JP2009128011A - Cooling structure for optical-type measuring probe - Google Patents

Cooling structure for optical-type measuring probe Download PDF

Info

Publication number
JP2009128011A
JP2009128011A JP2007299676A JP2007299676A JP2009128011A JP 2009128011 A JP2009128011 A JP 2009128011A JP 2007299676 A JP2007299676 A JP 2007299676A JP 2007299676 A JP2007299676 A JP 2007299676A JP 2009128011 A JP2009128011 A JP 2009128011A
Authority
JP
Japan
Prior art keywords
observation window
optical measurement
cooling
measurement probe
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007299676A
Other languages
Japanese (ja)
Inventor
Nozomi Hashimoto
望 橋本
Hirobumi Tsuji
博文 辻
Yuzo Shirai
裕三 白井
Seung-Min Hwang
承敏 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007299676A priority Critical patent/JP2009128011A/en
Publication of JP2009128011A publication Critical patent/JP2009128011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure for optical-type measuring probe which can contribute to stable measurement for a long time by efficient cooling and also by preventing staining of an observation window. <P>SOLUTION: The cooling structure for optical-type measuring probe has an inner tube 21, which holds an LDV probe 22 emitting and receiving laser light 4 and makes cooling air circulate in the inside; an outer tube 26 which forms a cooling jacket 27 supplied with cooling water in a space between the inner tube 21 and it; the observation window 30 which is provided in front of the LDV probe 22; a slit part 31 which jets purging air onto the front side of the observation window 30; and a radiation shielding plate 33, which partially covers the observation window 30 and is so formed that the relation between the disposition diameter R of the slit part 31 in the radial direction of the observation window 30 and the diameter r of a hole 33a is R>r. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は光学式計測プローブの冷却構造に関し、特に火炉等の高温場において粒子の挙動を計測するレーザドップラ流速計(以下,LDVと略称する)等の光学式計測プローブの冷却構造に適用して有用なものである。   The present invention relates to a cooling structure for an optical measurement probe, and more particularly to a cooling structure for an optical measurement probe such as a laser Doppler velocimeter (hereinafter abbreviated as LDV) that measures the behavior of particles in a high temperature field such as a furnace. It is useful.

火力発電用燃料として汎用されている微粉炭の火炉中における燃焼は、微粉炭粒子の気相への拡散、揮発分の放出、揮発分燃焼、チャー燃焼といった、気体燃焼や液体燃焼にはない燃焼過程が相互に作用しながら同時に起こる非常に複雑な現象である。したがって、現状における微粉炭の燃焼技術開発は経験工学的に行われることが多く、煩雑な実験を伴うだけでなく、多大なコストと期間が必要になる。   Combustion in the furnace of pulverized coal, which is widely used as a fuel for thermal power generation, is a combustion that does not exist in gas combustion or liquid combustion, such as diffusion of pulverized coal particles into the gas phase, release of volatile matter, volatile matter combustion, and char combustion. It is a very complex phenomenon that occurs simultaneously while the processes interact. Therefore, development of combustion technology for pulverized coal at present is often carried out by empirical engineering, which not only involves complicated experiments but also requires a great deal of cost and time.

このような微粉炭燃焼の技術開発の効率的な推進には、燃焼場を乱すことなく、火炎内の粒子速度等の粒子挙動を把握する必要がある。かかる用途に最適な計測装置の一つとしてLDVが存在する。このLDVは複数のレーザ光を用いて流れを乱すことなくレーザ光が交わる点(焦点)における粒子の速度を測定する装置であり、レーザ光はLDVプローブから観察対象に向けて照射される。したがって、火炉壁から粒子の速度を測定する点までの距離がLDVプローブからレーザ光の焦点までの距離(焦点距離)よりも長い場合、LDVプローブは高温場である火炉内に臨ませる必要がある。このため、LDVプローブは何らかの冷却手段と一体にした状態で火炉等の高温場に挿入する必要がある。   For efficient promotion of such pulverized coal combustion technology development, it is necessary to grasp the particle behavior such as the particle velocity in the flame without disturbing the combustion field. There is an LDV as one of the most suitable measuring devices for such applications. This LDV is a device that measures the velocity of particles at a point (focal point) where the laser beams intersect without disturbing the flow using a plurality of laser beams, and the laser beams are emitted from the LDV probe toward the observation target. Therefore, when the distance from the furnace wall to the point at which the particle velocity is measured is longer than the distance (focal distance) from the LDV probe to the focal point of the laser beam, the LDV probe needs to face the furnace in a high temperature field. . For this reason, it is necessary to insert the LDV probe into a high-temperature field such as a furnace while being integrated with some cooling means.

なお、この種の測定に関する類似の技術を開示する公知文献として特許文献1及び特許文献2を挙げることができる。   Note that Patent Documents 1 and 2 can be cited as publicly known documents disclosing similar techniques relating to this type of measurement.

特開平11−166941号公報Japanese Patent Laid-Open No. 11-166941 特開平06−308140号公報Japanese Patent Laid-Open No. 06-308140

上述の如く火炉内における微粉炭燃焼の際の粒子の挙動を観察する際に適用するLDVプローブは、高温に弱い光学部品が破損しないためにはもちろん、高精度の測定を行うためにもその適切な冷却を行う必要がある。また、レーザ光の出射乃至入射を継続的に良好に行わせるためには、観察窓の汚損を可及的に防止する必要がある。   As described above, the LDV probe applied when observing the behavior of particles during pulverized coal combustion in a furnace is suitable not only for optical components that are vulnerable to high temperatures but also for performing high-precision measurements. Cooling is necessary. Further, in order to continuously and satisfactorily emit and enter laser light, it is necessary to prevent the observation window from being contaminated as much as possible.

本発明は、上述の点に鑑み、効率的な冷却とともに観察窓の汚損を防止して長期に亘る安定した測定に資することができる光学式計測プローブの冷却構造を提供することを目的とする。   An object of the present invention is to provide a cooling structure for an optical measurement probe capable of contributing to stable measurement over a long period of time by preventing the observation window from being soiled together with efficient cooling.

上記目的を達成する本発明の第1の態様は、
前面から光を出射及び/又は入射する光学式計測プローブを支持部材を介して支持するとともに後端から導入した冷却用の気体を前端側に向けて軸方向に流通させることにより前記光学式計測プローブの外周面と接触させるようにした内筒と、
前記内筒の外周面側を取り囲むとともに前記外周面と内周面との間の空間で冷却液が供給される冷却ジャケットを形成した外筒と、
前記内筒において前記光学式計測プローブの前方に配設されている透明部材の観察窓と、
前記内筒の前端に臨み前記気体を前記観察窓の外周側から前面側に噴射するスリット部と、
前記光の出射乃至入射を許容するための孔が中央部に形成された環状部材であって、前記スリット部の前方に配設されて前記観察窓を一部覆うとともに、前記観察窓の径方向における前記スリット部の配置径Rと前記孔の径rと関係がR>rとなるように構成した輻射遮蔽板とを有することを特徴とする光学式計測プローブの冷却構造にある。
The first aspect of the present invention for achieving the above object is as follows:
The optical measurement probe that supports the optical measurement probe that emits and / or emits light from the front surface via a support member and distributes the cooling gas introduced from the rear end in the axial direction toward the front end. An inner cylinder that is in contact with the outer peripheral surface of
An outer cylinder that forms a cooling jacket that surrounds the outer peripheral surface side of the inner cylinder and is supplied with a cooling liquid in a space between the outer peripheral surface and the inner peripheral surface;
An observation window of a transparent member disposed in front of the optical measurement probe in the inner cylinder;
A slit portion that faces the front end of the inner cylinder and injects the gas from the outer peripheral side to the front side of the observation window;
An annular member having a hole formed in a central portion for allowing emission or incidence of the light, disposed in front of the slit portion to partially cover the observation window, and in a radial direction of the observation window In the cooling structure of the optical measurement probe, there is provided a radiation shielding plate configured such that the relationship between the arrangement diameter R of the slit portion and the diameter r of the hole satisfies R> r.

本発明の第2の態様は、
第1の態様に記載する光学式計測プローブの冷却構造において、
前記輻射遮蔽板の孔の径は出射乃至入射される光の径より若干大きくなるように構成したことを特徴とする光学式計測プローブの冷却構造にある。
The second aspect of the present invention is:
In the cooling structure of the optical measurement probe described in the first aspect,
In the cooling structure of the optical measurement probe, the diameter of the hole of the radiation shielding plate is configured to be slightly larger than the diameter of the emitted or incident light.

本発明の第3の態様は、
第1の態様又は第2の態様に記載する光学式計測プローブの冷却構造において、
前記スリット部は前記気体を前記観察窓の表面に平行に噴出するように構成したことを特徴とする光学式計測プローブの冷却構造にある。
The third aspect of the present invention is:
In the cooling structure of the optical measurement probe described in the first aspect or the second aspect,
The slit portion is configured to cool the optical measurement probe, wherein the gas is jetted in parallel to the surface of the observation window.

本発明の第4の態様は、
第1の態様乃至第3の態様の何れか一つに記載する光学式計測プローブの冷却構造において、
前記光学式計測プローブはレーザドップラ流速計のプローブであることを特徴とする光学式計測プローブの冷却構造にある。
The fourth aspect of the present invention is:
In the cooling structure for an optical measurement probe according to any one of the first to third aspects,
The optical measurement probe is a laser Doppler velocimeter probe, and has a cooling structure for an optical measurement probe.

本発明によれば、内筒内に導入される冷却用の気体で直接光学式計測プローブを冷却するとともに、冷却ジャケットを流通する冷却液で内筒を介して前記気体を冷却することにより間接的に光学式計測プローブを冷却することができる。この結果、光学式計測プローブの効果的な冷却を行うことができる。   According to the present invention, the optical measurement probe is directly cooled by the cooling gas introduced into the inner cylinder, and the gas is indirectly cooled by cooling the gas through the inner cylinder with the coolant flowing through the cooling jacket. In addition, the optical measurement probe can be cooled. As a result, effective cooling of the optical measurement probe can be performed.

同時に、冷却用の気体は、スリット部を介して観察窓の前面側に噴射されるので、観察窓に対する石炭灰等の付着による汚損を効果的に防止し得る。ここで、観察窓の前方にはスリット部の配置径Rと孔の径rとの関係がR>rとなるように構成した輻射遮蔽板が配設されているので、スリット部から噴射される冷却用の気体は、輻射遮蔽版の近傍に浮遊する石炭灰等の汚損物質を巻き込むことなく、前記孔を介して高温場に向けて排出される。この結果、輻射遮蔽板の近傍の汚損物質の観察窓に対する付着を防止してより確実に観察窓の汚損を防止し得る。さらに、輻射遮蔽板は測定対象外の高温場からの輻射の一部を遮断して輻射熱による観察窓、延いては光学式計測プローブの温度上昇を効果的に防止し得る。   At the same time, since the cooling gas is jetted to the front side of the observation window through the slit portion, contamination due to adhesion of coal ash or the like to the observation window can be effectively prevented. Here, a radiation shielding plate configured so that the relationship between the arrangement diameter R of the slit portion and the diameter r of the hole is R> r is disposed in front of the observation window, and thus is ejected from the slit portion. The cooling gas is discharged toward the high temperature field through the hole without entraining fouling substances such as coal ash floating in the vicinity of the radiation shielding plate. As a result, fouling substances in the vicinity of the radiation shielding plate can be prevented from adhering to the observation window, and the observation window can be more reliably prevented from fouling. Furthermore, the radiation shielding plate can block part of the radiation from the high temperature field that is not the object of measurement, and effectively prevent the observation window due to radiant heat and the temperature of the optical measurement probe from rising.

以下本発明の実施の形態を図面に基づき詳細に説明する。なお、本形態は微粉炭ボイラにおいて微粉炭粒子の挙動を観察するためのLDVのプローブに適用したものである。勿論、LDV乃至LDVプローブに限定するものではない。光の出射乃至入射を伴う光学式計測装置乃至光学式計測プローブであれば同様に好適に適用し得る。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. This embodiment is applied to an LDV probe for observing the behavior of pulverized coal particles in a pulverized coal boiler. Of course, the present invention is not limited to LDV to LDV probes. An optical measurement device or an optical measurement probe that involves light emission or incidence can be applied suitably.

図1は本実施の形態に係るLDVプローブの冷却構造を適用した微粉炭ボイラを概念的に示す説明図である。同図に示すように、火炉1には燃料としての微粉炭が供給される。火炉1内に供給された微粉炭はバーナー2で形成される火炎3により燃焼されて蒸気を発生させる。本形態に係る冷却構造Iの内部に収納されたLDVプローブ(図1には図示せず)は火炎3により燃焼される微粉炭の挙動を観察すべく観察窓(図1には図示せず)を火炎3に向けて先端部が火炉1内に臨んでその炉壁に配設されている。したがって、冷却構造I及びLDVプローブの火炉1内に臨む部分は高温環境に晒される。   FIG. 1 is an explanatory view conceptually showing a pulverized coal boiler to which a cooling structure of an LDV probe according to the present embodiment is applied. As shown in the figure, the furnace 1 is supplied with pulverized coal as fuel. The pulverized coal supplied into the furnace 1 is burned by the flame 3 formed by the burner 2 to generate steam. An LDV probe (not shown in FIG. 1) housed inside the cooling structure I according to this embodiment is an observation window (not shown in FIG. 1) for observing the behavior of pulverized coal burned by the flame 3. Is directed to the flame 3 so that the tip portion faces the furnace 1 and is disposed on the furnace wall. Accordingly, portions of the cooling structure I and the LDV probe facing the furnace 1 are exposed to a high temperature environment.

ここで、本形態の冷却構造を適用するLDVシステムについて説明しておく。図2はLDVシステムの光学系を示す説明図である。同図に示すように、当該光学系は、レーザ光4を導入する送光系レンズ5、散乱光の受光系レンズ6及び受光系レンズ6で集光した散乱光(レーザ光4)を測定部(図示せず)に送出する光ファイバ7で構成されている。ここで、レーザ光4は、ビームスプリッタ(図示せず)で2本に分離されるとともに送光系レンズ5によって集光され、その交差部が光強度の明暗の干渉縞(フリンジ)をもつ測定点8となる。この測定点8を通過する流れ9に追従する粒子は、干渉縞に対応した光を散乱し、その散乱光は受光系レンズ6を介して測定部に送出されることにより電気信号(ドップラバースト信号)に変換され、その周波数(fd〔1/s〕)を求めることにより粒子速度を決定する。   Here, an LDV system to which the cooling structure of the present embodiment is applied will be described. FIG. 2 is an explanatory diagram showing an optical system of the LDV system. As shown in the figure, the optical system includes a light transmitting system lens 5 for introducing laser light 4, a light receiving system lens 6 for scattered light, and scattered light (laser light 4) collected by the light receiving system lens 6. It is comprised with the optical fiber 7 sent out (not shown). Here, the laser beam 4 is separated into two by a beam splitter (not shown) and is condensed by a light transmission system lens 5, and the intersection has a light and dark interference fringe of light intensity. This is point 8. The particles following the flow 9 passing through the measurement point 8 scatter light corresponding to the interference fringes, and the scattered light is transmitted to the measurement unit via the light receiving system lens 6, whereby an electric signal (Doppler burst signal) is obtained. The particle velocity is determined by obtaining the frequency (fd [1 / s]).

測定点8の詳細とドップラバースト信号との関係を図3に示す。同図(a)に示すように、2本のレーザ光4,4の偏波面が一致している場合、測定体積(図中の楕円領域)10には入射したレーザ光4の波面の干渉によって、水平方向に明暗の干渉縞(フリンジ)11が形成される。この干渉縞11の間隔(δf〔m〕)は、レーザ光4の波長及び2本のレーザ光4,4の交差角度によって幾何学的に決定される。一方、同図(b)に示すように、ドップラバースト信号の山の部分は、干渉縞11の明の部分に相当するため、この山と山の間隔Δt(=1/fd)を求めることにより、粒子12の速度を測定することができる。すなわち、粒子12の速度Vは次式で与えられる。   FIG. 3 shows the relationship between the details of the measurement point 8 and the Doppler burst signal. As shown in FIG. 5A, when the polarization planes of the two laser beams 4 and 4 coincide with each other, the measurement volume (elliptical region in the figure) 10 is interfered with the wavefront of the incident laser beam 4. In the horizontal direction, bright and dark interference fringes 11 are formed. The interval (δf [m]) between the interference fringes 11 is geometrically determined by the wavelength of the laser beam 4 and the crossing angle of the two laser beams 4 and 4. On the other hand, as shown in FIG. 5B, the peak portion of the Doppler burst signal corresponds to the bright portion of the interference fringe 11, and therefore, by obtaining the peak-to-peak interval Δt (= 1 / fd). The velocity of the particles 12 can be measured. That is, the velocity V of the particle 12 is given by the following equation.

V=δf・fd=δf/Δt       V = δf · fd = δf / Δt

図4は上述の如き測定原理により粒子12の流速を測定するLDVのプローブを保護する本形態に係るLDVプローブの冷却構造を縦断面で示す説明図である。この場合のLDVは受光系もレーザ側にある後方散乱型のLDVである。   FIG. 4 is an explanatory view showing the cooling structure of the LDV probe according to the present embodiment, which protects the LDV probe for measuring the flow velocity of the particles 12 based on the measurement principle as described above, in a longitudinal section. In this case, the LDV is a backscattering LDV in which the light receiving system is also on the laser side.

図4に示すように、内筒21はLDVプローブ22を支持部材23を介して支持するとともに、その後端を閉塞する蓋部24を貫通してこの蓋部24に固着した空気導入口25を有している。内筒21の内部に導入した冷却用の空気は、図中に実線の矢印で示すように、軸方向に沿い前端側に向けて流通させるように構成してある。この結果、LDVプローブ22の外周面は冷却用の空気と直接接触して冷却される。ここで、LDVプローブ22は2本のレーザ光4を、これらが測定点8で交差するようにその前面から出射するとともに、測定点8における後方散乱光をその前面から入射し、光ファイバ7を介して測定部(図示せず)に送出する。   As shown in FIG. 4, the inner cylinder 21 supports the LDV probe 22 via a support member 23, and has an air inlet 25 that passes through a lid portion 24 that closes the rear end thereof and is fixed to the lid portion 24. is doing. The cooling air introduced into the inner cylinder 21 is configured to circulate along the axial direction toward the front end side as indicated by solid arrows in the drawing. As a result, the outer peripheral surface of the LDV probe 22 is cooled in direct contact with the cooling air. Here, the LDV probe 22 emits two laser beams 4 from the front surface so that they intersect at the measurement point 8, and backscattered light at the measurement point 8 is incident from the front surface. Via a measurement unit (not shown).

外筒26は内筒21の外周面側を取り囲むとともに内筒21の外周面と外筒26の内周面との間の空間で冷却ジャケット27を形成している。この冷却ジャケット27には、冷却水供給口28を介して冷却水が供給される。冷却ジャケット27内に供給された冷却水は、図中に点線の矢印で示すように冷却ジャケット27内を流通した後、冷却水排出口29を介して外部に排出される。この結果、冷却ジャケット27を流通する冷却水で内筒21を介して冷却用の空気を冷却することにより、間接的にLDVプローブ22を冷却する。   The outer cylinder 26 surrounds the outer peripheral surface side of the inner cylinder 21 and forms a cooling jacket 27 in a space between the outer peripheral surface of the inner cylinder 21 and the inner peripheral surface of the outer cylinder 26. Cooling water is supplied to the cooling jacket 27 through a cooling water supply port 28. The cooling water supplied into the cooling jacket 27 circulates through the cooling jacket 27 as indicated by the dotted arrows in the figure, and is then discharged to the outside through the cooling water discharge port 29. As a result, the LDV probe 22 is indirectly cooled by cooling the cooling air through the inner cylinder 21 with the cooling water flowing through the cooling jacket 27.

観察窓30は、透明部材である石英ガラスで形成したものであり、内筒21においてLDVプローブ22の前方に配設されている。具体的には、観察窓30は内筒21内を流通してきた冷却用の空気をスリット部31に向けて流通させるための孔32aを有する支持部材32と冷却ジャケット27の前端部との間でその外周部が挟持されている。この結果、LDVプローブ22から照射したレーザ光4,4は観察窓30を介して測定点8に照射されるとともに、測定点8における流れ9に乗る粒子12で反射された後方散乱光として観察窓30を介してLDVプローブ22に入射される。LDVプローブ22に入射された後方散乱光は光ファイバ7を介して遠隔の測定部(図示せず)に送出される。同時に、観察窓30は測定点8を含む高温場(火炉内)からの輻射を減衰してLDVプローブ22の温度上昇を低減する機能も有している。   The observation window 30 is made of quartz glass, which is a transparent member, and is disposed in front of the LDV probe 22 in the inner cylinder 21. Specifically, the observation window 30 is formed between the support member 32 having a hole 32 a for allowing the cooling air that has circulated through the inner cylinder 21 to flow toward the slit portion 31 and the front end portion of the cooling jacket 27. The outer peripheral part is clamped. As a result, the laser beams 4 and 4 irradiated from the LDV probe 22 are irradiated to the measurement point 8 through the observation window 30 and the observation window as backscattered light reflected by the particles 12 on the flow 9 at the measurement point 8. The light is incident on the LDV probe 22 via 30. The backscattered light incident on the LDV probe 22 is sent to a remote measurement unit (not shown) via the optical fiber 7. At the same time, the observation window 30 also has a function of reducing the temperature rise of the LDV probe 22 by attenuating radiation from a high temperature field (in the furnace) including the measurement point 8.

スリット部31は内筒21の前端に臨み冷却用の空気を観察窓30の外周側から前面側に噴射する。かくして、火炉等の高温場に浮遊している汚損物質(微粉炭ボイラの場合は石炭灰)が観察窓30の表面に付着して、この観察窓30の表面を汚損するのを防止している。すなわち、スリット部31を介して噴射する冷却用の空気を汚損物質のパージ用の気体としても利用するようになっている。かかる構造により、レーザ光4,4の観察窓30部分における減衰を可及的に低減することができる。   The slit portion 31 faces the front end of the inner cylinder 21 and injects cooling air from the outer peripheral side of the observation window 30 to the front side. Thus, fouling substances (coal ash in the case of pulverized coal boilers) floating in a high temperature field such as a furnace are prevented from adhering to the surface of the observation window 30 and fouling the surface of the observation window 30. . That is, the cooling air sprayed through the slit portion 31 is also used as a purge gas for the pollutant. With this structure, the attenuation of the laser beams 4 and 4 at the observation window 30 can be reduced as much as possible.

ここで、本形態におけるスリット部31は冷却用の空気が観察窓30の表面に平行に噴出されるように構成してある。このように構成することで最も効率よく観察窓30の表面に対する汚損物質の付着を防止し得る。ただ、このように構成することは必須ではない。観察窓30の外周側から前面側に空気を噴射すれば観察窓30の表面に対するある程度の付着防止機能は得られるからである。   Here, the slit part 31 in this embodiment is configured such that cooling air is jetted in parallel to the surface of the observation window 30. By configuring in this way, it is possible to most effectively prevent fouling substances from attaching to the surface of the observation window 30. However, this configuration is not essential. This is because a certain degree of adhesion preventing function to the surface of the observation window 30 can be obtained by injecting air from the outer peripheral side of the observation window 30 to the front side.

輻射遮蔽板33は、レーザ光4,4の出射乃至入射を許容するための孔33aが中央部に形成された環状部材であって、スリット部31の前方に配設されて観察窓30を一部覆っている。ここで、観察窓30の径方向におけるスリット部31の配置径Rと孔33aの径rとの関係はR>rとなるように構成してある。このことにより、スリット部31から噴射される冷却用の空気は、輻射遮蔽板33の近傍の高温ガス等を巻き込むことなく、孔33aを介して高温場に向けて排出される。この結果、輻射遮蔽板33の近傍の石炭灰や粒子12等の汚損物質の観察窓30に対する接触を防止してより確実に観察窓30の汚損を防止し得る。また、輻射遮蔽板33は測定対象外の高温場からの輻射の一部を遮断して輻射熱による観察窓30、延いてはLDVプローブ22の温度上昇を効果的に防止し得る。ここで、孔33aの径rは出射乃至入射されるレーザ光4,4の径より若干大きくなるように構成してある。このことにより、輻射遮蔽板33による輻射の遮断を最も効率よく行うことができる。   The radiation shielding plate 33 is an annular member in which a hole 33a for allowing the emission or incidence of the laser beams 4 and 4 is formed in the central portion, and is disposed in front of the slit portion 31 so as to cover the observation window 30. It covers the part. Here, the relationship between the arrangement diameter R of the slit portion 31 and the diameter r of the hole 33a in the radial direction of the observation window 30 is configured such that R> r. Thereby, the cooling air sprayed from the slit portion 31 is discharged toward the high temperature field through the hole 33a without involving the high temperature gas in the vicinity of the radiation shielding plate 33 or the like. As a result, it is possible to prevent contamination of the observation window 30 more reliably by preventing contact of the fouling substances such as coal ash and particles 12 in the vicinity of the radiation shielding plate 33 with the observation window 30. Further, the radiation shielding plate 33 can block part of the radiation from the high temperature field that is not the object of measurement and effectively prevent the temperature of the observation window 30 and thus the LDV probe 22 from rising due to radiant heat. Here, the diameter r of the hole 33a is configured to be slightly larger than the diameter of the emitted or incident laser beams 4 and 4. As a result, the radiation shielding by the radiation shielding plate 33 can be performed most efficiently.

かかる本形態において、LDVプローブ22は観察窓30を介してレーザ光4,4の照射及び散乱光の受光を行う。このとき、冷却ジャケット27の内側の内筒21に冷却用の空気を供給し、LDVプローブ22の表面に沿って流れるようにして冷却効果を高めている。冷却後の空気は、スリット部31から観察窓30の前面側に噴射されることによりこの観察窓30の表面に石炭灰等の汚損物質が付着するのを防止する。また、観察窓30から少し離れた前方位置に配設されている輻射遮蔽板33の孔33aの開口部は冷却用の空気の最終的な出口となっており、その半径rはスリット部31の配置径Rよりも小さくなっている。このように、観察窓30から少し離れた位置で空気の出口を絞ることにより、外部ガス等の巻き込みを良好に防止することができる。かかる巻き込みを防止することによっても石炭灰の粒子12等の観察窓30に対する付着を防止することができる。なお、かかる巻き込み防止効果はスリット部31から孔33aに至る部分の内周面がR部となっているのが望ましい。この部分での渦の発生を低減し外部からの汚損物質の巻き込みを確実に防止し得るからである。   In this embodiment, the LDV probe 22 irradiates the laser beams 4 and 4 and receives the scattered light through the observation window 30. At this time, cooling air is supplied to the inner cylinder 21 inside the cooling jacket 27 so as to flow along the surface of the LDV probe 22 to enhance the cooling effect. The cooled air is jetted from the slit portion 31 to the front side of the observation window 30, thereby preventing fouling substances such as coal ash from adhering to the surface of the observation window 30. Further, the opening portion of the hole 33a of the radiation shielding plate 33 disposed at a position slightly away from the observation window 30 is a final outlet of the cooling air, and its radius r is equal to that of the slit portion 31. It is smaller than the arrangement diameter R. In this way, by restricting the air outlet at a position slightly away from the observation window 30, the entrainment of external gas or the like can be satisfactorily prevented. By preventing such entrainment, adhesion of the coal ash particles 12 to the observation window 30 can also be prevented. In addition, it is desirable for the inner peripheral surface of the part from the slit part 31 to the hole 33a to become the R part for this entrainment prevention effect. This is because it is possible to reduce the generation of vortices in this portion and reliably prevent the entry of pollutants from the outside.

さらに、輻射遮蔽板33の孔33aの径rは、レーザ光4,4が通過できる最小半径となっているので、測定対象とは関係のない部分からの輻射がLDVプローブ22に与える影響を可及的に小さくすることができる。LDVプローブ22に入ってくる周囲からの輻射熱量を小さくすることでLDVプローブ22の温度上昇を抑制する効果がある。また、周囲からの輻射はLDV計測時に悪影響を及ぼすが、この一部を輻射遮蔽板33で遮断することにより、LDV計測の可能範囲を広げることができる。ちなみに、周囲からの輻射は測定対象からの散乱光を受光する際にノイズとなる。また、LDVプローブ22の内部に輻射が入射することにより、LDVプローブ22の内部の光学部品の温度が上昇して、レーザ4,4の光軸がずれ、測定体積が減少する等の問題を生起するが、かかる問題も回避し得る。   Furthermore, since the diameter r of the hole 33a of the radiation shielding plate 33 is the minimum radius through which the laser beams 4 and 4 can pass, radiation from a portion unrelated to the measurement object can affect the LDV probe 22. It can be made as small as possible. By reducing the amount of radiant heat from the surroundings entering the LDV probe 22, there is an effect of suppressing the temperature rise of the LDV probe 22. Further, radiation from the surroundings adversely affects the LDV measurement. However, by blocking a part of the radiation with the radiation shielding plate 33, the possible range of LDV measurement can be expanded. Incidentally, the radiation from the surroundings becomes noise when receiving scattered light from the measurement object. In addition, the incidence of radiation inside the LDV probe 22 raises the temperature of the optical components inside the LDV probe 22, causing problems such as the optical axes of the lasers 4 and 4 being displaced and the measurement volume being reduced. However, such a problem can be avoided.

本発明は高温場の粒子の挙動を観察するための計測機器を製造・販売する産業分野で利用することができる。   The present invention can be used in the industrial field of manufacturing and selling measuring instruments for observing the behavior of particles in a high temperature field.

本発明の実施の形態に係るLDVプローブの冷却構造を適用する微粉炭ボイラを概念的に示す説明図である。It is explanatory drawing which shows notionally the pulverized coal boiler to which the cooling structure of the LDV probe which concerns on embodiment of this invention is applied. LDVシステムの光学系を示す説明図である。It is explanatory drawing which shows the optical system of a LDV system. LDVシステムにおける測定点の詳細とドップラバースト信号との関係を示す説明図である。It is explanatory drawing which shows the relationship between the detail of the measuring point in a LDV system, and a Doppler burst signal. 本発明の実施の形態に係るLDVプローブの冷却構造を縦断面で示す説明図である。It is explanatory drawing which shows the cooling structure of the LDV probe which concerns on embodiment of this invention in a longitudinal cross-section.

符号の説明Explanation of symbols

1 火炉
8 測定点
11 干渉縞
12 粒子
21 内筒
22 LDVプローブ
23 支持部材
26 外筒
27 冷却ジャケット
30 観察窓
31 スリット部
33 輻射遮蔽板
33a 孔
DESCRIPTION OF SYMBOLS 1 Furnace 8 Measuring point 11 Interference fringe 12 Particle | grain 21 Inner cylinder 22 LDV probe 23 Support member 26 Outer cylinder 27 Cooling jacket 30 Observation window 31 Slit part 33 Radiation shielding board 33a Hole

Claims (4)

前面から光を出射及び/又は入射する光学式計測プローブを支持部材を介して支持するとともに後端から導入した冷却用の気体を前端側に向けて軸方向に流通させることにより前記光学式計測プローブの外周面と接触させるようにした内筒と、
前記内筒の外周面側を取り囲むとともに前記外周面と内周面との間の空間で冷却液が供給される冷却ジャケットを形成した外筒と、
前記内筒において前記光学式計測プローブの前方に配設されている透明部材の観察窓と、
前記内筒の前端に臨み前記気体を前記観察窓の外周側から前面側に噴射するスリット部と、
前記光の出射乃至入射を許容するための孔が中央部に形成された環状部材であって、前記スリット部の前方に配設されて前記観察窓を一部覆うとともに、前記観察窓の径方向における前記スリット部の配置径Rと前記孔の径rとの関係がR>rとなるように構成した輻射遮蔽板とを有することを特徴とする光学式計測プローブの冷却構造。
The optical measurement probe that supports the optical measurement probe that emits and / or emits light from the front surface via a support member and distributes the cooling gas introduced from the rear end in the axial direction toward the front end. An inner cylinder that is in contact with the outer peripheral surface of
An outer cylinder that forms a cooling jacket that surrounds the outer peripheral surface side of the inner cylinder and is supplied with a cooling liquid in a space between the outer peripheral surface and the inner peripheral surface;
An observation window of a transparent member disposed in front of the optical measurement probe in the inner cylinder;
A slit portion that faces the front end of the inner cylinder and injects the gas from the outer peripheral side to the front side of the observation window;
An annular member having a hole formed in a central portion for allowing emission or incidence of the light, disposed in front of the slit portion to partially cover the observation window, and in a radial direction of the observation window And a radiation shielding plate configured such that a relationship between an arrangement diameter R of the slit portion and a diameter r of the hole satisfies R> r.
請求項1に記載する光学式計測プローブの冷却構造において、
前記輻射遮蔽板の孔の径は出射乃至入射される光の径より若干大きくなるように構成したことを特徴とする光学式計測プローブの冷却構造。
In the cooling structure of the optical measurement probe according to claim 1,
A cooling structure for an optical measurement probe, wherein the diameter of the hole of the radiation shielding plate is configured to be slightly larger than the diameter of the emitted or incident light.
請求項1又は請求項2に記載する光学式計測プローブの冷却構造において、
前記スリット部は前記気体を前記観察窓の表面に平行に噴出するように構成したことを特徴とする光学式計測プローブの冷却構造。
In the cooling structure of the optical measurement probe according to claim 1 or 2,
The cooling structure for an optical measurement probe, wherein the slit portion is configured to eject the gas in parallel to the surface of the observation window.
請求項1乃至請求項3の何れか一つに記載する光学式計測プローブの冷却構造において、
前記光学式計測プローブはレーザドップラ流速計のプローブであることを特徴とする光学式計測プローブの冷却構造。
In the cooling structure of the optical measurement probe according to any one of claims 1 to 3,
The optical measurement probe is a laser Doppler velocimeter probe, and has a cooling structure for an optical measurement probe.
JP2007299676A 2007-11-19 2007-11-19 Cooling structure for optical-type measuring probe Pending JP2009128011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299676A JP2009128011A (en) 2007-11-19 2007-11-19 Cooling structure for optical-type measuring probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299676A JP2009128011A (en) 2007-11-19 2007-11-19 Cooling structure for optical-type measuring probe

Publications (1)

Publication Number Publication Date
JP2009128011A true JP2009128011A (en) 2009-06-11

Family

ID=40819117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299676A Pending JP2009128011A (en) 2007-11-19 2007-11-19 Cooling structure for optical-type measuring probe

Country Status (1)

Country Link
JP (1) JP2009128011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357835A (en) * 2018-11-20 2019-02-19 中国空气动力研究与发展中心超高速空气动力研究所 A kind of window structure and conduit device for high temperature flow observation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576033U (en) * 1980-06-11 1982-01-12
JPH06308140A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Fiber type laser doppler flow meter
JPH06335791A (en) * 1993-05-27 1994-12-06 Toshiba Corp Laser beam converging device
JPH11166941A (en) * 1997-12-03 1999-06-22 Ishikawajima Harima Heavy Ind Co Ltd Cooling device for laser doppler wind speed indicator
JP2002156335A (en) * 2000-11-15 2002-05-31 Nkk Corp Surface inspection device
JP2007024711A (en) * 2005-07-19 2007-02-01 Schott Ag Noncontact optical measurement method for hot glass body thickness using light dispersion and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576033U (en) * 1980-06-11 1982-01-12
JPH06308140A (en) * 1993-04-20 1994-11-04 Hitachi Ltd Fiber type laser doppler flow meter
JPH06335791A (en) * 1993-05-27 1994-12-06 Toshiba Corp Laser beam converging device
JPH11166941A (en) * 1997-12-03 1999-06-22 Ishikawajima Harima Heavy Ind Co Ltd Cooling device for laser doppler wind speed indicator
JP2002156335A (en) * 2000-11-15 2002-05-31 Nkk Corp Surface inspection device
JP2007024711A (en) * 2005-07-19 2007-02-01 Schott Ag Noncontact optical measurement method for hot glass body thickness using light dispersion and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357835A (en) * 2018-11-20 2019-02-19 中国空气动力研究与发展中心超高速空气动力研究所 A kind of window structure and conduit device for high temperature flow observation
CN109357835B (en) * 2018-11-20 2024-04-26 中国空气动力研究与发展中心超高速空气动力研究所 Window structure and catheter device for high Wen Liuchang observation

Similar Documents

Publication Publication Date Title
JP3207861B2 (en) Multiphase fluid imaging system by measuring backscattered light.
JP4112043B2 (en) Temperature measuring device
US8873053B2 (en) Method and system for gas measurements in a combustion chamber
US8479559B2 (en) Cylindrical photoacoustic detector with excitation of the second azimuthal resonance
JP5848352B2 (en) Fluid composition analysis mechanism, calorific value measurement device and power plant, and fluid composition analysis method
JP2017211357A (en) Laser type gas analyzer
US20100103425A1 (en) Photoacoustic detector for measuring fine dust
US11255723B2 (en) Beam power measurement with widening
US7765856B2 (en) Monitoring of a flame existence and a flame temperature
JPWO2012161067A1 (en) Measuring unit and gas analyzer
WO2009023173A1 (en) Photoacoustic joulemeter utilizing beam deflection technique
JP2010539700A5 (en)
JP5146436B2 (en) Laser light absorbing device and solid-state laser device
KR20210087517A (en) Particle sensor for detecting particles or aerosols in flowing fluids using the laser-induced incandescent principle
Doll et al. Temperature measurements at the outlet of a lean burn single-sector combustor by laser optical methods
JP2009128011A (en) Cooling structure for optical-type measuring probe
Schlüßler et al. Simultaneous three-component velocity measurements in a swirl-stabilized flame
Fischer et al. Analysis of flow and density oscillations in a swirl-stabilized flame employing highly resolving optical measurement techniques
JPH05126646A (en) Housing for temperature measuring apparatus
US20150377677A1 (en) Optical remote sensing system for process engineering control
CN113348359A (en) Sensor device for detecting particles or aerosols in a flowing fluid using the principle of laser-induced incandescent light
JP6216935B2 (en) Bore deformation measuring device
JP2005351835A (en) Fine particle measuring device
KR101159761B1 (en) Paticle Measurement Apparatus
KR102153389B1 (en) System for Adjusting Viscosity of Fuel having viscosity sensor using photoacoustic effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101007

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Effective date: 20121010

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A02 Decision of refusal

Effective date: 20130109

Free format text: JAPANESE INTERMEDIATE CODE: A02