JP2009123471A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2009123471A
JP2009123471A JP2007295263A JP2007295263A JP2009123471A JP 2009123471 A JP2009123471 A JP 2009123471A JP 2007295263 A JP2007295263 A JP 2007295263A JP 2007295263 A JP2007295263 A JP 2007295263A JP 2009123471 A JP2009123471 A JP 2009123471A
Authority
JP
Japan
Prior art keywords
pressure
gas
gas supply
flow path
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295263A
Other languages
Japanese (ja)
Other versions
JP5200496B2 (en
Inventor
Yutaka Tano
裕 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007295263A priority Critical patent/JP5200496B2/en
Publication of JP2009123471A publication Critical patent/JP2009123471A/en
Application granted granted Critical
Publication of JP5200496B2 publication Critical patent/JP5200496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately suppress breakage of piping or the like in a gas supply passage in a fuel cell system. <P>SOLUTION: A fuel cell system 10 includes: a fuel gas tank 20; a gas supply passage 24 for supplying gas from the fuel gas tank 20 arranged on the upstream side to a fuel cell stack 12 arranged on the downstream side; an upstream-side pressure reducing valve 22 reducing the pressure of high pressure gas; a downstream-side pressure reducing valve 28 more reducing the pressure of gas whose pressure is reduced with the upstream-side pressure reducing valve 22; and a relief valve 30 arranged between the upstream-side pressure reducing valve 22 and the downstream-side pressure reducing valve 28 in the gas supply passage 24, and opening when the pressure in the gas supply passage 24 in the arranged position reached the prescribed threshold value. The relief valve 30 is arranged in the position where the pressure of the gas supply passage 24 in the arranged position does not exceed the withstand pressure value of a passage element on the downstream side than the arranged position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池システムに係り、特に、燃料電池スタックにガスを供給する流路にリリーフ弁が設けられた燃料電池システムに関する。   The present invention relates to a fuel cell system, and more particularly to a fuel cell system in which a relief valve is provided in a flow path for supplying gas to a fuel cell stack.

燃料電池システムにおいて、発電を行う際に、燃料電池スタックの電極に対して燃料ガスや酸化ガスの供給を行っている。例えば、高圧の燃料ガス供給源からの燃料ガスの圧力を適宜低下させた後に、燃料ガスを燃料電池スタックに供給するシステムにおいては、この燃料ガスの圧力調整に関する機構に問題が生じた場合の対策が必要である。そこで、特許文献1には、燃料電池に燃料ガスを供する燃料ガス流路と、燃料ガス流路に設けられ、燃料ガス流路内の燃料ガスが所定圧以上になったときに燃料ガスを外部に放出するリリーフ弁と、を有する燃料電池システムにおいて、リリーフ弁のガス放出側に設けられた外部放出流路と、外部放出流路に設けられ、リリーフ弁から放出された燃料ガスの濃度を低減するガス処理装置とを備えたものが開示されている。   In a fuel cell system, when power generation is performed, fuel gas and oxidizing gas are supplied to the electrodes of the fuel cell stack. For example, in a system for supplying fuel gas to the fuel cell stack after appropriately reducing the pressure of the fuel gas from the high-pressure fuel gas supply source, a countermeasure when a problem occurs in the mechanism related to the pressure adjustment of the fuel gas. is required. Therefore, in Patent Document 1, a fuel gas flow path for supplying fuel gas to the fuel cell and a fuel gas flow path are provided in the fuel gas flow path, and when the fuel gas in the fuel gas flow path exceeds a predetermined pressure, the fuel gas is externally supplied. In a fuel cell system having a relief valve that discharges to the outside, an external discharge passage provided on the gas release side of the relief valve and a concentration of fuel gas released from the relief valve provided in the external discharge passage What is provided with the gas processing apparatus which performs is disclosed.

特開2005−332648号公報JP 2005-332648 A

上記の特許文献1の構成を用いることで、燃料ガス流路内の圧力を下げることができる。しかし、特許文献1のように、燃料ガス流路内に単にリリーフ弁を設けるのみでは、なんらかの要因で燃料ガス流路内の圧力が上昇し、リリーフ弁が設けられた周辺の燃料ガス流路内の圧力が所定圧以上となってリリーフ弁が開弁を開始しても、燃料ガスの外部に放出されることによる圧力の下降速度と、上述の圧力上昇の速度との関係によっては、燃料ガス流路内の配管等が破損する圧力を超えてしまう可能性がある。   By using the configuration of the above-mentioned Patent Document 1, the pressure in the fuel gas channel can be lowered. However, as in Patent Document 1, if a relief valve is simply provided in the fuel gas channel, the pressure in the fuel gas channel increases due to some factor, and the surrounding fuel gas channel in which the relief valve is provided Even if the pressure of the fuel reaches a predetermined pressure or higher and the relief valve starts to open, depending on the relationship between the pressure decrease rate due to the release of the fuel gas and the above-mentioned pressure increase rate, the fuel gas There is a possibility of exceeding the pressure at which piping in the flow path is damaged.

本発明の目的は、より適切に、ガス供給流路の配管等の破損を抑制できる燃料電池システムを提供することである。   An object of the present invention is to provide a fuel cell system that can more appropriately suppress breakage of piping or the like of a gas supply channel.

本発明に係る燃料電池システムにおいて、高圧ガスが充填された高圧ガスタンクと、上流側に配置される高圧ガスタンクから下流側に配置される燃料電池スタックに対してガスを供給するためのガス供給流路と、ガス供給流路の上流側に設けられ、高圧ガスを減圧させる上流側減圧弁と、ガス供給流路の下流側に設けられ、上流側減圧弁によって減圧された減圧後のガスをさらに減圧させる下流側減圧弁と、ガス供給流路において上流側減圧弁と下流側減圧弁との間に配置され、その配置位置におけるガス供給流路の圧力が予め定められた所定の閾値以上になったときに開弁するリリーフ弁と、を備え、リリーフ弁は、その配置位置におけるガス供給流路の圧力が、その配置位置より下流側における流路要素の耐圧圧力値を超えない位置に配置されることを特徴とする。   In the fuel cell system according to the present invention, a high-pressure gas tank filled with a high-pressure gas, and a gas supply channel for supplying gas from the high-pressure gas tank arranged on the upstream side to the fuel cell stack arranged on the downstream side And an upstream pressure reducing valve provided on the upstream side of the gas supply flow path to depressurize the high-pressure gas, and a pressure reducing pressure further reduced by the upstream pressure reducing valve provided on the downstream side of the gas supply flow path. The downstream pressure reducing valve is disposed between the upstream pressure reducing valve and the downstream pressure reducing valve in the gas supply flow path, and the pressure of the gas supply flow path at the arrangement position is equal to or higher than a predetermined threshold value. A relief valve that is sometimes opened, and the relief valve is arranged at a position where the pressure of the gas supply flow path at the arrangement position does not exceed the pressure resistance value of the flow path element downstream from the arrangement position. Is the fact characterized.

また、本発明に係る燃料電池システムにおいて、ガス供給流路においてリリーフ弁と下流側減圧弁との間に設けられ、ガス供給流路の流路径に比べて流路径の大きい容積部と、を備え、リリーフ弁は、ガス供給流路において、上流側減圧弁と容積部との間の圧力が所定の閾値以上になったときに、開弁することが好ましい。   In addition, the fuel cell system according to the present invention includes a volume portion that is provided between the relief valve and the downstream pressure reducing valve in the gas supply channel and has a larger channel diameter than the channel diameter of the gas supply channel. The relief valve is preferably opened when the pressure between the upstream pressure reducing valve and the volume part is equal to or higher than a predetermined threshold in the gas supply flow path.

また、本発明に係る燃料電池システムにおいて、上流側減圧弁とリリーフ弁とが一体構造となっていることが好ましい。   In the fuel cell system according to the present invention, it is preferable that the upstream pressure reducing valve and the relief valve have an integral structure.

また、本発明に係る燃料電池システムにおいて、ガス供給流路の流路径がリリーフ弁の弁径に比べて大きいことが好ましい。   In the fuel cell system according to the present invention, it is preferable that the diameter of the gas supply path is larger than the diameter of the relief valve.

上記構成により、燃料電池システムは、リリーフ弁の配置位置におけるガス供給流路の圧力が、その配置位置より下流側における流路要素の耐圧圧力値を超えない位置に配置されるリリーフ弁を備える。したがって、より適切に、ガス供給流路の配管等の破損を抑制できる。   With the above configuration, the fuel cell system includes the relief valve disposed at a position where the pressure of the gas supply flow path at the position where the relief valve is disposed does not exceed the pressure resistance value of the flow path element on the downstream side of the disposed position. Therefore, it is possible to more appropriately suppress damage to the piping of the gas supply flow path.

以下に、図面を用いて本発明に係る実施の形態につき詳細に説明する。以下では、高圧ガスは、燃料ガス(水素ガス)として説明するが、もちろん燃料ガスに限定されず、例えば、酸化ガスであってもよい。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Hereinafter, the high-pressure gas will be described as a fuel gas (hydrogen gas), but of course, the high-pressure gas is not limited to the fuel gas and may be, for example, an oxidizing gas.

図1は、燃料電池システム10の構成を示す図である。燃料電池システム10は、燃料電池セルが複数積層される燃料電池スタック12と、燃料電池スタック12のアノード側に配置される燃料ガス供給用の各要素と、カソード側に配置される酸化ガス供給用の各要素を含んで構成される。   FIG. 1 is a diagram showing the configuration of the fuel cell system 10. The fuel cell system 10 includes a fuel cell stack 12 in which a plurality of fuel cells are stacked, each element for supplying fuel gas disposed on the anode side of the fuel cell stack 12, and an oxidizing gas supply disposed on the cathode side. It is comprised including each element of.

燃料電池スタック12は、電解質膜の両側に触媒電極層を配置したMEA(Membrane Electrode Assembly)の両外側にセパレータを配置して挟持した単電池を複数個積層することで組電池としたものである。燃料電池スタック12は、アノード側に水素等の燃料ガスを供給し、カソード側に酸素を含む酸化ガス、例えば、空気を供給し、電解質膜を通しての電気化学反応によって発電し、必要な電力を取り出す機能を有する。   The fuel cell stack 12 is an assembled battery by laminating a plurality of single cells sandwiched by arranging separators on both outer sides of an MEA (Membrane Electrode Assembly) in which catalyst electrode layers are arranged on both sides of an electrolyte membrane. . The fuel cell stack 12 supplies a fuel gas such as hydrogen to the anode side, supplies an oxidizing gas containing oxygen, for example, air, to the cathode side, generates power by an electrochemical reaction through the electrolyte membrane, and takes out necessary power. It has a function.

カソード側の酸化ガス源40は、実際には大気を用いることができる。酸化ガス源40である大気はフィルタを通してからエアコンプレッサ(ACP)に供給される。カソード側の流路には、加湿器が設けられ、加湿器は、酸化ガスを適度に湿らせ、燃料電池スタック12での燃料電池反応を効率よく行わせる機能を有する。加湿器により適度に湿らせられた酸化ガスは、燃料電池スタック12のカソード側入口に供給され、カソード側出口から排出される。   The oxidant gas source 40 on the cathode side can actually use the atmosphere. The atmosphere as the oxidizing gas source 40 is supplied to an air compressor (ACP) through a filter. A humidifier is provided in the flow channel on the cathode side, and the humidifier has a function of appropriately moistening the oxidizing gas and efficiently performing the fuel cell reaction in the fuel cell stack 12. The oxidizing gas appropriately moistened by the humidifier is supplied to the cathode side inlet of the fuel cell stack 12 and discharged from the cathode side outlet.

カソード側の流路には、入口側エアシャット弁と出口側エアシャット弁が設けられる。入口側エアシャット弁と出口側エアシャット弁は、それぞれ加湿器に接続される。入口側エアシャット弁と出口側エアシャット弁は、通常は開状態である。例えば、内部でピストン等の可動子が進退する管路を有し、その管路の入口側が、加湿器側の流路に接続され、その管路の出口側が、燃料電池スタック12側の流路に接続される。圧力室の内圧を変化させて可動子をその管路の中に進入させると、入口側エアシャット弁の内部の管路が閉じるので、酸化ガスの流れが遮断される。このように、圧力室の内圧を制御して可動子の進退を行わせ、流路における酸化ガスの流れを必要に応じて遮断、すなわちシャットすることができる。   The cathode-side flow path is provided with an inlet-side air shut valve and an outlet-side air shut valve. The inlet side air shut valve and the outlet side air shut valve are each connected to a humidifier. The inlet side air shut valve and the outlet side air shut valve are normally open. For example, it has a pipe line in which a movable element such as a piston moves back and forth inside, and the inlet side of the pipe line is connected to the flow path on the humidifier side, and the outlet side of the pipe line is the flow path on the fuel cell stack 12 side. Connected to. When the internal pressure of the pressure chamber is changed to allow the mover to enter the pipe, the pipe inside the inlet side air shut valve is closed, so that the flow of the oxidizing gas is blocked. Thus, the internal pressure of the pressure chamber can be controlled to move the mover forward and backward, and the flow of the oxidizing gas in the flow path can be shut off, that is, shut down as necessary.

また、カソード側の流路には、調圧弁が設けられる。調圧弁は、背圧弁とも呼ばれるが、カソード側出口のガス圧を調整し、燃料電池スタック12への酸化ガスの流量を調整する機能を有する。調圧弁の出力口は、加湿器に接続されるので、調圧弁を出たガスは加湿器に水蒸気を供給した後に、希釈器50に入り、その後外部に排出される。   In addition, a pressure regulating valve is provided in the flow channel on the cathode side. Although the pressure regulating valve is also called a back pressure valve, it has a function of adjusting the gas pressure at the cathode side outlet and adjusting the flow rate of the oxidizing gas to the fuel cell stack 12. Since the output port of the pressure regulating valve is connected to the humidifier, the gas exiting the pressure regulating valve enters the diluter 50 after supplying water vapor to the humidifier, and is then discharged to the outside.

希釈器50は、後述するアノード側の排気バルブ38からの不純物ガスと水分とが混じっている水素、及び、カソード側からMEAを通して漏れてくる水分混じり水素を集め、適当な水素濃度として外部に排出するためのバッファ容器である。   The diluter 50 collects hydrogen mixed with impurity gas and moisture from the anode side exhaust valve 38, which will be described later, and water mixed with moisture leaking from the cathode side through the MEA, and discharges it to the outside as an appropriate hydrogen concentration. This is a buffer container.

アノード側の燃料ガスタンク20は、水素ガス源であって、燃料ガスとしての水素を供給する高圧ガスタンクである。水素ガスは、高圧であるため、燃料ガスタンク20と燃料電池スタック12とを連通するガス供給流路24に設けられる上流側減圧弁22と下流側減圧弁28によって適当な圧力と流量に調整されて燃料電池スタック12に供給される。   The anode-side fuel gas tank 20 is a high-pressure gas tank that is a hydrogen gas source and supplies hydrogen as a fuel gas. Since the hydrogen gas has a high pressure, it is adjusted to an appropriate pressure and flow rate by an upstream pressure reducing valve 22 and a downstream pressure reducing valve 28 provided in a gas supply flow path 24 that communicates the fuel gas tank 20 and the fuel cell stack 12. It is supplied to the fuel cell stack 12.

上流側減圧弁22は、ガス供給流路24内の圧力を調整する弁である。上流側減圧弁22は、燃料ガスタンク20の下流側に設けられ、燃料ガスタンク20から出力される水素ガス(例えば、70MPa)を所定の圧力(例えば、3MPa)まで減圧する。   The upstream pressure reducing valve 22 is a valve that adjusts the pressure in the gas supply passage 24. The upstream pressure reducing valve 22 is provided on the downstream side of the fuel gas tank 20, and depressurizes the hydrogen gas (for example, 70 MPa) output from the fuel gas tank 20 to a predetermined pressure (for example, 3 MPa).

リリーフ弁30は、ガス供給流路24において上流側減圧弁22と下流側減圧弁28との間に配置され、その配置位置におけるガス供給流路の圧力が予め定められた閾値(例えば、4MPa)に達した場合に、開弁してガス供給流路24のガスを外部に放出し、ガス供給流路24の圧力を下げる機能を有する。リリーフ弁30は、ガス供給流路24において、上流側減圧弁22の下流側であって、上流側減圧弁22とリリーフ弁30との間の管路抵抗が最も小さくなるような位置に配置される。また、リリーフ弁30の弁径は、所定の流量を流せるように設定されているが、ガス供給流路24の流路径に比べて、同等あるいは小さな径に設定されている。   The relief valve 30 is disposed between the upstream pressure reducing valve 22 and the downstream pressure reducing valve 28 in the gas supply flow path 24, and the pressure of the gas supply flow path at the position of the relief valve 30 is a predetermined threshold (for example, 4 MPa). When the pressure reaches the value, the valve is opened to release the gas in the gas supply channel 24 to the outside, and the pressure in the gas supply channel 24 is lowered. The relief valve 30 is disposed downstream of the upstream pressure reducing valve 22 in the gas supply flow path 24 so that the pipe line resistance between the upstream pressure reducing valve 22 and the relief valve 30 is minimized. The Further, the diameter of the relief valve 30 is set to allow a predetermined flow rate to flow, but is set to be equal to or smaller than the diameter of the gas supply flow path 24.

容積部26は、ガス供給流路24の流路径に比べて大きな径を有する容器であって、ガス供給流路24の圧力上昇速度を抑制できる機能を有する。容積部26は、ガス供給流路24において上流側減圧弁22と下流側減圧弁28との間であって、リリーフ弁30の下流側に配置される。   The volume portion 26 is a container having a diameter larger than the diameter of the gas supply flow path 24 and has a function of suppressing the pressure increase rate of the gas supply flow path 24. The volume portion 26 is disposed between the upstream side pressure reducing valve 22 and the downstream side pressure reducing valve 28 in the gas supply flow path 24 and downstream of the relief valve 30.

下流側減圧弁28は、上流側減圧弁22と同様にガス供給流路24内の圧力を調整する弁である。下流側減圧弁28は、ガス供給流路24内においてリリーフ弁30や容積部26の下流側に設けられ、上流側減圧弁22によって減圧された水素ガスをさらに所定の圧力(例えば、0.4MPa)まで減圧する。   The downstream pressure reducing valve 28 is a valve that adjusts the pressure in the gas supply flow path 24, similarly to the upstream pressure reducing valve 22. The downstream pressure reducing valve 28 is provided in the gas supply flow path 24 on the downstream side of the relief valve 30 and the volume portion 26, and hydrogen gas decompressed by the upstream pressure reducing valve 22 is further supplied to a predetermined pressure (for example, 0.4 MPa). ) Until reduced pressure.

燃料ガスシャット弁32は、ガス供給流路24の開閉を行う弁である。燃料ガスシャット弁32は、下流側減圧弁28の下流側に設けられ、水素ガスを燃料電池スタック12に供給し、あるいは、供給を停止することができる。   The fuel gas shut valve 32 is a valve that opens and closes the gas supply passage 24. The fuel gas shut valve 32 is provided on the downstream side of the downstream pressure reducing valve 28 and can supply hydrogen gas to the fuel cell stack 12 or can stop the supply.

燃料電池スタック12のアノード側出口に接続される分流器36は、アノード側出口からの排出ガスの不純物ガス濃度が高まってきたときに、排気バルブ38を通して希釈器50に流すためのものである。また、分流器36の後でさらにアノード側入口との間に設けられる循環昇圧器34は、アノード側出口から戻ってくるガスの水素分圧を高めて再びアノード側入口に戻し再利用する機能を有する水素ポンプである。   The shunt 36 connected to the anode side outlet of the fuel cell stack 12 is used to flow to the diluter 50 through the exhaust valve 38 when the impurity gas concentration of the exhaust gas from the anode side outlet increases. Further, the circulation booster 34 provided between the flow divider 36 and the anode side inlet further increases the hydrogen partial pressure of the gas returning from the anode side outlet and returns it to the anode side inlet for reuse. It has a hydrogen pump.

図2は、横軸に時間、縦軸に圧力をとり、上流側減圧弁22が作動不良となった場合のガス供給流路24の圧力上昇値を示す図である。圧力特性曲線61は、ガス供給流路24における圧力監視ポイント14における圧力上昇の様子を示している。圧力特性曲線62は、圧力監視ポイント16における圧力上昇の様子を示している。ここで、圧力監視ポイント14における圧力上昇の時間と、圧力監視ポイント16における圧力上昇の時間とを比較すると、圧力監視ポイント14は、圧力監視ポイント16に比べて管路抵抗等が小さいことからより早く所定の圧力に到達する。また、圧力監視ポイント14は、圧力監視ポイント16に比べて圧力降下も小さくなる。   FIG. 2 is a diagram illustrating the pressure increase value of the gas supply passage 24 when the horizontal axis represents time and the vertical axis represents pressure, and the upstream pressure reducing valve 22 malfunctions. A pressure characteristic curve 61 shows a state of pressure increase at the pressure monitoring point 14 in the gas supply flow path 24. The pressure characteristic curve 62 shows a state of pressure increase at the pressure monitoring point 16. Here, when the time of pressure increase at the pressure monitoring point 14 is compared with the time of pressure increase at the pressure monitoring point 16, the pressure monitoring point 14 has a smaller pipe resistance or the like than the pressure monitoring point 16. A predetermined pressure is reached quickly. Further, the pressure drop at the pressure monitoring point 14 is smaller than that at the pressure monitoring point 16.

上記のことから、リリーフ弁30は、ガス供給流路24において、より上流側(上流側減圧弁22側)に設けられた方がより早く開弁が開始され、ガス供給流路24のガスを外部に排出して圧力を下げることができる。   From the above, the relief valve 30 starts opening earlier when the relief valve 30 is provided on the upstream side (upstream pressure reducing valve 22 side) in the gas supply passage 24, and the gas in the gas supply passage 24 is discharged. It can be discharged outside to reduce the pressure.

上記の構成の作用について説明する。図3は、横軸に時間、縦軸に圧力をとり、リリーフ弁30が作動した場合のガス供給流路24の圧力の特性を示す図である。圧力特性曲線71は、ガス供給流路24の圧力が上昇してリリーフ弁30が作動した場合の圧力の特性を示している。境界線72は、リリーフ弁30が開弁を開始する開弁圧力(例えば、4MPa)を示している。境界線73は、耐圧圧力であって、ガス供給流路24の流路要素である配管や下流側減圧弁28が損傷する耐圧圧力の中で最も低い耐圧圧力値(例えば、10MPa)を示している。   The operation of the above configuration will be described. FIG. 3 is a graph showing the pressure characteristics of the gas supply flow path 24 when the relief valve 30 is operated with time on the horizontal axis and pressure on the vertical axis. The pressure characteristic curve 71 shows the pressure characteristic when the pressure of the gas supply flow path 24 increases and the relief valve 30 is activated. A boundary line 72 indicates a valve opening pressure (for example, 4 MPa) at which the relief valve 30 starts to open. The boundary line 73 indicates the pressure pressure and the lowest pressure pressure value (for example, 10 MPa) among the pressure pressures that damage the pipes and the downstream pressure reducing valves 28 that are the flow path elements of the gas supply flow path 24. Yes.

例えば、燃料ガスタンク20からの高圧ガスを減圧する上流側減圧弁22が作動不良となった場合に、ガス供給流路24の圧力が高圧ガスの圧力値に向けて上昇していく。リリーフ弁30は、上流側減圧弁22の下流側であって、上流側減圧弁22とリリーフ弁30との間の管路抵抗が最も小さくなるような位置に配置されており、リリーフ弁30付近の圧力が境界線72に示される圧力値を超えるとリリーフ弁30は開弁する。リリーフ弁30が、開弁してからガスがガス供給流路24の外部に排出され、境界線73に示される圧力値を超えないように圧力が下げられる。   For example, when the upstream pressure reducing valve 22 that depressurizes the high-pressure gas from the fuel gas tank 20 malfunctions, the pressure in the gas supply channel 24 increases toward the pressure value of the high-pressure gas. The relief valve 30 is arranged at a position downstream of the upstream pressure reducing valve 22 so that the pipe line resistance between the upstream pressure reducing valve 22 and the relief valve 30 is the smallest, and in the vicinity of the relief valve 30 When the pressure exceeds the pressure value indicated by the boundary line 72, the relief valve 30 opens. After the relief valve 30 is opened, the gas is discharged to the outside of the gas supply flow path 24, and the pressure is lowered so as not to exceed the pressure value indicated by the boundary line 73.

このようにガス供給流路24において、リリーフ弁30付近の圧力は、耐圧圧力を超えることなく圧力が下がる。また、リリーフ弁30よりも下流側の圧力は、より圧力上昇速度が遅いことから耐圧圧力を超えない。したがって、ガス供給流路24の流路要素である配管や下流側減圧弁28を損傷することなく、ガス供給流路24の圧力を下げることができる。   As described above, in the gas supply flow path 24, the pressure in the vicinity of the relief valve 30 decreases without exceeding the pressure resistance. Further, the pressure on the downstream side of the relief valve 30 does not exceed the pressure resistance because the pressure increase rate is slower. Therefore, the pressure of the gas supply flow path 24 can be reduced without damaging the piping or the downstream pressure reducing valve 28 which are flow path elements of the gas supply flow path 24.

また、リリーフ弁30の下流側には、容積部26が設けられている。容積部26は、上記のようにガス供給流路24の圧力上昇速度を抑制できる。したがって、上流側減圧弁22が作動不良時の圧力上昇速度は、リリーフ弁30によるガス排出によってもたらされる圧力下降速度に対して遅くできるため、より適切にガス供給流路24の配管や下流側減圧弁28の損傷を抑制することができる。   A volume portion 26 is provided on the downstream side of the relief valve 30. The volume part 26 can suppress the pressure increase rate of the gas supply flow path 24 as described above. Therefore, the pressure increase rate when the upstream pressure reducing valve 22 is malfunctioning can be slower than the pressure decreasing rate caused by the gas discharge by the relief valve 30. Therefore, the piping of the gas supply flow path 24 and the downstream pressure reducing valve can be more appropriately performed. Damage to the valve 28 can be suppressed.

また、ガス供給流路24の流路径は、リリーフ弁30の弁径に比べて同等以上の大きさであるので、ガス供給流路24が破損する圧力に到達する前にリリーフ弁30が開弁するという機能の信頼性が向上する。   Further, since the channel diameter of the gas supply channel 24 is equal to or larger than the valve diameter of the relief valve 30, the relief valve 30 is opened before reaching the pressure at which the gas supply channel 24 is damaged. This improves the reliability of the function.

以上のように、本発明によれば、ガス供給流路24の配管や下流側減圧弁28を損傷することなくガス供給流路24の圧力を下げることができる。なお、上記では、リリーフ弁30は、上流側減圧弁22とリリーフ弁30との間の管路抵抗が最も小さくなるような位置に配置されるものとして説明したが、上流側減圧弁22とリリーフ弁30は一体化構造としても同様の効果を有する。また、上流側減圧弁22とリリーフ弁30と容積部26とを一体化構造として、より適切にガス供給流路24の配管や下流側減圧弁28を損傷することなくガス供給流路24の圧力を下げることができる。   As described above, according to the present invention, the pressure of the gas supply passage 24 can be reduced without damaging the piping of the gas supply passage 24 or the downstream pressure reducing valve 28. In the above description, the relief valve 30 has been described as being disposed at a position where the pipe resistance between the upstream pressure reducing valve 22 and the relief valve 30 is minimized. The valve 30 has the same effect as an integrated structure. Further, the upstream pressure reducing valve 22, the relief valve 30 and the volume portion 26 are integrated, and the pressure of the gas supply flow path 24 is more appropriately damaged without damaging the piping of the gas supply flow path 24 and the downstream pressure reducing valve 28. Can be lowered.

本発明の実施の形態の燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system of embodiment of this invention. 横軸に時間をとり、縦軸に圧力をとった場合に上流側減圧弁が作動不良となった場合のガス供給流路の圧力上昇値を示す図である。It is a figure which shows the pressure rise value of the gas supply flow path when time is taken on a horizontal axis and an upstream pressure-reduction valve malfunctions when pressure is taken on a vertical axis | shaft. 横軸に時間をとり、縦軸に圧力をとり、リリーフ弁が作動した場合のガス供給流路においてリリーフ弁の配置位置の圧力の特性を示す図である。It is a figure which shows the characteristic of the pressure of the arrangement position of a relief valve in a gas supply flow path when time is taken on a horizontal axis and pressure is taken on a vertical axis and a relief valve is operated.

符号の説明Explanation of symbols

10 燃料電池システム、12 燃料電池スタック、14,16 圧力監視ポイント、20 燃料ガスタンク、22 上流側減圧弁、24 ガス供給流路、26 容積部、28 下流側減圧弁、30 リリーフ弁、32 燃料ガスシャット弁、34 循環昇圧器、36 分流器、38 排気バルブ、40 酸化ガス源、50 希釈器、61,62,71 圧力特性曲線、72,73 境界線。   DESCRIPTION OF SYMBOLS 10 Fuel cell system, 12 Fuel cell stack, 14, 16 Pressure monitoring point, 20 Fuel gas tank, 22 Upstream pressure reducing valve, 24 Gas supply flow path, 26 Volume part, 28 Downstream pressure reducing valve, 30 Relief valve, 32 Fuel gas Shut valve, 34 circulation booster, 36 shunt, 38 exhaust valve, 40 oxidizing gas source, 50 diluter, 61, 62, 71 pressure characteristic curve, 72, 73 boundary line.

Claims (4)

高圧ガスが充填された高圧ガスタンクと、
上流側に配置される高圧ガスタンクから下流側に配置される燃料電池スタックに対してガスを供給するためのガス供給流路と、
ガス供給流路の上流側に設けられ、高圧ガスを減圧させる上流側減圧弁と、
ガス供給流路の下流側に設けられ、上流側減圧弁によって減圧された減圧後のガスをさらに減圧させる下流側減圧弁と、
ガス供給流路において上流側減圧弁と下流側減圧弁との間に配置され、その配置位置におけるガス供給流路の圧力が予め定められた所定の閾値以上になったときに開弁するリリーフ弁と、
を備え、
リリーフ弁は、
その配置位置におけるガス供給流路の圧力が、その配置位置より下流側における流路要素の耐圧圧力値を超えない位置に配置されることを特徴とする燃料電池システム。
A high-pressure gas tank filled with high-pressure gas;
A gas supply channel for supplying gas from a high-pressure gas tank disposed on the upstream side to a fuel cell stack disposed on the downstream side;
An upstream pressure reducing valve provided on the upstream side of the gas supply flow path to depressurize the high pressure gas;
A downstream pressure reducing valve that is provided on the downstream side of the gas supply flow path and further depressurizes the gas after being decompressed by the upstream pressure reducing valve;
A relief valve that is disposed between the upstream side pressure reducing valve and the downstream side pressure reducing valve in the gas supply flow path and opens when the pressure of the gas supply flow path at the arrangement position exceeds a predetermined threshold value. When,
With
The relief valve
A fuel cell system, wherein the pressure of the gas supply flow path at the arrangement position is arranged at a position that does not exceed the pressure resistance value of the flow path element downstream from the arrangement position.
請求項1に記載の燃料電池システムにおいて、
ガス供給流路においてリリーフ弁と下流側減圧弁との間に設けられ、ガス供給流路の流路径に比べて流路径の大きい容積部と、
を備え、
リリーフ弁は、
ガス供給流路において、上流側減圧弁と容積部との間の圧力が所定の閾値以上になったときに、開弁することを特徴とする燃料電池システム。
The fuel cell system according to claim 1,
A volume supply section provided between the relief valve and the downstream pressure reducing valve in the gas supply flow path and having a flow path diameter larger than the flow path diameter of the gas supply flow path;
With
The relief valve
A fuel cell system that opens when a pressure between an upstream pressure reducing valve and a volume part exceeds a predetermined threshold in a gas supply flow path.
請求項1または請求項2に記載の燃料電池システムにおいて、
上流側減圧弁とリリーフ弁とが一体構造となっていることを特徴とする燃料電池システム。
The fuel cell system according to claim 1 or 2,
A fuel cell system, wherein an upstream pressure reducing valve and a relief valve are integrated.
請求項1から請求項3のいずれか1に記載の燃料電池システムにおいて、
ガス供給流路の流路径がリリーフ弁の弁径に比べて大きいことを特徴とする燃料電池システム。
In the fuel cell system according to any one of claims 1 to 3,
A fuel cell system, wherein a gas supply channel has a larger diameter than a relief valve.
JP2007295263A 2007-11-14 2007-11-14 Fuel cell system Expired - Fee Related JP5200496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295263A JP5200496B2 (en) 2007-11-14 2007-11-14 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295263A JP5200496B2 (en) 2007-11-14 2007-11-14 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2009123471A true JP2009123471A (en) 2009-06-04
JP5200496B2 JP5200496B2 (en) 2013-06-05

Family

ID=40815417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295263A Expired - Fee Related JP5200496B2 (en) 2007-11-14 2007-11-14 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5200496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067832A (en) * 2010-09-22 2012-04-05 Honda Motor Co Ltd Fuel supply system
JP2014160541A (en) * 2013-02-19 2014-09-04 Toyota Motor Corp Piping for fuel cell, method for exhausting fuel gas, and connection pipe
KR20170037828A (en) * 2015-09-28 2017-04-05 가부시끼가이샤 다쓰노 Collection device for a gas filling apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231278A (en) * 2001-02-01 2002-08-16 Nissan Motor Co Ltd Fuel cell system
JP2003068342A (en) * 2001-06-15 2003-03-07 Toyota Motor Corp Power output apparatus with built-in fuel cell and its method
JP2005251428A (en) * 2004-03-01 2005-09-15 Seiko Epson Corp Fuel cell system and apparatus equipped therewith
JP3118633U (en) * 2005-11-16 2006-02-02 岩谷産業株式会社 Mobile fuel cell device
JP2006294341A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231278A (en) * 2001-02-01 2002-08-16 Nissan Motor Co Ltd Fuel cell system
JP2003068342A (en) * 2001-06-15 2003-03-07 Toyota Motor Corp Power output apparatus with built-in fuel cell and its method
JP2005251428A (en) * 2004-03-01 2005-09-15 Seiko Epson Corp Fuel cell system and apparatus equipped therewith
JP2006294341A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Fuel cell system
JP3118633U (en) * 2005-11-16 2006-02-02 岩谷産業株式会社 Mobile fuel cell device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067832A (en) * 2010-09-22 2012-04-05 Honda Motor Co Ltd Fuel supply system
JP2014160541A (en) * 2013-02-19 2014-09-04 Toyota Motor Corp Piping for fuel cell, method for exhausting fuel gas, and connection pipe
KR20170037828A (en) * 2015-09-28 2017-04-05 가부시끼가이샤 다쓰노 Collection device for a gas filling apparatus
JP2017067084A (en) * 2015-09-28 2017-04-06 株式会社タツノ Calibrator
KR101894260B1 (en) * 2015-09-28 2018-09-04 가부시끼가이샤 다쓰노 Collection device for a gas filling apparatus

Also Published As

Publication number Publication date
JP5200496B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2005088757A1 (en) Fuel cell system and method for controlling same
JP6610904B2 (en) Fuel cell system and control method thereof
JP2008097966A (en) Fuel cell system and its control method
JP2010277837A (en) Fuel cell device
US10355292B2 (en) Method of controlling fuel cell system by comparing pressures in fuel gas path
JP6453869B2 (en) Method for shutting down a system including a fuel cell stack and system including a fuel cell stack
JP5034186B2 (en) Fuel cell system, gas leak detection device, and gas leak detection method
JP4963400B2 (en) Fuel cell system and control method thereof
JP5200496B2 (en) Fuel cell system
JP2008218072A (en) Fuel cell system
US9373858B2 (en) Method for starting fuel cell system and starting apparatus for fuel cell system
JP2005180545A (en) High-pressure hydrogen producing apparatus
JP5082790B2 (en) Fuel cell system
JP2008010198A (en) Fuel cell system
JP5292693B2 (en) Fuel cell system
JP6389835B2 (en) Pressure control method during output acceleration of fuel cell system
JP5262169B2 (en) Fuel cell system
JP5904128B2 (en) Fuel cell system having a relief valve
JP6315714B2 (en) Operation control method of fuel cell system
JP2005108698A (en) Fuel cell system
JP2009146656A (en) Fuel cell system
JP5110347B2 (en) Fuel cell system and its stop processing method
JP2005353305A (en) Fuel cell system
JP2007165263A (en) Fuel cell system and operation stopping method of the same
JP2014120468A (en) Hydrogen supply device of fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5200496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees