JP2009128352A - Method and apparatus for removing spurious signals of hf band magnetic resonance signals - Google Patents

Method and apparatus for removing spurious signals of hf band magnetic resonance signals Download PDF

Info

Publication number
JP2009128352A
JP2009128352A JP2007327998A JP2007327998A JP2009128352A JP 2009128352 A JP2009128352 A JP 2009128352A JP 2007327998 A JP2007327998 A JP 2007327998A JP 2007327998 A JP2007327998 A JP 2007327998A JP 2009128352 A JP2009128352 A JP 2009128352A
Authority
JP
Japan
Prior art keywords
magnetic field
signals
spurious
magnetic resonance
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007327998A
Other languages
Japanese (ja)
Inventor
Etsuo Ban
悦夫 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007327998A priority Critical patent/JP2009128352A/en
Publication of JP2009128352A publication Critical patent/JP2009128352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately remove spurious signals in every aspect and noises, thereby extracting accurate magnetic resonance signals, in a continuous wave HF band magnetic resonance apparatus in which signals are faint. <P>SOLUTION: The spurious signals usually appear in various aspects, but when an operation parameter of the apparatus is constant, the spurious signals continually appear as a periodic function using a modulated frequency of a static magnetic field for a fundamental wave, whereas the spurious signals are statistically not correlated with the magnetic resonance signals. The method focuses on that, and includes the steps of: separating a static magnetic field into strong and weak components; superimposing the weak component on a modulated magnetic field to shift the static magnetic field; averaging the spurious signals under condition that the signals disappear from a display screen; and storing a waveform. When the signals appear on the display screen by shifting the static magnetic field back, the stored and averaged spurious waveform is subtracted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は連続波HF帯磁気共鳴における信号抽出法に関わる。  The present invention relates to a signal extraction method in continuous wave HF band magnetic resonance.

凝縮体の核磁気共鳴、NMRが第二次大戦直後にPurcell、Blochのグループより報告された。数年の間に、基本的な問題が理論、実験両面で解明された。電子スピン共鳴ESRも同様である。
E.M.Purcell,H.C.Torrey,and R.V.Pound,Phys.Rev.69,37−38,1946. F.Bloch,W.W.Hansen,and M.Packard,Phys.Rev.69,127,680,1946. D.J.E.Ingram,Spectroscopy at Radio and Microwave frequencies,Butterworths Scientific Publications,1955.
Nuclear magnetic resonance and NMR of the condensate were reported by the Purcell and Bloch groups immediately after the Second World War. Over the course of several years, basic problems were solved both theoretically and experimentally. The same applies to electron spin resonance ESR.
E. M.M. Purcell, H.M. C. Torrey, and R.M. V. Pound, Phys. Rev. 69, 37-38, 1946. F. Bloch, W.M. W. Hansen, and M.M. Packard, Phys. Rev. 69, 127, 680, 1946. D. J. et al. E. Ingram, Spectroscopy at Radio and Microwave frequencies, Butterworths Scientific Publications, 1955.

技術の進歩は分子構造を決定する化学研究の要求に沿ったものであった。
特公昭 38−007595 特公昭 45−004233
Advances in technology were in line with chemical research requirements to determine molecular structure.
Shoko 38-007595 45-004233

化学、薬学、生化学などへの応用が急速に拡大した。
W.Kemp,NMR in Chemistry,Macmillan Publishers,1986.邦訳、山崎昶、「化学・生化学・薬学・医学のためのやさしい最新のNMR入門」、培風館、1988. 山内淳、「磁気共鳴―ESR」、サイエンス社、2006.
Applications to chemistry, pharmacy, biochemistry, etc. expanded rapidly.
W. Kemp, NMR in Chemistry, McCillan Publishers, 1986. Japanese translation, Atsushi Yamazaki, “Introduction to the latest NMR for chemistry, biochemistry, pharmacy and medicine”, Baifukan, 1988. Kei Yamauchi, “Magnetic Resonance-ESR”, Science, 2006.

NMRでは初期より、分解能を向上するこをが追及された。現在ではVHF帯200−500MHz,約4.7−11.8Tが標準である。分光器ではパルス法、フーリエ変換法が標準になっている。ESRでは当初からSHF帯のマイクロ波、XからQバンドの9GHz―36GHz、約0.3−1.2Tが使われたが、現在の標準は9GHzである。  In NMR, it was sought to improve the resolution from the beginning. At present, the VHF band 200-500 MHz and about 4.7-11.8T are standard. In the spectroscope, the pulse method and the Fourier transform method are standard. In the ESR, microwaves in the SHF band and 9 GHz to 36 GHz and about 0.3 to 1.2 T in the X to Q band were used from the beginning, but the current standard is 9 GHz.

このような周波数帯を使う現在の分光装置はNMRでは特殊な超伝導磁石が、ESRでは空隙60mm、1T以上の大型の電磁石が必要である。分光器も高度な技術を要する。技術的には成熟しており高度な機能、性能を持つ。また0.2−1T程度の磁界を使うMRIにNMRが応用され、イメージング技術に新分野が開かれた。磁界の測定と制御も重要な応用で、高精度の磁界を使用する機器に使用されている。  Current spectroscopic devices that use such a frequency band require special superconducting magnets in NMR, and large electromagnets with a gap of 60 mm and 1 T or more in ESR. Spectroscopes also require advanced technology. It is technically mature and has advanced functions and performance. In addition, NMR has been applied to MRI using a magnetic field of about 0.2-1T, and a new field has been opened for imaging technology. Magnetic field measurement and control are also important applications and are used in equipment that uses high-precision magnetic fields.

上記のように現在の装置は分子構造解析その他の学術研究用、あるいは医療診断用で高度の技術が用いられており高価である。これに対し本発明は微細構造の分解を特に求めず、試料の総スピン数の簡易測定を主たる目的とし、磁気共鳴現象応用の一般化、小型化、低価格化を目指す。  As described above, the present apparatus is expensive because advanced technology is used for molecular structure analysis and other academic research or for medical diagnosis. On the other hand, the present invention does not particularly require the decomposition of the fine structure, but mainly aims at simple measurement of the total spin number of the sample, and aims at generalization, miniaturization, and cost reduction of application of the magnetic resonance phenomenon.

HF帯磁気共鳴装置を実用化する上で重要な問題は、SN比が低下することである。そのため雑音とともに、スプリアス(擬似信号)が問題になる。スプリアスは装置全体の作動条件、状態さらに外的要因によって変化するとともに、表示装置の窓の位置、大きさにも依存する。本発明の課題は、これらの問題を解決する手段と、それを用いる装置を提供することである。  An important problem in putting the HF band magnetic resonance apparatus into practical use is that the S / N ratio decreases. Therefore, spurious (pseudo signal) becomes a problem together with noise. The spurious changes depending on the operating conditions and state of the entire device and external factors, and also depends on the position and size of the window of the display device. An object of the present invention is to provide means for solving these problems and an apparatus using the same.

前記目的を達成するために請求項1記載の各スッテプは、
静磁界発生を強、弱の2つのシステムに分割することと
強磁界発生システムを信号抽出システムから分離することと
弱磁界発生システムを信号抽出システムの一部に組み込むことと、
無信号と有信号の領域を分別できるように、変調磁界の周期と振幅を設定することと
検出器からの信号をAD変換し信号抽出表示をデジタル処理で行うことを手段として実行される。
In order to achieve the object, each step according to claim 1,
Dividing the static magnetic field generation into two systems, strong and weak, separating the strong magnetic field generation system from the signal extraction system, incorporating the weak magnetic field generation system as part of the signal extraction system,
It is executed as a means to set the period and amplitude of the modulation magnetic field so that the non-signal area and the existence area of the signal area can be distinguished, and AD-convert the signal from the detector and perform signal extraction display by digital processing.

本発明によるスプリアス除去法が可能なのは、信号、スプリアス、雑音の間に相関が無いこと、一定の作動条件下ではスプリアスが安定に存在すること、雑音がランダムプロセスであることである。  The spurious elimination method according to the present invention is possible because there is no correlation between the signal, spurious and noise, that the spurious exists stably under certain operating conditions, and that the noise is a random process.

本発明によるシステムを用いれば、磁界変調法による連続波HF帯磁気共鳴装置において、雑音および磁界変調法では避けられないスプリアスが、表示装置画面の任意の振幅軸および時間軸の組み合はせによって限られた画面内で確実に除去、低減され正確な磁気共鳴信号が得られる。これによって信号の観察が容易になり、データの正確度が高まる。HF帯では信号強度が低下するので本発明の実施効果は大きい。スピン濃度の小さな試料、微小量の試料等についても同様である。  When the system according to the present invention is used, in a continuous wave HF band magnetic resonance apparatus using a magnetic field modulation method, noise and spurious that cannot be avoided by the magnetic field modulation method are caused by a combination of an arbitrary amplitude axis and time axis of the display device screen. An accurate magnetic resonance signal can be obtained by reliably removing and reducing within a limited screen. This facilitates signal observation and increases data accuracy. Since the signal strength decreases in the HF band, the effect of implementing the present invention is great. The same applies to a sample with a low spin concentration, a sample with a minute amount, and the like.

本発明によるシステムを図1a,図1b,図3aを用いて説明する。図1aに示すような磁気共鳴装置は公知である。図3aのプローブ8内にある高周波コイルを高周波発振器9で励振して試料に周波数fの高周波磁界hを印加する。fを高周波発振器制御器10によって所定の共鳴周波数frに設定する。変調電源5によって、変調コイル4を励振して変調磁界hを高周波磁界hに直交する方向に発生する。A system according to the present invention will be described with reference to FIGS. 1a, 1b and 3a. A magnetic resonance apparatus as shown in FIG. 1a is known. The radio frequency coil within the probe 8 in Figure 3a and excited by high-frequency oscillator 9 applies a high-frequency magnetic field h 1 of frequency f 1 in the sample. f 1 is set to a predetermined resonance frequency fr by the high-frequency oscillator controller 10. By the modulation source 5 to generate a modulated magnetic field h m in the direction perpendicular to the high frequency magnetic field h r by exciting a modulation coil 4.

陽子を対象にするときは主コイル電源2、および制御器3によって、強磁界用主コイル1に定電流を供給し静磁界Hの強磁界成分Hsfを変調磁界と平行な方向に重畳発生し試料に印加する。Hsfは共鳴磁界の近傍の値にセットする。When targeting protons, the main coil power supply 2 and the controller 3 supply a constant current to the strong magnetic field main coil 1 to superimpose the strong magnetic field component H sf of the static magnetic field H 0 in a direction parallel to the modulation magnetic field. Applied to the sample. H sf is set to a value in the vicinity of the resonant magnetic field.

HF帯、3−30MHzの磁気共鳴の磁界強度は陽子では0.07−0.7T、電子では0.1−1mTである。したがって電子の場合にはHsfを作る電磁石は不要になるから主コイルを含むシステムは、信号抽出システムから分離してある。The magnetic field strength of magnetic resonance at 3-30 MHz in the HF band is 0.07-0.7 T for protons and 0.1-1 mT for electrons. Therefore, in the case of electrons, an electromagnet for producing H sf is not required, so the system including the main coil is separated from the signal extraction system.

弱磁界制御器7によって変調コイルに直流バイアス電流を供給して静磁界Hの弱磁界成分Hwfを変調磁界に重畳発生する。静磁界と変調磁界の重畳磁界hは図1bのようになる。The weak magnetic field controller 7 supplies a direct current bias current to the modulation coil to superimpose the weak magnetic field component H wf of the static magnetic field H 0 on the modulation magnetic field. Superimposed magnetic field h 0 of the static magnetic field and the modulated magnetic field is as shown in Figure 1b.

このような構成においてH±Hの磁界の範囲内に、共鳴周波数frに対応する磁界H(ω=γH、ω=2πf)が存在すれば、高周波発振器制御器10によって、高周波磁界Hを調整し、弱磁界制御器7および変調電源制御器6を操作して、磁気共鳴信号が変調磁界の周期Tで周期的に観測される。H、HおよびTは試料の緩和時間に応じて、高周波発振器制御器10および、変調電源制御器6によって調節する。In such a configuration, if a magnetic field H rr = γH r , ω r = 2πf r ) corresponding to the resonance frequency fr exists within the range of the magnetic field of H 0 ± H m , the high frequency oscillator controller 10 By adjusting the high-frequency magnetic field H 1 and operating the weak magnetic field controller 7 and the modulation power supply controller 6, the magnetic resonance signal is periodically observed with the period T m of the modulation magnetic field. H 1 , H m and T m are adjusted by the high frequency oscillator controller 10 and the modulation power supply controller 6 according to the relaxation time of the sample.

共鳴信号を、高周波発振器を介し検出器11によって受信し、CPU15に取り込み記憶装置13、平均化装置12で信号処理して、シンクロスコープ等の表示装置14上に表示する。表示装置の時間軸は変調磁界Hと同期させる。The resonance signal is received by the detector 11 via a high-frequency oscillator, taken into the CPU 15, processed by the storage device 13 and the averaging device 12, and displayed on the display device 14 such as a synchroscope. Time axis of the display device is synchronized with the modulated magnetic field H m.

次にスプリアス除去のプロセスを説明する。図1bのような正弦波で変調された静磁界Hにおいて共鳴周波数fに対応する値Hに向け、弱磁界制御器7によって弱磁界成分Hwfを増加させていく。図から明らかなようにH−H<H<H+Hの範囲が信号の出る領域であり、この領域を有信号領域、それ以外の領域を無信号領域と呼ぶ。有信号領域からHを上げても、下げても無信号領域になる。Next, a process for removing spurious will be described. The weak magnetic field component H wf is increased by the weak magnetic field controller 7 toward the value H r corresponding to the resonance frequency f r in the static magnetic field H 0 modulated by a sine wave as shown in FIG. As is apparent from the figure, the range of H r −H m <H 0 <H r + H m is a signal output region, this region is called a signaled region, and the other region is called a non-signal region. Even if H 0 is raised or lowered from the signaled area, it becomes a no-signal area.

磁界変調法においては、基本波fとその高調波が混在したスプリアスSPの発生が雑音nとともに避けられない。これらを除去するために、システムは以下のように操作もしくは作動する。これを実施例の図2a、図2bによって説明する。図2aは以下に述べるプロセスを模式的に示す。図中のA、Cは無信号領域、B、Dは有信号領域の区間である。図3aは操作が必要な制御器3、6、7、10のすべてを手動によるシステムである。In the magnetic field modulation method, spurious SP that its harmonics and the fundamental wave f m are mixed inevitably with noise n. To remove these, the system operates or operates as follows. This will be described with reference to FIGS. 2a and 2b. FIG. 2a schematically illustrates the process described below. In the figure, A and C are non-signal areas, and B and D are sections of a signal area. FIG. 3a is a system in which all of the controllers 3, 6, 7, 10 that need to be operated are manually operated.

検出器の出力をCH1に入れて画面を見ながら無信号領域Aからスタートする。図2b(i)のようにスプリアスと雑音の混在した波形が見られる。SPは変調磁界のみがスプリアス源のときにはfを基本波とする周期関数であり、図2bはこのような場合である。周波数fの周期性の外乱が影響する場合にはf±fを基本波とする複雑な波形の周期関数になる。外乱に周期性がなければ雑音の一部になる。Start from the no-signal area A while putting the output of the detector into CH1 and watching the screen. A waveform in which spurious and noise are mixed is seen as shown in FIG. SP is a periodic function having fm as a fundamental wave when only the modulation magnetic field is a spurious source, and FIG. 2B shows such a case. If the periodicity of the disturbance frequency f e affects becomes periodic function of complex waveforms with the fundamental wave of f m ± f e. If the disturbance is not periodic, it becomes part of the noise.

弱磁界制御器7によってHwfを上げていくと有信号領域Bに入り、図2b(ii)のように磁気共鳴信号SG(以下、信号と呼ぶ)が現れる。これはH=HでSGは等間隔になり、基本波は2fである。H≠Hのときには信号はペアで不等間隔に現れ基本波はfになる。これを確認したら、Hwfを下げて図2b(iii)のように再び無信号領域Cに戻す。nは時間関数だがランダムプロセスで周期性はない。いずれも時間軸の幅、振幅軸の幅とDCオフセットによってきまる表示器画面内でサンプリングされた波形を意味する。When H wf is raised by the weak magnetic field controller 7, the signal enters the signal region B, and a magnetic resonance signal SG (hereinafter referred to as a signal) appears as shown in FIG. 2b (ii). This SG will be at equal intervals on the H 0 = H r, the fundamental wave is a 2f m. When the H 0 ≠ H r is the signal fundamental wave appear at irregular intervals in pairs it becomes f m. When this is confirmed, H wf is lowered and returned to the no-signal region C again as shown in FIG. 2b (iii). Although n is a time function, it is a random process and has no periodicity. Each means a waveform sampled in the display screen determined by the width of the time axis, the width of the amplitude axis, and the DC offset.

以下に本発明による信号抽出のプロセスを数式で説明する。
CH1、SP、nを瞬時値として、図2b(i),図2b(iii)は、どちらも
CH1=SP+n
である。
これを確認したら、平均化装置12によって時間平均する。<A>を瞬時値Aの時間平均を表すとして
<CH1>=<SP+n>
SPとnの間には相関がないから
<CH1>=<SP>+<n>
nはランダムプロセスで、<n>=0 だから
<CH1>=<SP>
この雑音の低減したスプリアス波形、図2b(iv)を記憶装置13に入れる。
The signal extraction process according to the present invention will be described below with mathematical formulas.
With CH1, SP and n as instantaneous values, both FIG. 2b (i) and FIG. 2b (iii)
CH1 = SP + n
It is.
When this is confirmed, time averaging is performed by the averaging device 12. <A> represents the time average of instantaneous value A
<CH1> = <SP + n>
Because there is no correlation between SP and n
<CH1> = <SP> + <n>
n is a random process, because <n> = 0
<CH1> = <SP>
This noise-reduced spurious waveform, FIG.

平均化および記憶を確認したらHwfを上げて再度有信号領域Dに戻し、図2b(v)のように信号が現れるようにする。この波形は信号にスプリアスと雑音の混在した
CH1=SG+SP+n
である。これを確認したら<SP>すなわち、記憶されている雑音の低減されたスプリアス波形を減算するようにCPUを操作して
MAT=CH1―<SP>
を作る。上式により
MAT=SG+SP+n―<SP>
だが、SGとSPの間にも相関がないから
MAT=SG+n
となる。すなわちスプリアスが補正された信号と雑音を含む波形図2b(vi)である。
When the averaging and storage are confirmed, H wf is increased and returned to the signal area D again so that a signal appears as shown in FIG. This waveform is a mixture of spurious and noise in the signal.
CH1 = SG + SP + n
It is. After confirming this, <SP>, that is, operate the CPU to subtract the stored noise-reduced spurious waveform.
MAT = CH1- <SP>
make. According to the above formula
MAT = SG + SP + n- <SP>
But there is no correlation between SG and SP
MAT = SG + n
It becomes. That is, it is a waveform diagram 2b (vi) including a signal in which spurious is corrected and noise.

これを更に平均化すれば
<MAT>=<SG+n>
SGとnの間にも相関がないから
<MAT>=<SG>
となり、図2b(vii)のように信号のみが抽出される。この<SG>を記憶装置13に入れ、必要に応じて表示装置上に表示して観察する。あるいは必要とする各種の試料のパラメータを計算、処理してデータとして取得する。
If this is further averaged,
<MAT> = <SG + n>
Because there is no correlation between SG and n
<MAT> = <SG>
Thus, only the signal is extracted as shown in FIG. 2b (vii). This <SG> is put in the storage device 13 and displayed on the display device for observation as necessary. Alternatively, necessary parameters of various samples are calculated and processed to obtain data.

図2cは時間幅を狭めて2つの信号が出るようにしたもの、図2dはズームアップして1つだけの信号が出るようにしたものである。いずれも異なるスプリアスに対して図3と同様の手順によって信号が抽出されている。  FIG. 2c shows a case where the time width is narrowed so that two signals are output, and FIG. 2d is a case where the zoom-up is performed so that only one signal is output. In either case, signals are extracted for different spurious signals by the same procedure as in FIG.

実施例の図2b,図2c,図2dのデータは17MHz、約0.4T でのプロトンの核磁気共鳴で小型の電磁石を使っているが、動作機構と実施効果を説明するために例示したものである。測定の条件などは内容に関わらないので省略する。17MHzの電子スピン共鳴では約0.6mTとなり、電磁石はいらないが主旨は変わらず同様に適用されることは明らかである。  The data in FIGS. 2b, 2c, and 2d of the example uses a small electromagnet for proton nuclear magnetic resonance at 17 MHz and about 0.4 T. However, the data is illustrated for explaining the operation mechanism and the effect of implementation. It is. The measurement conditions are not related to the content and will be omitted. The electron spin resonance at 17 MHz is about 0.6 mT, and although it does not require an electromagnet, it is clear that it can be applied similarly without changing the gist.

以上、一具体例を説明したがシステムの各要素は、それらの機能が上記説明のように有機的に結合されていれば、ハードウエアによっても,あるいは又ソフトウエアによってもよい。又それらの一部をいずれかに代えてもよい。いずれを択ぶかは要求される仕様による技術的、経済的な理由による。  Although a specific example has been described above, each element of the system may be hardware or software as long as their functions are organically combined as described above. Some of them may be replaced. The choice is based on technical and economic reasons according to the required specifications.

本発明の装置の動作を説明する概念図である。It is a conceptual diagram explaining operation | movement of the apparatus of this invention. 同静磁界と変調磁界の重畳場を説明する模式図である。It is a schematic diagram explaining the superimposed field of the same static magnetic field and a modulation magnetic field. 同実施例の静磁界の変化を示す模式図である。It is a schematic diagram which shows the change of the static magnetic field of the Example. 同実施例1、信号抽出のプロセスを説明する実験例である。信号が5つ現れている。It is an experimental example explaining the process of Example 1 and signal extraction. Five signals appear. 同実施例II、Iをズームアップしたもので信号が2つ現れている。Two signals appear in the zoomed-in version of Examples II and I. 同実施例III、IIを更にズームアップしたもので信号が1つだけ現れている。A zoomed-in version of Examples III and II shows only one signal. 同全手動操作システムの系統図である。It is a systematic diagram of the same all manual operation system. 同一部CPU制御システムの系統図である。It is a systematic diagram of the same part CPU control system. 同全CPU制御システムの系統図である。It is a systematic diagram of the same all-CPU control system.

符号の説明Explanation of symbols

1 強磁界用主コイル
2 主コイル電源
3 主コイル電源制御器
4 変調コイル
5 変調電源
6 変調電源制御器
7 弱磁界制御器
8 プローブ
9 高周波発振器
10 高周波発振器制御器
11 検出器
12 平均化装置
13 記憶装置
14 表示装置
15 CPU
DESCRIPTION OF SYMBOLS 1 Main coil for strong magnetic fields 2 Main coil power supply 3 Main coil power supply controller 4 Modulation coil 5 Modulation power supply 6 Modulation power supply controller 7 Weak magnetic field controller 8 Probe 9 High frequency oscillator 10 High frequency oscillator controller 11 Detector 12 Averaging device 13 Storage device 14 Display device 15 CPU

Claims (3)

変調の幅の範囲から共鳴条件をシフトさせて、表示器画面内に信号のリアルタイム波形が存在しないようにした後に、表示器画面内に存在するスプリアスのリアルタイム波形を平均化しCPUに記憶するステップと
共鳴条件を変調の幅の範囲に戻して、表示器画面内に信号のリアルタイム波形が存在するようにした後に、信号のリアルタイム波形より記憶されている前記平均化されたスプリアス波形を減算した波形を表示器画面内に表示するステップと
前記減算された波形を平均化してCPUに記憶し、表示器上に表示させるステップとから構成されたプロセスによるスプリアス除去法を用いた、すべての操作を手動で行う磁界変調法による連続波HF帯磁気共鳴装置
Shifting the resonance condition from the range of the modulation width so that the real-time waveform of the signal does not exist in the display screen, and then averaging and storing the spurious real-time waveform present in the display screen in the CPU; After returning the resonance condition to the range of the modulation width so that the real-time waveform of the signal exists in the display screen, the waveform obtained by subtracting the averaged spurious waveform stored from the real-time waveform of the signal is All the operations using the spurious removal method according to the process composed of the step of displaying on the display screen and the step of averaging the subtracted waveform and storing it in the CPU and displaying on the display are performed manually. Continuous-wave HF band magnetic resonance apparatus using magnetic field modulation
請求項1と同様な前記ステップから構成された前記プロセスによるスプリアス除去法を用いた、前記プロセスをCPU制御により自動化し、その他の操作を手動で行う磁界変調法による連続波HF帯磁気共鳴装置  A continuous wave HF band magnetic resonance apparatus using a magnetic field modulation method in which the process is automated by CPU control and other operations are performed manually using a spurious removal method by the process constituted by the same steps as in the first step. 請求項1と同様な前記ステップから構成された前記プロセスによるスプリアス除去法を用いた、前記プロセスを含む、すべての操作をCPU制御により自動化した磁界変調法による連続波HF帯磁気共鳴装置  A continuous wave HF band magnetic resonance apparatus using a magnetic field modulation method in which all operations including the process are automated by CPU control, using the spurious removal method by the process configured by the same steps as those in claim 1
JP2007327998A 2007-11-22 2007-11-22 Method and apparatus for removing spurious signals of hf band magnetic resonance signals Pending JP2009128352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327998A JP2009128352A (en) 2007-11-22 2007-11-22 Method and apparatus for removing spurious signals of hf band magnetic resonance signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327998A JP2009128352A (en) 2007-11-22 2007-11-22 Method and apparatus for removing spurious signals of hf band magnetic resonance signals

Publications (1)

Publication Number Publication Date
JP2009128352A true JP2009128352A (en) 2009-06-11

Family

ID=40819406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327998A Pending JP2009128352A (en) 2007-11-22 2007-11-22 Method and apparatus for removing spurious signals of hf band magnetic resonance signals

Country Status (1)

Country Link
JP (1) JP2009128352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251984A (en) * 2011-06-03 2012-12-20 Etsuo Ban Free radical measuring instrument using magnetic modulation scheme continuous wave hf band magnetic resonance device and radical chemical reaction aging variation measuring method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164946A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Nuclear magnetic resonance apparatus
JPS6040972A (en) * 1983-08-16 1985-03-04 Hitachi Ltd Nuclear magnetic resonance apparatus
JPH01119746A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Nuclear magnetic resonance apparatus
JPH07120544A (en) * 1993-10-25 1995-05-12 Nippon Telegr & Teleph Corp <Ntt> Magnetic characteristic analysis device and method
JPH11225979A (en) * 1997-11-24 1999-08-24 General Electric Co <Ge> Signal processing method in magnetic resonance spectrometric method and device thereof
JPH11248759A (en) * 1998-02-27 1999-09-17 Jeol Ltd Detecting-system circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164946A (en) * 1983-03-11 1984-09-18 Hitachi Ltd Nuclear magnetic resonance apparatus
JPS6040972A (en) * 1983-08-16 1985-03-04 Hitachi Ltd Nuclear magnetic resonance apparatus
JPH01119746A (en) * 1987-11-04 1989-05-11 Hitachi Ltd Nuclear magnetic resonance apparatus
JPH07120544A (en) * 1993-10-25 1995-05-12 Nippon Telegr & Teleph Corp <Ntt> Magnetic characteristic analysis device and method
JPH11225979A (en) * 1997-11-24 1999-08-24 General Electric Co <Ge> Signal processing method in magnetic resonance spectrometric method and device thereof
JPH11248759A (en) * 1998-02-27 1999-09-17 Jeol Ltd Detecting-system circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251984A (en) * 2011-06-03 2012-12-20 Etsuo Ban Free radical measuring instrument using magnetic modulation scheme continuous wave hf band magnetic resonance device and radical chemical reaction aging variation measuring method using the same

Similar Documents

Publication Publication Date Title
Bax et al. Long-range proton-carbon-13 NMR spin coupling constants
Brown et al. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation
O’Dell et al. 14N magic angle spinning overtone NMR spectra
Tseitlin et al. Digital EPR with an arbitrary waveform generator and direct detection at the carrier frequency
Giraudeau et al. A new detection scheme for ultrafast 2D J-resolved spectroscopy
Zhang et al. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy
JP4071625B2 (en) Pulse sequence method in decoupling sideband resolved NMR spectroscopy.
Huang et al. Intermolecular single-quantum coherence sequences for high-resolution NMR spectra in inhomogeneous fields
Gudmundson et al. Spectral estimation of irregularly sampled exponentially decaying signals with applications to RF spectroscopy
JP5908878B2 (en) Magnetic resonance apparatus and program
US10509091B2 (en) EPR methods and systems
Yu et al. Field-stepped direct detection electron paramagnetic resonance
Buchanan et al. Background correction in rapid scan EPR spectroscopy
Marion et al. An alternative tuning approach to enhance NMR signals
JP2009128352A (en) Method and apparatus for removing spurious signals of hf band magnetic resonance signals
Czechowski et al. The instrument set for generating fast adiabatic passage
CN105784748B (en) A kind of method for eliminating nuclear magnetic resonance single crystal probe background signal
US8405393B2 (en) EPR using Frank sequence
Yu et al. Multiharmonic electron paramagnetic resonance for extended samples with both narrow and broad lines
JP2008039641A (en) Nuclear magnetic resonance apparatus
US9784809B2 (en) Method for NMR measurements on quadrupolar nuclei
Queiroz Júnior et al. Optimization and practical implementation of ultrafast 2D NMR experiments
Li et al. Periodic artifact suppression for pure shift NMR spectroscopy
Chen et al. Field-frequency lock approach for 21.3-MHz high-performance NMR relaxation analyzer
Aurentz et al. Multiple-rotor-cycle QPASS pulse sequences: separation of quadrupolar spinning sidebands with an application to 139La NMR

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011