JP2009130329A - Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device - Google Patents

Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device Download PDF

Info

Publication number
JP2009130329A
JP2009130329A JP2007307157A JP2007307157A JP2009130329A JP 2009130329 A JP2009130329 A JP 2009130329A JP 2007307157 A JP2007307157 A JP 2007307157A JP 2007307157 A JP2007307157 A JP 2007307157A JP 2009130329 A JP2009130329 A JP 2009130329A
Authority
JP
Japan
Prior art keywords
electrode
binder
electrochemical device
ptfe
fep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007307157A
Other languages
Japanese (ja)
Inventor
Tetsuya Sadatsuka
哲也 定塚
Akiyoshi Koyama
章喜 小山
Kazushi Nagahara
一志 永原
Toshiichi Jinbo
敏一 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP2007307157A priority Critical patent/JP2009130329A/en
Publication of JP2009130329A publication Critical patent/JP2009130329A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electrode for electrochemical devices, which can be dried quickly in manufacture, does not cause its characteristics to deteriorate by the application of voltage even after it becomes a product, and has stable characteristics for a long time. <P>SOLUTION: In the electrode for electrochemical devices, where a coating electrode material obtained by binding at least active carbon and a conductive auxiliary material by a binder is applied onto a collector made of a metal material up to a prescribed thickness for drying and rolling, a water dispersion is used as the binder. The water dispersion contains polytetrafluoroethylene (PTFE) and a copolymer (FEP) of fluoroethylene and fluoropropylene at a ratio of 7:3 to 3:7 (wt.%). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気化学デバイス用電極およびその製造方法に関し、さらに詳しく言えば、エッチングアルミニウムなどの集電体上にスラリー状の塗工電極材を塗布することにより得られる電気化学デバイス(主には電気二重層キャパシタ)用電極およびその製造方法に関するものである。   The present invention relates to an electrode for an electrochemical device and a method for producing the same. More specifically, the present invention relates to an electrochemical device obtained by applying a slurry-like coated electrode material on a current collector such as etched aluminum (mainly The present invention relates to an electrode for an electric double layer capacitor) and a manufacturing method thereof.

電気二重層キャパシタなどの電気化学デバイスに用いられる電極には種々のものが提案されているが、その一つとして、活性炭と導電補助剤、そのバインダーとしてポリフッ化ビニリデン(PVDF)を用い、N−メチルピロリドン(NMP)を溶剤とする塗工電極材が知られている(従来例1,例えば特許文献1参照)。   Various electrodes have been proposed for use in electrochemical devices such as electric double layer capacitors. As one of them, activated carbon and a conductive auxiliary agent, polyvinylidene fluoride (PVDF) as a binder, N- A coating electrode material using methylpyrrolidone (NMP) as a solvent is known (see Conventional Example 1, for example, Patent Document 1).

また、活性炭と導電補助剤およびカルボキシメチルセルロース(CMC)などの分散材、バインダーにスチレンブタジエン(SBR)系ゴムやアクリレート系ゴムを用い、溶剤に水を用いた塗工電極材も知られている(従来例2,例えば特許文献2参照)。   Also known is a coated electrode material using activated carbon, a conductive additive and a dispersion material such as carboxymethyl cellulose (CMC), a styrene butadiene (SBR) rubber or an acrylate rubber as a binder, and water as a solvent ( Conventional example 2, see Patent Document 2, for example).

また、スラリー状の塗料を塗布する方法ではないが、活性炭と導電補助剤にバインダーとしてのポリテトラフルオロエチレン(PTFE)をエタノール溶剤とともに混練してシート状とした後に、集電体に導電性接着材を介して貼り付ける方法もある(従来例3,例えば特許文献3参照)。   Although it is not a method of applying a slurry-like paint, conductive adhesive is attached to the current collector after kneading polytetrafluoroethylene (PTFE) as a binder with an ethanol solvent together with an ethanol solvent into a conductive material. There is also a method of pasting via a material (see Conventional Example 3, for example, Patent Document 3).

特開平8−55761号公報JP-A-8-55761 特開2006−92760号公報JP 2006-92760 A 特開平1−164017号公報Japanese Patent Laid-Open No. 1-164017

しかしながら、上記従来例1によると、使用する溶剤がN−メチルピロリドン(NMP)であるため、塗布後の塗料の乾燥が高い温度いため、その乾燥に長時間を要する。また、得られた電極は折り曲げなどにより、導電補助剤としてのカーボンの脱落が見られるなどの問題がある。   However, according to the above-mentioned conventional example 1, since the solvent used is N-methylpyrrolidone (NMP), drying of the paint after application is at a high temperature, so that drying takes a long time. In addition, the obtained electrode has problems such as bending of carbon as a conductive auxiliary agent due to bending or the like.

また、上記従来例2の場合には、結着力の強い電極が得られるとともに、溶剤が水であるため、乾燥温度や乾燥時間は改善されるが、製品にして電圧を印加した際に、主に正極側でバインダーが酸化され、これによる特性劣化が起こるという問題がある。   In the case of Conventional Example 2, an electrode having a strong binding force is obtained and the solvent is water, so that the drying temperature and drying time are improved. However, when a voltage is applied as a product, In addition, there is a problem that the binder is oxidized on the positive electrode side, resulting in characteristic deterioration.

また、上記従来例3の場合、乾燥温度や乾燥時間は改善され、電極の結着力もよく、さらには製品にして電圧を印加した後でも特性の劣化が余り見られないが、電極体として完成するには、シート状電極を集電体に貼り付ける工程を必要とするため、生産性の面で好ましくない。   Further, in the case of the above conventional example 3, the drying temperature and drying time are improved, the electrode has a good binding force, and even after the voltage is applied as a product, the characteristics are not deteriorated so much, but the electrode body is completed. In order to do so, a step of attaching the sheet-like electrode to the current collector is required, which is not preferable in terms of productivity.

また、スライスなどによりあらかじめシート状電極に形成するため、得られる電極の厚さにも限界があり、一例として80μm以下の厚さにすることはきわめて困難で、低抵抗化を図るうえで問題となる。   In addition, since the sheet-like electrode is formed in advance by slicing or the like, there is a limit to the thickness of the obtained electrode, and as an example, it is extremely difficult to reduce the thickness to 80 μm or less, which is a problem in reducing resistance. Become.

したがって、本発明の課題は、製造上においては短時間で乾燥でき、製品とした場合でも、電圧印加により特性劣化がほとんどなく、長期間にわたって特性の安定した電気化学デバイス用電極を得ることにある。   Accordingly, an object of the present invention is to obtain an electrode for an electrochemical device that can be dried in a short time in production, has little characteristic deterioration due to voltage application, and has stable characteristics over a long period of time even when a product is produced. .

上記課題を解決するため、本発明は、請求項1に記載されているように、少なくとも活性炭と導電補助材とをバインダーにて結着してなる塗工電極材を金属材よりなる集電体上に所定の厚みに塗布し乾燥させて圧延してなる電気化学デバイス用電極において、上記バインダーとして、ポリテトラフルオロエチレン(PTFE)と、フルオロエチレンとフルオロプロピレンの共重合体(FEP)とを7:3〜3:7(wt%)の割合で含む水分散液が用いられていることを特徴としている。   In order to solve the above-mentioned problems, the present invention provides a current collector made of a metal material as a coated electrode material formed by binding at least activated carbon and a conductive auxiliary material with a binder as described in claim 1. In an electrode for an electrochemical device, which is applied to a predetermined thickness, dried and rolled, polytetrafluoroethylene (PTFE) and a copolymer of fluoroethylene and fluoropropylene (FEP) are used as the binder. : An aqueous dispersion containing 3 to 3: 7 (wt%) is used.

本発明においては、請求項2に記載されているように、上記塗工電極材中の上記バインダーの混合比が5〜20wt%であることが好ましい。   In the present invention, as described in claim 2, the mixing ratio of the binder in the coated electrode material is preferably 5 to 20 wt%.

また、本発明には、請求項3に記載されているように、少なくとも活性炭と導電補助材とをバインダーにて結着してなる塗工電極材を金属材よりなる集電体上に所定の厚みに塗布し乾燥させて圧延してなる電気化学デバイス用電極の製造方法において、活性炭,導電補助材および分散材を水で分散したのち、この液中に、ポリテトラフルオロエチレン(PTFE)と、フルオロエチレンとフルオロプロピレンの共重合体(FEP)とを7:3〜3:7(wt%)の割合で含む水分散液からなるバインダーを混合してなる塗料を集電体上に塗布し、乾燥後の厚みが30〜150μmとなるように圧延することを特徴とする電気化学デバイス用電極の製造方法も含まれる。   Further, in the present invention, as described in claim 3, a coated electrode material formed by binding at least activated carbon and a conductive auxiliary material with a binder is provided on a current collector made of a metal material. In the method for producing an electrode for an electrochemical device formed by applying a thickness, drying and rolling, after dispersing activated carbon, a conductive auxiliary material and a dispersing agent with water, in this liquid, polytetrafluoroethylene (PTFE), A paint obtained by mixing a binder made of an aqueous dispersion containing a copolymer of fluoroethylene and fluoropropylene (FEP) at a ratio of 7: 3 to 3: 7 (wt%) is applied on the current collector, The manufacturing method of the electrode for electrochemical devices characterized by rolling so that the thickness after drying may be set to 30-150 micrometers is also contained.

また、本発明には、請求項4に記載されているように、上記請求項1または2の電気化学デバイス用電極を備えている電気二重層キャパシタも含まれる。   The present invention also includes an electric double layer capacitor comprising the electrode for an electrochemical device according to claim 1 or 2 as described in claim 4.

本発明によれば、バインダーとしてポリテトラフルオロエチレン(PTFE)を用いることにより、長期にわたって特性劣化を抑えることができる。また、フルオロエチレンとフルオロプロピレンの共重合体(FEP)を加えることにより、電極の結着力が高まるため、導電補助材として用いられる例えばカーボンの脱落による自己放電不良を少なくすることができる。   According to the present invention, by using polytetrafluoroethylene (PTFE) as a binder, deterioration of characteristics can be suppressed over a long period of time. Further, by adding a copolymer (FEP) of fluoroethylene and fluoropropylene, the binding force of the electrode is increased, so that the self-discharge failure due to, for example, dropping of carbon used as a conductive auxiliary material can be reduced.

また、上記従来例1でのポリフッ化ビニリデン(PVDF)系の電極に比べて強度が高いため、高厚みの電極を作製することができる。さらには、バインダーの使用量も減らすこともできるため、総じて高容量の電極が得られる。   In addition, since the strength is higher than that of the polyvinylidene fluoride (PVDF) electrode in Conventional Example 1, a thick electrode can be manufactured. Furthermore, since the amount of binder used can be reduced, a high-capacity electrode can be obtained as a whole.

また、溶剤として水が使えるため、乾燥温度が低く乾燥時間も短くすることができるとともに、上記従来例1で使用しているN−メチルピロリドン(NMP)溶剤に比べてコストも下げることができる。さらには、溶剤回収のための特殊な回収装置も不要となる。   Further, since water can be used as the solvent, the drying temperature can be lowered and the drying time can be shortened, and the cost can be reduced as compared with the N-methylpyrrolidone (NMP) solvent used in the above-mentioned Conventional Example 1. Furthermore, a special recovery device for recovering the solvent is not required.

本発明の電気化学デバイス用電極は、バインダーとして、ポリテトラフルオロエチレン(PTFE)にフルオロエチレンとフルオロプロピレンの共重合体(FEP)を混合して界面活性剤とともに分散した水分散液(ディスパージョン)を用い、活性炭と導電補助剤としての例えばカーボンと所定の分散材および水溶剤とともに塗料化したスラリーをエッチングアルミニウムなどの集電体に塗布し乾燥させて所定の厚さに圧延することにより得られる。   The electrode for an electrochemical device of the present invention is an aqueous dispersion (dispersion) in which polytetrafluoroethylene (PTFE) is mixed with a copolymer (FEP) of fluoroethylene and fluoropropylene and dispersed together with a surfactant as a binder. Is applied to a current collector such as etching aluminum and dried to a predetermined thickness, for example, by applying activated carbon and slurry as a conductive auxiliary agent together with activated carbon and a predetermined dispersing agent and an aqueous solvent. .

これによれば、溶剤に水を使用しての電極を作製することができる。また、電極材料同士の結着力が向上するため、自己放電不良が少なくなる。電圧を印加しても劣化が少なく安定した特性が得られる。   According to this, the electrode using water as a solvent can be produced. Moreover, since the binding force between the electrode materials is improved, the self-discharge failure is reduced. Even when a voltage is applied, stable characteristics can be obtained with little deterioration.

本発明において、ポリテトラフルオロエチレン(PTFE)と、フルオロエチレンとフルオロプロピレンの共重合体(FEP)の好ましい混合割合は、7:3〜3:7(wt%)である。   In the present invention, a preferred mixing ratio of polytetrafluoroethylene (PTFE) and a copolymer of fluoroethylene and fluoropropylene (FEP) is 7: 3 to 3: 7 (wt%).

すなわち、PTFEが7wt%を超えると、塗工電極と集電体との密着性が悪くなり、電極の脱落が起こり兼ねない。また、電圧印加試験後における内部抵抗も増加するので好ましくない。これに対して、FEPが7wt%を超えると、電圧保持性が悪くなるばかりでなく、内部抵抗も大きくなるので好ましくない。   That is, when PTFE exceeds 7 wt%, the adhesion between the coated electrode and the current collector is deteriorated, and the electrode may fall off. Moreover, since the internal resistance after a voltage application test also increases, it is not preferable. On the other hand, if the FEP exceeds 7 wt%, not only the voltage holding property is deteriorated but also the internal resistance is increased, which is not preferable.

また、本発明において、塗工電極材中のバインダーの好ましい混合比は乾燥重量で1〜20wt%である。混合比が1%未満であると、結着力が弱すぎバインダーとしての役割を果たさない。一方、混合比が20%を超えると、内部抵抗が増加し、活性炭の分量も減少するため容量が低下してしまうので好ましくない。   Moreover, in this invention, the preferable mixing ratio of the binder in a coating electrode material is 1-20 wt% by dry weight. When the mixing ratio is less than 1%, the binding force is too weak to serve as a binder. On the other hand, if the mixing ratio exceeds 20%, the internal resistance increases and the amount of activated carbon also decreases, so the capacity decreases.

本発明の電極は、電気二重層キャパシタの電極として好適であるが、リチウム電池や電気化学キャパシタなどの電極としても使用することができる。また、集電体はエッチングアルミニウム箔が好適であるが、銅やニッケルまたはこれらのエキスパンドメタル、このほか多孔質金属体であってもよい。なお、本発明によれば、集電体に対する塗工電極材の塗布厚は、30〜150μmの範囲内で適宜選択することができる。   The electrode of the present invention is suitable as an electrode of an electric double layer capacitor, but can also be used as an electrode of a lithium battery or an electrochemical capacitor. The current collector is preferably an etched aluminum foil, but may be copper, nickel, an expanded metal thereof, or a porous metal body. In addition, according to this invention, the application | coating thickness of the coating electrode material with respect to a collector can be suitably selected within the range of 30-150 micrometers.

《実施例1》
まず、導電補助材としてのカーボン材であるケッチェンブラックと、分散材としてのCMCとを混合し所定時間攪拌した後、さらに活性炭と水とを加えて攪拌し十分に分散させた。これとは別に、バインダーとして、PTFEとFEPとを50wt%の比率で混合し、これにポリオキシエチレンオクチルフェニルエーテルなどの界面活性剤を加え、水に分散させてディスパージョンを用意した。そして、先に用意した活性炭や導電補助剤を十分に分散させた液中に、上記のディスパージョンを乾燥重量で10wt%になるように加えた後、さらに水を加えて攪拌してなる塗工電極材を厚さ30μmのエッチングアルミニウム箔上に塗布した。その後、110℃で乾燥を行い、塗工電極の厚みが50μmとなるように圧延して電極を作製した。
Example 1
First, ketjen black, which is a carbon material as a conductive auxiliary material, and CMC as a dispersion material were mixed and stirred for a predetermined time, and then activated carbon and water were further added and stirred to be sufficiently dispersed. Separately, PTFE and FEP were mixed as a binder at a ratio of 50 wt%, and a surfactant such as polyoxyethylene octylphenyl ether was added thereto and dispersed in water to prepare a dispersion. Then, after adding the above-mentioned dispersion to a dry weight of 10 wt% in the liquid in which the activated carbon and the conductive auxiliary agent prepared in advance are sufficiently dispersed, further adding water and stirring. The electrode material was applied on an etching aluminum foil having a thickness of 30 μm. Then, it dried at 110 degreeC and rolled so that the thickness of the coating electrode might be set to 50 micrometers, and produced the electrode.

《実施例2》
PTFEとFEPの混合比率をPTFEが70wt%,FEPが30wt%とし、ほかは上記実施例1と同じとして電極を作製した。
Example 2
An electrode was produced in the same manner as in Example 1 except that PTFE and FEP were mixed at 70 wt% PTFE and 30 wt% FEP.

《実施例3》
PTFEとFEPの混合比率をPTFEが30wt%,FEPが70wt%とし、ほかは上記実施例1と同じとして電極を作製した。
Example 3
An electrode was prepared in the same manner as in Example 1 except that PTFE and FEP were mixed at 30 wt% PTFE and 70 wt% FEP.

〈比較例1〉
PTFEとFEPの混合比率をPTFEが90wt%,FEPが10wt%とし、ほかは上記実施例1と同じとして電極を作製した。
<Comparative example 1>
An electrode was manufactured in the same manner as in Example 1 except that PTFE and FEP were mixed at 90 wt% PTFE and 10 wt% FEP.

〈比較例2〉
PTFEとFEPの混合比率をPTFEが10wt%,FEPが90wt%とし、ほかは上記実施例1と同じとして電極を作製した。
<Comparative example 2>
An electrode was fabricated in the same manner as in Example 1 except that PTFE and FEP were mixed at 10 wt% PTFE and 90 wt% FEP.

〈比較例3〉
まず、導電補助材としてのカーボン材であるケッチェンブラックと、活性炭とを混合し所定時間攪拌した後、分散材としてポリビニルアルコールのNMP溶液を加えて再び攪拌し、十分に分散させた。この分散液に、バインダーとしてのPVDFを加え攪拌してなる塗工電極材を厚さ30μmのエッチングアルミニウム箔上に塗布した。その後、200℃で乾燥させ塗工電極の厚みが50μmとなるように圧延して電極を作製した。
<Comparative Example 3>
First, ketjen black, which is a carbon material as a conductive auxiliary material, and activated carbon were mixed and stirred for a predetermined time, and then an NMP solution of polyvinyl alcohol was added as a dispersing agent and stirred again to be sufficiently dispersed. To this dispersion, PVDF as a binder was added and stirred, and a coated electrode material was applied onto an etching aluminum foil having a thickness of 30 μm. Then, it dried at 200 degreeC and rolled so that the thickness of the coating electrode might be set to 50 micrometers, and produced the electrode.

〈比較例4〉
まず、導電補助材としてのカーボン材であるケッチェンブラックと、分散材としてのCMCとを混合し所定時間攪拌した後、さらに活性炭と水とを加えて攪拌し十分に分散させた。これとは別に、水にSBR系ゴムが40wt%含まれているバインダー分散液を用意した。そして、先に用意した活性炭や導電補助剤を十分に分散させた液中に、上記のバインダー分散液を加え、さらに水を加えて攪拌してなる塗工電極材を厚さ30μmのエッチングアルミニウム箔上に塗布した。その後、110℃で乾燥させ塗工電極の厚みが50μmとなるように圧延して電極を作製した。
<Comparative example 4>
First, ketjen black, which is a carbon material as a conductive auxiliary material, and CMC as a dispersion material were mixed and stirred for a predetermined time, and then activated carbon and water were further added and stirred to be sufficiently dispersed. Separately from this, a binder dispersion containing 40 wt% SBR rubber in water was prepared. Then, the coating electrode material formed by adding the binder dispersion liquid to the liquid prepared by sufficiently dispersing the activated carbon and the conductive auxiliary agent, adding water, and stirring the etched aluminum foil having a thickness of 30 μm. It was applied on top. Then, it dried at 110 degreeC and rolled so that the thickness of the coating electrode might be set to 50 micrometers, and produced the electrode.

上記実施例1〜3および比較例1〜4を評価するため、各例により作製された塗工電極を10mm×20mmに裁断して2枚の可撓性金属板で挟み、左右の両方向に90゜折り曲げる試験を3回行ってカーボン電極の脱落の有無を観察した。なお、図示しないが、可撓性金属板には厚さ2mmで、角張った角による電極の脱落がないように先端に曲率1mmの丸みを有するものを用いた。   In order to evaluate the above Examples 1 to 3 and Comparative Examples 1 to 4, the coated electrode produced in each example was cut into 10 mm × 20 mm and sandwiched between two flexible metal plates, and 90 mm in both the left and right directions. The bending test was performed three times to observe whether the carbon electrode was dropped. Although not shown, a flexible metal plate having a thickness of 2 mm and having a roundness with a curvature of 1 mm at the tip is used so that the electrode does not fall off due to an angular corner.

また、各例により作製された塗工電極を13mm×250mmに裁断し、厚み50μmのセルロース系セパレータとともに渦巻き状に巻回し、その巻回体を直径12.5mmの有底円筒状のアルミニウムケース内に収納した後、電解液として1.5mol/l(リットル)のTEMABF4/PCを注入し真空含浸を行った後、封口ゴムで封止したて電気二重層キャパシタを作製した。   In addition, the coated electrode produced in each example was cut into 13 mm × 250 mm, wound with a cellulose separator having a thickness of 50 μm in a spiral shape, and the wound body inside a bottomed cylindrical aluminum case with a diameter of 12.5 mm Then, 1.5 mol / l (liter) of TEMABF4 / PC was injected as an electrolytic solution and vacuum impregnation was performed, followed by sealing with a sealing rubber to produce an electric double layer capacitor.

このようにして作製した各電気二重層キャパシタについて、DC2.5Vで24時間充電し、その後24時間放置した際の電圧を測定する試験を行い、初期の内部抵抗および電圧保持特性を確認し、さらにその後に70℃でDC2.7Vを印加し続け、100時間経過後の内部抵抗を測定した。その結果を次表1に示す。   Each electric double layer capacitor thus fabricated was tested for measuring the voltage when charged at DC 2.5 V for 24 hours and then allowed to stand for 24 hours to confirm the initial internal resistance and voltage holding characteristics. Thereafter, DC 2.7 V was continuously applied at 70 ° C., and the internal resistance after 100 hours was measured. The results are shown in Table 1 below.

Figure 2009130329
Figure 2009130329

これによると、実施例1〜3はいずれも塗工電極の脱落が見られず、高い結着性を有していることが分かる。また、試験後の内部抵抗の増加も少なく、電圧保持特性も良好であるという結果が得られた。   According to this, it can be seen that Examples 1 to 3 have high binding properties, with no coating electrode falling off. Moreover, the increase in internal resistance after the test was small, and the result that the voltage holding characteristic was good was obtained.

これに対して、比較例1ではPTFEが重量比で7を超えているため塗工電極の脱落が見られる。また、試験後の内部抵抗の増加も大きい。比較例2では塗工電極の脱落は見られないが、FEPが重量比で7を超えているため電圧保持特性がやや悪い。また、試験後の内部抵抗の増加も大きい。   On the other hand, in Comparative Example 1, since the PTFE exceeds 7 in weight ratio, the coating electrode is dropped. Also, the increase in internal resistance after the test is large. In Comparative Example 2, the coating electrode does not fall off, but the FEP exceeds 7 by weight, so the voltage holding characteristics are slightly poor. Also, the increase in internal resistance after the test is large.

比較例3では内部抵抗の増加は少ないが、塗工電極に脱落が見られた。比較例4では塗工電極の脱落は見られず、また、電圧保持特性も良好であるが、他方で内部抵抗の増加が大きい。   In Comparative Example 3, the increase in internal resistance was small, but the coated electrode was observed to fall off. In Comparative Example 4, the coating electrode does not fall off and the voltage holding characteristics are good, but on the other hand, the increase in internal resistance is large.

Claims (4)

少なくとも活性炭と導電補助材とをバインダーにて結着してなる塗工電極材を金属材よりなる集電体上に所定の厚みに塗布し乾燥させて圧延してなる電気化学デバイス用電極において、
上記バインダーとして、ポリテトラフルオロエチレン(PTFE)と、フルオロエチレンとフルオロプロピレンの共重合体(FEP)とを7:3〜3:7(wt%)の割合で含む水分散液が用いられていることを特徴とする電気化学デバイス用電極。
In the electrode for an electrochemical device formed by applying a coating electrode material formed by binding at least activated carbon and a conductive auxiliary material with a binder to a predetermined thickness on a current collector made of a metal material, drying and rolling,
As the binder, an aqueous dispersion containing polytetrafluoroethylene (PTFE) and a copolymer of fluoroethylene and fluoropropylene (FEP) in a ratio of 7: 3 to 3: 7 (wt%) is used. An electrode for an electrochemical device.
上記塗工電極材中の上記バインダーの混合比が乾燥重量で1〜20wt%であることを特徴とする請求項1に記載の電気化学デバイス用電極。   2. The electrode for an electrochemical device according to claim 1, wherein a mixing ratio of the binder in the coated electrode material is 1 to 20 wt% by dry weight. 少なくとも活性炭と導電補助材とをバインダーにて結着してなる塗工電極材を金属材よりなる集電体上に所定の厚みに塗布し乾燥させて圧延してなる電気化学デバイス用電極の製造方法において、
活性炭,導電補助材および分散材を水で分散したのち、この液中に、ポリテトラフルオロエチレン(PTFE)と、フルオロエチレンとフルオロプロピレンの共重合体(FEP)とを7:3〜3:7(wt%)の割合で含む水分散液からなるバインダーを混合してなる塗料を集電体上に塗布し、乾燥後の厚みが30〜150μmとなるように圧延することを特徴とする電気化学デバイス用電極の製造方法。
Manufacture of electrodes for electrochemical devices in which a coated electrode material formed by binding at least activated carbon and a conductive auxiliary material with a binder is applied on a current collector made of a metal material to a predetermined thickness, dried and rolled. In the method
After the activated carbon, the conductive auxiliary material and the dispersion material are dispersed with water, polytetrafluoroethylene (PTFE) and a copolymer of fluoroethylene and fluoropropylene (FEP) are added to this liquid in a ratio of 7: 3 to 3: 7. An electrochemistry characterized in that a paint obtained by mixing a binder composed of an aqueous dispersion containing (wt%) is applied on a current collector and rolled so that the thickness after drying is 30 to 150 μm. A method for manufacturing an electrode for a device.
請求項1または2の電気化学デバイス用電極を備えている電気二重層キャパシタ。   An electric double layer capacitor comprising the electrode for an electrochemical device according to claim 1.
JP2007307157A 2007-11-28 2007-11-28 Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device Pending JP2009130329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307157A JP2009130329A (en) 2007-11-28 2007-11-28 Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307157A JP2009130329A (en) 2007-11-28 2007-11-28 Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device

Publications (1)

Publication Number Publication Date
JP2009130329A true JP2009130329A (en) 2009-06-11

Family

ID=40820899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307157A Pending JP2009130329A (en) 2007-11-28 2007-11-28 Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device

Country Status (1)

Country Link
JP (1) JP2009130329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097036A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040543A (en) * 2000-09-04 2006-02-09 Daikin Ind Ltd Electrode additive used in battery or capacitor
JP3981697B1 (en) * 2007-01-10 2007-09-26 株式会社パワーシステム Method for producing electrode mixture for polarizable electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040543A (en) * 2000-09-04 2006-02-09 Daikin Ind Ltd Electrode additive used in battery or capacitor
JP3981697B1 (en) * 2007-01-10 2007-09-26 株式会社パワーシステム Method for producing electrode mixture for polarizable electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097036A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Capacitor

Similar Documents

Publication Publication Date Title
KR101179378B1 (en) Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
TWI483446B (en) A battery collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
CN107565092B (en) Positive electrode for lithium secondary battery and method for producing same
WO2010073924A1 (en) Method for manufacturing nonaqueous secondary battery electrode
JP5015146B2 (en) ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
JP4645778B2 (en) Electrode for lithium ion secondary battery
JP2013062505A (en) Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using the same
JP2008227481A (en) Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry
JP6483386B2 (en) Electrode and electrochemical capacitor
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
WO2016052715A1 (en) Binder, use thereof and method for producing electrode
KR101198297B1 (en) Sheet Electrode Of Carbon-PolyTetraFluoroEthylene-Hydrophilic Binder For Electric Double Layer Capacitor And Manufacturing Method thereof
TW201843870A (en) Collector for electricity storage devices, method for producing same, and coating liquid used in production of same
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP2002151057A (en) Manufacturing method of paste for positive electrode of lithium secondary battery
CN113130841A (en) Lithium ion battery pole piece, preparation method thereof and lithium ion battery
JP2008130740A (en) Electric double-layer capacitor electrode and manufacturing method therefor
JP2009130329A (en) Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device
JP2015141822A (en) Electrode paste, manufacturing method of electrode plate, and manufacturing method of battery
JP4691314B2 (en) Manufacturing method of separator for electronic parts
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP4330841B2 (en) Electric double layer capacitor and method of manufacturing electric double layer capacitor
TWI770263B (en) Positive electrode active material coating, positive electrode, and secondary battery
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Effective date: 20120201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120402

A602 Written permission of extension of time

Effective date: 20120405

Free format text: JAPANESE INTERMEDIATE CODE: A602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120704