JP2009124088A - Method of setting manufacturing condition of resist pattern, and method of manufacturing semiconductor device - Google Patents

Method of setting manufacturing condition of resist pattern, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2009124088A
JP2009124088A JP2007299522A JP2007299522A JP2009124088A JP 2009124088 A JP2009124088 A JP 2009124088A JP 2007299522 A JP2007299522 A JP 2007299522A JP 2007299522 A JP2007299522 A JP 2007299522A JP 2009124088 A JP2009124088 A JP 2009124088A
Authority
JP
Japan
Prior art keywords
data
multiple regression
function
resist pattern
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007299522A
Other languages
Japanese (ja)
Other versions
JP4870650B2 (en
Inventor
Takashi Sasaki
俊 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2007299522A priority Critical patent/JP4870650B2/en
Publication of JP2009124088A publication Critical patent/JP2009124088A/en
Application granted granted Critical
Publication of JP4870650B2 publication Critical patent/JP4870650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for precisely determining manufacturing conditions of a resist pattern. <P>SOLUTION: A method of setting the manufacturing conditions of a resist pattern includes a step of measuring a plurality of sets of dimension measurement data of the resist pattern when the position of the focal point and exposure are changed independently; a step of measuring the variation of a projection exposure apparatus based on the position of the focal point of the apparatus and the normal distribution of the exposure; a step of performing a two-variable multiple regression analysis using an explanation function with the position of the focal point and the exposure as variables based on the dimension measurement data to determine an approximate expression for a multiple regression curve; a step of comparing a determination coefficient adjusted for the degree of freedom and a predetermined regression accuracy determination value; a step of generating distribution calculation points which are normally distributed about the designed point as a mean when the determination coefficient adjusted for the degree of freedom is equal to or larger than the predetermined regression accuracy determination value; a step of calculating dimension calculation data; and a step of determining the predetermined designed point as the manufacturing condition when a value three times of the standard deviation of the calculated dimension calculation data is within an allowable dimension range on both sides of the mean value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置の製造時のフォトリソグラフィ工程におけるレジストパターンの製造条件設定方法および半導体装置の製造方法に関する。   The present invention relates to a resist pattern manufacturing condition setting method and a semiconductor device manufacturing method in a photolithography process when manufacturing a semiconductor device.

半導体装置の製造時におけるフォトリソグラフィ工程においては、半導体装置の所望の特性を得るために、線幅等の寸法の許容寸法範囲よりも小さなバラツキとなるように、実際のレジストパターンの形成時における製造条件を決定する必要がある。
寸法のバラツキ要因は、露光量の変動と焦点位置の変動との2つに大別され、露光量の変動要因としては、半導体ウェハの面内でのレジストの塗布膜厚の分布やレジスト焼成時の温度分布、フォトマスクの寸法誤差、露光域内での照度分布、半導体ウェハの面内での現像液の液盛り量の分布、下地の反射率のバラツキ等がある。
In the photolithography process at the time of manufacturing the semiconductor device, in order to obtain the desired characteristics of the semiconductor device, manufacturing at the time of actual resist pattern formation so that the variation is smaller than the allowable range of dimensions such as line width. It is necessary to determine the conditions.
The dimensional variation factors are roughly divided into exposure amount fluctuations and focal point position fluctuations. The exposure amount fluctuation factors are the distribution of resist coating film thickness within the surface of the semiconductor wafer and the resist baking process. Temperature distribution, photomask dimensional error, illuminance distribution within the exposure area, developer liquid volume distribution within the surface of the semiconductor wafer, variation in substrate reflectivity, and the like.

また、焦点位置の変動要因としては、投影露光装置の収差やフォーカス設定の経時的な変化、半導体ウェハの平坦度、半導体ウェハに形成されている素子の凹凸等がある。
1つのフォトリソグラフィ工程における寸法バラツキを知るためには、実際にフォトリソグラフィ工程を行って、1枚の半導体ウェハ上で、同一のフォトマスクによって得られるレジストパターンの寸法を多数点測定し、その寸法バラツキを評価する方法や、寸法バラツキに代えて、プロセス裕度を指標とする方法がある。
Further, the fluctuation factors of the focal position include the aberration of the projection exposure apparatus and the change of the focus setting over time, the flatness of the semiconductor wafer, the unevenness of the elements formed on the semiconductor wafer, and the like.
In order to know the dimensional variation in one photolithography process, the photolithography process is actually performed, and the dimensions of the resist pattern obtained by the same photomask on a single semiconductor wafer are measured at many points. There are a method for evaluating variation and a method using process margin as an index instead of dimensional variation.

このプロセス裕度の計算する従来の方法は、露光量と焦点位置をそれぞれ独立に変化させたときに形成されたレジストパターンの線幅の寸法測定データをマトリックス状に測定し、その寸法測定データを用いて、焦点位置毎に線幅の露光量依存性を回帰分析により多項式の回帰曲線で近似し、この近似式を用いてマトリックス状にそれぞれの露光量と焦点位置における線幅計算データを算出し、算出した線幅計算データを用いて、露光量毎に線幅の焦点位置依存性を回帰分析により多項式の回帰曲線で近似し、この近似式を用いてマトリックス状にそれぞれの露光量と焦点位置における線幅計算データを算出する。   The conventional method for calculating the process margin is to measure the dimension measurement data of the line width of the resist pattern formed when the exposure amount and the focus position are changed independently, and to measure the dimension measurement data. Approximate the dependence of the line width on the exposure amount for each focus position with a regression curve by regression analysis, and calculate the line width calculation data for each exposure amount and focus position in a matrix using this approximate expression. Using the calculated line width calculation data, the focus position dependence of the line width is approximated by a regression curve by regression analysis for each exposure dose, and each exposure amount and focus position are arranged in a matrix using this approximate expression. The line width calculation data at is calculated.

そして、2回の近似により算出された線幅計算データと、測定された寸法測定データとを比較し、極端に異なっている寸法測定データを削除し、または多項式の次数を変更しながら最良の近似が得られるまで、前記の各ステップを繰返し、最良の近似が得られたときに、その近似式を用いてマトリックス状にそれぞれの露光量と焦点位置における線幅計算データを算出し、算出した線幅計算データを用いて、焦点位置毎に線幅の露光量依存性を回帰分析により多項式の回帰曲線で近似して最終的な近似式を求め、各焦点位置における許容寸法範囲の下限寸法となる露光量と上限寸法となる露光量とを計算して、1つのフォトリソグラフィ工程におけるレジストパターンの製造条件を決定している(例えば、特許文献1参照。)。
特開平10−199787号公報(第4頁段落0023−第5頁段落0028、第1図、第4図)
Then, the line width calculation data calculated by the two approximations is compared with the measured dimension measurement data, the dimension measurement data that is extremely different is deleted, or the best approximation is performed while changing the order of the polynomial Until the best approximation is obtained, the line width calculation data at each exposure amount and focal position is calculated in a matrix form using the approximate expression, and the calculated line is obtained. The width calculation data is used to approximate the exposure dose dependency of the line width for each focal position with a regression curve by regression analysis to obtain a final approximate expression, which is the lower limit dimension of the allowable dimension range at each focal position. The exposure amount and the exposure amount that is the upper limit dimension are calculated to determine the resist pattern manufacturing conditions in one photolithography process (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-199787 (page 4, paragraph 0023 to page 5, paragraph 0028, FIGS. 1 and 4)

しかしながら、上述した従来の技術においては、焦点位置毎に線幅の露光量依存性を計算する最終的な近似式を求め、これを用いて各焦点位置における許容寸法範囲の線幅を得る上限および下限の露光量を求めているため、寸法測定データを測定した焦点位置以外、つまり最終的な近似式を求めた隣合う2つ焦点位置の中間の焦点位置における上下限の露光量を即座に求めることができず、これを求めようとすると、得られた最終的な近似式を用いて数値解析で解くことが必要になり、計算時間を要すると共に、計算された寸法の計算精度を低下させるという問題がある。   However, in the above-described conventional technology, a final approximate expression for calculating the dependency of the line width on the exposure amount is obtained for each focal position, and an upper limit for obtaining the line width of the allowable dimension range at each focal position using this is calculated. Since the lower limit exposure amount is obtained, the upper and lower exposure amounts at the focus position other than the focus position where the dimension measurement data is measured, that is, between the two adjacent focus positions for which the final approximate expression is obtained, are immediately obtained. If it is not possible to obtain this, it will be necessary to solve by numerical analysis using the final approximate expression obtained, which will require calculation time and reduce the calculation accuracy of the calculated dimensions There's a problem.

このため、設定しようとする中間の焦点位置を含む線幅の寸法測定データを測定し直し、その後に上記の回帰分析を最初から行って製造条件を決定すると、製造条件の決定に時間を要するという問題がある。
また、フォトリソグラフィ工程における寸法バラツキは、その工程に用いる投影露光装置に起因するバラツキ、例えば、露光量や焦点位置の設定のバラツキやこれらの経時的な変化等によっても生じるため、投影露光装置のバラツキを考慮しないで製造条件の設定を行うと、その設定精度が低下して、予期せぬ製造バラツキが生じ、製造する半導体装置の歩留りを低下させるという問題がある。
For this reason, if the dimension measurement data of the line width including the intermediate focus position to be set is measured again and then the above regression analysis is performed from the beginning to determine the manufacturing conditions, it takes time to determine the manufacturing conditions. There's a problem.
In addition, the dimensional variation in the photolithography process is also caused by variations caused by the projection exposure apparatus used in the process, for example, variations in exposure amount and focus position setting, changes with time, etc. If the manufacturing conditions are set without taking the variation into consideration, there is a problem that the setting accuracy is lowered, an unexpected manufacturing variation occurs, and the yield of the semiconductor device to be manufactured is reduced.

本発明は、上記の問題点を解決するためになされたもので、フォトリソグラフィ工程におけるレジストパターンの製造条件を精度よく決定する手段を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide means for accurately determining the manufacturing conditions of a resist pattern in a photolithography process.

本発明は、上記課題を解決するために、レジストパターンの製造条件設定方法が、1つのフォトリソグラフィ工程における、焦点位置と露光量とをそれぞれ独立に変化させたときのレジストパターンの複数の寸法測定データを測定するステップと、当該フォトリソグラフィ工程に用いる投影露光装置の焦点位置と露光量の正規分布における装置バラツキデータを測定するステップと、前記寸法測定データを基に、焦点位置と露光量とを変数とした説明関数を用いて、2変数の多重回帰分析を行い、重回帰曲線の近似式を決定するステップと、前記多重回帰分析により決定された重回帰曲線の自由度調整済み決定係数と、所定の回帰精度判定値とを比較するステップと、前記自由度調整済み決定係数が、前記所定の回帰精度判定値以上のときに、前記装置バラツキデータと、所定の設計点の焦点位置および露光量とを基に、前記設計点を平均値とした正規分布の分布形を有する分布計算点を発生させるステップと、前記分布計算点毎に、前記決定された重回帰曲線の近似式を用いて寸法計算データを算出するステップと、前記寸法計算データの正規分布における平均値と標準偏差を算出するステップと、前記算出された寸法計算データの標準偏差の3倍が、前記平均値の両側で許容寸法範囲以内のときに、前記所定の設計点を当該フォトリソグラフィ工程におけるレジストパターンの製造条件として決定するステップと、を具備することを特徴とする。   In order to solve the above-described problems, the present invention provides a resist pattern manufacturing condition setting method for measuring a plurality of dimensions of a resist pattern when a focal position and an exposure amount are independently changed in one photolithography process. A step of measuring data, a step of measuring apparatus variation data in a normal distribution of a focal position and an exposure amount of a projection exposure apparatus used in the photolithography process, and a focal position and an exposure amount based on the dimension measurement data. Using the explanatory function as a variable, performing a multiple regression analysis of two variables to determine an approximate expression of a multiple regression curve, a determination coefficient adjusted for the degree of freedom of the multiple regression curve determined by the multiple regression analysis, A step of comparing with a predetermined regression accuracy judgment value, and when the degree of freedom adjusted determination coefficient is not less than the predetermined regression accuracy judgment value Generating distribution calculation points having a normal distribution with the design point as an average value based on the apparatus variation data, a focal position and an exposure amount of a predetermined design point; and for each distribution calculation point A step of calculating dimension calculation data using an approximate expression of the determined multiple regression curve, a step of calculating an average value and a standard deviation in a normal distribution of the dimension calculation data, and the calculated dimension calculation data Determining the predetermined design point as a resist pattern manufacturing condition in the photolithography process when three times the standard deviation of the average value is within an allowable dimension range on both sides of the average value. And

これにより、本発明は、寸法測定データに基づいた重回帰曲線の近似式を得ることができ、任意の焦点位置と露光量の組み合わせを重回帰曲線の近似式に代入して、一度の計算で寸法計算データWを容易に算出することができ、計算された寸法の計算精度を高めることができると共に、投影露光装置のバラツキを考慮するための多数の分布計算点における寸法計算データの計算時間を短縮することが可能になり、レジストパターンの製造条件を精度よく、かつ迅速に決定することができるという効果が得られる。   As a result, the present invention can obtain an approximate expression of a multiple regression curve based on dimensional measurement data, and by substituting an arbitrary combination of focus position and exposure amount into the approximate expression of the multiple regression curve, a single calculation can be performed. The dimension calculation data W can be easily calculated, the calculation accuracy of the calculated dimension can be improved, and the calculation time of the dimension calculation data at a large number of distribution calculation points for considering the variation of the projection exposure apparatus can be reduced. It is possible to shorten the time, and the effect that the manufacturing conditions of the resist pattern can be determined accurately and quickly is obtained.

以下に、図面を参照して本発明によるレジストパターンの製造条件設定方法の実施例について説明する。   Embodiments of a resist pattern manufacturing condition setting method according to the present invention will be described below with reference to the drawings.

図1は実施例1の演算装置を示すブロック図、図2は実施例1の製造条件設定処理を示すフローチャートである。
本実施例のレジストパターンの製造条件の設定における解析は、パーソナルコンピュータ等の演算装置1を用いて行う。
図1において、2は演算装置1の制御部であり、演算装置1内の各部を制御して製造条件設定処理等を実行する機能を有している。
FIG. 1 is a block diagram showing an arithmetic unit according to the first embodiment, and FIG. 2 is a flowchart showing manufacturing condition setting processing according to the first embodiment.
The analysis in setting the manufacturing conditions of the resist pattern of this embodiment is performed using the arithmetic unit 1 such as a personal computer.
In FIG. 1, reference numeral 2 denotes a control unit of the arithmetic device 1, which has a function of controlling each part in the arithmetic device 1 and executing manufacturing condition setting processing and the like.

3は記憶部であり、制御部2が実行するプログラムやそれに用いる各種のデータおよび制御部2による処理結果等が格納される。
4は表示部であり、LCD等の表示画面を備えており、各種の入力画面や解析結果画面等を表示する機能を有している。
5は入力部であり、キーボードやマウス等を備えており、工程設計等を担当する担当者からの、各種の測定データや設定値等の入力を受付ける機能を有している。
A storage unit 3 stores a program executed by the control unit 2, various data used for the program, a processing result by the control unit 2, and the like.
A display unit 4 includes a display screen such as an LCD and has a function of displaying various input screens, analysis result screens, and the like.
An input unit 5 includes a keyboard, a mouse, and the like, and has a function of accepting input of various measurement data and setting values from a person in charge of process design.

上記の演算装置1の記憶部3には、焦点位置fと露光量dとをそれぞれ独立に変化させたときのレジストパターンの寸法としての線幅を測定した寸法測定データとしての線幅測定データLを用いて2変数の所定の説明関数W(f,d)(多重回帰分析における重回帰曲線を記述する複数の項からなる関数をいう。)を用いた多重回帰分析を行う機能を有する多重回帰分析プログラム、投影露光装置における焦点位置fと露光量dの装置バラツキを示すそれぞれの正規分布の平均値と標準偏差から2次元の分布形を有する分布計算点T(f,d)を発生させる機能を有する分布計算点発生プログラム、多重回帰分析により得られた重回帰曲線の自由度調整済み決定係数R adを所定の回帰精度判定値と比較して自由度調整済み決定係数R adが回帰精度判定値以上の場合に、重回帰曲線の収束を判定し、その決定された近似式で記述される重回帰曲線を用いて分布計算点T(f,d)毎の寸法計算データとしての線幅計算データWを計算し、これらの線幅計算データWの正規分布における平均値と標準偏差を算出し、その標準偏差の3倍が平均値の両側で許容寸法範囲以内のときに、製造条件の決定を判定する機能を有するアプリケーションプログラム等からなる製造条件設定処理プログラムが予め格納されており、制御部2が実行する製造条件設定処理プログラムのステップにより本実施例の演算装置1のハードウェアとしての各機能手段が形成される。 The storage unit 3 of the arithmetic device 1 stores the line width measurement data L as dimension measurement data obtained by measuring the line width as the dimension of the resist pattern when the focal position f and the exposure amount d are independently changed. Multiple regression having a function of performing multiple regression analysis using a predetermined explanatory function W (f, d) of two variables (refers to a function consisting of a plurality of terms describing a multiple regression curve in multiple regression analysis) Analysis program, function of generating a distribution calculation point T (f, d) having a two-dimensional distribution form from the average value and standard deviation of the normal distributions indicating the apparatus variation of the focal position f and exposure dose d in the projection exposure apparatus distribution calculation point generator program having a degree of freedom adjusted coefficient of determination R 2 ad is compared with a predetermined regression accuracy determination value freedom adjusted coefficient of determination regression curve obtained by multiple regression analysis R 2 When ad is equal to or greater than the regression accuracy determination value, the convergence of the multiple regression curve is determined, and the dimension calculation data for each distribution calculation point T (f, d) is determined using the multiple regression curve described by the determined approximate expression. The line width calculation data W is calculated, and the average value and standard deviation in the normal distribution of these line width calculation data W are calculated, and when the standard deviation is within the allowable dimension range on both sides of the average value A manufacturing condition setting processing program including an application program having a function for determining the determination of manufacturing conditions is stored in advance, and the operation of the arithmetic device 1 according to the present embodiment is performed according to the steps of the manufacturing condition setting processing program executed by the control unit 2. Each functional means as hardware is formed.

また、記憶部3には、重回帰曲線の自由度調整済み決定係数R adを基に、重回帰曲線の収束を判定するための回帰精度判定値、および測定データの削除に伴う測定データの残存率(データ残存率という。)の下限値である残存率下限値、線幅測定データLijの決定された重回帰曲線からの離間率(線幅計算データWijと線幅測定データLijとの差の絶対値を、線幅測定データLijで除した差の割合をいう。)を基に、多重回帰分析に用いる線幅測定データLijを選別するための所定の割合である離間データ判定値が予め設定されて格納される他、多重回帰分析に用いる線幅測定データLのデータ数をカウントするための測定数カウントエリアが確保されている。 Further, the storage unit 3 stores the regression accuracy determination value for determining the convergence of the multiple regression curve based on the determination coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve, and the measurement data associated with the deletion of the measurement data. Residual rate lower limit value that is the lower limit value of the residual rate (referred to as data residual rate), the separation rate from the determined multiple regression curve of the line width measurement data Lij (difference between the line width calculation data Wij and the line width measurement data Lij) The separation data determination value, which is a predetermined ratio for selecting the line width measurement data Lij used in the multiple regression analysis, is calculated in advance based on the ratio of the difference obtained by dividing the absolute value of (2) by the line width measurement data Lij. In addition to being set and stored, a measurement number count area for counting the number of line width measurement data L used for multiple regression analysis is secured.

本実施例の回帰精度判定値としては、自由度調整済み決定係数R adの判定値として、0.999が格納され、残存率下限値としては、当初の測定データ数に対する比率として、0.8が格納され、離間データ判定値としては、0.1が格納されている。
なお、自由度調整済み決定係数R adは、各線幅測定データLとその格子点の焦点位置fと露光量dを用いて算出された線幅計算データWとが、完全に一致する場合が「1」であり、自由度調整済み決定係数R adが「1」を超えることはなく、自乗で表されるので、負の値になることもない。
As the regression accuracy determination value of this example, 0.999 is stored as the determination value of the determination coefficient R 2 ad after adjusting the degree of freedom, and the lower limit of the remaining rate is set to 0. 0 as the ratio to the initial number of measurement data. 8 is stored, and 0.1 is stored as the separation data determination value.
Note that the degree-of-freedom-adjusted determination coefficient R 2 ad may be such that the line width measurement data L, the line width calculation data W calculated using the focus position f of the lattice point, and the exposure amount d match completely. It is “1”, and the degree-of-freedom-adjusted determination coefficient R 2 ad does not exceed “1” and is expressed by the square, so that it does not become a negative value.

また、自由度調整済み決定係数R adは、決定係数Rや相関係数Rと同様に回帰精度の良さを示す指標であるが、決定係数Rや相関係数Rが説明関数の項の数を増減させると、それぞれの値が変化する(見かけ上、回帰精度が変化する。)のに対して、自由度調整済み決定係数R adの場合は、説明関数の項の数を増減させても、値が変化しないように調整された指数であるので、説明関数の形態に関らず、回帰精度の良否を判定することが可能になる。 Further, degree of freedom adjusted coefficient of determination R 2 ad is an index indicating the determined coefficient R 2 and goodness of correlation coefficient R as well as the regression accuracy, the coefficient of determination R 2 and term of the correlation coefficient R is described functions When the number of is increased or decreased, each value changes (apparently the regression accuracy changes), whereas in the case of the determination coefficient R 2 ad adjusted for the degree of freedom, the number of terms of the explanatory function is increased or decreased. Even if the index is adjusted, the index is adjusted so that the value does not change. Therefore, it is possible to determine whether the regression accuracy is good or not regardless of the form of the explanatory function.

本実施例の製造条件設定処理においては、事前に製造条件を設定すべき1つのフォトリソグラフィ工程(特定のフォトリソグラフィ工程)に用いる通常の投影露光装置を用い、所定の焦点位置fと露光量dとを一定の値にセットして、複数回(本実施例では、1000回程度)の実際の露光量dと焦点位置fを測定し、そのときの装置バラツキデータとして焦点位置fおよび露光量dの正規分布における露光量の平均値mdとその標準偏差σd、および焦点位置の平均値mfとその標準偏差σfとを測定されている。   In the manufacturing condition setting process of the present embodiment, a normal projection exposure apparatus used in one photolithography process (specific photolithography process) for which manufacturing conditions are to be set in advance is used, and a predetermined focal position f and exposure amount d are used. Are set to a fixed value, and the actual exposure amount d and the focus position f are measured a plurality of times (in this embodiment, about 1000 times), and the focus position f and the exposure amount d are used as device variation data at that time. The average value md of exposure and its standard deviation σd, and the average value mf of focus position and its standard deviation σf are measured.

また、図3に示すように、特定のフォトリソグラフィ工程において、露光量dと焦点位置fとをそれぞれ独立に、つまり1つの焦点位置fについて露光量dをp個の条件で変化させ、これをq個の条件の焦点位置fについて、半導体ウェハ上に形成されるレジストパターンの線幅を測定した線幅測定データL(本実施例では、pは20〜50条件、qは20〜50条件)が測定され、そのp×q個のデータをマトリックスにまとめた図4に示す測定表が予め準備されている。   In addition, as shown in FIG. 3, in a specific photolithography process, the exposure amount d and the focal position f are changed independently, that is, the exposure amount d is changed under p conditions for one focal position f. Line width measurement data L obtained by measuring the line width of a resist pattern formed on a semiconductor wafer with respect to q focal positions f (in this embodiment, p is 20 to 50 conditions and q is 20 to 50 conditions). A measurement table shown in FIG. 4 is prepared in advance, in which p × q data are collected in a matrix.

なお、図4に示す各格子点の線幅測定データLijは、i番目の条件の焦点位置fiのときに、j番目の条件の露光量djで形成された線幅の線幅測定データLを示す。
本実施例の2変数(焦点位置fと露光量d)の多重回帰分析における説明関数W(f,d)としては、焦点位置fに関する第1関数F(f)と、露光量dに関する第2関数G(d)と、焦点位置fと露光量dとに関する第3関数H(f,d)とを加えた次式を用いる。
Note that the line width measurement data Lij of each lattice point shown in FIG. 4 is the line width measurement data L of the line width formed with the exposure amount dj of the jth condition at the focal position fi of the ith condition. Show.
The explanatory function W (f, d) in the multiple regression analysis of the two variables (focal position f and exposure amount d) of the present embodiment includes a first function F (f) relating to the focal position f and a second function relating to the exposure amount d. The following equation is used which is obtained by adding the function G (d) and the third function H (f, d) relating to the focal position f and the exposure amount d.

W(f,d)=Co+F(f)+G(d)+H(f,d)(Coは定数)
・・・・・・(1)
ここに、
F(f)=af+a+a+a (aは係数)
G(d)=b/d+blog10(d) (bは係数)
H(f,d)=(cf+c+c+c)log10(d)
+(hf+h+h+h)/d (c、hは係数)
式(1)における第3関数H(f,d)は、第1関数F(f)と第2関数G(d)との各項を1つずつ組合せ、これらを掛け合わせて構成されている。
W (f, d) = Co + F (f) + G (d) + H (f, d) (Co is a constant)
(1)
here,
F (f) = a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 (a is a coefficient)
G (d) = b 1 / d 2 + b 2 log 10 (d) (b is a coefficient)
H (f, d) = (c 1 f + c 2 f 2 + c 3 f 3 + c 4 f 4 ) log 10 (d)
+ (H 1 f + h 2 f 2 + h 3 f 3 + h 4 f 4 ) / d 2 (c and h are coefficients)
The third function H (f, d) in Expression (1) is configured by combining the terms of the first function F (f) and the second function G (d) one by one and multiplying them. .

上記の説明関数W(f,d)は、担当者が演算装置1の入力部5を用いて予め入力し、記憶部3に保存されている。
以下に、図2に示すフローチャートを用い、Sで示すステップに従って本実施例の製造条件設定処理について説明する。
担当者は、新たに製造工程が設置された場合等に、製造条件を設定すべき当該フォトリソグラフィ工程の線幅測定データLijの測定表(図4)および投影露光装置の装置バラツキデータを準備し、演算装置1の入力部5を用いて製造条件設定処理プログラムの立上操作を行う。
The explanatory function W (f, d) is input in advance by the person in charge using the input unit 5 of the arithmetic device 1 and stored in the storage unit 3.
In the following, the manufacturing condition setting process of the present embodiment will be described according to the step indicated by S using the flowchart shown in FIG.
The person in charge prepares the measurement table (FIG. 4) of the line width measurement data Lij of the photolithography process and the apparatus variation data of the projection exposure apparatus when the manufacturing process is newly set up. The start-up operation of the manufacturing condition setting processing program is performed using the input unit 5 of the arithmetic device 1.

この立上操作を認識した演算装置1の制御部2は、記憶部3に格納されている製造条件設定処理プログラムを起動する。
S1、製造条件設定処理プログラムが起動すると、制御部2は、記憶部3に保存されている説明関数W(f,d)を読出して、多重回帰分析プログラムの説明関数として設定すると共に、表示部4の画面に線幅測定データ入力画面を表示し、担当者は入力部5により、線幅測定データLijの測定表を参照しながら、各線幅測定データLijを入力し、入力終了操作を行う。
The control unit 2 of the arithmetic device 1 that has recognized the start-up operation activates the manufacturing condition setting processing program stored in the storage unit 3.
S1, When the manufacturing condition setting processing program is started, the control unit 2 reads the explanatory function W (f, d) stored in the storage unit 3, sets it as the explanatory function of the multiple regression analysis program, and displays the display unit The line width measurement data input screen is displayed on the screen No. 4, and the person in charge inputs each line width measurement data Lij with the input unit 5 while referring to the measurement table of the line width measurement data Lij, and performs the input end operation.

入力終了操作を認識した制御部2は、入力された各線幅測定データLijの入力を受付け、そのデータの総数(測定総数という。)を計数し、計数した測定総数と入力された各線幅測定データLijを記憶部3に保存すると共に、記憶部3の測定数カウントエリアに測定総数を格納する。
S2、制御部2は、多重回帰分析プログラムにより、記憶部3に保存されている線幅測定データLijを基に、設定された説明関数W(f,d)を用いて、2変数の多重回帰分析を実行し、定数Co、および第1関数F(f)、第2関数G(d)、第3関数H(f,d)の各項の係数a、b、cを求め、得られた定数Coと各計数を代入した重回帰曲線の近似式を決定する。
The control unit 2 that has recognized the input end operation receives the input of each input line width measurement data Lij, counts the total number of the data (referred to as the total number of measurements), and counts the total number of measurements and each input line width measurement data. Lij is stored in the storage unit 3 and the total number of measurements is stored in the measurement number count area of the storage unit 3.
S2, the control unit 2 uses the explanatory function W (f, d) set based on the line width measurement data Lij stored in the storage unit 3 by the multiple regression analysis program, and uses the two-variable multiple regression. The analysis was performed, and the constant Co and the coefficients a, b, and c of each term of the first function F (f), the second function G (d), and the third function H (f, d) were obtained and obtained. An approximate expression of a multiple regression curve is determined by substituting the constant Co and each count.

S3、多重回帰分析を終えた制御部2は、決定された重回帰曲線の自由度調整済み決定係数R adを算出する。
本実施例の説明関数W(f,d)を用いた第1回目の多重回帰分析における重回帰曲線の自由度調整済み決定係数R adは、R ad=0.99999(線幅測定データLのデータ数は、1621)になる。
In S3, the control unit 2 that has completed the multiple regression analysis calculates a determination coefficient R 2 ad that has been adjusted for the degree of freedom of the determined multiple regression curve.
The determination coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve in the first multiple regression analysis using the explanatory function W (f, d) of the present embodiment is R 2 ad = 0.99999 (line width measurement data The number of data of L is 1621).

この場合に、同じ線幅測定データLを用い、上記式(1)の第3関数H(f,d)を省略した説明関数W(f,d)、つまり
W(f,d)=Co+F(f)+G(d)(Coは定数) ・・・・・・(2)
ここに、
F(f)=af+a+a+a (aは係数)
G(d)=b/d+blog10(d) (bは係数)
の場合の第1回目の多重回帰分析における重回帰曲線の自由度調整済み決定係数R adは、R ad=0.98941になる。
In this case, the same line width measurement data L is used, and the explanatory function W (f, d) in which the third function H (f, d) in the above formula (1) is omitted, that is, W (f, d) = Co + F ( f) + G (d) (Co is a constant) (2)
here,
F (f) = a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 (a is a coefficient)
G (d) = b 1 / d 2 + b 2 log 10 (d) (b is a coefficient)
In the first case, the determination coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve in the first multiple regression analysis is R 2 ad = 0.98941.

S4、自由度調整済み決定係数R adを算出した制御部2は、記憶部3に格納されている回帰精度判定値を読出し、計算された自由度調整済み決定係数R adが読出した回帰精度判定値(本実施例では、0.999)以上のときは、重回帰曲線の回帰精度の収束を判定してステップS8へ移行する。
自由度調整済み決定係数R adが、回帰精度判定値未満のときは、回帰精度の収束が不十分と判定してステップS5へ移行する。
S4, the degree of freedom adjusted coefficient of determination R control portion 2 calculates the 2 ad reads a regression accuracy determination value stored in the storage unit 3, the calculated degree of freedom adjusted coefficient of determination R 2 ad was read Regression When the accuracy determination value (0.999 in this embodiment) is equal to or greater than, the convergence of the regression accuracy of the multiple regression curve is determined, and the process proceeds to step S8.
When the degree-of-freedom-adjusted determination coefficient R 2 ad is less than the regression accuracy determination value, it is determined that the convergence of the regression accuracy is insufficient and the process proceeds to step S5.

S5、収束が不十分と判定した制御部2は、記憶部3に保存されている線幅測定データLij、および離間データ判定値を読出し、線幅測定データLijの格子点の焦点位置fiと露光量diとを、決定された重回帰曲線の近似式に代入して各格子点における線幅を計算し、図5に示す各線幅計算データWijを算出する。
そして、制御部2は、格子点毎に、線幅計算データWijと線幅測定データLijとの差の絶対値を、線幅測定データLijで除した離間率を求め、その離間率が読出した離間データ判定値(本実施例では、0.1)以上となる線幅測定データLを特定し、特定した線幅測定データLを記憶部3の線幅測定データLから消去して線幅測定データLを更新すると共に、測定数カウントエリアのカウント数から消去した線幅測定データLの数を減じて、多重回帰分析に用いる線幅測定データLのデータ数を更新する。
S5, the control unit 2 having determined that the convergence is insufficient, reads the line width measurement data Lij and the separation data determination value stored in the storage unit 3, and the focal position fi of the lattice point of the line width measurement data Lij and the exposure The line width at each grid point is calculated by substituting the quantity di into the approximate expression of the determined multiple regression curve, and each line width calculation data Wij shown in FIG. 5 is calculated.
Then, the control unit 2 obtains a separation ratio obtained by dividing the absolute value of the difference between the line width calculation data Wij and the line width measurement data Lij by the line width measurement data Lij for each lattice point, and the separation ratio is read out. Line width measurement data L that is greater than or equal to the separation data determination value (0.1 in this embodiment) is specified, and the specified line width measurement data L is erased from the line width measurement data L in the storage unit 3 to measure the line width. While updating the data L, the number of line width measurement data L erased from the count number of the measurement number count area is subtracted to update the data number of the line width measurement data L used for the multiple regression analysis.

S6、データ数を更新した制御部2は、記憶部3に保存されている測定総数、および残存率下限値を読出し、更新後の線幅測定データLのカウント数を測定総数で除してデータ残存率を求め、算出したデータ残存率が読出した残存率下限値(本実施例では、0.8)以上のときは、多重回帰分析の続行可能と判定してステップS2へ戻り、更新後の線幅測定データLを用いた多重回帰分析を継続する。   S6, the control unit 2 that has updated the number of data reads the total number of measurements stored in the storage unit 3 and the remaining rate lower limit value, and divides the count number of the updated line width measurement data L by the total number of measurements. When the residual ratio is calculated and the calculated residual ratio is equal to or greater than the read lower limit lower limit (0.8 in this embodiment), it is determined that the multiple regression analysis can be continued and the process returns to step S2, and the updated The multiple regression analysis using the line width measurement data L is continued.

データ残存率が残存率下限値未満のときは、重回帰分析を行うためのデータ数の不足を判定してステップS7へ移行する。
S7、重回帰分析を行うためのデータ数の不足を判定した制御部2は、表示部4の画面に線幅測定データLのバラツキが過大である旨の文言等を表示した、データ不足警告画面を表示し、担当者は表示内容を確認して入力部5により確認終了操作を行う。
When the data remaining rate is less than the lower limit of the remaining rate, it is determined that the number of data for performing the multiple regression analysis is insufficient, and the process proceeds to step S7.
S7, the control unit 2 that has determined that the number of data for performing the multiple regression analysis is insufficient, displays a data shortage warning screen on the screen of the display unit 4 indicating that the variation of the line width measurement data L is excessive. The person in charge confirms the display content and performs a confirmation end operation using the input unit 5.

この確認終了操作を認識した制御部2は、製造条件設定処理を終了させる。
この場合に、担当者はステップS1における誤入力の有無等の確認や、誤入力がない場合の線幅測定データLの数増し、または再測定を行い、再び製造条件設定処理プログラムによる製造条件の設定を行う。
S8、重回帰曲線の収束を判定した制御部2は、表示部4の画面に許容寸法範囲および設定しようとする製造条件(設計点DPという。)の焦点距離fDPと露光量dDPの設計データ入力画面を表示し、担当者は入力部5により、当該フォトリソグラフィ工程の寸法許容範囲の上限値と下限値とを入力すると共に、図3に示す線幅測定データLを参照して設計点DPを入力して入力終了操作を行う。
The control unit 2 that has recognized this confirmation ending operation ends the manufacturing condition setting process.
In this case, the person in charge confirms the presence / absence of erroneous input in step S1, increases the number of line width measurement data L when there is no erroneous input, or performs re-measurement, and again sets the manufacturing conditions by the manufacturing condition setting processing program. Set up.
In S8, the control unit 2 that has determined the convergence of the multiple regression curve designs the allowable distance range and the focal length f DP and the exposure amount d DP of the manufacturing condition (design point DP) to be set on the screen of the display unit 4. A data input screen is displayed, and the person in charge inputs the upper limit value and the lower limit value of the dimensional tolerance range of the photolithography process through the input unit 5, and refers to the line width measurement data L shown in FIG. Input DP and perform input termination operation.

入力終了操作を認識した制御部2は、入力された寸法許容範囲の上限値と下限値、および設計点DPの焦点距離fDPと露光量dDPを記憶部3に保存する。
S9、寸法許容範囲等を保存した制御部2は、表示部4の画面に装置バラツキ入力画面を表示し、担当者は入力部5により、当該フォトリソグラフィ工程に用いる投影露光装置の焦点距離fと露光量dのそれぞれの平均値mf、mdと標準偏差σf、σdとからなる装置バラツキデータを入力して入力終了操作を行う。
Recognizing the input end operation, the control unit 2 stores the input upper limit value and lower limit value of the allowable dimension range, the focal length f DP of the design point DP, and the exposure amount d DP in the storage unit 3.
S9, the control unit 2 storing the dimension tolerance range displays an apparatus variation input screen on the screen of the display unit 4, and the person in charge uses the input unit 5 to determine the focal length f of the projection exposure apparatus used in the photolithography process. The apparatus variation data composed of the average values mf and md of the exposure dose d and the standard deviations σf and σd are input to complete the input operation.

入力終了操作を認識した制御部2は、入力された装置バラツキデータを記憶部3に保存する。
S10、制御部2は、分布計算点発生プログラムにより、記憶部3に保存されている設計点DPの焦点距離fDPと露光量dDP、および装置バラツキデータの焦点距離fと露光量dの平均値とその標準偏差を基に、線幅計算データWijの正規分布における平均値と標準偏差を算出するための、設計点DPの焦点距離fDPを平均値とした焦点距離fの正規分布と、露光量dDPを平均値とした露光量dの正規分布とを2次元に組合せた、図6に示す分布計算点T(f,d)を複数(本実施例では、1000点程度)発生させる。
The control unit 2 that has recognized the input end operation stores the input device variation data in the storage unit 3.
S10, the control unit 2 calculates the average of the focal length f DP and the exposure amount d DP of the design point DP stored in the storage unit 3 and the focal length f and the exposure amount d of the apparatus variation data by the distribution calculation point generation program. A normal distribution of the focal length f with the focal length f DP of the design point DP as an average value for calculating an average value and a standard deviation in the normal distribution of the line width calculation data Wij based on the value and the standard deviation thereof; A plurality of distribution calculation points T (f, d) shown in FIG. 6 (about 1000 in this embodiment) are generated by two-dimensionally combining the normal distribution of the exposure dose d with the exposure dose d DP as an average value. .

S11、分布計算点T(f,d)を発生させた制御部2は、各分布計算点T(f,d)の焦点距離fと露光量dとを、決定された重回帰曲線の近似式に代入して各分布計算点T(f,d)における線幅を計算し、算出された線幅計算データW(f,d)の平均値mwとその標準偏差σwからなる線幅のバラツキデータ(線幅バラツキデータという。)を算出する。   S11, the control unit 2 that generated the distribution calculation point T (f, d) uses the focal length f and the exposure amount d of each distribution calculation point T (f, d) as an approximate expression of the determined multiple regression curve. The line width at each distribution calculation point T (f, d) is calculated by substituting into, and the line width variation data including the average value mw of the calculated line width calculation data W (f, d) and its standard deviation σw. (Referred to as line width variation data) is calculated.

S12、線幅バラツキデータを算出した制御部は、記憶部3に保存した許容寸法範囲の上下限値を読出し、図7に示すように、入力された設計点DPの計算された線幅である線幅計算データWの平均値mwの両側のm標準偏差σwの3倍の範囲(mw±3σw)が、読出した許容寸法範囲以内(下限値以上、上限値以下の範囲をいう。)のときは、製造条件が決定されたと判定してステップS15へ移行する。   S12, the control unit that has calculated the line width variation data reads the upper and lower limit values of the allowable dimension range stored in the storage unit 3, and is the calculated line width of the input design point DP as shown in FIG. When the range (mw ± 3σw), which is 3 times the m standard deviation σw on both sides of the average value mw of the line width calculation data W, is within the read allowable dimension range (refers to the range between the lower limit value and the upper limit value). Determines that the manufacturing conditions have been determined, and proceeds to step S15.

算出された線幅計算データWのmw±3σwの範囲が、許容寸法範囲を超えている場合(線幅計算データWの下限側または上限側のいずれか一方が、許容寸法範囲の下限値または上限値を超えている場合を含む。)は、設計点の再設定が必要と判定してステップS13へ移行する。
なお、本ステップにおける製造条件の決定においては、許容寸法範囲の上下限値の中央値と、線幅計算データWの平均値mwとが一致している必要はなく、線幅計算データWのmw±3σwの範囲が、許容寸法範囲以内であれば足りる。
When the mw ± 3σw range of the calculated line width calculation data W exceeds the allowable dimension range (either the lower limit side or the upper limit side of the line width calculation data W is the lower limit value or upper limit of the allowable dimension range In the case of exceeding the value), it is determined that the design point needs to be reset, and the process proceeds to step S13.
In the determination of the manufacturing conditions in this step, the median of the upper and lower limit values of the allowable dimension range and the average value mw of the line width calculation data W do not need to match, and the mw of the line width calculation data W It is sufficient if the range of ± 3σw is within the allowable dimension range.

S13、設計点の再設定が必要と判定した制御部2は、表示部4の画面に、設計点DPの再入力を促す旨の文言、および製造条件設定処理を終了させるときの終了コード等を表示した設計点再入力画面を表示する。
担当者は、異なる設計点DPにおける線幅バラツキデータの再計算を行うときは、再計算に用いる新たな設計点DPの焦点距離fDPと露光量dDPを入力部5を用いて入力し、入力終了操作を行う。
S13, the control unit 2 that has determined that the design point needs to be reset, displays a message on the screen of the display unit 4 that prompts the user to re-enter the design point DP, an end code for ending the manufacturing condition setting process, and the like. Display the displayed design point re-input screen.
When the person in charge recalculates line width variation data at different design points DP, he / she inputs the focal length f DP and exposure dose d DP of the new design point DP used for recalculation using the input unit 5, Perform input termination operation.

また、計算された線幅バラツキデータの両側が、許容寸法範囲の上限値および下限値を超えている等の理由により製造条件設定処理を終了させるときは終了コードを入力する。
S14、制御部2は、新たな設計点DPが入力されたときは、ステップS10へ戻って、新たな設計点DPによる線幅バラツキデータの算出を継続する。
終了コードの入力を認識した場合は、製造条件設定処理を終了させる。この場合に担当者は、当該フォトリソグラフィ工程に設置する投影露光装置を不適と判断して、他の投影露光装置の設置等の検討を行う。
Further, when the manufacturing condition setting process is terminated due to the reason that both sides of the calculated line width variation data exceed the upper limit value and the lower limit value of the allowable dimension range, an end code is input.
S14, when the new design point DP is input, the control unit 2 returns to step S10 and continues to calculate the line width variation data by the new design point DP.
When the input of the end code is recognized, the manufacturing condition setting process is ended. In this case, the person in charge determines that the projection exposure apparatus to be installed in the photolithography process is inappropriate, and considers installation of another projection exposure apparatus.

S15、製造条件が決定されたと判定した制御部2は、その設計点DPの焦点距離fDPと露光量dDP等を表示した製造条件決定画面を、表示部4の画面に表示する。
担当者は表示内容を確認して入力部5により確認操作を行い、この確認操作を認識した制御部2は、製造条件設定処理を終了させる。
このようにして、1つのフォトリソグラフィ工程における本実施例のレジストパターンの製造条件設定処理が実行され、担当者は、設置された製造工程の各フォトリソグラフィ工程における製造条件を上記と同様にして決定し、これらの決定された製造条件を用いて半導体装置の製造が行われる。
In S15, the control unit 2 that has determined that the manufacturing condition has been determined displays a manufacturing condition determination screen on which the focal length f DP and the exposure amount d DP of the design point DP are displayed on the screen of the display unit 4.
The person in charge confirms the display contents and performs a confirmation operation using the input unit 5, and the control unit 2 that recognizes the confirmation operation ends the manufacturing condition setting process.
In this way, the resist pattern manufacturing condition setting process of the present embodiment in one photolithography process is executed, and the person in charge determines the manufacturing conditions in each photolithography process of the installed manufacturing process in the same manner as described above. Then, the semiconductor device is manufactured using these determined manufacturing conditions.

上記のように、本実施例のレジストパターンの製造条件設定処理においては、焦点位置fと露光量dとをそれぞれ独立に変化させたときのレジストパターンの線幅測定データLを用いて、焦点位置fと露光量dとの2変数を用いた多重回帰分析を行い、これにより決定された重回帰曲線の自由度調整済み決定係数R adを所定の回帰精度判定値と比較して、自由度調整済み決定係数R adが回帰精度判定値以上の場合に重回帰曲線の収束を判定し、その決定された重回帰曲線の近似式を用いてレジストパターンの製造条件の決定を行うので、線幅測定データを測定した焦点位置以外の任意の焦点位置fにおける線幅計算データWを、重回帰曲線の近似式に焦点位置fと露光量dを代入すれば、数値解析を用いることなく一度の計算のみで算出することができ、計算された線幅の計算精度を高めることができると共に、線幅計算データWの計算時間を短縮して製造条件の決定の効率化を図ることができる。 As described above, in the resist pattern manufacturing condition setting process according to the present embodiment, the focus position is obtained by using the line width measurement data L of the resist pattern when the focal position f and the exposure amount d are independently changed. Multiple regression analysis using two variables of f and exposure dose d is performed, and the degree-of-freedom adjustment coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve determined thereby is compared with a predetermined regression accuracy judgment value. When the adjusted determination coefficient R 2 ad is equal to or greater than the regression accuracy determination value, the convergence of the multiple regression curve is determined and the resist pattern manufacturing conditions are determined using the approximate expression of the determined multiple regression curve. If the line width calculation data W at an arbitrary focal position f other than the focal position at which the width measurement data is measured is substituted into the approximate expression of the multiple regression curve, the focal position f and the exposure amount d are substituted once without using numerical analysis. Calculation only The calculation accuracy of the calculated line width can be improved, and the calculation time of the line width calculation data W can be shortened to increase the efficiency of determining the manufacturing conditions.

また、焦点位置fと露光量dとの2変数を用いた多重回帰分析により、線幅測定データLに基づいた重回帰曲線の近似式を得ることができ、特許文献1のように、計算点を含むデータを基にした回帰分析に較べて、線幅測定データLに対する回帰精度を向上させることができる。
更に、自由度調整済み決定係数R adが回帰精度判定値未満の場合に、線幅測定データLの中で、線幅計算データWから離間率が所定の離間データ判定値以上の線幅測定データLを削除し、線幅測定データLのデータ残存率が所定の残存率判定値未満となったときに、データ不足警告画面を表示して製造条件設定処理を終了させるので、できるだけ多くの線幅測定データLを用いた多重回帰分析により、重回帰曲線の回帰精度を向上させることができると共に、線幅測定データLのデータ数の不足による予想外の重回帰曲線の回帰精度の低下を防止することができる。
Further, an approximate expression of a multiple regression curve based on the line width measurement data L can be obtained by multiple regression analysis using two variables of the focal position f and the exposure dose d. The regression accuracy for the line width measurement data L can be improved as compared with the regression analysis based on the data including.
Furthermore, when the determination coefficient R 2 ad adjusted for the degree of freedom is less than the regression accuracy determination value, the line width measurement in the line width measurement data L has a separation rate equal to or greater than a predetermined separation data determination value from the line width calculation data W. When the data L is deleted and the data remaining rate of the line width measurement data L becomes less than the predetermined remaining rate judgment value, the data shortage warning screen is displayed and the manufacturing condition setting process is terminated. The multiple regression analysis using the width measurement data L can improve the regression accuracy of the multiple regression curve and prevent the regression accuracy of the unexpected multiple regression curve from being lowered due to the insufficient number of data of the line width measurement data L. can do.

更に、投影露光装置における焦点位置fと露光量dの装置バラツキデータから発生させた正規分布の2次元の分布形を有する分布計算点T(f,d)の各焦点距離fと露光量dとを用いて、各分布計算点Tの、決定された重回帰曲線における線幅計算データWを計算し、その線幅計算データWの正規分布における平均値と標準偏差を算出して、その標準偏差の3倍が平均値の両側で許容寸法範囲以内のときに、製造条件の決定を判定するので、投影露光装置のバラツキを考慮したレジストパターンの製造条件を容易に決定することができ、予期せぬ製造バラツキの発生を防止して、レジストパターンの製造条件を精度よく設定することが可能になり、決定された製造条件を用いたフォトリソグラフィ工程における寸法外れ防止して、製造する半導体装置の歩留りを向上させることができる。   Furthermore, each focal length f of the distribution calculation point T (f, d) having a two-dimensional distribution form of a normal distribution generated from the apparatus variation data of the focal position f and the exposure dose d in the projection exposure apparatus, and the exposure dose d. Is used to calculate the line width calculation data W in the determined multiple regression curve at each distribution calculation point T, and the average value and standard deviation in the normal distribution of the line width calculation data W are calculated. 3 is less than the allowable dimension range on both sides of the average value, the determination of the manufacturing condition is judged. Therefore, the resist pattern manufacturing condition can be easily determined in consideration of the variation of the projection exposure apparatus, and is expected. The manufacturing conditions of the resist pattern can be accurately set by preventing the occurrence of manufacturing variations, and the manufacturing is performed by preventing the dimensional deviation in the photolithography process using the determined manufacturing conditions. It is possible to improve the yield of the conductor arrangement.

以上説明したように、本実施例では、1つのフォトリソグラフィ工程における、焦点位置fと露光量dとをそれぞれ独立に変化させたときのレジストパターンの複数の線幅測定データLと、当該フォトリソグラフィ工程に用いる投影露光装置の焦点位置fと露光量dの装置バラツキデータとを予め測定しておき、測定した線幅測定データLを基に、焦点位置fと露光量dとを変数とした複数の項からなる説明関数W(f,d)を用いて2変数の多重回帰分析を行い、多重回帰分析により決定された重回帰曲線の自由度調整済み決定係数R adと所定の回帰精度判定値とを比較して、自由度調整済み決定係数R adが所定の回帰精度判定値以上のときに、測定した装置バラツキデータと、所定の設計点DPの焦点距離fDPおよび露光量dDPとを基に、設計点DPを平均値とした正規分布の分布形を有する分布計算点を発生させ、これらの分布計算点毎に、決定された重回帰曲線の近似式おける線幅計算データWを算出して、その幅計算データの正規分布における平均値mwと標準偏差σwを算出し、算出された線幅計算データWの標準偏差σwの3倍(3σw)が、平均値mwの両側で許容線幅範囲以内のときに、所定の設計点DPを当該フォトリソグラフィ工程におけるレジストパターンの製造条件として決定するようにしたことによって、線幅測定データに基づいた重回帰曲線の近似式を得ることができ、任意の焦点位置fと露光量dの組み合わせを重回帰曲線の近似式に代入して、一度の計算で線幅計算データWを容易に算出することができ、計算された線幅の計算精度を高めることができると共に、投影露光装置のバラツキを考慮するための多数の分布計算点T(f,d)における線幅計算データWの計算時間を短縮することが可能になり、予期せぬ製造バラツキの発生を防止したレジストパターンの製造条件を精度よく、かつ迅速に決定することができる。 As described above, in this embodiment, a plurality of line width measurement data L of the resist pattern when the focal position f and the exposure dose d are independently changed in one photolithography process, and the photolithography. A device position variation data of the focal position f and the exposure amount d of the projection exposure apparatus used in the process is measured in advance, and a plurality of values using the focal position f and the exposure amount d as variables based on the measured line width measurement data L. A multiple regression analysis of two variables is performed using an explanatory function W (f, d) consisting of the following term, and a determination coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve determined by the multiple regression analysis and a predetermined regression accuracy determination by comparing the values, when the degree of freedom adjusted coefficient of determination R 2 ad is equal to or higher than the predetermined regression accuracy determination value, the device variation data measured, the focal length f DP and the exposure of a given design point DP Based on the d DP, generates a distribution calculation point having a distribution shape of a normal distribution with mean value design point DP, for each of these distribution calculation point, the approximate expression definitive linewidth calculation of regression curve was determined The data W is calculated, the average value mw and the standard deviation σw in the normal distribution of the width calculation data are calculated, and three times the standard deviation σw of the calculated line width calculation data W (3σw) is the average value mw When a predetermined design point DP is determined as a resist pattern manufacturing condition in the photolithography process when both sides are within the allowable line width range, an approximate expression of a multiple regression curve based on the line width measurement data is obtained. By substituting a combination of an arbitrary focal position f and exposure dose d into the approximate expression of the multiple regression curve, the line width calculation data W can be easily calculated by one calculation, and the calculated line Width calculation It is possible to increase the degree of calculation and to shorten the calculation time of the line width calculation data W at a large number of distribution calculation points T (f, d) for considering variations in the projection exposure apparatus. It is possible to accurately and quickly determine the manufacturing conditions of the resist pattern that prevents the occurrence of manufacturing variations.

本実施例の構成、および製造条件設定処理のフローチャートは、上記実施例1と同様である。
本実施例の演算装置1の記憶部3には、上記実施例1と同様の製造条件設定処理プログラムが予め格納されており、制御部2が実行する製造条件設定処理プログラムのステップにより本実施例の演算装置1のハードウェアとしての各機能手段が形成される。
The configuration of the present embodiment and the flowchart of the manufacturing condition setting process are the same as those of the first embodiment.
The storage unit 3 of the arithmetic device 1 of the present embodiment stores in advance a manufacturing condition setting processing program similar to that of the first embodiment, and this embodiment is performed according to the steps of the manufacturing condition setting processing program executed by the control unit 2. Each functional means as hardware of the arithmetic device 1 is formed.

また、記憶部3には、上記実施例1と同様の回帰精度判定値、残存率下限値、離間データ判定値が予め設定されて格納される他、上記実施例1と同様の測定数カウントエリアが確保されている。
本実施例の2変数(焦点位置fと露光量d)の多重回帰分析における説明関数W(f,d)は、上記実施例1の式(1)に示す説明関数W(f,d)の第3関数H(f,d)を変更した次式が用いられる。
In addition, the storage unit 3 stores a regression accuracy determination value, a remaining rate lower limit value, and a separation data determination value similar to those in the first embodiment, and stores a measurement number count area similar to that in the first embodiment. Is secured.
The explanatory function W (f, d) in the multiple regression analysis of the two variables (focal position f and exposure dose d) of this embodiment is the explanatory function W (f, d) shown in the equation (1) of the first embodiment. The following equation is used by changing the third function H (f, d).

W(f,d)=Co+F(f)+G(d)+H(f,d)(Coは定数)
・・・・・・(3)
ここに、
F(f)=af+a+a+a (aは係数)
G(d)=b/d+blog10(d) (bは係数)
H(f,d)=clog10(d)+c/d+cf/d (cは係数)
なお、第1関数F(f)および第2関数G(d)は、上記実施例1の場合と同様である。
W (f, d) = Co + F (f) + G (d) + H (f, d) (Co is a constant)
(3)
here,
F (f) = a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 (a is a coefficient)
G (d) = b 1 / d 2 + b 2 log 10 (d) (b is a coefficient)
H (f, d) = c 1 f 2 log 10 (d) + c 2 f 2 / d 2 + c 3 f / d (c is a coefficient)
The first function F (f) and the second function G (d) are the same as those in the first embodiment.

本実施例の製造条件設定処理は、上記実施例1の図2に示す製造条件設定処理と同様であるので、その説明を省略する。
この場合に、ステップS2における2変数の多重回帰分析には、式(3)の説明関数W(f,d)が用いられる。
また、ステップS3において計算される本実施例の説明関数W(f,d)を用いた第1回目の多重回帰分析における重回帰曲線の自由度調整済み決定係数R adは、R ad=0.99973になる(分析に用いた線幅測定データLは、上記実施例1と同じ。)。
The manufacturing condition setting process of this embodiment is the same as the manufacturing condition setting process shown in FIG.
In this case, the explanatory function W (f, d) of Expression (3) is used for the multiple regression analysis of two variables in step S2.
Further, the determination coefficient R 2 ad adjusted for the degree of freedom of the multiple regression curve in the first multiple regression analysis using the explanatory function W (f, d) of the present embodiment calculated in step S3 is R 2 ad = 0.99973 (the line width measurement data L used in the analysis is the same as in Example 1 above).

以上説明したように、本実施例では、上記実施例1と同様の効果に加えて、説明関数W(f,d)の第3関数H(f,d)の項の数を減少させたことによって、投影露光装置のバラツキを考慮するための多数の分布計算点T(f,d)における線幅計算データWの計算時間を更に短縮することができる。   As described above, in the present embodiment, in addition to the same effects as in the first embodiment, the number of terms of the third function H (f, d) of the explanatory function W (f, d) is reduced. Thus, it is possible to further reduce the calculation time of the line width calculation data W at a large number of distribution calculation points T (f, d) for taking into account variations in the projection exposure apparatus.

図8は実施例3の製造条件設定処理を示すフローチャートである。
なお、上記実施例1と同様の部分は、同一の符号を付してその説明を省略する。
本実施例の演算装置1の記憶部3には、上記実施例1と同様の製造条件設定処理プログラムに、説明関数W(f,d)の第3関数H(f,d)の各項の寄与率を算出し、所定の寄与率判定値未満の寄与率の項が存在する場合に、その項を削除して処理計算の高速化を行う高速化処理プログラムが追加された製造条件設定処理プログラムが予め格納されており、制御部2が実行する製造条件設定処理プログラムのステップにより本実施例の演算装置1のハードウェアとしての各機能手段が形成される。
FIG. 8 is a flowchart showing the manufacturing condition setting process of the third embodiment.
In addition, the same part as the said Example 1 attaches | subjects the same code | symbol, and abbreviate | omits the description.
In the storage unit 3 of the arithmetic device 1 of the present embodiment, each item of the third function H (f, d) of the explanatory function W (f, d) is added to the manufacturing condition setting processing program similar to that of the first embodiment. A manufacturing condition setting processing program in which a contribution rate is calculated, and when there is a contribution rate term less than a predetermined contribution rate judgment value, a speedup processing program is added to delete the term and speed up the process calculation Are stored in advance, and each function means as hardware of the arithmetic device 1 of the present embodiment is formed by the steps of the manufacturing condition setting processing program executed by the control unit 2.

また、記憶部3には、上記実施例1と同様の回帰精度判定値、残存率下限値、離間データ判定値に加えて、説明関数W(f,d)の第3関数H(f,d)の各項の要否を判定するための寄与率判定値が予め設定されて格納される他、上記実施例1と同様の測定数カウントエリアが確保されている。
本実施例における寄与率は、上記実施例1の式(1)に示す説明関数W(f,d)を用いた多重回帰分析を行い、これにより決定された定数Coと各係数を用いて、各線幅測定データLの焦点位置fと露光量dとからなる計算条件における線幅計算データWijを算出し、算出された線幅計算データWijとその計算条件の元になった線幅測定データLijとの差Xoの自乗と、同じ計算条件で、第3関数H(f,d)の各項のいずれか一項を除いて計算された線幅計算データWk(k=1〜N、Nは線幅測定データLのデータ数)とその線幅測定データLijとの差Xkの自乗平均とを求め、そのときの寄与率Aを、差Xoの自乗に対する、差Xkの自乗平均の比率として定義すると、
A=(ΣXk/N)/Xo ・・・・・・・・・・・・・・・・・・(4)
で表され、寄与率判定値は、0.03として設定されている。
In addition to the regression accuracy determination value, the remaining rate lower limit value, and the separation data determination value similar to those in the first embodiment, the storage unit 3 stores the third function H (f, d) of the explanatory function W (f, d). ) Is determined and stored in advance, and a measurement count area similar to that in the first embodiment is secured.
The contribution rate in this example is obtained by performing multiple regression analysis using the explanatory function W (f, d) shown in the expression (1) of Example 1 above, and using the constant Co and each coefficient determined thereby, The line width calculation data Wij under the calculation condition composed of the focal position f and the exposure dose d of each line width measurement data L is calculated, and the calculated line width calculation data Wij and the line width measurement data Lij based on the calculation condition are calculated. The line width calculation data Wk (k = 1 to N, N is calculated by excluding any one of the terms of the third function H (f, d) under the same calculation condition as the square of the difference Xo from (The number of data of the line width measurement data L) and the root mean square of the difference Xk between the line width measurement data Lij, and the contribution ratio A at that time is defined as the ratio of the root mean square of the difference Xk to the square of the difference Xo Then
A = (ΣXk 2 / N) / Xo 2 (4)
The contribution rate determination value is set as 0.03.

本実施例の製造条件設定処理においては、上記実施例1と同様に、事前に特定のフォトリソグラフィ工程に用いる投影露光装置の装置バラツキデータ、および図4に示す各格子点の線幅測定データLijが測定されている。
本実施例の基本となる2変数(焦点位置fと露光量d)の多重回帰分析における説明関数W(f,d)としては、上記実施例1の式(1)が用いられ、その説明関数W(f,d)が、実施例1と同様に記憶部3に保存されている。
In the manufacturing condition setting process of the present embodiment, as in the first embodiment, the apparatus variation data of the projection exposure apparatus used for a specific photolithography process in advance and the line width measurement data Lij of each lattice point shown in FIG. Has been measured.
As the explanatory function W (f, d) in the multiple regression analysis of the two variables (focal position f and exposure dose d) that are the basis of the present embodiment, the expression (1) of the first embodiment is used. W (f, d) is stored in the storage unit 3 as in the first embodiment.

以下に、図8に示すフローチャートを用い、SAで示すステップに従って本実施例の製造条件設定処理について説明する。
担当者は、上記実施例1と同様にして、製造条件設定処理プログラムの立上操作を行い、これを認識した演算装置1の制御部2は、製造条件設定処理プログラムを起動する。
SA1、製造条件設定処理プログラムが起動すると、制御部2は、実施例1と同様にして、記憶部3の基本となる説明関数W(f,d)(本実施例では、式(1))を、多重回帰分析プログラムの説明関数として設定すると共に、担当者からの線幅測定データLijの入力を受付け、そのデータの測定総数と各線幅測定データLijを記憶部3に保存すると共に、記憶部3の測定数カウントエリアに測定総数を格納する。
In the following, the manufacturing condition setting process of the present embodiment will be described according to the steps indicated by SA using the flowchart shown in FIG.
The person in charge performs the start-up operation of the manufacturing condition setting processing program in the same manner as in the first embodiment, and the control unit 2 of the arithmetic unit 1 that recognizes this starts the manufacturing condition setting processing program.
When the SA1 and manufacturing condition setting processing program is activated, the control unit 2 performs the explanation function W (f, d) that is the basis of the storage unit 3 in the same manner as in the first embodiment (formula (1) in this embodiment). Is set as an explanatory function of the multiple regression analysis program, the input of the line width measurement data Lij from the person in charge is received, the total number of measurement of the data and each line width measurement data Lij are stored in the storage unit 3, and the storage unit The total number of measurements is stored in the measurement number count area 3.

SA2、制御部2は、多重回帰分析プログラムにより、記憶部3に保存されている線幅測定データLijを基に、基本となる説明関数W(f,d)を用いて、2変数の多重回帰分析を実行し、定数項Co、および第1関数F(f)、第2関数G(d)、第3関数H(f,d)の各項の係数a、b、cを求め、得られた定数Coと各計数を代入した基本となる説明関数W(f,d)における重回帰曲線の近似式を決定する。   SA2, the control unit 2 uses a multiple regression analysis program, based on the line width measurement data Lij stored in the storage unit 3, and uses a basic explanatory function W (f, d) to perform multiple regression of two variables. The analysis is performed, and the constant term Co and the coefficients a, b, and c of each term of the first function F (f), the second function G (d), and the third function H (f, d) are obtained and obtained. The approximate expression of the multiple regression curve in the basic explanatory function W (f, d) obtained by substituting the constant Co and each count is determined.

SA3、基本となる重回帰曲線の近似式を決定した制御部2は、高速化処理プログラムにより、式(4)を用いて、基本となる説明関数W(f,d)の第3関数H(f,d)の各項の寄与率Aを算出する。
SA4、第3関数H(f,d)の寄与率Aを算出した制御部2は、記憶部3に格納されている寄与率判定値を読出し、算出した各項の寄与率Aと読出した寄与率判定値(本実施例では、0.03)とを比較し、寄与率判定値未満の寄与率Aを有する項を削除して説明関数W(f,d)の項数を減少させ、高速化された新たな説明関数W(f,d)をステップSA5以降の多重回帰分析における説明関数として設定する。
SA3, the control unit 2 that has determined the approximate expression of the basic multiple regression curve uses the expression (4) by the high-speed processing program, and uses the third function H () of the basic explanatory function W (f, d). The contribution rate A of each term of f, d) is calculated.
The control unit 2 that calculated the contribution rate A of SA4 and the third function H (f, d) reads the contribution rate determination value stored in the storage unit 3, and calculates the calculated contribution rate A and the read contribution rate. Compared with the rate judgment value (0.03 in this embodiment), the term having the contribution rate A less than the contribution rate judgment value is deleted to reduce the number of terms of the explanatory function W (f, d), and the high speed The converted new explanatory function W (f, d) is set as an explanatory function in the multiple regression analysis after step SA5.

その後のステップSA5〜SA18の作動は、上記実施例1のステップS2〜S15の作動と同様であるので、その説明を省略する。
この場合に、ステップSA5における2変数の多重回帰分析には、ステップSA4で設定された新たな説明関数W(f,d)が用いられる。
以上説明したように、本実施例では、上記実施例1と同様の効果に加えて、予め説明関数の第3関数H(f,d)の各項の線幅計算データLに対する寄与率Aを算出し、その寄与率Aが所定の寄与率判定値未満のときに、その項を削除するようにしたことによって、多重回帰分析に用いる説明関数W(f,d)の項の数を減少させて、投影露光装置のバラツキを考慮するための多数の分布計算点T(f,d)における線幅計算データWの計算時間を更に短縮することができる。
Subsequent operations in steps SA5 to SA18 are the same as the operations in steps S2 to S15 in the first embodiment, and a description thereof will be omitted.
In this case, the new explanatory function W (f, d) set in step SA4 is used for the two-variable multiple regression analysis in step SA5.
As described above, in this embodiment, in addition to the same effects as those in the first embodiment, the contribution ratio A to the line width calculation data L of each term of the third function H (f, d) of the explanatory function is calculated in advance. When the calculated contribution rate A is less than the predetermined contribution rate determination value, the term is deleted, thereby reducing the number of terms of the explanatory function W (f, d) used for the multiple regression analysis. Thus, it is possible to further reduce the calculation time of the line width calculation data W at a number of distribution calculation points T (f, d) for taking into account variations in the projection exposure apparatus.

なお、本実施例においては、第3関数H(f,d)の寄与率Aの低い項を削除するとして説明したが、第1関数F(f)および第2関数G(d)の各項についても、上記と同様にして寄与率を求め、寄与率の低い項を削除するようにしてもよい。実施例2の説明関数W(f,d)の場合も同様である。
これにより、計算速度の更なる高速化を図ることができる。
In the present embodiment, the description has been made assuming that the term having a low contribution rate A of the third function H (f, d) is deleted, but each term of the first function F (f) and the second function G (d) is deleted. For the above, the contribution rate may be obtained in the same manner as described above, and the term with a low contribution rate may be deleted. The same applies to the explanation function W (f, d) of the second embodiment.
As a result, the calculation speed can be further increased.

なお、上記各実施例においては、レジストパターンの寸法は線幅であるとして説明したが、レジストパターンの寸法は前記に限らず、パターン間の隙間や、特定の領域の縦横の長さ等であってもよい。
また、上記各実施例においては、第1関数F(f)は、4次の多項式であるとして説明したが、5以上の次数の多項式であってもよい。
In each of the above embodiments, the dimension of the resist pattern is described as a line width. However, the dimension of the resist pattern is not limited to the above, and may be a gap between patterns, a vertical and horizontal length of a specific area, or the like. May be.
In each of the above embodiments, the first function F (f) has been described as being a quartic polynomial, but may be a polynomial having an order of 5 or more.

更に、上記各実施例においては、第2関数G(d)は2つの項で構成するとして説明したが、より高次の多項式、例えば、
G(d)=b/d+blog10(d)+b(log10(d)) (bは係数)
・・・・・・(5)
等であってもよい。
Further, in each of the above embodiments, the second function G (d) has been described as being composed of two terms, but a higher order polynomial, for example,
G (d) = b 1 / d 2 + b 2 log 10 (d) + b 3 (log 10 (d)) 2 (b is a coefficient)
(5)
Etc.

この場合に、上記の第1関数F(f)および/若しくは第2関数G(d)をより高次の多項式としたときは、第3関数H(f,d)もより高次の項を含む関数を用いることになる。   In this case, when the first function F (f) and / or the second function G (d) is a higher order polynomial, the third function H (f, d) also has a higher order term. The function that contains it will be used.

実施例1の演算装置を示すブロック図FIG. 1 is a block diagram illustrating an arithmetic device according to a first embodiment. 実施例1の製造条件設定処理を示すフローチャートThe flowchart which shows the manufacturing condition setting process of Example 1. 実施例1の線副測定データを示す説明図Explanatory drawing which shows the line submeasurement data of Example 1. 実施例1の線副測定データの測定表の構成例を示す説明図Explanatory drawing which shows the structural example of the measurement table | surface of the line submeasurement data of Example 1. FIG. 実施例1の線副計算データの計算表の構成例を示す説明図Explanatory drawing which shows the structural example of the calculation table of the line subcalculation data of Example 1. FIG. 実施例1の分布計算点の発生状態を示す説明図Explanatory drawing which shows the generation | occurrence | production state of the distribution calculation point of Example 1. 実施例1の製造条件の決定状態を示す説明図Explanatory drawing which shows the decision state of the manufacturing conditions of Example 1. 実施例3の製造条件設定処理を示すフローチャートThe flowchart which shows the manufacturing condition setting process of Example 3.

符号の説明Explanation of symbols

1 演算装置
2 制御部
3 記憶部
4 表示部
5 入力部
DESCRIPTION OF SYMBOLS 1 Arithmetic unit 2 Control part 3 Memory | storage part 4 Display part 5 Input part

Claims (5)

1つのフォトリソグラフィ工程における、焦点位置と露光量とをそれぞれ独立に変化させたときのレジストパターンの複数の寸法測定データを測定するステップと、
当該フォトリソグラフィ工程に用いる投影露光装置の焦点位置と露光量の正規分布における装置バラツキデータを測定するステップと、
前記寸法測定データを基に、焦点位置と露光量とを変数とした説明関数を用いて、2変数の多重回帰分析を行い、重回帰曲線の近似式を決定するステップと、
前記多重回帰分析により決定された重回帰曲線の自由度調整済み決定係数と、所定の回帰精度判定値とを比較するステップと、
前記自由度調整済み決定係数が、前記所定の回帰精度判定値以上のときに、前記装置バラツキデータと、所定の設計点の焦点位置および露光量とを基に、前記設計点を平均値とした正規分布の分布形を有する分布計算点を発生させるステップと、
前記分布計算点毎に、前記決定された重回帰曲線の近似式を用いて寸法計算データを算出するステップと、
前記寸法計算データの正規分布における平均値と標準偏差を算出するステップと、
前記算出された寸法計算データの標準偏差の3倍が、前記平均値の両側で許容寸法範囲以内のときに、前記所定の設計点を当該フォトリソグラフィ工程におけるレジストパターンの製造条件として決定するステップと、を具備することを特徴とするレジストパターンの製造条件設定方法。
Measuring a plurality of dimension measurement data of a resist pattern when the focal position and the exposure amount are independently changed in one photolithography process;
Measuring apparatus variation data in a normal distribution of the focal position and exposure amount of the projection exposure apparatus used in the photolithography process;
Based on the dimension measurement data, using an explanatory function with the focal position and the exposure dose as variables, performing a two-variable multiple regression analysis and determining an approximate expression of a multiple regression curve;
Comparing the coefficient of determination adjusted for the degree of freedom of the multiple regression curve determined by the multiple regression analysis with a predetermined regression accuracy judgment value;
When the degree-of-freedom-adjusted determination coefficient is equal to or greater than the predetermined regression accuracy determination value, the design point is set as an average value based on the apparatus variation data, the focal position and the exposure amount of the predetermined design point. Generating a distribution calculation point having a normal distribution shape;
Calculating dimension calculation data using the approximate expression of the determined multiple regression curve for each distribution calculation point;
Calculating a mean value and a standard deviation in a normal distribution of the dimension calculation data;
Determining the predetermined design point as a resist pattern manufacturing condition in the photolithography process when three times the standard deviation of the calculated dimension calculation data is within an allowable dimension range on both sides of the average value; A method for setting a manufacturing condition of a resist pattern, comprising:
請求項1において、
前記2変数を構成する焦点位置をf、露光量をdとし、焦点位置fに関する第1関数をF(f)、露光量dに関する第2関数をG(d)、焦点位置fと露光量dとに関する第3関数をH(f,d)としたときに、
前記多重回帰分析に用いる説明関数W(f,d)を、
W(f,d)=Co+F(f)+G(d)+H(f,d) (Coは定数)
ここに、
F(f)=af+a+a+a (aは係数)
G(d)=b/d+blog10(d) (bは係数)
H(f,d)=(cf+c+c+c)log10(d)
+(hf+h+h+h)/d (c、hは係数)
としたことを特徴とするレジストパターンの製造条件設定方法。
In claim 1,
The focal position constituting the two variables is f, the exposure amount is d, the first function relating to the focal position f is F (f), the second function relating to the exposure amount d is G (d), the focal position f and the exposure amount d. When the third function for and is H (f, d),
The explanatory function W (f, d) used for the multiple regression analysis is
W (f, d) = Co + F (f) + G (d) + H (f, d) (Co is a constant)
here,
F (f) = a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 (a is a coefficient)
G (d) = b 1 / d 2 + b 2 log 10 (d) (b is a coefficient)
H (f, d) = (c 1 f + c 2 f 2 + c 3 f 3 + c 4 f 4 ) log 10 (d)
+ (H 1 f + h 2 f 2 + h 3 f 3 + h 4 f 4 ) / d 2 (c and h are coefficients)
A method for setting manufacturing conditions for a resist pattern.
請求項1において、
前記2変数を構成する焦点位置をf、露光量をdとし、焦点位置fに関する第1関数をF(f)、露光量dに関する第2関数をG(d)、焦点位置fと露光量dとに関する第3関数をH(f,d)としたときに、
前記多重回帰分析に用いる説明関数W(f,d)を、
W(f,d)=Co+F(f)+G(d)+H(f,d) (Coは定数)
ここに、
F(f)=af+a+a+a (aは係数)
G(d)=b/d+blog10(d) (bは係数)
H(f,d)=clog10(d)+c/d+cf/d (cは係数)
としたことを特徴とするレジストパターンの製造条件設定方法。
In claim 1,
The focal position constituting the two variables is f, the exposure amount is d, the first function relating to the focal position f is F (f), the second function relating to the exposure amount d is G (d), the focal position f and the exposure amount d. When the third function for and is H (f, d),
The explanatory function W (f, d) used for the multiple regression analysis is
W (f, d) = Co + F (f) + G (d) + H (f, d) (Co is a constant)
here,
F (f) = a 1 f + a 2 f 2 + a 3 f 3 + a 4 f 4 (a is a coefficient)
G (d) = b 1 / d 2 + b 2 log 10 (d) (b is a coefficient)
H (f, d) = c 1 f 2 log 10 (d) + c 2 f 2 / d 2 + c 3 f / d (c is a coefficient)
A method for setting manufacturing conditions for a resist pattern.
請求項1ないし請求項3のいずれか一項において、
前記説明関数の各項の寄与率を算出するステップと、
前記寄与率が、所定の寄与率判定値未満のときに、当該項を削除するステップと、を具備することを特徴とするレジストパターンの製造条件設定方法。
In any one of Claims 1 to 3,
Calculating a contribution rate of each term of the explanatory function;
And a step of deleting the item when the contribution ratio is less than a predetermined contribution ratio determination value.
請求項1ないし請求項4のいずれか一項に記載のレジストパターンの製造条件設定方法を用いて、各フォトリソグラフィ工程におけるレジストパターンの製造条件を決定したことを特徴とする半導体装置の製造方法。   5. A method for manufacturing a semiconductor device, comprising: determining a resist pattern manufacturing condition in each photolithography step using the resist pattern manufacturing condition setting method according to claim 1.
JP2007299522A 2007-11-19 2007-11-19 Resist pattern manufacturing condition setting method and semiconductor device manufacturing method Expired - Fee Related JP4870650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299522A JP4870650B2 (en) 2007-11-19 2007-11-19 Resist pattern manufacturing condition setting method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299522A JP4870650B2 (en) 2007-11-19 2007-11-19 Resist pattern manufacturing condition setting method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2009124088A true JP2009124088A (en) 2009-06-04
JP4870650B2 JP4870650B2 (en) 2012-02-08

Family

ID=40815886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299522A Expired - Fee Related JP4870650B2 (en) 2007-11-19 2007-11-19 Resist pattern manufacturing condition setting method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4870650B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060064A (en) * 2010-09-13 2012-03-22 Toshiba Corp Dose data formation device, exposure system, dose data formation method, and semiconductor device manufacturing method
EP3531205A1 (en) * 2018-02-22 2019-08-28 ASML Netherlands B.V. Control based on probability density function of parameter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224319A (en) * 1989-02-27 1990-09-06 Oki Electric Ind Co Ltd Practical resolving power evaluation method for reduced projecting aligner
JP2000091210A (en) * 1998-09-14 2000-03-31 Fujitsu Ltd Aligner, exposure function setting method, and exposure method
JP2004103674A (en) * 2002-09-06 2004-04-02 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2004128167A (en) * 2002-10-01 2004-04-22 Toshiba Corp Method of evaluating process margin, method of setting measuring conditions, process margin evaluation program, and measuring conditions setting program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224319A (en) * 1989-02-27 1990-09-06 Oki Electric Ind Co Ltd Practical resolving power evaluation method for reduced projecting aligner
JP2000091210A (en) * 1998-09-14 2000-03-31 Fujitsu Ltd Aligner, exposure function setting method, and exposure method
JP2004103674A (en) * 2002-09-06 2004-04-02 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2004128167A (en) * 2002-10-01 2004-04-22 Toshiba Corp Method of evaluating process margin, method of setting measuring conditions, process margin evaluation program, and measuring conditions setting program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060064A (en) * 2010-09-13 2012-03-22 Toshiba Corp Dose data formation device, exposure system, dose data formation method, and semiconductor device manufacturing method
EP3531205A1 (en) * 2018-02-22 2019-08-28 ASML Netherlands B.V. Control based on probability density function of parameter
WO2019161993A1 (en) * 2018-02-22 2019-08-29 Asml Netherlands B.V. Control based on probability density function of parameter
TWI691807B (en) * 2018-02-22 2020-04-21 荷蘭商Asml荷蘭公司 Control based on probability density function of parameter
KR20200108071A (en) * 2018-02-22 2020-09-16 에이에스엠엘 네델란즈 비.브이. Control method based on probability density function of parameters
US11143971B2 (en) 2018-02-22 2021-10-12 Asml Netherlands B.V. Control based on probability density function of parameter
KR102425167B1 (en) 2018-02-22 2022-07-25 에이에스엠엘 네델란즈 비.브이. Control method based on probability density function of parameters

Also Published As

Publication number Publication date
JP4870650B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US9690212B2 (en) Hybrid focus-exposure matrix
EP1424595B1 (en) Automatic calibration of a masking process simulator
JP5491777B2 (en) Flare correction method and flare correction program
JP2013125906A (en) Flare map calculation method, flare map calculation program, and method of manufacturing semiconductor device
JP2005099765A (en) Method for generating predictive model for process proximity effect, method for managing process, method for manufacturing semiconductor device, method for manufacturing photomask, and program
JP5732843B2 (en) Simulator, processing apparatus, damage evaluation method, and damage evaluation program
US10450841B2 (en) Methods for statistical prediction of well production and reserves
JP4272624B2 (en) Evaluation and optimization for measuring devices
US10156796B2 (en) Method for determining the parameters of an IC manufacturing process by a differential procedure
JP2005203637A (en) Lithography process evaluation system, lithography process evaluating method, exposure system evaluating method, mask pattern designing method and manufacturing method of semiconductor device
JP4870650B2 (en) Resist pattern manufacturing condition setting method and semiconductor device manufacturing method
TWI603070B (en) Method and system for use in measuring in complex patterned structures
JP2005037367A (en) Method, system and program for measuring dimension
JP2002043429A (en) Simulation method and simulation device
Bork et al. Mask model calibration for MPC applications utilizing shot dose assignment
Templeton et al. A predictive wall model for large-eddy simulation based on optimal control techniques
TWI617899B (en) Method for determining the dose corrections to be applied to an ic manufacturing process by a matching procedure
Kornilov Stellar scintillation in the short exposure regime and atmospheric coherence time evaluation
JP5575024B2 (en) Mask pattern correction method, mask pattern correction program, and semiconductor device manufacturing method
US6801823B2 (en) Photomask supply system with photomask production period shortened
JP2007187998A (en) System and method for determining whether projection exposure mask is accepted
JP4202708B2 (en) Process margin evaluation method, measurement condition setting method, process margin evaluation program, and measurement condition setting program
JP6631156B2 (en) Photomask manufacturing method, photomask data processing apparatus, and program
Selinidis et al. Resist 3D aware mask solution with ILT for hotspot repair
Park et al. CD and OCD sampling scheme optimization for HVM environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees