JP2009133939A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2009133939A
JP2009133939A JP2007308255A JP2007308255A JP2009133939A JP 2009133939 A JP2009133939 A JP 2009133939A JP 2007308255 A JP2007308255 A JP 2007308255A JP 2007308255 A JP2007308255 A JP 2007308255A JP 2009133939 A JP2009133939 A JP 2009133939A
Authority
JP
Japan
Prior art keywords
lens surface
lens
incident
scanning device
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007308255A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tamura
嘉章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2007308255A priority Critical patent/JP2009133939A/en
Publication of JP2009133939A publication Critical patent/JP2009133939A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner that can suppress the generation of ghost light of a portion of a beam luminous flux emitted from the outside of an effective image region after deflected with a rotating polygon mirror. <P>SOLUTION: The optical scanner comprises: a linear light condensing element which condenses a beam luminous flux radiated from a light source in a linear form in the vicinity of the mirror face of the rotating polygon mirror 14; and fθ lenses 21 which condenses and scans the beam luminous flux deflected with the mirror face of the rotating polygon mirror 14 onto a face 15 to be scanned, wherein the width H1 of the incident-side lens face 20a extending in the main scanning direction of an anamorphic lens 20 composing at least one of the fθ lenses 21 is longer than the width H2 of the emitting-side lens face 20b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複写機・プリンタ・ファクシミリ或いはこれらを機能的に備えた複合機等の電子写真方式の画像形成装置に搭載された光走査装置に関する。   The present invention relates to an optical scanning device mounted on an electrophotographic image forming apparatus such as a copying machine, a printer, a facsimile machine, or a multifunction machine equipped with these functions.

従来から、電子写真装置等の画像形成装置には光走査装置が搭載され、この光走査装置から出射されたビーム光束を感光体表面(被走査面)に照射することにより、感光体表面に形成された静電潜像をトナーによって顕在化し、そのトナー像を転写紙上に転写・定着することにより画像形成処理が実現されている。   Conventionally, an image forming apparatus such as an electrophotographic apparatus has been equipped with an optical scanning device, and is formed on the surface of the photosensitive member by irradiating the surface of the photosensitive member (scanned surface) with a light beam emitted from the optical scanning device. The formed electrostatic latent image is actualized with toner, and the toner image is transferred and fixed onto a transfer paper, thereby realizing an image forming process.

光走査装置は、例えば、図4に示すように、半導体レーザモジュール(光源)1から放射されたビーム光束をカップリングして平行光束とするコリメートレンズ2と、コリメートレンズ2を透過したビーム光束を回転多面鏡3の鏡面上に主走査方向に線状に集光させるために副走査方向にのみ正のパワーを持つシリンダーレンズ(シリンドリカルレンズ)4と、回転多面鏡3の鏡面で反射されたビーム光束を被走査面としての感光体表面5(図示両端矢印で示す)にビームスポットとして結像する一つ以上の結像レンズ6とを備えている(例えば、特許文献1参照)。   For example, as shown in FIG. 4, the optical scanning device couples a beam beam emitted from a semiconductor laser module (light source) 1 into a parallel beam by coupling the beam beam and a beam beam transmitted through the collimator lens 2. A cylinder lens (cylindrical lens) 4 having a positive power only in the sub-scanning direction in order to focus linearly in the main scanning direction on the mirror surface of the rotating polygon mirror 3, and a beam reflected by the mirror surface of the rotating polygon mirror 3 One or more imaging lenses 6 for imaging a light beam as a beam spot on a photoreceptor surface 5 (shown by a double-ended arrow in the figure) as a surface to be scanned are provided (for example, see Patent Document 1).

結像レンズ6は、例えば、主走査方向に延びる一対の球面レンズ7とトーリックレンズ8とを備え、ビーム光束の走査速度の不均一や点像の歪を補正するfθ機能を備えている。また、結像レンズ6を透過したビーム光束の一部は、例えば、トーリックレンズ8の長手方向端部付近の有効画像領域外を透過したビーム光束を受光素子に結像させて水平同期信号を取得することで走査タイミングを図っている。
特開平09−113829号公報
The imaging lens 6 includes, for example, a pair of spherical lenses 7 and a toric lens 8 that extend in the main scanning direction, and has an fθ function that corrects uneven scanning speed of a beam of light and distortion of a point image. Further, for example, a part of the beam beam transmitted through the imaging lens 6 is imaged on the light receiving element through the beam beam transmitted outside the effective image area near the longitudinal end of the toric lens 8 to obtain a horizontal synchronization signal. By doing so, the scanning timing is achieved.
Japanese Patent Application Laid-Open No. 09-113829

ところが、上記の如く構成された光走査装置にあっては、水平同期信号を取得するために、トーリックレンズ8の長手方向端部付近の有効画像領域外から受光素子に至る光路上をビーム光束の一部が経由するため、例えば、トーリックレンズ8の長手方向両端に形成されたレンズ面やレンズコバの存在により、ビーム光束の一部によってゴースト光が発生してしまい、被走査面上の有効画像領域内を照射して異常画像を発生させる虞が生じていた。   However, in the optical scanning apparatus configured as described above, in order to obtain a horizontal synchronization signal, the beam flux is transmitted along the optical path from the outside of the effective image area near the end in the longitudinal direction of the toric lens 8 to the light receiving element. For example, ghost light is generated by a part of the beam flux due to the presence of lens surfaces and lens edges formed at both ends in the longitudinal direction of the toric lens 8 because a part of the toric lens 8 passes, and an effective image area on the scanned surface. There is a possibility that an abnormal image is generated by irradiating the inside.

そこで、本発明は、上記事情を考慮し、回転多面鏡によって偏向された後に有効画像領域外から出射したビーム光束の一部によるゴースト光の発生を抑制することができる光走査装置を提供することを目的とする。   In view of the above circumstances, the present invention provides an optical scanning device capable of suppressing the generation of ghost light due to a part of a light beam emitted from outside an effective image area after being deflected by a rotating polygon mirror. With the goal.

本発明の光走査装置は、光源から放射されたビーム光束を回転多面鏡の鏡面付近で線状集光する線状集光素子と、前記回転多面鏡の鏡面により偏向されたビーム光束を被走査面上に集光走査する一つ以上の結像レンズと、を備えた光走査装置において、前記結像レンズの少なくとも1つは、主走査方向に延びる入射側のレンズ面が射出側のレンズ面よりも大きいことを特徴とする。   The optical scanning device of the present invention scans a beam beam deflected by the mirror surface of the rotating polygon mirror and a linear focusing element that linearly focuses the beam beam emitted from the light source in the vicinity of the mirror surface of the rotating polygon mirror. And at least one of the imaging lenses, wherein an incident-side lens surface extending in the main scanning direction is an exit-side lens surface. It is characterized by being larger than.

また、本発明の光走査装置は、光源から放射されたビーム光束を回転多面鏡の鏡面付近で線状集光する線状集光素子と、前記回転多面鏡の鏡面により偏向されたビーム光束を被走査面上に集光走査する一つ以上の結像レンズと、を備えた光走査装置において、前記結像レンズの少なくとも1つは、主走査方向に延びる入射側のレンズ面の幅が射出側のレンズ面の幅よりも長いことを特徴とする。   Further, the optical scanning device of the present invention includes a linear condensing element that linearly condenses a beam of light emitted from a light source in the vicinity of the mirror surface of the rotary polygon mirror, and a beam of light deflected by the mirror surface of the rotary polygon mirror. And at least one of the imaging lenses having a width of an incident-side lens surface extending in the main scanning direction is emitted. It is characterized by being longer than the width of the side lens surface.

この際、前記結像レンズの少なくとも1つは、長手方向端部付近に入射側よりも広角な射出側に非レンズ面を備えていると共に、その非レンズ面の表面にマスク加工が施されているのが好ましい。   At this time, at least one of the imaging lenses has a non-lens surface on the exit side that is wider than the incident side near the end in the longitudinal direction, and the surface of the non-lens surface is masked. It is preferable.

また、前記非レンズ面の表面に施されたマスク加工は、前記非レンズ面に入射したビーム光束を遮断若しくは拡散する光学特性を有するのが好ましい。   The mask processing applied to the surface of the non-lens surface preferably has an optical characteristic of blocking or diffusing a beam of light incident on the non-lens surface.

さらに、前記非レンズ面の形状は、該非レンズ面に入射したビーム光束の入射角よりも広角な傾斜面、又は、該非レンズ面に入射したビーム光束を少なくとも主走査方向に拡散させる曲面に形成されているのが好ましい。   Further, the shape of the non-lens surface is formed as an inclined surface having a wider angle than the incident angle of the beam beam incident on the non-lens surface, or a curved surface that diffuses the beam beam incident on the non-lens surface at least in the main scanning direction. It is preferable.

本発明の光走査装置は、回転多面鏡によって偏向された後に有効画像領域外から出射したビーム光束の一部によるゴースト光の発生を抑制することができる。   The optical scanning device of the present invention can suppress the generation of ghost light due to a part of the beam flux emitted from outside the effective image area after being deflected by the rotary polygon mirror.

次に、本発明の一実施形態に係る光走査装置について、図面を参照して説明する。   Next, an optical scanning device according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る光走査装置の光学説明図、図2は本発明の一実施形態に係る光走査装置の要部の平面図、図3(A)〜(C)は本発明の一実施形態に係る光走査装置の要部の拡大断面図である。   FIG. 1 is an optical explanatory view of an optical scanning device according to an embodiment of the present invention, FIG. It is an expanded sectional view of the important section of the optical scanning device concerning one embodiment of the present invention.

図1に示すように、本発明の一実施形態に係る光走査装置は、ビーム光束(光路軸Qで示す)を放射するレーザダイオード等の光源11と、光源11からのビーム光束をカップリングして平行光束とするコリメートレンズ12と、コリメートレンズ12を透過したビーム光束を主走査方向に長く略線状に集光させるように副走査方向にのみ正のパワーを持つシリンドリカルレンズ13と、シリンドリカルレンズ13からのビーム光束を偏向する回転多面鏡14と、回転多面鏡14によって偏向走査したビーム光束を被走査面15上に結像する結像光学系16と、回転多面鏡14によって偏向走査したビーム光束の一部を利用して走査同期を検出する受光素子17へと導く検出光学系18とを備えている。   As shown in FIG. 1, an optical scanning device according to an embodiment of the present invention couples a light beam 11 from a light source 11 such as a laser diode that emits a light beam (indicated by an optical path axis Q). A collimating lens 12 that is converted into a parallel light beam, a cylindrical lens 13 that has a positive power only in the sub-scanning direction so as to converge the beam light beam that has passed through the collimating lens 12 in a substantially linear shape that is long in the main scanning direction, and a cylindrical lens. A rotating polygon mirror 14 that deflects the beam from 13, an imaging optical system 16 that forms an image on the surface to be scanned 15 that is deflected and scanned by the rotating polygon mirror 14, and a beam that is deflected and scanned by the rotating polygon mirror 14. A detection optical system 18 that guides to a light receiving element 17 that detects scanning synchronization using a part of the light beam is provided.

結像光学系16は、fθ特性を有するように主走査方向に延びる複数のレンズ群(結像レンズ)を備え、例えば、回転多面鏡14側に凹面を有する正メニスカスレンズ19と、走査面側に凸球面を有し且つ主走査方向に正のパワーを有する面倒れ補正用のアナモルフィックレンズ20と、によってfθレンズ21を構成している。   The imaging optical system 16 includes a plurality of lens groups (imaging lenses) extending in the main scanning direction so as to have an fθ characteristic. For example, a positive meniscus lens 19 having a concave surface on the rotary polygon mirror 14 side, and a scanning surface side The fθ lens 21 is composed of an anamorphic lens 20 for correcting surface tilt that has a convex spherical surface and a positive power in the main scanning direction.

また、アナモルフィックレンズ20は、図2に示すように、主走査方向に延びる入射側のレンズ面20aが射出側のレンズ面20bよりも大きく設定されている。具体的には、アナモルフィックレンズ20は、主走査方向に長く扁平に形成されており、実質的に副走査方向に沿う高さ(レンズ厚)は均一となっている。従って、入射側のレンズ面20aの主走査方向に延びる有効画像領域幅H1は射出側のレンズ面20bの主走査方向に延びる有効画像領域幅H2よりも長く設定されている。さらに、アナモルフィックレンズ20は、主走査方向に延びる長手方向端部付近に入射側よりも広角な射出側に、レンズコバとして利用する非レンズ面20cを備えている。   Further, as shown in FIG. 2, the anamorphic lens 20 is set such that the incident-side lens surface 20a extending in the main scanning direction is larger than the exit-side lens surface 20b. Specifically, the anamorphic lens 20 is long and flat in the main scanning direction, and the height (lens thickness) along the sub-scanning direction is substantially uniform. Accordingly, the effective image area width H1 extending in the main scanning direction of the incident-side lens surface 20a is set to be longer than the effective image area width H2 extending in the main scanning direction of the exit-side lens surface 20b. Further, the anamorphic lens 20 is provided with a non-lens surface 20c used as a lens edge on the exit side having a wider angle than the incident side near the end in the longitudinal direction extending in the main scanning direction.

この非レンズ面20cの表面には、例えば、非レンズ面20cに入射したビーム光束を遮断若しくは拡散する光学特性を有するようにマスク加工が施されている。具体的には、非レンズ面20cの表面にはマスク加工面20dが形成されている。本実施の形態におけるマスク加工面20dは、例えば、図3(A)に示すように、非レンズ面20cに入射したビーム光束を遮断する非透光性材料の着色によるマスク加工、又は、非レンズ面20cに入射したビーム光束を拡散するサンドブラスト加工等の表面加工による摺りガラス状のマスク加工によるもの等が採用されている。   The surface of the non-lens surface 20c is subjected to mask processing so as to have, for example, an optical characteristic of blocking or diffusing a light beam incident on the non-lens surface 20c. Specifically, a mask processing surface 20d is formed on the surface of the non-lens surface 20c. For example, as shown in FIG. 3A, the mask processing surface 20d in the present embodiment is mask processing by coloring a non-translucent material that blocks the beam of light incident on the non-lens surface 20c, or a non-lens. For example, a mask made of frosted glass by surface processing such as sandblasting for diffusing the beam of light incident on the surface 20c is employed.

尚、マスク加工は、レンズ成型時にレンズ面20bの成型色と異なる黒色等の成型色で形成しても良い。また、非レンズ面20cの形状は、図3(B)に示すように、非レンズ面20cに入射したビーム光束の入射角よりも広角な傾斜面としても良いし、図3(C)に示すように、非レンズ面20cに入射したビーム光束を少なくとも主走査方向に拡散させる曲面としても良い。この際、傾斜面又は曲面の非レンズ面20cにマスク加工面20dを形成しても良い。   The mask processing may be formed with a molding color such as black which is different from the molding color of the lens surface 20b at the time of lens molding. Further, the shape of the non-lens surface 20c may be an inclined surface having a wider angle than the incident angle of the beam incident on the non-lens surface 20c, as shown in FIG. 3B, or as shown in FIG. As described above, it may be a curved surface that diffuses the light beam incident on the non-lens surface 20c at least in the main scanning direction. At this time, the mask processing surface 20d may be formed on the inclined or curved non-lens surface 20c.

検出光学系18は、回転多面鏡14の鏡面に入射したビーム光束の一部(光路軸Q’で示す)を反射するように有効画像領域の外側に配置した導光ミラー22と、特定の方向の偏光のみを透過させる偏光子23と、直線偏光を円偏光へ変換する1/4波長板24と、ビーム光束の位置ずれを補正する受光レンズ(例えば、SOSレンズ)25とを備えている。   The detection optical system 18 includes a light guide mirror 22 disposed outside the effective image area so as to reflect a part of a beam (indicated by the optical path axis Q ′) incident on the mirror surface of the rotary polygon mirror 14, and a specific direction. A polarizer 23 that transmits only the polarized light, a quarter-wave plate 24 that converts linearly polarized light into circularly polarized light, and a light receiving lens (for example, SOS lens) 25 that corrects the positional deviation of the beam.

受光素子17は、検出光学系18の光路上で被走査面15と共役関係な位置に配備されており、光源11から放射されて回転多面鏡14で偏向されたビーム光束は、結像光学系16によって走査領域へ向かって偏向するが、走査領域へ向かう途上においてfθレンズ21を構成する一方の正メニスカスレンズ19を介して導光ミラー22で反射され、偏光子23、1/4波長板24、受光レンズ25をこの順に経由して受光素子17に入射する。   The light receiving element 17 is disposed at a position conjugate with the scanned surface 15 on the optical path of the detection optical system 18, and the beam light beam emitted from the light source 11 and deflected by the rotary polygon mirror 14 is an imaging optical system. 16 is deflected toward the scanning region, but is reflected by the light guide mirror 22 through one positive meniscus lens 19 constituting the fθ lens 21 on the way to the scanning region, and is polarized by a polarizer 23 and a quarter wavelength plate 24. The light enters the light receiving element 17 through the light receiving lens 25 in this order.

偏光子23は、その方位(直線偏光光束を最大限透過させる方向)が、例えば、ビーム光束を主走査方向に直線偏光する特性を備えている。   The polarizer 23 has a characteristic that its azimuth (direction in which the linearly polarized light beam is transmitted to the maximum), for example, linearly polarizes the beam light beam in the main scanning direction.

1/4波長板24は、偏光子23によって主走査方向に直線偏光されたビーム光束を円偏光状態に変換する。   The quarter wavelength plate 24 converts the beam light beam linearly polarized in the main scanning direction by the polarizer 23 into a circularly polarized state.

受光レンズ25は、受光素子17に導光ミラー22の設置公差等により副走査方向にビーム光束の光路がずれた場合に、受光素子17上での光軸との交点に引き戻す役割を果たしている。   The light receiving lens 25 plays a role of returning to the intersection with the optical axis on the light receiving element 17 when the optical path of the beam light beam is shifted in the sub-scanning direction due to the installation tolerance of the light guide mirror 22 to the light receiving element 17.

上記の構成において、回転多面鏡14により偏向されて有効画像領域外に出射したビーム光束は、入射側のレンズ面20aよりも短い射出側のレンズ面20bによりゴースト光の発生が抑制され、しかも、そのレンズ面20bの有効画像領域外には非レンズ面20cが形成されていることから、この非レンズ面20cにより有効画像領域外に出射したビーム光束をゴースト光とならないように遮断・光路変更・拡散することができる。   In the above configuration, the beam flux deflected by the rotating polygon mirror 14 and emitted out of the effective image area is suppressed from generating ghost light by the exit-side lens surface 20b shorter than the entrance-side lens surface 20a. Since the non-lens surface 20c is formed outside the effective image area of the lens surface 20b, the beam flux emitted outside the effective image area by the non-lens surface 20c is blocked, changed in optical path, so as not to become ghost light. Can diffuse.

ところで、上記実施の形態では、本発明の光走査装置を一つの光源11から放射されたビーム光束の場合に適用して説明したが、例えば、カラー画像形成装置のように、フック数の光源から放射されたビーム光束を一つの回転多面鏡で偏光走査する光走査装置等に適用することができることは勿論である。   In the above embodiment, the optical scanning device of the present invention is applied to the case of a beam of light emitted from one light source 11. However, for example, from a light source having the number of hooks as in a color image forming apparatus. Of course, the present invention can be applied to an optical scanning device or the like that performs polarization scanning of a radiated beam with a single rotating polygon mirror.

本発明の一実施形態に係る光走査装置の光学説明図である。It is an optical explanatory view of the optical scanning device concerning one embodiment of the present invention. 本発明の一実施形態に係る光走査装置の要部の平面図である。It is a top view of the principal part of the optical scanning device concerning one embodiment of the present invention. (A)〜(C)は本発明の一実施形態に係る光走査装置の要部の拡大断面図である。(A)-(C) are the expanded sectional views of the principal part of the optical scanning device concerning one embodiment of the present invention. 従来の光走査装置の光学説明図である。It is optical explanatory drawing of the conventional optical scanning device.

符号の説明Explanation of symbols

11…光源
12…コリメートレンズ
13…シリンドリカルレンズ(線状集光素子)
14…回転多面鏡
15…被走査面
19…正メニスカスレンズ
20…アナモルフィックレンズ(結像レンズ)
20a…レンズ面(入射側)
20b…レンズ面(射出側)
20c…非レンズ面
20d…マスク加工面
21…fθレンズ(結像レンズ)
DESCRIPTION OF SYMBOLS 11 ... Light source 12 ... Collimating lens 13 ... Cylindrical lens (linear condensing element)
14 ... Rotating polygon mirror 15 ... Scanned surface 19 ... Positive meniscus lens 20 ... Anamorphic lens (imaging lens)
20a: Lens surface (incident side)
20b ... Lens surface (exit side)
20c: Non-lens surface 20d: Mask processing surface 21 ... fθ lens (imaging lens)

Claims (6)

光源から放射されたビーム光束を回転多面鏡の鏡面付近で線状集光する線状集光素子と、前記回転多面鏡の鏡面により偏向されたビーム光束を被走査面上に集光走査する一つ以上の結像レンズと、を備えた光走査装置において、
前記結像レンズの少なくとも1つは、主走査方向に延びる入射側のレンズ面が射出側のレンズ面よりも大きいことを特徴とする光走査装置。
A linear condensing element that linearly condenses the beam light beam emitted from the light source in the vicinity of the mirror surface of the rotating polygon mirror, and the beam light beam deflected by the mirror surface of the rotating polygon mirror is focused and scanned on the surface to be scanned. An optical scanning device comprising two or more imaging lenses;
At least one of the imaging lenses has an incident-side lens surface extending in the main scanning direction larger than an exit-side lens surface.
光源から放射されたビーム光束を回転多面鏡の鏡面付近で線状集光する線状集光素子と、前記回転多面鏡の鏡面により偏向されたビーム光束を被走査面上に集光走査する一つ以上の結像レンズと、を備えた光走査装置において、
前記結像レンズの少なくとも1つは、主走査方向に延びる入射側のレンズ面の幅が射出側のレンズ面の幅よりも長いことを特徴とする光走査装置。
A linear condensing element that linearly condenses the beam light beam emitted from the light source in the vicinity of the mirror surface of the rotating polygon mirror, and the beam light beam deflected by the mirror surface of the rotating polygon mirror is focused and scanned on the surface to be scanned. An optical scanning device comprising two or more imaging lenses;
In at least one of the imaging lenses, the width of the lens surface on the incident side extending in the main scanning direction is longer than the width of the lens surface on the emission side.
前記結像レンズの少なくとも1つは、長手方向端部付近に入射側よりも広角な射出側に非レンズ面を備えていると共に、その非レンズ面の表面にマスク加工が施されていることを特徴とする請求項1又は請求項2に記載の光走査装置。   At least one of the imaging lenses has a non-lens surface on the exit side that is wider than the incident side near the end in the longitudinal direction, and the surface of the non-lens surface is masked. The optical scanning device according to claim 1, wherein the optical scanning device is characterized. 前記非レンズ面の表面に施されたマスク加工は、前記非レンズ面に入射したビーム光束を遮断若しくは拡散する光学特性を有することを特徴とする請求項3に記載の光走査装置。   4. The optical scanning device according to claim 3, wherein the mask processing applied to the surface of the non-lens surface has an optical characteristic of blocking or diffusing a beam beam incident on the non-lens surface. 前記結像レンズの少なくとも1つは、長手方向端部付近に入射側よりも広角な射出側に非レンズ面を備えていると共に、その非レンズ面の形状が該非レンズ面に入射したビーム光束の入射角よりも広角な傾斜面に形成されていることを特徴とする請求項1乃至請求項4の何れかに記載の光走査装置。   At least one of the imaging lenses has a non-lens surface on the exit side having a wider angle than the incident side in the vicinity of the end in the longitudinal direction, and the shape of the non-lens surface of the beam beam incident on the non-lens surface 5. The optical scanning device according to claim 1, wherein the optical scanning device is formed on an inclined surface wider than an incident angle. 前記結像レンズの少なくとも1つは、長手方向端部付近に入射側よりも広角な射出側に非レンズ面を備えていると共に、その非レンズ面の形状が該非レンズ面に入射したビーム光束を少なくとも主走査方向に拡散させる曲面に形成されていることを特徴とする請求項1乃至請求項4の何れかに記載の光走査装置。   At least one of the imaging lenses has a non-lens surface on the exit side that is wider than the incident side near the end in the longitudinal direction, and the shape of the non-lens surface reflects the beam beam incident on the non-lens surface. 5. The optical scanning device according to claim 1, wherein the optical scanning device is formed on a curved surface that diffuses at least in the main scanning direction.
JP2007308255A 2007-11-29 2007-11-29 Optical scanner Pending JP2009133939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308255A JP2009133939A (en) 2007-11-29 2007-11-29 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308255A JP2009133939A (en) 2007-11-29 2007-11-29 Optical scanner

Publications (1)

Publication Number Publication Date
JP2009133939A true JP2009133939A (en) 2009-06-18

Family

ID=40865888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308255A Pending JP2009133939A (en) 2007-11-29 2007-11-29 Optical scanner

Country Status (1)

Country Link
JP (1) JP2009133939A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553067A (en) * 1991-08-23 1993-03-05 Ricoh Co Ltd Lens for optical scan and optical scanner
JPH05134197A (en) * 1991-10-11 1993-05-28 Nippon Hikyumen Lens Kk Scan optical system
JPH05346547A (en) * 1992-06-16 1993-12-27 Canon Inc Optical scanning device
JPH07120689A (en) * 1993-10-28 1995-05-12 Nec Corp Laser scanning optical device
JPH07181406A (en) * 1993-12-24 1995-07-21 Fuji Xerox Co Ltd Circuit board, inspection method of circuit board and inspection apparatus of circuit board
JPH09101471A (en) * 1995-10-03 1997-04-15 Ricoh Co Ltd Optical scanning device
JP2000249944A (en) * 1999-03-02 2000-09-14 Canon Inc Optical scanner
JP2001330790A (en) * 2000-05-18 2001-11-30 Canon Inc Optical scanning optical device and image forming device using the same
JP2006106694A (en) * 2004-09-13 2006-04-20 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007034015A (en) * 2005-07-28 2007-02-08 Ricoh Co Ltd Optical write-in device and image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553067A (en) * 1991-08-23 1993-03-05 Ricoh Co Ltd Lens for optical scan and optical scanner
JPH05134197A (en) * 1991-10-11 1993-05-28 Nippon Hikyumen Lens Kk Scan optical system
JPH05346547A (en) * 1992-06-16 1993-12-27 Canon Inc Optical scanning device
JPH07120689A (en) * 1993-10-28 1995-05-12 Nec Corp Laser scanning optical device
JPH07181406A (en) * 1993-12-24 1995-07-21 Fuji Xerox Co Ltd Circuit board, inspection method of circuit board and inspection apparatus of circuit board
JPH09101471A (en) * 1995-10-03 1997-04-15 Ricoh Co Ltd Optical scanning device
JP2000249944A (en) * 1999-03-02 2000-09-14 Canon Inc Optical scanner
JP2001330790A (en) * 2000-05-18 2001-11-30 Canon Inc Optical scanning optical device and image forming device using the same
JP2006106694A (en) * 2004-09-13 2006-04-20 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007034015A (en) * 2005-07-28 2007-02-08 Ricoh Co Ltd Optical write-in device and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100456021B1 (en) apparatus for detecting a synchronizing signal
JP4769734B2 (en) Optical scanning device and image forming apparatus using the same
JP3902933B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP2009122327A (en) Multi-beam optical scanning device and image forming apparatus using the same
JP2009008896A (en) Multi-beam optical scanning device and image forming apparatus using the same
JP2007240608A (en) Optical scanner and image forming apparatus using same
JP2004184657A (en) Scanning optical device and image forming apparatus using the same
JP3564026B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus using the same
JP2010122248A (en) Optical scanner and image forming apparatus
JPH1010445A (en) Synchronous detecting optical system
US20060291028A1 (en) Laser scanning unit for splitting multiple light beams in a tandem image forming apparatus
JP2004163740A (en) Multiple beam scanning optical device and image forming apparatus using the same
JP2005134624A (en) Optical scanner and image forming apparatus using same
JP2010169782A (en) Irradiation position adjusting method in optical scanning apparatus
JP2009133939A (en) Optical scanner
KR100529339B1 (en) Laser scanning unit
JP2008165144A (en) Optical scanner and image forming apparatus using the same
US8077371B2 (en) Optical beam scanning apparatus, optical beam scanning method and image forming apparatus
JP2008304607A (en) Optical scanner and image forming apparatus using the same
JP2010107561A (en) Optical scanner unit and image forming apparatus
JP2000180749A (en) Optical scanner
JP4591442B2 (en) Optical scanning device
JP2007293304A (en) Image forming apparatus, and scanning optical unit and optical member used for the apparatus
JP2001203862A (en) Laser beam scanner
JP2004317790A (en) Optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709