number: UH-950, manufactured by Asahi Kasei Chemicals Co., Ltd., density: 940 (kg / cm 3 ) measured based on cerium oxide powder 2 kg obtained as described above. , Molecular weight measured according to viscosity method: 4.5 million)) After mixing 0.01 g, wet grinding was performed using a high-pressure homogenizer at a grinding pressure of 100 MPa and a circulation time of 520 minutes required for grinding. . The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 150 nm, and the particle diameter of D99 volume% was 450 nm.

(5−2)研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代わりに上記(5−1)で得られた酸化セリウム粒子と超高分子量ポリエチレン樹脂の混合物を用いること以外は実施例1の(1−2)と同様に操作を行い、pH8.4、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウムの多結晶一次粒子(二次粒子とする)の粒子径を測定したところ、D50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(5-2) Preparation of abrasives Examples except that the mixture of cerium oxide particles and ultrahigh molecular weight polyethylene resin obtained in (5-1) above was used instead of the mixture of cerium oxide particles and high-density polyethylene resin. The same operation as (1-2) in No. 1 was performed to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.4 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide polycrystalline primary particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 155 nm, and the particle diameter of D99 volume% was 350 nm. there were.

(5−3)絶縁膜の研磨
(5−3−1)
半導体絶縁膜用CMP研磨剤として上記(5−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、590nm/minであった。
(5-3) Polishing of insulating film (5-3-1)
The SiO 2 insulating film is operated in the same manner as in (1-3-1) of Example 1 except that the CMP polishing agent for semiconductor insulating film produced in (5-2) above is used as the CMP polishing agent for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing and found to be 590 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、明確な研磨傷は見られなかった。 Further, observation of the SiO 2 insulating film surface after polishing using an optical microscope, clear scratches were observed.

(5−3−2)
半導体絶縁膜用CMP研磨剤として上記(5−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ13nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ17nmであり、良好な結果が得られた。
(5-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film produced in (5-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region and the trench portion of 100 μm / 100 μm was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 13 nm. Further, the remaining film thicknesses of the active region and the trench portion of 500 μm / 500 μm were measured in the same manner, and the dishing amount was evaluated.

比較例1
(6−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。上記により得られた酸化セリウム粉末2kgに低密度ポリエチレン樹脂(日本ポリエチレン株式会社製、商標名:ノバテックLD、型番LJ803、JISK6922−1,2に準拠して測定した密度:0.921(g/cm))を0.02g混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。
Comparative Example 1
(6-1) Preparation of cerium oxide particles The same procedure as in Example 1-1 (1-1) was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm. The density of the low-density polyethylene resin (trade name: Novatec LD, model number LJ803, JISK6922-1, 2 measured according to JISK6922-1 and 2) was added to 2 kg of the cerium oxide powder obtained above. After mixing 0.02 g of 3 )), wet pulverization was performed using a high-pressure homogenizer at a pulverization pressure of 100 MPa and a circulation time of 520 minutes required for the pulverization.

得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が160nm、D99体積%の粒子径が450nmであった。   The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 160 nm, and the particle size of D99 volume% was 450 nm.

(6−2)半導体絶縁膜用CMP研磨剤の調製
上記(6−1)で得られた酸化セリウム粒子と低密度ポリエチレン樹脂の混合物1kg、重量平均分子量5000のポリアクリル酸アンモニウム塩水溶液(40重量%)23g及び脱イオン水8977gを混合し、攪拌しながら超音波分散を10分間施した。得られたスラリーを3ミクロンフィルターでろ過した後に0.5ミクロンフィルターでろ過し、固形分濃度が1重量%になるように、脱イオン水で希釈して半導体絶縁膜用CMP研磨剤を得た。半導体絶縁膜用CMP研磨剤のpHは8.3であった。半導体絶縁膜用CMP研磨剤を実施例1の(1−2)と同様にして粒子径を測定したところ、酸化セリウム粒子(二次粒子)のD50体積%の粒子径は155nm、D99体積%の粒子径は350nmであった。
(6-2) Preparation of CMP Abrasive for Semiconductor Insulating Film 1 kg of mixture of cerium oxide particles and low-density polyethylene resin obtained in (6-1) above, aqueous solution of ammonium polyacrylate having a weight average molecular weight of 5000 (40 wt. %) 23 g and deionized water 8977 g were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered with a 3 micron filter, then with a 0.5 micron filter, and diluted with deionized water so that the solid content concentration was 1% by weight to obtain a CMP abrasive for a semiconductor insulating film. . The pH of the CMP polishing agent for semiconductor insulating film was 8.3. When the particle size of the CMP abrasive for semiconductor insulating film was measured in the same manner as in Example 1-2 (1-2), the particle size of D50 volume% of cerium oxide particles (secondary particles) was 155 nm and D 99 volume%. The particle size was 350 nm.

(6−3)絶縁膜の研磨
(6−3−1)
半導体絶縁膜用CMP研磨剤として上記(6−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、600nm/minであった。
(6-3) Polishing of insulating film (6-3-1)
The SiO 2 insulating film was operated in the same manner as (1-3-1) in Example 1 except that the CMP polishing agent for semiconductor insulating film prepared in (6-2) above was used as the CMP polishing agent for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing and found to be 600 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、膜表面上に0.2μm以上の大きさの研磨傷が66個観察された。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, 66 polishing scratches having a size of 0.2 μm or more were observed on the film surface.

(6−3−2)
半導体絶縁膜用CMP研磨剤として上記(6−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ37nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ59nmであった。
(6-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film produced in (6-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference-type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 37 nm. Further, the residual film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 59 nm.

比較例2
(7−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。上記により得られた酸化セリウム粉末2kgにアクリル樹脂(三菱レーヨン株式会社製、商標名:アクリライトL、JISK7112に準拠して測定した比重:1.19)を0.02g混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が150nm、D99体積%の粒子径が450nmであった。
Comparative Example 2
(7-1) Preparation of cerium oxide particles The same procedure as in Example 1-1 (1-1) was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 μm. After mixing 0.02 g of acrylic resin (trade name: Acrylite L, specific gravity measured according to JISK7112: 1.19) with 2 kg of the cerium oxide powder obtained as described above, a high-pressure homogenizer was used. The wet pulverization was performed using the pulverization pressure of 100 MPa and the circulation time of 520 minutes required for the pulverization. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 150 nm, and the particle diameter of D99 volume% was 450 nm.

(7−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代わりに上記(7−1)で得られた酸化セリウム粒子とアクリル樹脂の混合物を用いること以外は実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は150nm、D99体積%の粒子径は350nmであった。
(7-2) Preparation of CMP abrasive for semiconductor insulating film Except for using the mixture of cerium oxide particles and acrylic resin obtained in (7-1) above instead of the mixture of cerium oxide particles and high-density polyethylene resin. The same operation as in (1-2) of Example 1 was performed to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.3 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 150 nm, and the particle diameter of D99 volume% was 350 nm.

(7−3)絶縁膜の研磨
(7−3−1)
半導体絶縁膜用CMP研磨剤として上記(7−2)で作製した半導体絶縁膜用CMP研磨剤を用いること、研磨剤の滴下速度を200ml/minとすること以外は、実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、600nm/minであった。
(7-3) Polishing of insulating film (7-3-1)
Except for using the CMP polishing agent for semiconductor insulating film produced in the above (7-2) as the CMP polishing agent for semiconductor insulating film and setting the dropping rate of the polishing agent to 200 ml / min, (1- The SiO 2 insulating film was polished in the same manner as in 3-1), and the polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing, and was 600 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、8インチウエハあたり0.2μm以上の大きさの研磨傷が104個観察された。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, 104 polishing scratches having a size of 0.2 μm or more per 8 inch wafer were observed.

(7−3−2)
半導体絶縁膜用CMP研磨剤として上記(7−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ31nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ53nmであった。
(7-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film prepared in (7-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 31 nm. Further, the remaining film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 53 nm.

比較例3
(8−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。上記により得られた酸化セリウム粉末2kgにエチレンービニル共重合樹脂(日本ポリエチレン株式会社製、商標名:ノバテックEVA、品番:LV151)0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が160nm、D99体積%の粒子径が450nmであった。
Comparative Example 3
(8-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm. After mixing 0.02 g of ethylene-vinyl copolymer resin (trade name: Novatec EVA, product number: LV151) manufactured by Nippon Polyethylene Co., Ltd. with 2 kg of the cerium oxide powder obtained as described above, using a high-pressure homogenizer, the pulverization pressure is 100 MPa, Wet pulverization was performed under conditions of a circulation time of 520 minutes required for pulverization. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 160 nm, and the particle size of D99 volume% was 450 nm.

(8−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代わりに上記(8−1)で得られた酸化セリウム粒子とエチレンービニル共重合樹脂の混合物を用いること以外は実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は150nm、D99体積%の粒子径は350nmであった。
(8-2) Preparation of CMP abrasive for semiconductor insulating film Instead of a mixture of cerium oxide particles and high-density polyethylene resin, use a mixture of cerium oxide particles and ethylene-vinyl copolymer resin obtained in (8-1) above. Except for the above, the same operation as in Example 1-2 (1-2) was carried out to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.3 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 150 nm, and the particle diameter of D99 volume% was 350 nm.

(8−3)絶縁膜の研磨
(8−3−1)
半導体絶縁膜用CMP研磨剤として上記(8−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、600nm/minであった。
(8-3) Polishing of insulating film (8-3-1)
The SiO 2 insulating film was operated in the same manner as in (1-3-1) of Example 1 except that the CMP abrasive for semiconductor insulating film prepared in (8-2) above was used as the CMP abrasive for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing and found to be 600 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、8インチウエハあたり0.2μm以上の大きさの研磨傷が143個観察された。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, 143 polishing scratches having a size of 0.2 μm or more per 8 inch wafer were observed.

(8−3−2)
半導体絶縁膜用CMP研磨剤として上記(8−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ29nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ47nmであった。
(8-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film prepared in (8-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 29 nm. Further, the residual film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 47 nm.

比較例4
(9−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Comparative Example 4
(9-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgにポリエステル樹脂(帝人デュポンフィルム株式会社製、商標名:マイラー、品番:A、比重:1.4)0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が150nm、D99体積%の粒子径が450nmであった。   After mixing 0.02 g of a polyester resin (trade name: Mylar, product number: A, specific gravity: 1.4) manufactured by Teijin DuPont Films Ltd. with 2 kg of the cerium oxide powder obtained as described above, the mixture was pulverized using a high-pressure homogenizer. Wet pulverization was performed under the conditions of a pressure of 100 MPa and a circulation time of 520 minutes required for the pulverization. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 150 nm, and the particle diameter of D99 volume% was 450 nm.

(9−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代りに上記(9−1)で得られた酸化セリウム粒子とポリエステル樹脂の混合物を用いること以外は、実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は150nm、D99体積%の粒子径は350nmであった。
(9-2) Preparation of CMP abrasive for semiconductor insulating film Except for using the mixture of cerium oxide particles and polyester resin obtained in (9-1) above instead of the mixture of cerium oxide particles and high-density polyethylene resin. Then, the same operation as in Example 1-2 (1-2) was carried out to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.3 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 150 nm, and the particle diameter of D99 volume% was 350 nm.

(9−3)絶縁膜の研磨
(9−3−1)
半導体絶縁膜用CMP研磨剤として上記(9−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、570nm/minであった。
(9-3) Polishing of insulating film (9-3-1)
The SiO 2 insulating film is operated in the same manner as in (1-3-1) of Example 1 except that the CMP abrasive for semiconductor insulating film prepared in (9-2) above is used as the CMP abrasive for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing, and found to be 570 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、8インチウエハあたり0.2μm以上の大きさの研磨傷が191個観察された。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, 191 polishing scratches having a size of 0.2 μm or more per 8 inch wafer were observed.

(9−3−2)
半導体絶縁膜用CMP研磨剤として上記(9−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ27nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ44nmであった。
(9-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film prepared in (9-2) above was used as the CMP abrasive for semiconductor insulating film. The residual film thickness of the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 27 nm. Further, the remaining film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 44 nm.

比較例5
(10−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Comparative Example 5
(10-1) Preparation of cerium oxide particles The same procedure as in (1-1) of Example 1 was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgにポリカーボネート樹脂(旭硝子株式会社製、商標名:カーボグラス、比重:1.2)0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が150nm、D99体積%の粒子径が450nmであった。   After mixing 0.02 g of polycarbonate resin (trade name: Carbograss, specific gravity: 1.2) manufactured by Asahi Glass Co., Ltd. with 2 kg of the cerium oxide powder obtained as described above, using a high-pressure homogenizer, the pulverization pressure is 100 MPa and pulverization. Wet pulverization was performed under the conditions of a circulation time of 520 minutes required for the above. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 150 nm, and the particle diameter of D99 volume% was 450 nm.

(10−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代りに上記(10−1)で得られた酸化セリウム粒子とポリカーボネート樹脂の混合物を用いること以外は、実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は150nm、D99体積%の粒子径は350nmであった。
(10-2) Preparation of CMP abrasive for semiconductor insulating film Except for using a mixture of cerium oxide particles and polycarbonate resin obtained in (10-1) above instead of a mixture of cerium oxide particles and high-density polyethylene resin. Then, the same operation as in Example 1-2 (1-2) was carried out to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.3 and a solid concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 150 nm, and the particle diameter of D99 volume% was 350 nm.

(10−3)絶縁膜の研磨
(10−3−1)
半導体絶縁膜用CMP研磨剤として上記(10−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、580nm/minであった。
(10-3) Polishing of insulating film (10-3-1)
The SiO 2 insulating film is operated in the same manner as in (1-3-1) of Example 1 except that the CMP abrasive for semiconductor insulating film prepared in (10-2) above is used as the CMP abrasive for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing, and found to be 580 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、8インチウエハあたり0.2μm以上の大きさの研磨傷が113個の研磨傷が観察された。 Further, when the surface of the SiO 2 insulating film after polishing was observed using an optical microscope, 113 polishing scratches having a size of 0.2 μm or more per 8 inch wafer were observed.

(10−3−2)
半導体絶縁膜用CMP研磨剤として上記(10−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ33nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ49nmであった。
(10-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film produced in (10-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness in the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 33 nm. Further, the remaining film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 49 nm.

比較例6
(11−1)酸化セリウム粒子の調製
実施例1の(1−1)と同様に操作して、焼成粉末粒子径が30〜100μmの酸化セリウムを得た。
Comparative Example 6
(11-1) Preparation of cerium oxide particles The same procedure as in Example 1-1 (1-1) was performed to obtain cerium oxide having a calcined powder particle size of 30 to 100 µm.

上記により得られた酸化セリウム粉末2kgに低分子量ポリエチレン樹脂(三井化学株式会社製、商標名:ハイワックス720P、分子量:約7200)0.02gを混合した後、高圧ホモジナイザーを用いて、粉砕圧力を100MPa、粉砕に要した循環時間520分の条件で湿式粉砕を行った。得られた酸化セリウム粒子の粒子径をレーザー回折式粒度分布計(マルバーン インストルメンツ社製、マスターサイザー)を用い、屈折率:1.93、吸収0の条件で測定した結果、D50体積%の粒子径が150nm、D99体積%の粒子径が450nmであった。   After mixing 0.02 g of low molecular weight polyethylene resin (trade name: High Wax 720P, molecular weight: about 7200) made by 2 kg of the cerium oxide powder obtained as described above, the pulverization pressure was adjusted using a high pressure homogenizer. Wet pulverization was performed under conditions of 100 MPa and a circulation time of 520 minutes required for pulverization. The particle diameter of the obtained cerium oxide particles was measured using a laser diffraction particle size distribution meter (manufactured by Malvern Instruments, Mastersizer) under the conditions of a refractive index of 1.93 and zero absorption. The diameter was 150 nm, and the particle diameter of D99 volume% was 450 nm.

(11−2)半導体絶縁膜用CMP研磨剤の調製
酸化セリウム粒子と高密度ポリエチレン樹脂の混合物の代りに上記(11−1)で得られた酸化セリウム粒子と低分子量ポリエチレン樹脂の混合物を用いること以外は、実施例1の(1−2)と同様に操作を行い、pH8.3、固形分濃度1重量%の半導体絶縁膜用CMP研磨剤を得た。上記(1−2)と同様にして酸化セリウム粒子(二次粒子)の粒子径を測定したところ、D50体積%の粒子径は150nm、D99体積%の粒子径は350nmであった。
(11-2) Preparation of CMP abrasive for semiconductor insulating film Instead of the mixture of cerium oxide particles and high density polyethylene resin, the mixture of cerium oxide particles and low molecular weight polyethylene resin obtained in (11-1) above is used. Except for the above, the same operation as in (1-2) of Example 1 was performed to obtain a CMP abrasive for a semiconductor insulating film having a pH of 8.3 and a solid content concentration of 1% by weight. When the particle diameter of the cerium oxide particles (secondary particles) was measured in the same manner as in (1-2) above, the particle diameter of D50 volume% was 150 nm, and the particle diameter of D99 volume% was 350 nm.

(11−3)絶縁膜の研磨
(11−3−1)
半導体絶縁膜用CMP研磨剤として上記(11−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−1)と同様に操作してSiO絶縁膜を研磨し、研磨前後のSiO絶縁膜の膜厚差を測定して研磨速度を算出したところ、550nm/minであった。
(11-3) Polishing of insulating film (11-3-1)
The SiO 2 insulating film is operated in the same manner as in (1-3-1) of Example 1 except that the CMP abrasive for semiconductor insulating film prepared in (11-2) above is used as the CMP abrasive for semiconductor insulating film. The polishing rate was calculated by measuring the difference in thickness of the SiO 2 insulating film before and after polishing and found to be 550 nm / min.

また、光学顕微鏡を用いて研磨後のSiO絶縁膜表面を観察したところ、8インチウエハあたり0.2μm以上の大きさの研磨傷が233個の研磨傷が観察された。 Further, when the polished SiO 2 insulating film surface was observed using an optical microscope, 233 polishing scratches having a size of 0.2 μm or more per 8 inch wafer were observed.

(11−3−2)
半導体絶縁膜用CMP研磨剤として上記(11−2)で作製した半導体絶縁膜用CMP研磨剤を用いること以外は実施例1の(1−3−2)と同様に操作した。100μm/100μmのアクティブ領域とトレンチ部の残膜厚をナノメトリクス社製の干渉式膜厚装置ナノスペック/AFT5100を用いて測定し、ディッシング量を評価したところ46nmであった。また、500μm/500μmのアクティブ領域とトレンチ部の残膜厚を同様に測定し、ディッシング量を評価したところ54nmであった。
(11-3-2)
The same operation as in (1-3-2) of Example 1 was performed except that the CMP abrasive for semiconductor insulating film produced in (11-2) above was used as the CMP abrasive for semiconductor insulating film. The remaining film thickness in the active region of 100 μm / 100 μm and the trench portion was measured using an interference type film thickness device Nanospec / AFT5100 manufactured by Nanometrics, and the dishing amount was evaluated to be 46 nm. Further, the remaining film thickness of the 500 μm / 500 μm active region and the trench portion was measured in the same manner, and the dishing amount was evaluated to be 54 nm.

Claims (8)

酸化セリウム粒子、高密度ポリエチレン樹脂、分散剤及び水を含有してなる半導体絶縁膜用CMP研磨剤。   A CMP abrasive for a semiconductor insulating film, comprising cerium oxide particles, a high-density polyethylene resin, a dispersant, and water. 酸化セリウム粒子、超高分子量ポリエチレン樹脂、分散剤及び水を含有してなる半導体絶縁膜用CMP研磨剤。   A CMP abrasive for a semiconductor insulating film, comprising cerium oxide particles, an ultrahigh molecular weight polyethylene resin, a dispersant and water. 前記酸化セリウム粒子のD50体積%の粒子径が50〜300nm、D99体積%の粒子径が200〜1000nmであることを特徴とする請求項1又は2記載の半導体絶縁膜用CMP研磨剤。   The CMP abrasive | polishing agent for semiconductor insulation films of Claim 1 or 2 whose particle diameter of D50 volume% of the said cerium oxide particle is 50-300 nm, and the particle diameter of D99 volume% is 200-1000 nm. 前記高密度ポリエチレン樹脂の最大粒径が、1μm以下であることを特徴とする請求項1又は3記載の半導体絶縁膜用CMP研磨剤。   4. The CMP abrasive for a semiconductor insulating film according to claim 1, wherein the maximum particle size of the high-density polyethylene resin is 1 [mu] m or less. 前記高密度ポリエチレン樹脂の最大粒径が、500nm以下であることを特徴とする請求項1又は3記載の半導体絶縁膜用CMP研磨剤。   4. The CMP abrasive for a semiconductor insulating film according to claim 1, wherein the maximum particle size of the high-density polyethylene resin is 500 nm or less. 前記超高分子量ポリエチレン樹脂の最大粒径が、1μm以下であることを特徴とする請求項2又は3記載の半導体絶縁膜用CMP研磨剤。   4. The CMP polishing agent for a semiconductor insulating film according to claim 2, wherein the ultra-high molecular weight polyethylene resin has a maximum particle size of 1 [mu] m or less. 前記超高分子量ポリエチレン樹脂の最大粒径が、500nm以下であることを特徴とする請求項2又は3記載の半導体絶縁膜用CMP研磨剤。   4. The CMP abrasive for a semiconductor insulating film according to claim 2, wherein the ultra high molecular weight polyethylene resin has a maximum particle size of 500 nm or less. 研磨する膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、請求項1〜7のいずれか一項に記載の半導体絶縁膜用CMP研磨剤を膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして膜を研磨することを特徴とする基板の研磨方法。   The substrate on which the film to be polished is formed is pressed against the polishing cloth of the polishing surface plate and pressurized, and the CMP abrasive for semiconductor insulating film according to any one of claims 1 to 7 is supplied between the film and the polishing cloth. A method for polishing a substrate, wherein the film is polished by relatively moving the substrate and a polishing surface plate.
JP2008015150A 2007-10-30 2008-01-25 Cmp abrasive for semiconductor insulating film and substrate polishing method Pending JP2009135386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015150A JP2009135386A (en) 2007-10-30 2008-01-25 Cmp abrasive for semiconductor insulating film and substrate polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007281610 2007-10-30
JP2008015150A JP2009135386A (en) 2007-10-30 2008-01-25 Cmp abrasive for semiconductor insulating film and substrate polishing method

Publications (1)

Publication Number Publication Date
JP2009135386A true JP2009135386A (en) 2009-06-18

Family

ID=40866975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015150A Pending JP2009135386A (en) 2007-10-30 2008-01-25 Cmp abrasive for semiconductor insulating film and substrate polishing method

Country Status (1)

Country Link
JP (1) JP2009135386A (en)

Similar Documents

Publication Publication Date Title
US8591612B2 (en) Cerium oxide slurry, cerium oxide polishing slurry and method for polishing substrate using the same
JP5287174B2 (en) Abrasive and polishing method
JP5444625B2 (en) CMP polishing liquid, substrate polishing method, and electronic component
KR101243423B1 (en) Polishing agent for silicon oxide, liquid additive, and method of polishing
KR100797218B1 (en) Cmp abrasive, liquid additive for cmp abrasive and method for polishing substrate
JP2019199613A (en) Composite abrasive particles for chemical mechanical planarization compositions and methods of use thereof
JP4088811B2 (en) CMP polishing agent and substrate polishing method
KR20090057249A (en) Cmp polishing agent, additive solution for cmp polishing agent, and method for polishing substrate by using the polishing agent and the additive solution
CN101511538A (en) CMP polishing agent, additive solution for cmp polishing agent, and method for polishing substrate by using the polishing agent and the additive solution
JP2009135386A (en) Cmp abrasive for semiconductor insulating film and substrate polishing method
JP4604727B2 (en) Additive for CMP abrasives
JP4501694B2 (en) Additive for CMP abrasives
JP2009004727A (en) Cmp abrasive for semiconductor insulating film, and substrate polishing method
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2001358100A (en) Cmp abrasive and polishing method of substrate
JP4744656B2 (en) CMP polishing agent and substrate polishing method
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JP4608925B2 (en) Additive for CMP abrasives
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JP4878728B2 (en) CMP abrasive and substrate polishing method
JP2005286160A (en) Cmp polishing agent and polishing method of substrate
JP2002217140A (en) Cmp abrasive and polishing method of substrate
JP2003347245A (en) Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JP2006041034A (en) Cmp abrasive and polishing method of substrate
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate