JP2009130988A - Magnetostrictive multi-shaft drive actuator - Google Patents

Magnetostrictive multi-shaft drive actuator Download PDF

Info

Publication number
JP2009130988A
JP2009130988A JP2007301097A JP2007301097A JP2009130988A JP 2009130988 A JP2009130988 A JP 2009130988A JP 2007301097 A JP2007301097 A JP 2007301097A JP 2007301097 A JP2007301097 A JP 2007301097A JP 2009130988 A JP2009130988 A JP 2009130988A
Authority
JP
Japan
Prior art keywords
magnetostrictive
rotating member
drive actuator
magnetic field
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301097A
Other languages
Japanese (ja)
Other versions
JP5055505B2 (en
Inventor
Toshiyuki Ueno
敏幸 上野
Chihiro Saito
千尋 斉藤
Toshiro Higuchi
俊郎 樋口
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2007301097A priority Critical patent/JP5055505B2/en
Publication of JP2009130988A publication Critical patent/JP2009130988A/en
Application granted granted Critical
Publication of JP5055505B2 publication Critical patent/JP5055505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating and revolving magnetostrictive multi-shaft drive actuator which can be reduced in size and simplified. <P>SOLUTION: The magnetostrictive multi-shaft drive actuator comprises a spherical-shaped rotation member 8 made of a magnetic body and capable of rotating and revolving, at least two magnetostrictive members 2, a coil 4 wound around the magnetostrictive members, and a permanent magnet 6 for holding the rotation member and applying a bias magnetic field onto the magnetostrictive members. The magnetostrictive members are deformed by an AC magnetic field and a bias magnetic field, and the magnetostrictive members are so arranged as to be in parallel with each other in the deformation direction; one end 2a of the magnetostrictive member which is brought into contact with each rotating member, while the other end 2b is fixed so as to transmit the deformation of the magnetostrictive member to the rotation member; and the permanent magnets are so arranged as to energize the rotating member toward one end of the magnetostrictive member by the magnetic force. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁歪材料を用いたアクチュエータに関し、より詳しくは鉄ガリウム系磁歪材料等の鉄ベースの高磁歪材料を用いたアクチュエータに関する。   The present invention relates to an actuator using a magnetostrictive material, and more particularly to an actuator using an iron-based high magnetostrictive material such as an iron gallium-based magnetostrictive material.

従来、多軸駆動可能な各種のアクチュエータやモータとして、例えば超音波アクチュエータや超音波モータに、圧電素子が用いられてきたが、圧電素子は作動電圧が高いと共に、機械的強度が低く、脆いという問題があった。   Conventionally, as various actuators and motors that can be driven in multiple axes, piezoelectric elements have been used in, for example, ultrasonic actuators and ultrasonic motors. However, piezoelectric elements have high operating voltage, low mechanical strength, and are brittle. There was a problem.

このような問題に対して、磁界によって変位する磁歪材料を用いたアクチュエータやモータとして、変位量が大きく応答性に優れた、超磁歪材料を用いたものが開発されている。(特許文献1参照)   In response to such problems, actuators and motors using magnetostrictive materials that are displaced by a magnetic field have been developed using giant magnetostrictive materials that have a large displacement and excellent responsiveness. (See Patent Document 1)

しかし超磁歪材料は、主にテルビウム元素、ディスプロシウム元素と鉄族元素から成る希土類合金であり、その変位量は通常の磁歪の磁歪材料の100倍以上にも及び優れた応答性を示すが、その一方で脆弱で扱い難く、加工性が悪くて通常の切削加工は適さない。また、希土類元素を含むため非常に高価である等の問題があった。   However, the giant magnetostrictive material is a rare earth alloy mainly composed of terbium element, dysprosium element and iron group element, and its displacement amount is more than 100 times that of the ordinary magnetostrictive magnetostrictive material. On the other hand, it is fragile and difficult to handle, and its workability is poor, so ordinary cutting is not suitable. In addition, since it contains rare earth elements, there is a problem that it is very expensive.

該超磁歪材料を高精度な動作を行うアクチュエータとして使用する上では、例えば特許第2793097号公報(特許文献2)に記載されている方法で、圧縮予圧を与える機構が必須であった。   In order to use the giant magnetostrictive material as an actuator that performs high-precision operation, a mechanism for applying a compression preload by the method described in, for example, Japanese Patent No. 2793097 (Patent Document 2) is essential.

これは、圧縮予圧により該超磁歪材料の磁歪感度を上げるとともに、該超磁歪材料は外部からの圧縮力には強いが引張力には非常に弱いため、特に、共振させた場合に発生する引張力により材料が損傷するのを防ぐためである。   This increases the magnetostriction sensitivity of the giant magnetostrictive material by compressive preload, and the giant magnetostrictive material is strong against external compression force but very weak against tensile force. This is to prevent the material from being damaged by force.

近年、磁歪量の大きい材料としてFe-Ga合金が開発されている。その変位量は希土類元素を含む超磁歪材料には及ばないものの、希土類合金による超磁歪材料と比較して、加工性、高剛性を有するとともに安価である。また、圧縮予圧を与えなくとも比較的高い磁歪感度を有する。   In recent years, Fe-Ga alloys have been developed as materials having a large magnetostriction amount. Although the amount of displacement does not reach that of a giant magnetostrictive material containing a rare earth element, it has workability and high rigidity and is inexpensive compared to a giant magnetostrictive material made of a rare earth alloy. Moreover, it has a relatively high magnetostriction sensitivity without giving a compression preload.

特許第2652644号公報Japanese Patent No.2652644 特許第2793097号公報Japanese Patent No. 2793097

上述したように希土類合金による超磁歪材料を高精度な動作を行うアクチュエータの機構に使用する場合、磁歪感度を上げるため、磁歪材料の両端を拘束加圧する予圧機構が必須となる。そのため、特にアクチュエータの回転部分を押し付ける機構が必要でありアクチュエータの小型化、簡素化が難しいという問題がある。   As described above, when a giant magnetostrictive material made of a rare earth alloy is used for a mechanism of an actuator that performs a highly accurate operation, a preload mechanism that restrains and pressurizes both ends of the magnetostrictive material is indispensable in order to increase magnetostriction sensitivity. Therefore, a mechanism for pressing the rotating part of the actuator is particularly necessary, and there is a problem that it is difficult to reduce the size and simplify the actuator.

本発明は上記の課題を解決するためになされたものであり、予圧を与えずに回転部分の機構を単純化し、小型化や簡素化によりコイルのインピーダンスを低く抑えられて低電圧駆動が可能で、回転及び回動を行える磁歪式多軸駆動アクチュエータの提供を目的とする。   The present invention has been made in order to solve the above-described problems. The mechanism of the rotating part is simplified without applying preload, and the impedance of the coil can be kept low by downsizing and simplification, and low voltage driving is possible. An object of the present invention is to provide a magnetostrictive multi-axis drive actuator capable of rotating and rotating.

上記の目的を達成するために、本発明の磁歪式多軸駆動アクチュエータは、Fe-Ga合金等の磁歪量が大きな高磁歪材料を用いて、磁性体からなり回転又は回動自在の球形の回転部材と、少なくとも2つの磁歪部材と、前記磁歪部材に巻回されるコイルと、前記回転部材を保持すると共に、前記磁歪部材にバイアス磁界を印加する永久磁石とを備えた構造としている。   In order to achieve the above object, the magnetostrictive multi-axis drive actuator of the present invention uses a high-magnetostrictive material having a large magnetostriction amount, such as an Fe-Ga alloy, and is made of a magnetic material and is a spherical or rotationally rotatable. The structure includes a member, at least two magnetostrictive members, a coil wound around the magnetostrictive member, and a permanent magnet that holds the rotating member and applies a bias magnetic field to the magnetostrictive member.

前記コイルから生じる交流磁界と前記バイアス磁界とによって前記磁歪部材が変位し、前記磁歪部材はその変位方向が互いに平行になるよう配置されると共に、前記磁歪部材の変位を前記回転部材に伝達するよう、前記磁歪部材の一端がそれぞれ前記回転部材に接し他端が固定され、前記永久磁石は、磁力によって前記回転部材を前記磁歪部材の一端に向かって付勢するよう配置されている。   The magnetostrictive member is displaced by the alternating magnetic field generated from the coil and the bias magnetic field, and the magnetostrictive members are disposed so that the displacement directions thereof are parallel to each other, and the displacement of the magnetostrictive member is transmitted to the rotating member. One end of the magnetostrictive member is in contact with the rotating member and the other end is fixed, and the permanent magnet is arranged to urge the rotating member toward one end of the magnetostrictive member by a magnetic force.

このような構成とすると、回転部材を特別な保持機構、例えば押さえ板等によって保持する必要がなく、回転機構が単純となる。又、押さえ板等の保持機構が不要なため、回転部材の回転又は回動がこれら保持機構によって干渉させられることがなく、回転部材の球体の中心周りに自由に回転又は回動することができ、回転角又は回動角を大きくとることができ、回転もスムースになる。   With such a configuration, it is not necessary to hold the rotating member by a special holding mechanism such as a press plate, and the rotating mechanism becomes simple. Further, since a holding mechanism such as a holding plate is not required, the rotation or rotation of the rotating member is not interfered by these holding mechanisms, and can be freely rotated or rotated around the center of the sphere of the rotating member. The rotation angle or the rotation angle can be increased, and the rotation is also smooth.

前記回転部材は、その回転又は回動を外部に伝達するためのロッドを備えていてもよい。このような構成とすると、回転部材の回転又は回動を有効に取り出すことができる。   The rotating member may include a rod for transmitting the rotation or rotation to the outside. With such a configuration, the rotation or rotation of the rotating member can be taken out effectively.

前記永久磁石は、前記磁歪部材の一端の近傍において各磁歪部材に囲まれた位置に配置されてもよい。
このような構成とすると、磁歪式多軸駆動アクチュエータの外径を磁歪部材の配置間隔と同程度とすることができ、小型化が図られる。
The permanent magnet may be disposed at a position surrounded by each magnetostrictive member in the vicinity of one end of the magnetostrictive member.
With such a configuration, the outer diameter of the magnetostrictive multi-axis drive actuator can be made approximately the same as the arrangement interval of the magnetostrictive members, and the size can be reduced.

前記磁歪部材は前記一端から前記他端に向かって長手方向に延びる負磁歪材料と、前記長手方向に延びる正磁歪材料とを積層してなるバイモルフであってもよい。バイモルフは正磁歪材料が伸長し負磁歪材料が収縮することにより、これらはたわむように変形する。これらの前記他端を固定して片持ち状態にすると、前記一端近傍が板厚方向に変位する。   The magnetostrictive member may be a bimorph formed by laminating a negative magnetostrictive material extending in the longitudinal direction from the one end toward the other end and a positive magnetostrictive material extending in the longitudinal direction. Bimorphs are deformed to bend as the positive magnetostrictive material expands and the negative magnetostrictive material contracts. When these other ends are fixed and cantilevered, the vicinity of the one end is displaced in the thickness direction.

リング状の磁性部材を前記磁歪部材に接合して、リング状の磁歪部材の上に前記回転部材を接触させると、前記磁歪部材と前記回転部材が均等に接触し、前記磁歪部材の変位を効率よく前記回転部材に伝達することができる。   When a ring-shaped magnetic member is joined to the magnetostrictive member and the rotating member is brought into contact with the ring-shaped magnetostrictive member, the magnetostrictive member and the rotating member are evenly contacted, and displacement of the magnetostrictive member is efficiently performed. It can be transmitted well to the rotating member.

本発明によれば、回転及び回動の動作を高精度に行えるとともに、小型化や簡素化が可能な磁歪式の多軸駆動アクチュエータを提供することができる。   According to the present invention, it is possible to provide a magnetostrictive multi-axis drive actuator that can perform rotation and rotation operations with high accuracy and that can be reduced in size and simplified.

以下、本発明の実施形態について、図面を参照して説明する。図1は、本発明の第1の実施形態に係る磁歪式多軸駆動アクチュエータの構成を示す斜視図である。この図において、磁歪式多軸駆動アクチュエータ20は、磁性体からなる球形の回転部材8と、4つの同寸の棒状磁歪部材2と、磁歪部材2に巻回されるコイル4と、円柱状の永久磁石6と、磁歪部材2の下端(他端)2bが固定される支持台10とを備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a magnetostrictive multi-axis drive actuator according to the first embodiment of the present invention. In this figure, a magnetostrictive multi-axis drive actuator 20 includes a spherical rotating member 8 made of a magnetic material, four rod-like magnetostrictive members 2 of the same size, a coil 4 wound around the magnetostrictive member 2, and a cylindrical shape. A permanent magnet 6 and a support base 10 to which a lower end (other end) 2b of the magnetostrictive member 2 is fixed are provided.

各磁歪部材2はその長手方向(図1の上下方向)を平行にして、かつ上端(一端)2aがほぼ面一になるように配置されている。さらに、各磁歪部材2の長手方向に垂直な平面において、各磁歪部材2は回転部材8と同心の円周上にそれぞれ90度の角度差で配置されている。   Each magnetostrictive member 2 is arranged so that its longitudinal direction (vertical direction in FIG. 1) is parallel and the upper end (one end) 2a is substantially flush. Further, in the plane perpendicular to the longitudinal direction of each magnetostrictive member 2, each magnetostrictive member 2 is arranged at an angular difference of 90 degrees on the circumference concentric with the rotating member 8.

そして、永久磁石6は磁歪部材2の長手方向に沿い、かつ永久磁石6の先端が各磁歪部材2の上端2aより若干下がるようにして上記円周の中心に配置され、永久磁石6は各磁歪部材2に囲まれるようになっている。又、永久磁石6の下端は支持台10に固定されている。   The permanent magnet 6 is disposed along the longitudinal direction of the magnetostrictive member 2 and at the center of the circumference so that the tip of the permanent magnet 6 is slightly lower than the upper end 2a of each magnetostrictive member 2. The member 2 is surrounded. The lower end of the permanent magnet 6 is fixed to the support base 10.

回転部材8は各磁歪部材2の上端2aに接しつつ各磁歪部材2の上に配置され、永久磁石6の磁力に引き付けられて各磁歪部材2の上端2a側に向かって付勢されている。このため、回転部材8を特別な保持機構、例えば押さえ板等によって保持する必要がなく、回転機構が単純となる。   The rotating member 8 is disposed on each magnetostrictive member 2 while being in contact with the upper end 2a of each magnetostrictive member 2, and is attracted to the magnetic force of the permanent magnet 6 and biased toward the upper end 2a side of each magnetostrictive member 2. For this reason, it is not necessary to hold the rotating member 8 by a special holding mechanism, for example, a pressing plate, and the rotating mechanism becomes simple.

又、押さえ板等の保持機構が不要なため、回転部材8の回転又は回動がこれら保持機構によって妨げられることがなく、回転部材8は、その球体の中心周りに自由に回転又は回動可能である。このため、回転角又は回動角を大きくとることができ、回転もスムースになる。   Further, since a holding mechanism such as a holding plate is unnecessary, the rotation or rotation of the rotating member 8 is not hindered by these holding mechanisms, and the rotating member 8 can freely rotate or rotate around the center of the sphere. It is. For this reason, the rotation angle or the rotation angle can be increased, and the rotation is also smooth.

なお、永久磁石6と回転部材8とは接していてもよく、接しなくてもよい。
又、この実施形態では、回転部材8の中心軸に沿って外側に延びるロッド8aが回転部材8に連結され、回転部材8の回転又は回動を外部に伝達するようになっている。
The permanent magnet 6 and the rotating member 8 may be in contact with each other or may not be in contact with each other.
In this embodiment, a rod 8a extending outward along the central axis of the rotating member 8 is connected to the rotating member 8, and the rotation or rotation of the rotating member 8 is transmitted to the outside.

本発明においては、磁歪部材2に予圧を与えずに使用する。そのため磁歪部材2としては、予圧を与えなくとも磁歪量が大きな高磁歪材料を用いることが好ましい。高磁歪材料としては、例えばFe-Ga合金、Fe-Co合金、Fe-Al合金が挙げられる。   In the present invention, the magnetostrictive member 2 is used without applying a preload. Therefore, as the magnetostrictive member 2, it is preferable to use a high magnetostrictive material having a large magnetostriction amount without giving a preload. Examples of the high magnetostrictive material include Fe—Ga alloy, Fe—Co alloy, and Fe—Al alloy.

磁歪部材2は磁界によって次のように変位する。いま、永久磁石6により、各磁歪部材2の上端2aから下端2bに向かうバイアス磁界Hが印加される。 The magnetostrictive member 2 is displaced by the magnetic field as follows. Now, the permanent magnet 6, the bias magnetic field H M toward the lower end 2b from the upper end 2a of the magnetostrictive member 2 is applied.

ここで、隣接する2つの磁歪部材2のうち、第1の磁歪部材2にはコイル4によって上向きの磁界Hを発生させ、第2の磁歪部材2にはコイル4によって下向きの磁界Hを発生させると、第1の磁歪部材2にH−Hの磁界が印加され、第2の磁歪部材2には全としてH+Hの磁界が印加される。従って、第2の磁歪部材2の方が磁界が大きくなるので、変位量も大きくなる。 Here, among the two adjacent magnetostrictive member 2, the first magnetostrictive member 2 generates an upward magnetic field H C by the coil 4, a downward magnetic field H C by the coil 4 to the second magnetostrictive member 2 When generating, in the first magnetostrictive member 2 magnetic field H M -H C is applied to the second magnetostrictive member 2 magnetic field H M + H C is applied as a whole. Accordingly, the second magnetostrictive member 2 has a larger magnetic field, and the displacement amount is also increased.

このようにして、第2の磁歪部材2が長手方向(上端から下端に向かう方向)に相対的に伸び、第1の磁歪部材2が長手方向に相対的に縮むように逆変位する。なお、各磁歪部材2の変位方向はいずれも長手方向であり、各磁歪部材2の変位方向は互いに平行になっている。   In this way, the second magnetostrictive member 2 extends relatively in the longitudinal direction (the direction from the upper end to the lower end), and reversely displaces so that the first magnetostrictive member 2 contracts relatively in the longitudinal direction. The displacement directions of the magnetostrictive members 2 are all longitudinal directions, and the displacement directions of the magnetostrictive members 2 are parallel to each other.

このように、第1及び第2の磁歪部材2がそれぞれ有するコイル4に互いに逆位相の交流磁界を印加すれば、第2の磁歪部材2が伸び第1の磁歪部材2が縮む状態から、第2の磁歪部材2が縮み第1の磁歪部材2が伸びる状態に至るまで、交流磁界の周波数で周期的に繰り返す。   As described above, when AC magnetic fields having opposite phases are applied to the coils 4 included in the first and second magnetostrictive members 2, the second magnetostrictive member 2 extends and the first magnetostrictive member 2 contracts. Until the second magnetostrictive member 2 is contracted and the first magnetostrictive member 2 is extended, this is repeated periodically at the frequency of the alternating magnetic field.

交流磁界による各磁歪部材2のコイル4に対する交流磁界の位相制御は、磁歪部材2の配置個数に応じて次のように行う。磁歪部材2が2個であれば、各磁歪部材2のコイル4に印加する電流の位相差を180度とすることにより、各磁歪部材2が長手方向に順次伸縮する。   The phase control of the AC magnetic field with respect to the coil 4 of each magnetostrictive member 2 by the AC magnetic field is performed as follows according to the number of arranged magnetostrictive members 2. If there are two magnetostrictive members 2, each magnetostrictive member 2 is expanded and contracted sequentially in the longitudinal direction by setting the phase difference of the current applied to the coil 4 of each magnetostrictive member 2 to 180 degrees.

これにより、各磁歪部材2の上端(自由端)が順次変位し、これらに接している回転部材8が所定の角度で左右(各磁歪部材2の並ぶ方向)に回動し、回転部材8に設けられたアーム8aの角度を制御できる。   As a result, the upper ends (free ends) of the magnetostrictive members 2 are sequentially displaced, and the rotating members 8 in contact therewith are rotated left and right (in the direction in which the magnetostrictive members 2 are arranged) at a predetermined angle. The angle of the provided arm 8a can be controlled.

磁歪部材2が3個であれば、各磁歪部材2のコイル4に印加する電流の位相差を120度とすることにより、各磁歪部材2が長手方向に順次(円周方向に並ぶ順に)伸縮する。これにより、各磁歪部材2の上端(自由端)2aが順次変位し、これらに接している回転部材8が回転して回転モータとして動作する。又、交流磁界の周波数が高いほど、回転数が高くなる。なお、回転部材8の回転方向は、各磁歪部材2の上端を含む円周方向である。   If there are three magnetostrictive members 2, each magnetostrictive member 2 is expanded and contracted sequentially in the longitudinal direction (in the order of being arranged in the circumferential direction) by setting the phase difference of the current applied to the coil 4 of each magnetostrictive member 2 to 120 degrees. To do. As a result, the upper end (free end) 2a of each magnetostrictive member 2 is sequentially displaced, and the rotating member 8 in contact therewith rotates to operate as a rotary motor. Further, the higher the frequency of the alternating magnetic field, the higher the rotational speed. The rotating direction of the rotating member 8 is a circumferential direction including the upper end of each magnetostrictive member 2.

磁歪部材2が4個であれば、各磁歪部材2のコイル4に印加する電流の位相差を90度とすることにより、各磁歪部材2が長手方向に順次伸縮する。これにより、各磁歪部材2の上端(自由端)2aが順次変位し、これらに接している回転部材8が回転して回転モータとして動作する。   If the number of the magnetostrictive members 2 is four, each magnetostrictive member 2 sequentially expands and contracts in the longitudinal direction by setting the phase difference of the current applied to the coil 4 of each magnetostrictive member 2 to 90 degrees. As a result, the upper end (free end) 2a of each magnetostrictive member 2 is sequentially displaced, and the rotating member 8 in contact therewith rotates to operate as a rotary motor.

さらに、対向する1対のコイルを直列に連結し、2対のコイルに位相差が180度(逆位相)の電流を印加することで1対の磁歪部材の上端(自由端)が変位し、これらに接している回転部材8が所定の角度で左右(各磁歪部材2の並ぶ方向)に回動し、回転部材8に設けられたアーム8aの角度を制御できる。   Furthermore, a pair of opposing coils are connected in series, and an upper end (free end) of the pair of magnetostrictive members is displaced by applying a current having a phase difference of 180 degrees (reverse phase) to the two pairs of coils. The rotating member 8 in contact with these rotates to the left and right (the direction in which the magnetostrictive members 2 are arranged) at a predetermined angle, and the angle of the arm 8a provided on the rotating member 8 can be controlled.

このように、磁歪部材2の配置個数nに対し、交流磁界の位相差をn/360度とすればよい。又、位相差を設けずに磁歪部材2を同時に同じ方向(上下方向)に伸縮させた場合、回転部材8はそのまま上下に動く(直動)。磁歪部材2が3個以上の場合、所定角度の回動や直動を行える他、回転が可能である。   Thus, the phase difference of the alternating magnetic field may be n / 360 degrees with respect to the number n of the magnetostrictive members 2 arranged. Further, when the magnetostrictive member 2 is simultaneously expanded and contracted in the same direction (vertical direction) without providing a phase difference, the rotating member 8 moves up and down as it is (linear motion). When the number of the magnetostrictive members 2 is three or more, they can be rotated or moved in a predetermined angle and can be rotated.

本発明の第1の実施形態に係る磁歪式多軸駆動アクチュエータの大きさは特に制限されないが、例えば回転部材8の直径3〜4mm、各磁歪部材2の直径(又は1辺)1mmで長さ8mm程度、とすることができる。   The size of the magnetostrictive multi-axis drive actuator according to the first embodiment of the present invention is not particularly limited. For example, the rotating member 8 has a diameter of 3 to 4 mm, and each magnetostrictive member 2 has a diameter (or one side) of 1 mm. It can be about 8 mm.

回転部材8の材質は、例えば鉄系材料、ステンレス材料、ニッケル系材料のうち磁性体の特性を有するものとすることができる。   The material of the rotating member 8 can be, for example, a magnetic material among iron-based materials, stainless steel materials, and nickel-based materials.

なお、永久磁石6の磁界が支持台10から下方に出るように構成すれば、支持台10の裏面に置いた磁性体の対象物にアクチュエータを磁力で吸着固定できる。又、永久磁石6の磁界密度を高めて磁力を有効に利用するため、各種の高透磁率材料や磁性体からなるヨークを用いてもよい。   In addition, if it comprises so that the magnetic field of the permanent magnet 6 may come out from the support stand 10, an actuator can be adsorbed and fixed to the target object of the magnetic body put on the back surface of the support stand 10 with a magnetic force. Moreover, in order to increase the magnetic field density of the permanent magnet 6 and effectively use the magnetic force, various high permeability materials or yokes made of a magnetic material may be used.

次に、本発明の第2の実施形態に係る磁歪式多軸駆動アクチュエータについて、図2を参照して説明する。この図において、磁歪式多軸駆動アクチュエータ21は、磁性体からなる球形の回転部材8と、4つの棒状磁歪部材3と、磁歪部材3に巻回されるコイル4と、円柱状の永久磁石6と、磁歪部材3の下端3bが固定される支持台10とを備える。   Next, a magnetostrictive multi-axis drive actuator according to a second embodiment of the present invention will be described with reference to FIG. In this figure, a magnetostrictive multi-axis drive actuator 21 includes a spherical rotating member 8 made of a magnetic material, four rod-like magnetostrictive members 3, a coil 4 wound around the magnetostrictive member 3, and a cylindrical permanent magnet 6. And a support base 10 to which the lower end 3b of the magnetostrictive member 3 is fixed.

第2の実施形態においては、磁歪部材3がバイモルフであること以外は第1の実施形態と変わるところがないので、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。   In the second embodiment, since there is no difference from the first embodiment except that the magnetostrictive member 3 is a bimorph, the same components as those in the first embodiment are denoted by the same reference numerals and described. Omitted.

図3は、バイモルフである磁歪部材3の構成を示す図である。磁歪部材3は、上端から下端に向かう長手方向に延びる負磁歪材料3xと、この長手方向に延びる正磁歪材料3yとを積層してなり、自由端である上端3a近傍において変位するバイモルフを構成する。   FIG. 3 is a diagram showing a configuration of the magnetostrictive member 3 which is a bimorph. The magnetostrictive member 3 is formed by laminating a negative magnetostrictive material 3x extending in the longitudinal direction from the upper end to the lower end and a positive magnetostrictive material 3y extending in the longitudinal direction, and forms a bimorph that is displaced in the vicinity of the upper end 3a that is a free end. .

負磁歪材料3xとしては、Ni系合金が挙げられる。又、正磁歪材料3yとしては、Fe-Ga合金、Fe-Co合金、Fe-Al合金が挙げられる。   Examples of the negative magnetostrictive material 3x include Ni-based alloys. Further, examples of the positive magnetostrictive material 3y include Fe—Ga alloy, Fe—Co alloy, and Fe—Al alloy.

負磁歪材料3xと正磁歪材料3yとを接着又は溶接(スポット溶接等)することにより、これらを積層することができる。   These can be laminated by bonding or welding (spot welding or the like) the negative magnetostrictive material 3x and the positive magnetostrictive material 3y.

バイモルフに磁界を印加すると負磁歪材料3xが収縮し、正磁歪材料3yが伸長し、バイモルフの上端3aは負磁歪材料側(図3の左側)へ湾曲する。すなわちバイモルフの板厚方向に変位する。   When a magnetic field is applied to the bimorph, the negative magnetostrictive material 3x contracts, the positive magnetostrictive material 3y expands, and the upper end 3a of the bimorph curves toward the negative magnetostrictive material side (left side in FIG. 3). That is, it is displaced in the thickness direction of the bimorph.

また、バイアス磁界と交流磁界を与えると、バイモルフの上端3aは、バイアス磁界に応じて湾曲した位置を基準にして、左右に振動する。また、バイアス磁界を与えず、交流磁界の周波数を共振周波数に選ぶと、バイモルフの上端は直立した位置を基準に左右に振動する。   Further, when a bias magnetic field and an alternating magnetic field are applied, the upper end 3a of the bimorph vibrates left and right with reference to a position curved according to the bias magnetic field. Further, when the bias magnetic field is not applied and the frequency of the alternating magnetic field is selected as the resonance frequency, the upper end of the bimorph oscillates left and right with respect to the upright position.

図2に示す磁歪式多軸駆動アクチュエータ21に備わる4つの棒状磁歪部材3は、このような挙動特性をもつバイモルフを、同一の特性を持つ面どうしが相対するかたちで対角に2対配置したものである。   In the four rod-like magnetostrictive members 3 provided in the magnetostrictive multi-axis drive actuator 21 shown in FIG. 2, two pairs of bimorphs having such behavior characteristics are arranged diagonally so that the surfaces having the same characteristics face each other. Is.

この配置において、例えば2対のうちの1対のコイルに図4(a)で示すノコギリ波形の電流を印加して磁界を与えることにより、回転部材8上のロッド8aを所定の向きと角度で回動することができる。尚、図4(b)で示すノコギリ波形の電流を印加して磁界を与えた場合は、図4(a)場合の反対方向にロッド8aが回動する。   In this arrangement, for example, by applying a sawtooth waveform current shown in FIG. 4 (a) to one of the two coils to give a magnetic field, the rod 8a on the rotating member 8 is moved in a predetermined direction and angle. It can be rotated. When a current having a sawtooth waveform shown in FIG. 4B is applied to apply a magnetic field, the rod 8a rotates in the opposite direction to that in FIG.

更に、2対の磁歪部位材3のそれぞれのコイルに流す電流波形を制御することにより、回動方向を組み合わせ、回転部材8を円周方向および任意の方向へ回動および回転させることが可能である。   Further, by controlling the waveform of the current flowing through each coil of the two pairs of magnetostrictive region materials 3, it is possible to combine the rotation directions and rotate and rotate the rotating member 8 in the circumferential direction and in any direction. is there.

以上では、バイモルフによる4本の棒状磁歪部材を備えた磁歪式多軸駆動アクチュエータとして説明したが、第2の実施形態においては、棒状磁歪部材3の本数は、複数であれば何本としてもよく、更に磁歪部材3の向きも、例えばバイモルフの板厚方向が円周方向に向くようにする等して配置してもよい。   In the above description, the magnetostrictive multi-axis drive actuator including four rod-shaped magnetostrictive members by bimorph has been described. However, in the second embodiment, the number of rod-shaped magnetostrictive members 3 may be any number as long as it is plural. Furthermore, the direction of the magnetostrictive member 3 may also be arranged, for example, such that the plate thickness direction of the bimorph is directed in the circumferential direction.

バイモルフから成る磁歪部材3の配置に応じて、各コイルに印加する電流の波形及びタイミングを制御して、磁歪部材3に磁界を与えることにより、回転部材8上のロッド8aに様々な回転及び回動運動をさせることができる。 By controlling the waveform and timing of the current applied to each coil according to the arrangement of the magnetostrictive member 3 made of bimorph, and applying a magnetic field to the magnetostrictive member 3, various rotations and rotations are applied to the rod 8a on the rotary member 8. Can make dynamic movements.

次に、本発明の第3の実施形態に係る磁歪式多軸駆動アクチュエータについて、図5を参照して説明する。この図において、磁歪式多軸駆動アクチュエータ22は、磁性体からなる球形の回転部材8と、磁性体からなるリング9と、4つの棒状磁歪部材3と、磁歪部材3に巻回されるコイル4と、円柱状の永久磁石6と、磁歪部材2の下端2bが固定される支持台10とを備える。   Next, a magnetostrictive multi-axis drive actuator according to a third embodiment of the present invention will be described with reference to FIG. In this figure, a magnetostrictive multi-axis drive actuator 22 includes a spherical rotating member 8 made of a magnetic material, a ring 9 made of a magnetic material, four rod-shaped magnetostrictive members 3, and a coil 4 wound around the magnetostrictive member 3. A cylindrical permanent magnet 6 and a support base 10 to which the lower end 2b of the magnetostrictive member 2 is fixed.

第3の実施形態においては、磁性体からなるリング9を備えること以外は第1の実施形態と変わるところがないので、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。   In the third embodiment, there is no difference from the first embodiment except that a ring 9 made of a magnetic material is provided. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and described. Is omitted.

図5は、磁歪部材3に接合されている磁性体からなるリング9が、回転部材8を支持している構成を示す図である。この構成によれば、回転部材8がリング9の上で均等に接触することで磁歪部材3の変位を効率よく回転部材8に伝達することができる。   FIG. 5 is a view showing a configuration in which a ring 9 made of a magnetic material joined to the magnetostrictive member 3 supports the rotating member 8. According to this configuration, when the rotating member 8 contacts the ring 9 evenly, the displacement of the magnetostrictive member 3 can be efficiently transmitted to the rotating member 8.

本発明は上記実施形態に限定されない。例えば、永久磁石が磁力によって回転部材を磁歪部材の一端に向かって付勢するように配置されていれば、永久磁石の形状や位置は限定されない。すなわち、回転部材が永久磁石によって下方(図1参照)に引き付けられて磁歪部材の一端に当接するようになっていればよい。   The present invention is not limited to the above embodiment. For example, as long as the permanent magnet is arranged to urge the rotating member toward one end of the magnetostrictive member by a magnetic force, the shape and position of the permanent magnet are not limited. That is, it is sufficient that the rotating member is attracted downward (see FIG. 1) by the permanent magnet and comes into contact with one end of the magnetostrictive member.

例えば、永久磁石を、各磁歪部材を外側から囲むリング状にしてもよく、この場合に永久磁石が全体として回転部材を下方に引き付けるものであれば、永久磁石の上端が回転部材を囲むようになっていてもよい。   For example, the permanent magnet may be formed in a ring shape surrounding each magnetostrictive member from the outside. In this case, if the permanent magnet as a whole attracts the rotating member downward, the upper end of the permanent magnet surrounds the rotating member. It may be.

又、永久磁石の磁力を大きくすれば、必ずしも永久磁石を回転部材の近傍に配置しなくともよく、磁歪部材の一端より離間した下方(図1参照)に配置してもよい。さらに、永久磁石の磁力を有効に利用するため、所定のヨークを配置してもよい。   Further, if the magnetic force of the permanent magnet is increased, the permanent magnet is not necessarily arranged in the vicinity of the rotating member, and may be arranged below (see FIG. 1) spaced from one end of the magnetostrictive member. Furthermore, a predetermined yoke may be disposed in order to effectively use the magnetic force of the permanent magnet.

さらに、各磁歪部材を回転部材と同心の円周上に配置させ、複数の永久磁石を各磁歪部材の間でかつ上記円周上に配置してもよい。   Further, each magnetostrictive member may be arranged on a circumference concentric with the rotating member, and a plurality of permanent magnets may be arranged between each magnetostrictive member and on the circumference.

回転部材に接する磁歪部材の一端の端面形状は、図6のように回転部材の曲率に合わせた段差をもうけた形状であってもよい。もしくは平面であってもよく、この場合は磁歪部材の一端の一部が回転部材に接することになる。又、磁歪部材の一端の端面を、回転部材の曲率に相当する曲面とし、回転部材との接触面積を増大させてもよい。   The end face shape of one end of the magnetostrictive member in contact with the rotating member may be a shape provided with a step corresponding to the curvature of the rotating member as shown in FIG. Alternatively, it may be a flat surface, and in this case, a part of one end of the magnetostrictive member is in contact with the rotating member. Further, the end surface of one end of the magnetostrictive member may be a curved surface corresponding to the curvature of the rotating member, and the contact area with the rotating member may be increased.

磁歪部材に巻き回すコイルは、図6のように1つのコイルを隣り合う2つの磁歪部材に巻き回して取り付けてもよい。このとき1つの磁歪部材に対して2つ以上のコイルを巻き回してもよい。   The coil wound around the magnetostrictive member may be attached by winding one coil around two adjacent magnetostrictive members as shown in FIG. At this time, two or more coils may be wound around one magnetostrictive member.

本発明は、回転、所定角度での回動、さらに場合によって直動を回転部材に加えることができ、例えばロボットアームの関節、プリンタのインジェクタ(インク吐出部)、位置決め部材、モータ等に用いることができる。又、小型化、構造の簡素化が図られることから、省スペースが要求される場所(例えば、医療用カテーテルの撮影用ミラーの変角用)のアクチュエータに適する。   The present invention can apply rotation, rotation at a predetermined angle, and, in some cases, linear motion to a rotating member. For example, it is used for a joint of a robot arm, an injector (ink discharge unit) of a printer, a positioning member, a motor, or the like. Can do. In addition, since the size is reduced and the structure is simplified, the actuator is suitable for a place where space saving is required (for example, for changing the angle of an imaging mirror of a medical catheter).

本発明の第1の実施形態に係る磁歪式多軸駆動アクチュエータの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetostrictive multi-axis drive actuator which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る磁歪式多軸駆動アクチュエータの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetostrictive multi-axis drive actuator which concerns on the 2nd Embodiment of this invention. バイモルフである磁歪部材3の構成を示す図である。It is a figure which shows the structure of the magnetostrictive member 3 which is a bimorph. 本発明の第2の実施形態における入力波形図である。It is an input waveform figure in the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る磁歪式多軸駆動アクチュエータの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetostrictive multi-axis drive actuator which concerns on the 3rd Embodiment of this invention. 本発明の他の実施形態に係る磁歪式多軸駆動アクチュエータの構成を示す斜視図である。It is a perspective view which shows the structure of the magnetostrictive multi-axis drive actuator which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

2、3 磁歪部材
2a、3a 磁歪部材の一端
2b、3b 磁歪部材の他端
3x 負磁歪材料
3y 正磁歪材料
4 コイル
6 永久磁石
8 回転部材
8a ロッド
9 リング
10 加熱手段
20、21、22 磁歪式多軸駆動アクチュエータ
2, 3 Magnetostrictive member 2a, 3a One end of magnetostrictive member 2b, 3b The other end of magnetostrictive member 3x Negative magnetostrictive material 3y Positive magnetostrictive material 4 Coil 6 Permanent magnet 8 Rotating member 8a Rod 9 Ring 10 Heating means 20, 21, 22 Magnetostrictive type Multi-axis actuator

Claims (5)

回転又は回動自在な磁性体からなる球形の回転部材と、少なくとも2つの磁歪部材と、前記磁歪部材に巻回されるコイルと、前記回転部材を保持し、前記磁歪部材にバイアス磁界を印加する永久磁石とを備え、
前記磁歪部材に関して、前記コイルから生じる交流磁界と前記永久磁石からの前記バイアス磁界を加えた際に、磁歪部材の変位方向が互いに平行になるよう配置されると共に、
前記磁歪部材の変位を前記回転部材に伝達するよう、前記磁歪部材の一端がそれぞれ前記回転部材に接し、他端が固定されており、
前記永久磁石は、磁力によって前記回転部材を前記磁歪部材の一端に向かって付勢するよう配置されている磁歪式多軸駆動アクチュエータ。
A spherical rotating member made of a rotatable or rotatable magnetic body, at least two magnetostrictive members, a coil wound around the magnetostrictive member, holding the rotating member, and applying a bias magnetic field to the magnetostrictive member With a permanent magnet,
With respect to the magnetostrictive member, when an alternating magnetic field generated from the coil and the bias magnetic field from the permanent magnet are applied, the displacement directions of the magnetostrictive member are arranged in parallel to each other,
In order to transmit the displacement of the magnetostrictive member to the rotating member, one end of the magnetostrictive member is in contact with the rotating member, and the other end is fixed,
The permanent magnet is a magnetostrictive multi-axis drive actuator arranged to urge the rotating member toward one end of the magnetostrictive member by a magnetic force.
前記回転部材は、その回転又は回動を外部に伝達するためのロッドを備えている請求項1記載の磁歪式多軸駆動アクチュエータ。   The magnetostrictive multi-axis drive actuator according to claim 1, wherein the rotating member includes a rod for transmitting the rotation or rotation to the outside. 前記永久磁石は、前記磁歪部材の一端の近傍において各磁歪部材に囲まれた位置に配置されている請求項1又は2記載の磁歪式多軸駆動アクチュエータ。   The magnetostrictive multi-axis drive actuator according to claim 1, wherein the permanent magnet is disposed at a position surrounded by each magnetostrictive member in the vicinity of one end of the magnetostrictive member. 前記磁歪部材は前記一端から前記他端に向かって長手方向に延びる負磁歪材料と、前記長手方向に延びる正磁歪材料とを積層してなり、前記一端近傍において前記磁歪部材の板厚方向に変位するバイモルフである請求項1〜3のいずれかに記載の磁歪式多軸駆動アクチュエータ。   The magnetostrictive member is formed by laminating a negative magnetostrictive material extending in the longitudinal direction from the one end toward the other end and a positive magnetostrictive material extending in the longitudinal direction, and is displaced in the plate thickness direction of the magnetostrictive member in the vicinity of the one end. The magnetostrictive multi-axis drive actuator according to claim 1, wherein the magnetostrictive multi-axis drive actuator is a bimorph. 前記磁歪部材と前記回転部材が均等に接触するように、リング状の磁性部材を前記磁歪部材に接合した請求項1〜4のいずれかに記載の磁歪式多軸駆動アクチュエータ。
The magnetostrictive multi-axis drive actuator according to any one of claims 1 to 4, wherein a ring-shaped magnetic member is joined to the magnetostrictive member so that the magnetostrictive member and the rotating member are in uniform contact with each other.
JP2007301097A 2007-11-21 2007-11-21 Magnetostrictive multi-axis drive actuator Expired - Fee Related JP5055505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301097A JP5055505B2 (en) 2007-11-21 2007-11-21 Magnetostrictive multi-axis drive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301097A JP5055505B2 (en) 2007-11-21 2007-11-21 Magnetostrictive multi-axis drive actuator

Publications (2)

Publication Number Publication Date
JP2009130988A true JP2009130988A (en) 2009-06-11
JP5055505B2 JP5055505B2 (en) 2012-10-24

Family

ID=40821378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301097A Expired - Fee Related JP5055505B2 (en) 2007-11-21 2007-11-21 Magnetostrictive multi-axis drive actuator

Country Status (1)

Country Link
JP (1) JP5055505B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158473A1 (en) * 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element
JP2012170270A (en) * 2011-02-15 2012-09-06 Toshiyuki Ueno Triaxial spherical motor
WO2012157246A1 (en) * 2011-05-16 2012-11-22 国立大学法人金沢大学 Power generation switch
CN103904942A (en) * 2014-04-14 2014-07-02 浙江理工大学 Step generator
WO2015022752A1 (en) * 2013-08-16 2015-02-19 富士通株式会社 Power-generating device and sensor system
CN111641348A (en) * 2020-06-15 2020-09-08 重庆大学 High-precision force/position control driving device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158473A1 (en) * 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element
JP4905820B2 (en) * 2010-06-18 2012-03-28 国立大学法人金沢大学 Power generation element and power generation device including power generation element
US8766495B2 (en) 2010-06-18 2014-07-01 National University Corporation Kanazawa University Power generation element and power generation apparatus including the power generation element
JP2012170270A (en) * 2011-02-15 2012-09-06 Toshiyuki Ueno Triaxial spherical motor
WO2012157246A1 (en) * 2011-05-16 2012-11-22 国立大学法人金沢大学 Power generation switch
JP5660479B2 (en) * 2011-05-16 2015-01-28 国立大学法人金沢大学 Power switch
US9461237B2 (en) 2011-05-16 2016-10-04 National University Corporation Kanazawa University Power generation switch
WO2015022752A1 (en) * 2013-08-16 2015-02-19 富士通株式会社 Power-generating device and sensor system
JPWO2015022752A1 (en) * 2013-08-16 2017-03-02 富士通株式会社 Power generation device and sensor system
US10164552B2 (en) 2013-08-16 2018-12-25 Fujitsu Limited Power generating device and sensor system
CN103904942A (en) * 2014-04-14 2014-07-02 浙江理工大学 Step generator
CN111641348A (en) * 2020-06-15 2020-09-08 重庆大学 High-precision force/position control driving device

Also Published As

Publication number Publication date
JP5055505B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
Dong Review on piezoelectric, ultrasonic, and magnetoelectric actuators
JP5055505B2 (en) Magnetostrictive multi-axis drive actuator
JP6349229B2 (en) Biaxial optical deflector and manufacturing method thereof
KR100954772B1 (en) Spherical motor
Shi et al. Development of a compact ring type MDOF piezoelectric ultrasonic motor for humanoid eyeball orientation system
JP2015211604A (en) Piezoelectric actuator
EP3136572B1 (en) Actuator, air pump, beauty treatment device, and laser scanning device
CN102361410A (en) Piezoelectric motor and piezoelectric motor system
Ueno et al. Miniature spherical motor using iron–gallium alloy (Galfenol)
JP5116317B2 (en) Cylindrical linear motor
EP3535842A1 (en) Ultrasonic actuator
JP5488131B2 (en) Electromagnetic actuator
Frutiger et al. Magmites-wireless resonant magnetic microrobots
JP2007166776A (en) Ultrasonic actuator and its driving method
JP5439663B2 (en) Electromagnetic actuator and joint device
JP2008114313A (en) Manipulator
JP5618085B2 (en) 3-axis spherical motor
JP5434004B2 (en) Electromagnetic drive actuator and method for manufacturing electromagnetic drive actuator
Karastoyanov et al. Electromagnetic linear micro drives for Braille screen: characteristics, control and optimization
WO2006098500A1 (en) Magnetic device
JP4284898B2 (en) Giant magnetostrictive linear actuator
JP4687953B2 (en) LENS DRIVE DEVICE AND IMAGING DEVICE
JPH0923632A (en) Electromagnetic displacement generator
JP2006304469A (en) Actuator
JP2007037351A (en) Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees