JP2009127093A - Method for treating high-temperature slag - Google Patents

Method for treating high-temperature slag Download PDF

Info

Publication number
JP2009127093A
JP2009127093A JP2007304215A JP2007304215A JP2009127093A JP 2009127093 A JP2009127093 A JP 2009127093A JP 2007304215 A JP2007304215 A JP 2007304215A JP 2007304215 A JP2007304215 A JP 2007304215A JP 2009127093 A JP2009127093 A JP 2009127093A
Authority
JP
Japan
Prior art keywords
cooling
slag
water
temperature
temperature slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007304215A
Other languages
Japanese (ja)
Other versions
JP4418489B2 (en
Inventor
Tomoaki Tazaki
智晶 田崎
Susumu Mukawa
進 務川
Katsumi Amada
克己 天田
Seiya Sakuma
誠也 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007304215A priority Critical patent/JP4418489B2/en
Priority to TW097145501A priority patent/TW200936771A/en
Priority to PCT/JP2008/071756 priority patent/WO2009069794A1/en
Priority to CN200880117836.2A priority patent/CN101874121B/en
Priority to BRPI0819855A priority patent/BRPI0819855B1/en
Publication of JP2009127093A publication Critical patent/JP2009127093A/en
Application granted granted Critical
Publication of JP4418489B2 publication Critical patent/JP4418489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating high-temperature slag, by which the slag can be efficiently recovered as valuables without producing strongly alkaline water in the treatment process and without requiring a long time for the treatment. <P>SOLUTION: The high-temperature slag containing CaO is subjected to primary cooling and subsequently transferred through a cooling device so as to be subjected to secondary cooling. The primary cooling is carried out by such a method that water is sprinkled onto the slag on a pit 2, and the secondary cooling is carried out using the cooling device 10 such as a rotary cooler. Both the primary cooling and the secondary cooling are carried out by means of water cooling in a range that does not generate free water. Since the slag do not contact with free water, the slag with a low CaO content can be obtained without producing strongly alkaline water, as in conventional methods. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製鋼工程や溶銑予備処理工程において発生する高温のスラグの処理方法に関するものである。   The present invention relates to a method for treating high-temperature slag generated in a steelmaking process or a hot metal preliminary treatment process.

製鋼工程や溶銑予備処理工程からは、1200℃〜1600℃の高温のスラグが大量に発生する。通常はこれらのスラグを面積が広いスラグヤードに排出し、大量の散水を行って冷却しているが、冷却効率が悪いために冷却に長時間を要するうえに、凝固したスラグの表面から発生する粉塵の飛散を防止するために、集塵コストが嵩むという問題があった。また散水が不均一になるとスラグ中にCaO成分が残存し、スラグを路盤材として使用する場合の障害となるおそれがあった。   A large amount of high-temperature slag of 1200 ° C. to 1600 ° C. is generated from the steel making process and the hot metal pretreatment process. Normally, these slags are discharged to a slag yard with a large area and sprayed with a large amount of water to cool them. However, cooling efficiency is poor, so cooling takes a long time and occurs from the surface of the solidified slag. In order to prevent dust from being scattered, there is a problem that the dust collection cost increases. Moreover, when watering becomes non-uniform | heterogenous, CaO component remains in slag and there existed a possibility of becoming a hindrance when using slag as a roadbed material.

しかも、スラグ中の微粉部分に分散している未反応CaO成分が水中にCa(OH)として分散し、更に、この水と接触したスラグ全体にCa(OH)が付着して、全体が強アルカリ性となってしまい、スラグを路盤材、或いは海洋用途に使用する場合には、白濁を生じるので、中和処理が必要になる。また、この強アルカリ水により集中配管などの処理設備が腐食することがある。更に、このようにして生じた強アルカリ水を、中和する必要が生じる。 Moreover, the unreacted CaO component dispersed in the fine powder portion in the slag is dispersed as Ca (OH) 2 in the water, and further, the Ca (OH) 2 adheres to the entire slag in contact with the water, When it becomes strongly alkaline and slag is used for roadbed materials or marine applications, it causes white turbidity, and thus neutralization is required. In addition, this strong alkaline water may corrode processing equipment such as centralized piping. Furthermore, it is necessary to neutralize the strong alkaline water generated in this way.

なお特許文献1には、溶融状態の製鋼スラグを浅底広皿上に注入して散水による一次冷却を行い、次に排滓台車内で散水による二次冷却を行い、更に貯水ピットに浸漬する製鋼スラグの安定化処理方法が開示されている。しかしこの方法はスラグを水中に浸漬するため、上記した強アルカリ水が発生するという問題がある。   In Patent Document 1, molten steelmaking slag is poured onto a shallow pan and subjected to primary cooling by sprinkling, then secondary cooling by sprinkling is performed in a waste cart, and further immersed in a water storage pit. A method for stabilizing steelmaking slag is disclosed. However, since this method immerses slag in water, there is a problem that the strong alkaline water described above is generated.

また特許文献2には、製鋼スラグをスラグ容器に入れて徐冷し、得られたα´−CaSiO4を大量に含むスラグ大塊を破砕してスラグ小塊とし、これを急速冷却してα´−CaSiO4をγ−CaSiO4に変態させてスラグを粉化させることが記載されている。しかしこの方法はγ−CaSiO4を多量に析出可能なステンレススラグに対してのみ有効な方法であり、一般の製鋼工程から発生するスラグには適用することができない。しかも特許文献2の実施例に記載されているように、徐冷のために24時間にもわたる冷却時間を要するため、生産性が低いという問題もある。
特公平5−42380号公報 特開2003−247786号公報
In Patent Document 2, steel slag is put into a slag container and slowly cooled, and the resulting slag large block containing a large amount of α′-Ca 2 SiO 4 is crushed into a slag small block, which is rapidly cooled. it is described that the transformation caused by to powdered slag and α'-Ca 2 SiO 4 in γ-Ca 2 SiO 4 Te. However, this method is effective only for stainless slag capable of precipitating γ-Ca 2 SiO 4 in a large amount, and cannot be applied to slag generated from a general steelmaking process. Moreover, as described in the examples of Patent Document 2, there is a problem that productivity is low because cooling time for 24 hours is required for slow cooling.
Japanese Patent Publication No. 5-42380 JP 2003-247786 A

本発明は上記した従来の問題点を解決し、従来のスラグヤードでの水冷方式のような発塵問題を生ずることがなく、かつ処理工程で強アルカリ水を生成させることがなく、処理に長時間を必要とせず、スラグを有価物として効率的に回収することができる高温スラグの処理方法を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, does not cause the problem of dust generation as in the conventional water cooling method in the slag yard, and does not generate strong alkaline water in the treatment process, and is long in processing. It aims at providing the processing method of the high temperature slag which does not need time and can collect | recover slag efficiently as a valuable material.

上記の課題を解決するためになされた本発明は、CaOを含有する高温のスラグを一次冷却したうえ、冷却装置の内部を移動させつつ二次冷却する高温スラグの処理方法であって、一次冷却および二次冷却を何れも、自由水を発生させない範囲での水冷却とすることを特徴とするものである。   The present invention made in order to solve the above-mentioned problems is a method for treating high-temperature slag, in which high-temperature slag containing CaO is primarily cooled and secondarily cooled while moving inside the cooling device. Both the secondary cooling and the secondary cooling are water cooling within a range in which free water is not generated.

本発明においては、請求項2のように、二次冷却を行う冷却装置として、内部に冷却風吹付け手段と冷却水供給手段とを備えたロータリークーラーを使用し、自由水を発生させない範囲での水冷却と空冷とを併用することができる。また請求項3のように、二次冷却を行う冷却装置として、ケーシングの内部に冷却風吹付け手段と冷却水供給手段と振動板とを備えた振動冷却コンベヤを使用し、自由水を発生させない範囲での水冷却と空冷とを併用することができる。   In the present invention, as in claim 2, as a cooling device for performing secondary cooling, a rotary cooler provided with cooling air spraying means and cooling water supply means is used, and free water is not generated. Water cooling and air cooling can be used in combination. Further, as in claim 3, as a cooling device for performing secondary cooling, a vibration cooling conveyor provided with cooling air blowing means, cooling water supply means, and a diaphragm in the casing is used, and free water is not generated. Water cooling and air cooling can be used in combination.

なお請求項4のように、冷却装置の出口におけるスラグ温度を100℃以上に維持することが好ましく、請求項5のように、冷却装置の入口にグリズリーを設置し、一次冷却を終えたスラグ中の地金大塊を分離することが好ましい。さらに、請求項6のように、CaOを含有するスラグが、製鋼スラグまたは溶銑予備処理スラグであることが好ましく、請求項7のように、一次冷却を終えたスラグの温度が、800〜1250℃であることが好ましい。   In addition, it is preferable to maintain the slag temperature at the outlet of the cooling device at 100 ° C. or higher as in claim 4, and in the slag after completing the primary cooling by installing a grizzly at the inlet of the cooling device as in claim 5. It is preferable to separate the bullion mass. Furthermore, it is preferable that the slag containing CaO is steelmaking slag or hot metal pretreatment slag as in claim 6, and the temperature of the slag after primary cooling is 800 to 1250 ° C as in claim 7. It is preferable that

本発明によれば、炉から排出されたCaOを含有する高温のスラグを、熱間状態から冷却するに際し、一次冷却および二次冷却を何れも、自由水を発生させない範囲での水冷却により行うので、従来のようにスラグ中のCaOが冷却水中に溶出することがなく、強アルカリ水が発生することがない。このためスラグ全体がアルカリ性となってしまうことがなく、また強アルカリ水によって装置が腐食することもない。   According to the present invention, when the hot slag containing CaO discharged from the furnace is cooled from the hot state, both primary cooling and secondary cooling are performed by water cooling in a range in which free water is not generated. Therefore, CaO in the slag is not eluted into the cooling water as in the conventional case, and strong alkaline water is not generated. For this reason, the whole slag does not become alkaline, and the apparatus is not corroded by strong alkaline water.

しかも高温のスラグが水分子と接触することによってスラグ中の炭素と水との水性ガス化反応が進行するとともに、この反応によって生じたCOがCOとなるシフト反応も進行し、生成されたCOがスラグ中のCaOをCaCOに変化させる。この結果、冷却されたスラグ中のCaOの含有率を低下させることができる。 Moreover, when the high-temperature slag comes into contact with water molecules, the water gasification reaction of carbon and water in the slag proceeds, and a shift reaction in which CO generated by this reaction becomes CO 2 also proceeds, and the generated CO 2 changes CaO in the slag to CaCO 3 . As a result, the CaO content in the cooled slag can be reduced.

なお、二次冷却は自由水を発生させないようにガス冷却で行うことも考えられるが、本願発明のように水冷却により行うことによって冷却能力が高まり、冷却装置の出側におけるスラグ温度が安定する。なお、製鋼工程において脱硫剤や脱リン剤として溶銑や溶鋼中に添加されるCaOの粒径は75μm前後のものが普通であるから、スラグ中に残留している未反応のCaOの粒径はこれ以下である。このため、冷却されたスラグを粗大粒と微小粒とに分級すると未反応のCaOは微小粒側に集まり、粗大粒中の未反応のCaO含有率はさらに低くなる。このため分級を行うことにより未反応CaO含有率の低いスラグと未反応CaO含有率が比較的高いスラグとに分離することができ、それぞれの有効活用が容易となる。   Although secondary cooling may be performed by gas cooling so as not to generate free water, cooling capability is increased by performing water cooling as in the present invention, and the slag temperature on the outlet side of the cooling device is stabilized. . In addition, since the particle size of CaO added to hot metal or molten steel as a desulfurizing agent or dephosphorizing agent in the steelmaking process is usually around 75 μm, the particle size of unreacted CaO remaining in the slag is This is less than this. For this reason, when the cooled slag is classified into coarse particles and fine particles, unreacted CaO gathers on the fine particle side, and the unreacted CaO content in the coarse particles is further reduced. For this reason, by classifying, it can isolate | separate into slag with a low unreacted CaO content rate, and a slag with a comparatively high unreacted CaO content rate, and each effective utilization becomes easy.

以下に本発明の好ましい実施形態を示す。
図1は本発明の実施形態の説明図であり、CaOを含有する高温のスラグをスラグパン1からピット2に流下させ、先ず一次冷却を行う。本発明で処理対象とする高温のスラグは、炉または鍋から排出された製鋼スラグや溶銑予備処理スラグであり、製鋼スラグには転炉吹錬スラグ、溶銑予備処理スラグには溶銑脱リンスラグ、溶銑脱硫スラグなどが含まれる。
Preferred embodiments of the present invention are shown below.
FIG. 1 is an explanatory diagram of an embodiment of the present invention, in which high-temperature slag containing CaO is caused to flow down from a slag pan 1 to a pit 2 to perform primary cooling first. The high-temperature slag to be treated in the present invention is steelmaking slag discharged from the furnace or pan or hot metal pretreatment slag. Desulfurization slag, etc. are included.

これらの製鋼スラグまたは溶銑予備処理スラグ中には、溶銑中に吹き込まれたCaOの微粉末(前記したように75μm前後)の一部が未反応のフリーCaOとして含有されている。なお、炉や鍋から排出されるスラグの温度はスラグの種類により異なるが、一般的には製鋼スラグでは1400〜1600℃であり、溶銑予備処理スラグでは1200〜1400℃である。   In these steelmaking slag or hot metal pretreatment slag, a part of fine CaO powder (around 75 μm as described above) blown into the hot metal is contained as unreacted free CaO. In addition, although the temperature of the slag discharged | emitted from a furnace or a pan changes with kinds of slag, generally it is 1400-1600 degreeC in steelmaking slag, and is 1200-1400 degreeC in hot metal pretreatment slag.

一次冷却を行うピット2の構造は特に限定されるものではないが、ここでは砕石層の上に厚さ0.25mのスラブを敷き詰めた構造を採用している。このほか、冷却ボックスを使用して一次冷却を行うこともできる。高温のスラグはピット2上で均一な厚さに掻き均され、大きな塊や地金を取り除かれる。さらに自由水を発生させない範囲で散水ノズル3から冷却水を噴霧する。このとき、噴霧した冷却水が瞬時に蒸発してスラグから気化熱を奪い、自由水の状態で残留しないようにすることが必要であり、自由水を発生させるとスラグ全体からのアルカリ溶出の問題が生ずるので好ましくない。この一次冷却によって、スラグ温度を800〜1250℃程度にまで降下させる。   The structure of the pit 2 for performing the primary cooling is not particularly limited, but here, a structure in which a slab having a thickness of 0.25 m is laid on the crushed stone layer is adopted. In addition, primary cooling can also be performed using a cooling box. The hot slag is leveled on the pit 2 to a uniform thickness, and large lumps and bullion are removed. Further, cooling water is sprayed from the watering nozzle 3 within a range in which free water is not generated. At this time, it is necessary for the sprayed cooling water to instantly evaporate and take the heat of vaporization from the slag, so that it does not remain in the state of free water. If free water is generated, there will be a problem of alkali elution from the entire slag. Is not preferable. By this primary cooling, the slag temperature is lowered to about 800 to 1250 ° C.

次にピット2からパワーショベル等の適宜の機器によりスラグを取り出し、冷却装置10において二次冷却を行う。冷却装置10の前段にはホッパー11が設置されており、その表面にはグリズリーと呼ばれる篩分け用の格子12が傾斜状態で設けられている。一次冷却を終えたスラグ中の地金大塊はこの篩分け格子12によって分離され、グリズリーを通過した小径のスラグのみが振動フィーダー13によって冷却装置10に投入される。   Next, slag is taken out from the pit 2 with an appropriate device such as a power shovel, and secondary cooling is performed in the cooling device 10. A hopper 11 is installed in the front stage of the cooling device 10, and a grid 12 for sieving called a grizzly is provided in an inclined state on the surface thereof. The bulk metal in the slag after the primary cooling is separated by the sieving grid 12, and only the small-diameter slag that has passed through the grizzly is put into the cooling device 10 by the vibration feeder 13.

二次冷却のための冷却装置10としては様々な形式のものを用いることができるが、この実施形態ではロータリークーラーが用いられている。これはケーシング14を水平面に対してわずかに傾斜させた軸線のまわりに回転させ、その内部に冷却風吹付け手段15を設けたものである。冷却風吹付け手段15はケーシング14の中心を貫通するように設置されており、この冷却風吹付け手段15から冷却風を噴出して内部のスラグを冷却する構造のクーラーである。なおケーシング14の外周にも冷却水供給手段19が配置されて外部冷却を行うようになっている。一次冷却によって800〜1250℃となったスラグはケーシング14の上端のホッパー11から投入され、ケーシング14の回転に連れて徐々に出口16の方向に移動して行く。   Although various types of cooling devices 10 for secondary cooling can be used, a rotary cooler is used in this embodiment. In this case, the casing 14 is rotated around an axis that is slightly inclined with respect to a horizontal plane, and cooling air blowing means 15 is provided inside the casing 14. The cooling air blowing means 15 is installed so as to penetrate the center of the casing 14, and is a cooler having a structure in which cooling air is jetted from the cooling air blowing means 15 to cool the internal slag. A cooling water supply means 19 is also arranged on the outer periphery of the casing 14 to perform external cooling. The slag that has reached 800 to 1250 ° C. by the primary cooling is introduced from the hopper 11 at the upper end of the casing 14 and gradually moves in the direction of the outlet 16 as the casing 14 rotates.

なお二次冷却のための冷却装置10としては、このようなロータリー型の冷却装置のほか、図2に示すようにケーシング14の内部に冷却風吹付け手段15と振動板21とを備えた振動冷却コンベヤを使用することもできる。振動板21の下方から吹き上がる冷却風によってスラグは流動しながら出口16の方向に移動して行く。いずれの場合にも冷却装置10を使用するのは、スラグの保有熱を有効利用して水性ガス化反応やシフト反応を進行させるためである。また冷却装置10を使用することにより、水性ガス化反応によって生成されるCOが周囲の雰囲気中に放出される危険も防止することができる。   As the cooling device 10 for secondary cooling, in addition to such a rotary type cooling device, as shown in FIG. 2, vibration cooling provided with cooling air blowing means 15 and a diaphragm 21 inside the casing 14. A conveyor can also be used. The slag moves in the direction of the outlet 16 while flowing by the cooling air blown from below the diaphragm 21. The cooling device 10 is used in any case in order to advance the water gasification reaction or shift reaction by effectively utilizing the retained heat of the slag. Further, by using the cooling device 10, it is possible to prevent a risk that CO generated by the water gasification reaction is released into the surrounding atmosphere.

このように本発明では冷却装置10を用いてスラグの二次冷却を行うのであるが、一次冷却のみならず二次冷却も、自由水を発生させない範囲での水冷却とした点に特徴がある。このために冷却装置10の内部には冷却水供給手段17が配置されており、冷却装置10の内部を移動するスラグに対して散水を行う。しかしその散水量は高温のスラグと散水とが接触した瞬間に気化し、自由水を発生させない量とする。このときスラグから大量の気化熱が奪われ、スラグは300℃以下、好ましくは250℃以下にまで冷却される。なお、自由水の発生を確実に防止するためには、冷却装置10の出口におけるスラグ温度を100℃以上に維持することが必要である。   As described above, in the present invention, the cooling device 10 is used to perform secondary cooling of the slag, but not only the primary cooling but also the secondary cooling is characterized by water cooling in a range that does not generate free water. . For this purpose, a cooling water supply means 17 is disposed inside the cooling device 10 and sprays water on the slag that moves inside the cooling device 10. However, the amount of water sprayed is the amount that vaporizes at the moment when the hot slag and water spray come into contact with each other and does not generate free water. At this time, a large amount of heat of vaporization is taken from the slag, and the slag is cooled to 300 ° C. or lower, preferably 250 ° C. or lower. In addition, in order to prevent generation | occurrence | production of free water reliably, it is necessary to maintain the slag temperature in the exit of the cooling device 10 at 100 degreeC or more.

このように本発明では一次冷却および二次冷却工程において、スラグと自由水とが接触することはないので、従来のようにアルカリ水が発生することはない。従ってスラグ全体がアルカリ性となってしまうことがなく、また強アルカリ水によって装置が腐食することも防止できる。しかも水性ガス化反応およびシフト反応を進行させることによって、スラグ中のフリーCaOを低下させることができる。   Thus, in the present invention, since the slag and free water do not come into contact in the primary cooling and secondary cooling steps, alkaline water is not generated as in the prior art. Therefore, the entire slag does not become alkaline, and the apparatus can be prevented from being corroded by strong alkaline water. Moreover, free CaO in the slag can be reduced by advancing the water gasification reaction and the shift reaction.

二次冷却により300℃以下にまで冷却されたスラグは、コンベヤ20に排出される。前記したようにスラグ中に残留しているCaOはおおよそ75μm以下がほとんどであり、自由水を発生させずに冷却されたスラグ中には微細粒子として分散しているため、排出されたスラグを篩などで分級すれば、未反応CaOは微小粒側に集中し、粗大粒側にはほとんど含まれない。このため、CaO含有率の低い粗大粒と、CaO含有率の高い微小粒とを得ることも可能となる。   The slag cooled to 300 ° C. or less by the secondary cooling is discharged to the conveyor 20. As described above, most of CaO remaining in the slag is approximately 75 μm or less, and since it is dispersed as fine particles in the slag cooled without generating free water, the discharged slag is sieved. For example, unreacted CaO is concentrated on the fine grain side and hardly contained on the coarse grain side. For this reason, it is also possible to obtain coarse grains having a low CaO content and fine grains having a high CaO content.

なお、冷却装置10の内部においてはスラグの冷却に伴う粉砕や、機械的な撹拌に伴う粉砕によって粉塵が発生するので、内部の空気をサイクロン集塵機18に通して集塵したうえで外部に排気している。   Note that dust is generated inside the cooling device 10 due to slag cooling and mechanical stirring, so the air inside the cyclone dust collector 18 is collected and exhausted to the outside. ing.

本発明の方法により処理されたスラグはCaOの含有率が低いので、そのまま、あるいはわずかに炭酸化処理するのみで、例えば漁礁などの海洋資材として使用可能である。また従来はスラグを路盤材として使用する際にはエージング処理を要していたが、本発明によって得られた粗大粒のスラグはフリーCaOの含有率が低いので、エージングレスまたはエージング期間の短縮を図ることが可能となる。   Since the slag treated by the method of the present invention has a low CaO content, the slag can be used as a marine material such as a fishing reef, for example, as it is or just by being slightly carbonated. Conventionally, when slag was used as a roadbed material, aging treatment was required. However, since the coarse slag obtained by the present invention has a low free CaO content, it is possible to reduce aging or shorten the aging period. It becomes possible to plan.

このように本発明の高温スラグの処理方法によれば、高温のスラグを一次冷却したうえ、冷却装置の内部を移動させつつ二次冷却するので、従来のような広大なスラグヤードが不要となり、巨大な集塵機が不要となる。また冷却はスラグを自由水と接触させることなく行うため、処理工程で強アルカリ水を生成させることがなく、装置の腐食も生じない。また水冷による強制冷却方式を採用しているので処理に長時間を必要としない。   As described above, according to the method for treating high-temperature slag of the present invention, the high-temperature slag is primarily cooled, and then the secondary cooling is performed while moving the inside of the cooling device. A huge dust collector is not required. Further, since cooling is performed without bringing the slag into contact with free water, strong alkaline water is not generated in the treatment process, and the apparatus does not corrode. Moreover, since a forced cooling method using water cooling is adopted, it does not require a long time for processing.

CaO粉末を吹き込んで溶銑の脱りん・脱硫処理を行った際に生成した約1300℃の溶銑予備処理スラグを、スラブ敷きのピットに移し替え、均一な厚さに掻き均した上で、表面に散水して1000℃まで一次冷却した。スラブ層の厚さは0.25mであり、その面積は約6m×5mである。冷却水は瞬時に蒸発し、自由水は発生しない。   The hot metal pretreatment slag generated at the time of dephosphorization / desulfurization treatment of hot metal by blowing CaO powder was transferred to the pit of the slab floor, and it was mixed to a uniform thickness. Water was sprinkled and primary cooling was performed to 1000 ° C. The slab layer has a thickness of 0.25 m and an area of about 6 m × 5 m. The cooling water evaporates instantly and no free water is generated.

このようにして一次冷却されたスラグをホッパーに投入してグリズリーで地金大塊を分離除去したうえ、直径約2m、長さ約8mのロータリークーラーに供給し、二次冷却を行った。ロータリークーラーの入口におけるスラグ温度は850℃である。このスラグに142m/hの冷却風を吹付けて内部空冷した。またロータリークーラーの外周面を30T/hの冷却水で水冷するとともに、内部の冷却水供給手段から1T/hの冷却水をスラグに散水し、自由水を発生させない範囲でスラグの水冷却を行った。ロータリークーラー内のスラグの平均滞留時間は20分である。 The primary cooled slag was put into a hopper, the bulk metal ingot was separated and removed by grizzly, and then supplied to a rotary cooler having a diameter of about 2 m and a length of about 8 m to perform secondary cooling. The slag temperature at the inlet of the rotary cooler is 850 ° C. The cooling air of 142 m 3 / h was blown onto this slag to cool it internally. In addition, the outer peripheral surface of the rotary cooler is cooled with 30 T / h of cooling water, and 1 T / h of cooling water is sprinkled from the internal cooling water supply means into the slag, and the slag is cooled in a range that does not generate free water. It was. The average residence time of the slag in the rotary cooler is 20 minutes.

この結果、ロータリークーラーの出口から約220℃に冷却されたスラグが排出され、ロータリークーラーの内部を通過する間のスラグの温度降下量は630℃であった。スラグはロータリークーラーの内部を搬送される間に粉砕され、粉砕スラグとなっている。なお、元のスラグに含有されるCaOの含有率は6〜9%であるが、ロータリークーラーの出口では2.5〜4%にまで低下した。このスラグは後処理を行わなくても、JIS−5015において路盤材に要求される膨張比1.5%以下の特性を満足することができる。   As a result, the slag cooled to about 220 ° C. was discharged from the outlet of the rotary cooler, and the temperature drop of the slag while passing through the inside of the rotary cooler was 630 ° C. The slag is pulverized while being conveyed inside the rotary cooler to form pulverized slag. In addition, although the content rate of CaO contained in the original slag is 6 to 9%, it decreased to 2.5 to 4% at the outlet of the rotary cooler. This slag can satisfy the characteristic of an expansion ratio of 1.5% or less required for roadbed materials in JIS-5015 without performing post-treatment.

一方、ロータリークーラーの内部冷却をガス冷却とした場合には、ロータリークーラーの内部を通過する間のスラグの温度降下量は450℃にとどまり、自由水の発生はないものの、冷却能力の低下は明らかであった。   On the other hand, when the internal cooling of the rotary cooler is gas cooling, the temperature drop of the slag while passing through the rotary cooler stays at 450 ° C, and free water is not generated, but the cooling capacity is clearly reduced. Met.

本発明の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention. 本発明の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of this invention.

符号の説明Explanation of symbols

1 スラグパン
2 ピット
3 散水ノズル
10 冷却装置
11 ホッパー
12 篩分け用の格子
13 振動フィーダー
14 ケーシング
15 冷却風吹付け手段
16 出口
17 冷却水供給手段
18 サイクロン集塵機
19 冷却水供給手段
20 コンベヤ
21 振動板
DESCRIPTION OF SYMBOLS 1 Slag pan 2 Pit 3 Sprinkling nozzle 10 Cooling device 11 Hopper 12 Screening grid 13 Vibrating feeder 14 Casing 15 Cooling air spraying means 16 Outlet 17 Cooling water supply means 18 Cyclone dust collector 19 Cooling water supply means 20 Conveyor 21 Diaphragm

Claims (7)

CaOを含有する高温のスラグを一次冷却したうえ、冷却装置の内部を移動させつつ二次冷却する高温スラグの処理方法であって、一次冷却および二次冷却を何れも、自由水を発生させない範囲での水冷却とすることを特徴とする高温スラグの処理方法。   A high-temperature slag treatment method in which high-temperature slag containing CaO is primarily cooled and then secondary-cooled while moving inside the cooling device, in which both primary and secondary cooling do not generate free water A method for treating high-temperature slag, which is characterized by water cooling in the furnace. 二次冷却を行う冷却装置として、内部に冷却風吹付け手段と冷却水供給手段とを備えたロータリークーラーを使用し、自由水を発生させない範囲での水冷却と空冷とを併用することを特徴とする請求項1に記載の高温スラグの処理方法。   As a cooling device that performs secondary cooling, it uses a rotary cooler with cooling air spraying means and cooling water supply means inside, and uses both water cooling and air cooling in a range that does not generate free water The processing method of the high temperature slag of Claim 1 to do. 二次冷却を行う冷却装置として、ケーシングの内部に冷却風吹付け手段と冷却水供給手段と振動板とを備えた振動冷却コンベヤを使用し、自由水を発生させない範囲での水冷却と空冷とを併用することを特徴とする請求項1に記載の高温スラグの処理方法。   As a cooling device for performing secondary cooling, a vibration cooling conveyor provided with cooling air spraying means, cooling water supply means, and a diaphragm in the casing is used to perform water cooling and air cooling within a range in which free water is not generated. It uses together, The processing method of the high temperature slag of Claim 1 characterized by the above-mentioned. 冷却装置の出口におけるスラグ温度を100℃以上に維持することを特徴とする請求項1に記載の高温スラグの処理方法。   The method for treating high-temperature slag according to claim 1, wherein the slag temperature at the outlet of the cooling device is maintained at 100 ° C. or higher. 冷却装置の入口にグリズリーを設置し、一次冷却を終えたスラグ中の地金大塊を分離することを特徴とする請求項1記載の高温スラグの処理方法。   The processing method of the high temperature slag of Claim 1 which installs a grizzly at the inlet of a cooling device, and isolate | separates the metal bullion in the slag which finished primary cooling. CaOを含有するスラグが、製鋼スラグまたは溶銑予備処理スラグであることを特徴とする請求項1記載の高温スラグの処理方法。   The method for treating high-temperature slag according to claim 1, wherein the slag containing CaO is steelmaking slag or hot metal pretreatment slag. 一次冷却を終えたスラグの温度が、800〜1250℃であることを特徴とする請求項1記載の高温スラグの処理方法。   The temperature of the slag which finished primary cooling is 800-1250 degreeC, The processing method of the high temperature slag of Claim 1 characterized by the above-mentioned.
JP2007304215A 2007-11-26 2007-11-26 High temperature slag treatment method Active JP4418489B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007304215A JP4418489B2 (en) 2007-11-26 2007-11-26 High temperature slag treatment method
TW097145501A TW200936771A (en) 2007-11-26 2008-11-25 Method and apparatus for treating high-temperature slag
PCT/JP2008/071756 WO2009069794A1 (en) 2007-11-26 2008-11-25 Method and apparatus for treating high-temperature slag
CN200880117836.2A CN101874121B (en) 2007-11-26 2008-11-25 Method for pre-treating high-temperature steel-making slag or iron liquid
BRPI0819855A BRPI0819855B1 (en) 2007-11-26 2008-11-25 high temperature slag treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304215A JP4418489B2 (en) 2007-11-26 2007-11-26 High temperature slag treatment method

Publications (2)

Publication Number Publication Date
JP2009127093A true JP2009127093A (en) 2009-06-11
JP4418489B2 JP4418489B2 (en) 2010-02-17

Family

ID=40818326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304215A Active JP4418489B2 (en) 2007-11-26 2007-11-26 High temperature slag treatment method

Country Status (1)

Country Link
JP (1) JP4418489B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126747A (en) * 2007-11-26 2009-06-11 Nippon Steel Corp Method for treating slug
JP2011208186A (en) * 2010-03-29 2011-10-20 Nisshin Steel Co Ltd Method for cooling molten iron pre-treating slag
JP2012056814A (en) * 2010-09-10 2012-03-22 Nippon Steel Corp Method for treating slag
JP2012055788A (en) * 2010-09-06 2012-03-22 Nippon Steel Corp Vibrating grizzly
CN105658825A (en) * 2013-10-25 2016-06-08 赛拉梅塔尔有限公司 Apparatus for recycling waste raw material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126747A (en) * 2007-11-26 2009-06-11 Nippon Steel Corp Method for treating slug
JP2011208186A (en) * 2010-03-29 2011-10-20 Nisshin Steel Co Ltd Method for cooling molten iron pre-treating slag
JP2012055788A (en) * 2010-09-06 2012-03-22 Nippon Steel Corp Vibrating grizzly
JP2012056814A (en) * 2010-09-10 2012-03-22 Nippon Steel Corp Method for treating slag
CN105658825A (en) * 2013-10-25 2016-06-08 赛拉梅塔尔有限公司 Apparatus for recycling waste raw material

Also Published As

Publication number Publication date
JP4418489B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4719082B2 (en) High temperature slag treatment method
JP4353706B2 (en) Process for producing milled slag and facility for producing milled slag
JP4418489B2 (en) High temperature slag treatment method
WO2009069794A1 (en) Method and apparatus for treating high-temperature slag
KR100504295B1 (en) Method and apparatus for producing desulfurizing agent for hot-metal
JP4418490B2 (en) Method for collecting bullion in steelmaking slag
EA025541B1 (en) Process for granulation of metallurgical slag
CN105621906A (en) Metallurgical molten slag granulation treatment system and method
CN106423168B (en) A kind of liquid blast furnace slag granulation produces the method and apparatus of tar cracking catalyst
JP2009227495A (en) Method for treating slag
JP4870063B2 (en) Slag processing method
JP4719091B2 (en) High temperature slag treatment equipment
JP2009227493A (en) Method for treating slag
JP2009126748A (en) Treatment method for slag
CA1117297A (en) Method and apparatus for granulating blast furnace slag
JP6683155B2 (en) Method for producing granules containing carbon material
JP4136520B2 (en) Foam glass manufacturing method
JP2008115077A (en) Foamed glass and method of producing the same
JP2004238234A (en) Air-granulated slag, method for producing the same, method for treating the same, and fine aggregate for concrete
JP4937818B2 (en) Method of melt reforming steelmaking slag
JP2017081811A (en) Molten slag treatment device and method for treating molten slag
JP2007009240A (en) Method for reusing converter dust
JP2001048603A (en) Production of blast-furnace slag fine aggregate
JP5517063B2 (en) Slag processing method
JP2010150095A (en) Method for producing civil engineering and building material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350