JP2009122603A - Driving device - Google Patents

Driving device Download PDF

Info

Publication number
JP2009122603A
JP2009122603A JP2007299371A JP2007299371A JP2009122603A JP 2009122603 A JP2009122603 A JP 2009122603A JP 2007299371 A JP2007299371 A JP 2007299371A JP 2007299371 A JP2007299371 A JP 2007299371A JP 2009122603 A JP2009122603 A JP 2009122603A
Authority
JP
Japan
Prior art keywords
string
shape memory
memory alloy
driven body
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007299371A
Other languages
Japanese (ja)
Inventor
Shigeru Wada
滋 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007299371A priority Critical patent/JP2009122603A/en
Publication of JP2009122603A publication Critical patent/JP2009122603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device which can stably straight-move a compact driven body such as a lens and uses a shape memory alloy hardly causing oscillation by suppressing resonance with a simple configuration without adding components. <P>SOLUTION: In the driving device equipped with the driven body 3, an elastic support member elastically supporting the body 3, and the string-like shape memory alloy 5 displacing the body 3, a middle part of the string-like shape memory alloy is bridged over a predetermined suspension part, and both ends thereof are fixed at fixed terminal parts, and also response speed when heating and when cooling is made different between the first area 51 of the string-like shape memory alloy from the bridging part 50 to one fixed terminal part and a second area 52 from another fixed terminal part to the bridging part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、小型の機械要素を駆動する駆動装置に関し、特に、被駆動体の共振を抑制すると共に、光学装置のレンズを光軸方向に移動するのに好適な形状記憶合金を用いた駆動装置に関する。   The present invention relates to a drive device that drives a small mechanical element, and in particular, a drive device using a shape memory alloy suitable for suppressing resonance of a driven body and moving a lens of an optical device in an optical axis direction. About.

カメラなどの撮影装置に用いられるレンズの駆動手段としては、従来、回転モータと減速機構と方向変換機構等を組み合わせた例や、リニアモータで直動する例などが知られている。また、昨今の携帯カメラなどに代表される超小型レンズユニットにおいては、前述した回転モータと減速機構などを用いた機構では、要素が多くまたサイズも大きなものとなる。さらに、超音波モータなどを用いたリアモータによる駆動機構においては、光軸の投影面積方向の大きさは小さくできるが、光軸方向には所定大きさが必要となり小さくできない構成となっていた。   Conventionally known examples of lens driving means used in a photographing apparatus such as a camera include a combination of a rotary motor, a speed reduction mechanism, a direction changing mechanism, and the like, and a linear motor. Further, in a micro lens unit represented by a recent portable camera or the like, the mechanism using the rotary motor and the speed reduction mechanism described above has many elements and a large size. Furthermore, in a drive mechanism using a rear motor using an ultrasonic motor or the like, the size of the optical axis in the projected area direction can be reduced, but a predetermined size is required in the optical axis direction and cannot be reduced.

また、これらの駆動装置は、出力エネルギ密度が小さく、装置の大きさが小さくなればそれだけ出力が小さくなってしまうので、レンズ駆動装置の小型化については明らかな限界が生じていた。   Further, since these drive devices have a low output energy density, and the size of the device decreases, the output decreases accordingly. Therefore, there has been a clear limit to downsizing the lens drive device.

そのために、小型でもエネルギ密度が大きいことが知られている形状記憶合金を用いるアクチュエータの開発が進められている。また、紐状の形状記憶合金を用いて全長の数%(例えば3〜5%)の長さ変動を利用したリニア駆動装置を構成することができる。さらに、この紐状の形状記憶合金と変倍機構を組み合わせて変位量を拡大したリニア駆動装置を構成することができる。   For this reason, development of an actuator using a shape memory alloy, which is known to be small but have a high energy density, has been underway. Moreover, the linear drive device using the length variation of several% (for example, 3 to 5%) of the total length using the string-like shape memory alloy can be configured. Furthermore, the linear drive device which expanded the amount of displacement can be comprised by combining this string-like shape memory alloy and a variable magnification mechanism.

エネルギ密度が大きな形状記憶合金を利用すれば、小型で高出力の駆動機構を構成することができる。また、この駆動機構としては、従来、別に備えるバイアスばねとバランスをとる所謂「バイアスばね方式」と、同等の形状記憶合金とアクティブにバランスさせる「プッシュプル方式」との2通りの方式が知られている。   If a shape memory alloy having a large energy density is used, a small and high output drive mechanism can be configured. As the drive mechanism, there are conventionally known two types of systems, a so-called “bias spring system” that balances with a separately provided bias spring and a “push-pull system” that actively balances with an equivalent shape memory alloy. ing.

上記いずれの方式においても、弾性力のバランスでその位置が決定されるので、それぞれ特有の固有振動数を持つことになる。駆動系が固有振動数を持っていても、移動速度が低速の場合やり、停止位置が2点の場合には、さほど問題とはならない。しかし、高速で位置制御を行う場合や、中間停止などの複数の停止位置を有する場合などでは、大きな問題となる場合がある。   In any of the above methods, the position is determined by the balance of elastic force, and each has a unique natural frequency. Even if the drive system has a natural frequency, it is not a problem if the moving speed is low and the stop position is two points. However, when position control is performed at a high speed, or when there are a plurality of stop positions such as intermediate stops, there may be a serious problem.

そのために、形状記憶合金を用いた駆動装置において、高速応答性を発揮するために、形状記憶合金の素材特性とバイアスばねの力量とのバランスを勘案し、アクチュエータの温度ヒステリシスを小さくして、手振れを防止するとした駆動装置および駆動制御方法がすでに公開されている(例えば、特許文献1参照)。   For this reason, in a drive device using a shape memory alloy, in order to achieve high-speed response, the balance between the material characteristics of the shape memory alloy and the force of the bias spring is taken into account, and the temperature hysteresis of the actuator is reduced to reduce camera shake. A drive device and a drive control method for preventing the above have already been disclosed (for example, see Patent Document 1).

紐状の形状記憶合金の両端部間に通電すると、発熱するジュール熱により加熱され、所定温度に達すると記憶長さまで収縮する(加熱収縮過程)。一方、この高温状態から通電を遮断すると、放熱により所定温度以下に冷却されて形状記憶状態から開放され、別に設けるバイアスばね等の弾性力により伸長する(冷却伸長過程)。   When energized between both ends of the string-shaped shape memory alloy, it is heated by the generated Joule heat and contracts to the memory length when it reaches a predetermined temperature (heating contraction process). On the other hand, when the energization is cut off from this high temperature state, it is cooled to a predetermined temperature or less by heat radiation, released from the shape memory state, and extended by an elastic force such as a separately provided bias spring (cooling extension process).

この紐状の形状記憶合金は一般的に、前述した加熱収縮過程と冷却伸長過程では、同じ長さを現出する温度が異なる所謂ヒステリシスを有している。また、負荷の増減でも変態温度が上下する。これらの特徴が形状記憶合金の応答性を悪化する要因となっている。そのために、応答性のよい駆動機構を形成するには駆動系の摩擦を極力低減することが好ましく、低摩擦でレンズの直進移動を可能とするガイド機構を組み合わせたリニア駆動装置を構成することが求められている。   In general, the string-like shape memory alloy has a so-called hysteresis in which the temperature at which the same length appears is different in the heating shrinkage process and the cooling elongation process. Also, the transformation temperature rises and falls as the load increases and decreases. These characteristics are factors that deteriorate the responsiveness of the shape memory alloy. For this reason, it is preferable to reduce the friction of the drive system as much as possible in order to form a responsive drive mechanism, and it is possible to configure a linear drive device combined with a guide mechanism that allows the lens to move straight with low friction. It has been demanded.

低摩擦で直進移動を可能とするガイド機構としては、一対の向かい合わせの平行板ばねからなる平行リンク機構が知られている。そのために、平行板ばね機構と形状記憶合金を用いてレンズなどを移動するアクチュエータ装置(駆動装置)が既に公開されている(例えば、特許文献2参照)。
特開2003−125590号公報 特開2002−130114号公報
As a guide mechanism that enables linear movement with low friction, a parallel link mechanism including a pair of opposed parallel leaf springs is known. Therefore, an actuator device (driving device) that moves a lens or the like using a parallel leaf spring mechanism and a shape memory alloy has already been disclosed (for example, see Patent Document 2).
JP 2003-125590 A JP 2002-130114 A

一対の平行板ばねからなる平行リンク機構を用いて、被駆動体を挟持する方法では、被駆動体の直進移動を低摩擦状態で行うことができる。しかし、低摩擦状態では、平行板ばねやバイアススプリングなどのばね力によって生じる共振現象を抑制することは困難である。   In a method of holding a driven body using a parallel link mechanism including a pair of parallel leaf springs, the driven body can be moved straightly in a low friction state. However, in a low friction state, it is difficult to suppress a resonance phenomenon caused by a spring force such as a parallel leaf spring or a bias spring.

また、被駆動体を安定して平行移動させるためには、平行板ばねを片持ちではなく両持ち状態に保持しておくと有効である。そのために、被駆動体が円形のレンズを有する鏡胴であれば、この鏡胴の周囲に架設する円盤ドーナツ状の平行板ばねを装着している。しかし、このように、平行移動する鏡胴の両面、例えば上下両面に、円盤ドーナツ状の平行板バネを装着する構成では、負荷が増えるだけでなく、いずれの面からも部品等の装着作業ができず、鏡胴周囲に配設する形状記憶合金や変倍機構等の組み付け作業が困難になるという問題が生じる。   Further, in order to stably move the driven body in parallel, it is effective to hold the parallel leaf spring in a both-sided state instead of being cantilevered. For this purpose, if the driven body is a lens barrel having a circular lens, a disk donut-shaped parallel leaf spring is mounted around the lens barrel. However, in this way, the configuration in which the disk donut-shaped parallel leaf springs are mounted on both surfaces of the lens barrel that moves in parallel, for example, both the upper and lower surfaces, not only increases the load, but also the mounting work of parts and the like from either surface However, it is difficult to assemble a shape memory alloy or a zooming mechanism disposed around the lens barrel.

また、特許文献1に記載のように、アクチュエータの温度ヒステリシスを小さくするために、形状記憶合金を備える可動部の動作を制御する駆動制御部を設ける構成では、装置構成が複雑となり、部品点数が増加し大型化を招きコスト高となって、簡単ではない。   In addition, as described in Patent Document 1, in the configuration in which the drive control unit that controls the operation of the movable unit including the shape memory alloy is provided in order to reduce the temperature hysteresis of the actuator, the device configuration becomes complicated and the number of parts is reduced. It is not easy because it increases the size and costs.

そこで本発明は、レンズ等の小型の被駆動体を安定して直進移動すると共に、部品を追加することなく簡単な構成で共振を抑制し、発振し難い形状記憶合金を用いた駆動装置を提供することを目的とする。   Therefore, the present invention provides a driving device using a shape memory alloy that is capable of stably moving a small driven body such as a lens or the like in a straight line, suppressing resonance with a simple configuration without adding parts, and hardly oscillating. The purpose is to do.

上記目的を達成するために本発明は、被駆動体と、該被駆動体を弾性支持する弾性支持部材と、前記被駆動体を変位させる紐状形状記憶合金を備える駆動装置において、前記紐状形状記憶合金の中間部を所定の懸架部に掛け渡して、その両端を固定端子部に固定すると共に、前記掛け渡し部から一方の固定端子部までの前記紐状形状記憶合金の第一領域と、他方の固定端子部から前記掛け渡し部までの第二領域とで、その加熱時と冷却時の応答速度が異なるように構成されたことを特徴としている。   In order to achieve the above object, the present invention provides a driving device including a driven body, an elastic support member that elastically supports the driven body, and a string-shaped shape memory alloy that displaces the driven body. The intermediate part of the shape memory alloy is hung on a predetermined suspension part, both ends thereof are fixed to the fixed terminal part, and the first region of the string-like shape memory alloy from the crossing part to one fixed terminal part and The second region from the other fixed terminal portion to the bridge portion is characterized in that the response speed during heating and cooling is different.

上記の構成であれば、弾性支持された被駆動体を紐状形状記憶合金を介して駆動する際に、掛け渡す紐状記憶合金の左右の第一領域と第二領域とで、その応答速度を異ならせているので、掛け渡し部に滑りや摩擦が生じ、被駆動体の移動方向に生じる振動を抑制する摩擦力として作用することになる。そのために、紐状形状記憶合金を伸縮して被駆動体を駆動する際に生じる共振の発生を効果的に抑制可能な駆動装置を得ることができる。   With the above configuration, when the elastically supported driven body is driven via the string-shaped memory alloy, the response speed of the left and right first and second areas of the string-shaped memory alloy to be passed Therefore, slipping and friction are generated in the spanning portion, which acts as a frictional force that suppresses vibration generated in the moving direction of the driven body. Therefore, it is possible to obtain a drive device that can effectively suppress the occurrence of resonance that occurs when the driven body is driven by expanding and contracting the string-shaped shape memory alloy.

また本発明は上記構成の駆動装置において、前記第一領域と前記第二領域とで前記紐状形状記憶合金の長さを異ならせた構成とすることで、それらの応答速度を異ならせることができる。   Further, in the drive device having the above-described configuration, the response speed can be varied by adopting a configuration in which the length of the string-like shape memory alloy is different between the first region and the second region. it can.

もしくは、前記第一領域と前記第二領域とのいずれか一方の前記紐状形状記憶合金に放熱部材を装着した構成とすることでも、それらの応答速度を異ならせることができる。   Alternatively, the response speed can also be varied by adopting a configuration in which a heat radiating member is attached to one of the string-shaped memory alloys of the first region and the second region.

また本発明は、被駆動体と、該被駆動体を弾性支持する弾性支持部材と、前記被駆動体を変位させる紐状形状記憶合金を備える駆動装置において、複数の紐状形状記憶合金を用いて前記被駆動体を変位させると共に、複数の前記紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なるように構成されたことを特徴としている。   Further, the present invention provides a driving device including a driven body, an elastic support member that elastically supports the driven body, and a string-shaped shape memory alloy that displaces the driven body, and uses a plurality of string-shaped shape memory alloys. The driven body is displaced and the response speed at the time of heating and cooling of at least one of the plurality of string-like shape memory alloys is different from other string-like shape memory alloys. It is characterized by being composed.

上記の構成であれば、弾性支持された被駆動体を複数の紐状形状記憶合金を介して駆動する際に、装着する複数の紐状記憶合金のうち少なくとも一本の加熱時と冷却時の応答速度を異ならせるようにしているので、単純な振動系ではなく、複数のばね定数を発揮する複雑な振動系を構成し、紐状形状記憶合金を伸縮して被駆動体を駆動する際に生じる共振の発生を効果的に抑制可能な駆動装置を得ることができる。   With the above configuration, when driving the elastically supported driven body via the plurality of string-shaped memory alloys, at least one of the plurality of string-shaped memory alloys to be mounted is heated and cooled Since the response speed is made different, it is not a simple vibration system, but a complex vibration system that exhibits multiple spring constants is configured, and when the driven body is driven by expanding and contracting the string-like shape memory alloy It is possible to obtain a drive device that can effectively suppress the occurrence of resonance.

また本発明は、上記の構成の駆動装置において、複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金の長さを異ならせる構成としてもよく、複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金に放熱部材を装着する構成としてもよい。   Further, the present invention may be configured such that, in the drive device having the above-described configuration, the length of at least one string-shaped shape memory alloy among the plurality of string-shaped shape memory alloys is made different. It is good also as a structure which attaches a heat radiating member to at least 1 string-like shape memory alloy among alloys.

本発明によれば、紐状形状記憶合金を介して被駆動体をする際に、懸架部に掛け渡す紐状記憶合金の掛け渡し部の左右の第一領域と第二領域とでその応答速度が異なる構成とされているので、掛け渡し部に滑りや摩擦が生じ、被駆動体の移動方向に生じ易い振動を抑制する摩擦力として作用し、部品を追加しない簡単な構成で被駆動体の移動方向に生じる共振を抑制する駆動装置を得ることができる。また、複数の紐状形状記憶合金を介して被駆動体をする際に、少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なる構成とされているので、複数のばね定数を発揮する複雑な振動系を構成して共振防止機能を発揮することになって、振動防止のための特別な部品を追加しない簡単な構成で被駆動体の移動方向に生じる共振を容易に抑制する駆動装置を得ることができる。   According to the present invention, when the driven body is driven via the string-like shape memory alloy, the response speeds in the first and right first and second areas of the string-like memory alloy hanging part to be hung on the suspension part. Therefore, slipping and friction are generated in the spanning part, acting as a frictional force that suppresses vibrations that are likely to occur in the direction of movement of the driven body, and with a simple configuration that does not add parts, A drive device that suppresses resonance that occurs in the moving direction can be obtained. In addition, when the driven body is made via a plurality of string-like shape memory alloys, the response speed at the time of heating and cooling of at least one string-like shape memory alloy is different from other string-like shape memory alloys. Therefore, a complex vibration system that exhibits multiple spring constants is configured to exhibit the anti-resonance function, and the driven body has a simple configuration that does not add special parts for vibration prevention. Thus, it is possible to obtain a drive device that easily suppresses resonance that occurs in the moving direction.

以下に本発明の実施形態を図面を参照して説明する。図1は、本発明に係る駆動装置の第一の実施形態を示し、(a)は平面図であり、(b)は側面図である。図2は、本発明に係る駆動装置の第二の実施形態を示し、(a)は平面図であり、(b)は側面図である。図3は、本発明に係る駆動装置の第三の実施形態を示す模式図であり、(a)に一部断面図を示し、(b)にその側面図を示す。図4は、本発明に係る駆動装置の第四の実施形態を示す模式図であり、(a)に一部断面図を示し、(b)にその側面図を示す。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B show a first embodiment of a drive device according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a side view. FIG. 2 shows a second embodiment of the drive device according to the present invention, where (a) is a plan view and (b) is a side view. 3A and 3B are schematic views showing a third embodiment of the drive device according to the present invention, wherein FIG. 3A is a partial cross-sectional view, and FIG. 3B is a side view thereof. 4A and 4B are schematic views showing a fourth embodiment of the drive device according to the present invention, wherein FIG. 4A is a partial cross-sectional view, and FIG. 4B is a side view thereof. Moreover, the same code | symbol is used about the same structural member, and detailed description is abbreviate | omitted suitably.

先ず、図1より第一の実施形態の駆動装置1Aについて説明する。この第一の実施形態の駆動装置1Aは、被駆動体3を弾性支持する弾性支持部材と、前記被駆動体3を変位させる紐状形状記憶合金5を備えると共に、駆動力を発揮する紐状形状記憶合金の中間部を所定の懸架部(前記被駆動体に設ける懸架部、もしくは、別に設ける懸架部)に掛け渡すようにして装着し、この掛け渡し部から前記紐状形状記憶合金の一方の端部までの第一領域と、他方の端部から前記掛け渡し部までの第二領域とで、その加熱時と冷却時の応答速度を異ならせ、共振防止機能を発揮するように構成したものである。   First, the drive device 1A of the first embodiment will be described with reference to FIG. The drive device 1A according to the first embodiment includes an elastic support member that elastically supports the driven body 3 and a string-shaped shape memory alloy 5 that displaces the driven body 3, and a string shape that exhibits a driving force. An intermediate portion of the shape memory alloy is mounted so as to be hung on a predetermined suspension portion (a suspension portion provided on the driven body or a suspension portion provided separately), and one of the string-like shape memory alloys is attached from the hanging portion. The first region to the end of the second region and the second region from the other end to the spanning portion are configured to exhibit a resonance prevention function by varying the response speed at the time of heating and cooling. Is.

そのために、図1(b)に示すように、紐状形状記憶合金5の伸縮変位量を拡大する変倍機構6を用いた場合は、駆動装置1Aは、基台2と該基台2に弾性支持部材を介して移動自在に支持される被駆動体3を備えると共に、前記被駆動体3を変位させる紐状形状記憶合金5を変倍機構に設ける懸架部63に掛け渡す構成としている。   Therefore, as shown in FIG. 1 (b), when the magnification changing mechanism 6 for enlarging the amount of expansion / contraction displacement of the string-like shape memory alloy 5 is used, the driving device 1A is attached to the base 2 and the base 2. A driven body 3 that is movably supported via an elastic support member is provided, and a string-like shape memory alloy 5 that displaces the driven body 3 is hung on a suspension portion 63 provided in a zoom mechanism.

また、被駆動体3を弾性支持する弾性支持部材としては、前記被駆動体3の移動方向の前後両端面を基台2に固着される一対の平行板ばね4により挟持する方法と、所定方向に付勢するバイアスばね7を用いる方法とがある。もしくは、これらの平行板ばね4とバイアスばね7とを共に設ける構成とすることもできる。   The elastic support member for elastically supporting the driven body 3 includes a method of sandwiching the front and rear end faces in the moving direction of the driven body 3 by a pair of parallel leaf springs 4 fixed to the base 2, and a predetermined direction. There is a method of using a bias spring 7 that biases the spring. Alternatively, the parallel plate spring 4 and the bias spring 7 may be provided together.

そのために、図中の実践に示す平行板ばね4を用いた例では、被駆動体3の移動方向の前後両端面を第一板ばね4Aと第二板ばね4Bとで挟持し、基台2に設ける固定端子部22Aに端部が固着され変倍機構6の懸架部63に掛け渡される紐状形状記憶合金5を収縮して、前記被駆動体3を図中の上方に向けて変位させることができる。   Therefore, in the example using the parallel leaf spring 4 shown in practice in the figure, the front and rear end faces in the moving direction of the driven body 3 are sandwiched between the first leaf spring 4A and the second leaf spring 4B, and the base 2 The end portion is fixed to the fixed terminal portion 22A provided on the base member and the string-like shape memory alloy 5 stretched over the suspension portion 63 of the magnification changing mechanism 6 is contracted to displace the driven body 3 upward in the figure. be able to.

次に、平行板ばね4と変倍機構6について説明する。平行板ばね4は、図中の下面に位置する両持ち構成の第一板ばね4Aと、図中の上面に位置する片持ち構成の第二板ばね4Bとから構成されている。第一板ばね4Aは、その両端に基台部との固着部となる第一固着部41と第二固着部とを有し、図中の中央部に被駆動体3との固着部となる第三固着部43を有する。第二板ばね4Bは、端部の基台2との固着部となる第一固着部41と、中央部の被駆動体3との固着部となる第三固着部43とを有する。   Next, the parallel leaf spring 4 and the zoom mechanism 6 will be described. The parallel leaf spring 4 is composed of a first leaf spring 4A having a double-sided configuration located on the lower surface in the drawing and a second leaf spring 4B having a cantilever configuration located on the upper surface in the drawing. 4 A of 1st leaf springs have the 1st adhering part 41 and 2nd adhering part which become an adhering part with a base part in the both ends, and become an adhering part with the to-be-driven body 3 in the center part in a figure. A third fixing portion 43 is provided. The second leaf spring 4 </ b> B has a first fixing portion 41 that becomes a fixing portion with the base 2 at the end portion and a third fixing portion 43 that becomes a fixing portion with the driven body 3 at the center portion.

全長の数%しか変位しない紐状形状記憶合金5の変位量を拡大して被駆動体の所定の変位量を得るために変倍機構を用いる場合がある。例えば、本実施形態に示す変倍機構6は、基台2に設ける支持部21に軸支部60を介して旋回自在に装着されたレバー部材からなっていて、軸支部60と該軸支部60から所定角度離間して二方向に延設される二本のアームを備える駆動アーム61と、前記軸支部60から前記駆動アーム61と直交する方向に垂下される懸架アーム62を有している。また、前記被駆動体3の軸心を挟む両外側に、前記駆動アーム61と係合する突出部31をそれぞれ設けている。   In some cases, a scaling mechanism is used to obtain a predetermined amount of displacement of the driven body by enlarging the amount of displacement of the string-shaped shape memory alloy 5 that is displaced by only a few percent of the total length. For example, the zooming mechanism 6 shown in the present embodiment is composed of a lever member that is pivotably mounted on a support portion 21 provided on the base 2 via a shaft support portion 60, from the shaft support portion 60 and the shaft support portion 60. A driving arm 61 having two arms extending in two directions with a predetermined angle apart from each other and a suspension arm 62 suspended from the shaft support 60 in a direction perpendicular to the driving arm 61 are provided. Further, projecting portions 31 that engage with the drive arm 61 are provided on both outer sides of the axis of the driven body 3.

軸支部60から垂下して設けられる懸架アーム62の先端側には、前記紐状形状記憶合金5を懸架する懸架部63が形成されている。この懸架部63に紐状形状記憶合金5を掛け渡して収縮させることで、前記駆動アーム61を軸支部60を中心として旋回することができる。この際に、軸支部60から懸架部63までの距離L1を、軸支部60から突出部31の当接部までの距離L2より短い長さとして、所定の変倍量を得るアーム構成としている。このように、所謂てこの原理により、紐状形状記憶合金5の伸縮変位量を拡大する構成であるので、距離L1と距離L2とのアーム長さ比率を変更して、所望の変倍率を得ることができる。   A suspension portion 63 for suspending the string-like shape memory alloy 5 is formed on the distal end side of the suspension arm 62 provided to hang from the shaft support portion 60. The drive arm 61 can be turned around the shaft support 60 by the string-like shape memory alloy 5 being wound around the suspension 63 and contracted. At this time, the distance L1 from the shaft support portion 60 to the suspension portion 63 is set to a length shorter than the distance L2 from the shaft support portion 60 to the contact portion of the protruding portion 31, and an arm configuration for obtaining a predetermined zooming amount is obtained. Thus, the so-called lever principle is used to increase the expansion / contraction displacement amount of the string-like shape memory alloy 5, so that the arm length ratio between the distance L1 and the distance L2 is changed to obtain a desired scaling factor. be able to.

この時に、前記支持部21を前記第二板ばね4Bが装着されていない側の基台の前記第二固着部42側に設けることが好ましい。この構成であれば、図中の上部に開放される作業空間から、この支持部21に対して紐状形状記憶合金5やその他の構成要素を容易に組み付けることが可能となる。また、軸支部60から垂下する懸架アーム62に紐状形状記憶合金5を懸架し、軸支部60から所定角度離間して略等距離にある突出部31、31を押し上げる構成とされているので、紐状形状記憶合金5の収縮による駆動力を二本の駆動アーム61を介して均等に伝達することができ、被駆動体3を安定して直進移動させることができる。   At this time, it is preferable that the support portion 21 is provided on the second fixing portion 42 side of the base on which the second leaf spring 4B is not mounted. If it is this structure, it will become possible to assemble | attach string-shaped shape memory alloy 5 and another component with respect to this support part 21 easily from the working space opened to the upper part in a figure. In addition, since the string-shaped shape memory alloy 5 is suspended on the suspension arm 62 that hangs down from the shaft support 60, the protrusions 31 and 31 that are spaced apart from the shaft support 60 by a predetermined angle and are substantially equidistant are pushed up. The driving force due to the contraction of the string-shaped shape memory alloy 5 can be evenly transmitted through the two driving arms 61, and the driven body 3 can be moved in a straight line stably.

基台2は、例えば図1(a)に示すように、その断面形状が矩形とされており、前記基台2の中央部に被駆動体3が挿通自在な円形の貫通孔部が形成されている。また、この矩形の一隅に、第一固着部41を設け、第二板ばね4Bを装着している。この第二板ばね4Bと対向する反対側の隅に、前記支持部21を設け、紐状形状記憶合金5および変倍機構6を装着している。さらに、四隅の残り2遇に、前記紐状形状記憶合金5の固定端子部22を設けている。   For example, as shown in FIG. 1A, the base 2 has a rectangular cross-sectional shape, and a circular through-hole portion through which the driven body 3 can be inserted is formed at the center of the base 2. ing. Moreover, the 1st adhering part 41 is provided in the corner of this rectangle, and the 2nd leaf | plate spring 4B is mounted | worn. The support portion 21 is provided at the opposite corner facing the second leaf spring 4B, and the string-like shape memory alloy 5 and the zoom mechanism 6 are mounted. Further, fixed terminal portions 22 of the string-like shape memory alloy 5 are provided in the remaining two corners.

第二板ばね4Bは図示されているように、矩形の二辺に沿った腕部を有する形状の板ばねとされているが、これと対向して被駆動体3の反対側の面に装着される第一板ばね4Aは、矩形の四辺に沿った多角形状の腕部を有して、前記第二板ばね4Bの腕部を環状に配置した一枚の板ばね構成とされている。   As shown in the figure, the second leaf spring 4B is a leaf spring having a shape with arms along two sides of the rectangle, but is mounted on the opposite surface of the driven body 3 so as to face this. The first leaf spring 4A has a polygonal arm portion along the four sides of the rectangle, and has a single leaf spring configuration in which the arm portion of the second leaf spring 4B is annularly arranged.

紐状形状記憶合金5は、対角上の2隅に設ける固定端子部22A、22Bにその両端を固定し、懸架部63を巻回するようにして被駆動体3の外側を挟むようにL字状もしくはU字状に掛け渡して装着されている。この巻回部を掛け渡し部50と称することとする。   The string-shaped shape memory alloy 5 is fixed so that both ends thereof are fixed to fixed terminal portions 22A and 22B provided at two diagonal corners, and the suspension portion 63 is wound so that the outside of the driven body 3 is sandwiched. Attached in a letter or U shape. This winding part will be referred to as a spanning part 50.

この構成において、紐状形状記憶合金5の加熱時と冷却時の応答速度を掛け渡し部の左右の領域で故意に異ならせて、異なるばね定数を有する振動系を形成することで共振防止機能を発揮することが明らかとなった。そのために、本実施の形態においては、図1(a)に示すように、掛け渡し部50から前記紐状形状記憶合金の一方の端部までの第一領域と、他方の端部から前記掛け渡し部までの第二領域とで、その紐状形状記憶合金5の長さを異ならせた構成としたものである。   In this configuration, the anti-resonance function is achieved by deliberately varying the response speed at the time of heating and cooling of the string-shaped shape memory alloy 5 in the left and right regions of the spanning portion to form vibration systems having different spring constants. It became clear that it demonstrated. Therefore, in the present embodiment, as shown in FIG. 1 (a), the first region from the spanning portion 50 to one end portion of the string-like shape memory alloy, and the other end portion to the hooking portion. The length of the string-like shape memory alloy 5 is made different in the second region up to the transfer portion.

図に示すように、駆動力を発揮する紐状記憶合金5を、基台2の固定端子部22A、22Bに固定し、支持部21に装着される軸支部60を介して旋回自在とされる変倍機構6の懸架部63に掛け渡す構成としている。また、掛け渡し部50から端子部22A、22Bに折り返される角度を所定角度とすることで、前記固定端子部22A、22Bから通電して加熱し、前記紐状形状記憶合金5を収縮させて、変倍機構6の駆動アーム61を旋回して被駆動体3を変位駆動することができる。   As shown in the figure, the string-like memory alloy 5 that exerts a driving force is fixed to the fixed terminal portions 22A and 22B of the base 2, and can be swung via a shaft support portion 60 attached to the support portion 21. It is configured to be hung on the suspension part 63 of the zoom mechanism 6. Further, by setting the angle folded from the spanning portion 50 to the terminal portions 22A and 22B as a predetermined angle, the fixed terminal portions 22A and 22B are energized and heated, the string-like shape memory alloy 5 is contracted, The drive arm 61 of the zoom mechanism 6 can be turned to drive the driven body 3 in a displacement manner.

この時に、一方の端部である固定端子部22Aから掛け渡し部50までの第一領域51の長さW1と、他方の端部である固定端子部22Bから掛け渡し部50までの第二領域52の長さW2とを異なる長さとしている。   At this time, the length W1 of the first region 51 from the fixed terminal portion 22A, which is one end portion, to the span portion 50, and the second region, from the fixed terminal portion 22B, which is the other end portion, to the span portion 50. The length W2 of 52 is a different length.

この掛け渡し部からの左右の長さを異ならせた紐状形状記憶合金5においては、通電された後所定の反応温度までは左右の紐状形状記憶合金は変位せず温度が上昇し、所定の反応温度に達すると同じ収縮速度で収縮する。しかし、長さの長い第一領域では、収縮する長さが長くなり、長さの短い第二領域では短くなる。そのために、同一時間で収縮する長さが異なる現象が生じ、見掛けの応答速度が異なることになる。   In the string-like shape memory alloy 5 having different left and right lengths from the spanning portion, the left and right string-like shape memory alloys are not displaced until a predetermined reaction temperature after being energized, and the temperature rises. When the reaction temperature is reached, it shrinks at the same shrinkage rate. However, in the first region having a long length, the contracting length becomes long, and in the second region having a short length, the shrinking length becomes short. For this reason, a phenomenon occurs in which the length of contraction in the same time is different, and the apparent response speed is different.

掛け渡し部50の左右の第一領域51と第二領域52で応答速度が異なると応力差が生じ、掛け渡されている懸架部63に摩擦力として伝達される。この摩擦力は、被駆動体3の移動方向とは直交する方向、つまり横方向となるので、横方向のガイド部材等に摩擦力を生じることになる。この摩擦力により、紐状形状記憶合金5や平行板ばね4やバイアスばね7などを備える振動系にエネルギ損失を発生させ、振動を防止するよう作用して共振を抑制する機能を発揮する。   If the response speeds of the first region 51 and the second region 52 on the left and right sides of the span 50 are different, a difference in stress is generated and transmitted as a frictional force to the span 63 suspended. Since this frictional force is in a direction perpendicular to the moving direction of the driven body 3, that is, in the lateral direction, a frictional force is generated in the lateral guide member and the like. By this frictional force, energy loss is generated in a vibration system including the string-shaped shape memory alloy 5, the parallel leaf spring 4, the bias spring 7, and the like, and the function of suppressing resonance by exerting a function to prevent vibration is exhibited.

つまり、振動系をより複雑にすると共に振動を効果的に防止する摩擦力を発生することで、単純な振動系で生じ易い共振を抑制することができる。   That is, by making the vibration system more complicated and generating a frictional force that effectively prevents vibration, resonance that is likely to occur in a simple vibration system can be suppressed.

この共振を抑制する機能を発揮するためには、前記第一領域51と前記第二領域52との長さの比を所定の範囲とすることが肝要である。また、被駆動体3をスムーズに変位させるには、それらの長さが大きく異なることは好ましくない。そのために、本実施の形態においては、前記第二領域52の長さを前記第一領域51の長さより、5〜30%短い長さとした。   In order to exhibit the function of suppressing this resonance, it is important to set the ratio of the lengths of the first region 51 and the second region 52 within a predetermined range. Moreover, in order to displace the to-be-driven body 3 smoothly, it is not preferable that those lengths differ greatly. Therefore, in the present embodiment, the length of the second region 52 is 5 to 30% shorter than the length of the first region 51.

上記したように、紐状形状記憶合金5の掛け渡し部の左右の長さを5〜30%異ならせることで、紐状形状記憶合金5を伸縮して被駆動体3を駆動する際に生じる共振の発生を効果的に抑制可能な駆動装置1Aを得ることができる。   As described above, it occurs when the driven shape 3 is driven by expanding and contracting the string-shaped memory alloy 5 by changing the left and right lengths of the spanning portion of the string-shaped memory alloy 5 by 5 to 30%. A drive device 1A that can effectively suppress the occurrence of resonance can be obtained.

また、掛け渡し部の左右の領域の放熱条件を異ならせる構成とすることでも、左右の領域の加熱時と冷却時の応答速度を故意に異ならせることができる。この実施形態について図2より説明する。   Moreover, the response speed at the time of heating and cooling of the left and right regions can also be intentionally different by adopting a configuration in which the heat dissipation conditions of the left and right regions of the spanning part are made different. This embodiment will be described with reference to FIG.

図2に示す第二の実施形態の駆動装置1Bは、前述した駆動装置1Aと同様に、基台2と被駆動体3と一対の平行板ばね4と紐状形状記憶合金5と変倍機構6とを備えた構成とされている。また、バイアスばね7を用いて良いことも同じである。ただ、掛け渡し部50の左右の一方の領域に放熱部材8を装着している点が相違している。この際に、紐状形状記憶合金5の掛け渡し部50から折り返される左右の長さは同じであってもよい。また、左右の長さを異なる長さとした上に放熱部材を装着して、これらを併用することも可能である。いずれにしても、左右の領域の加熱時と冷却時の応答速度が、防振効果を発揮する程度に異なっていればよい。   The drive device 1B of the second embodiment shown in FIG. 2 is similar to the drive device 1A described above, in that the base 2, the driven body 3, the pair of parallel leaf springs 4, the string-like shape memory alloy 5, and the zoom mechanism. 6. The same applies to the use of the bias spring 7. However, the difference is that the heat radiating member 8 is attached to one of the left and right regions of the spanning portion 50. At this time, the left and right lengths folded back from the spanning portion 50 of the string-shaped shape memory alloy 5 may be the same. It is also possible to use a combination of heat dissipation members mounted on the left and right with different lengths. In any case, it is only necessary that the response speeds at the time of heating and cooling of the left and right regions differ to such an extent that the vibration isolation effect is exhibited.

本実施の形態では、掛け渡し部50から折り返される紐状形状記憶合金の左右の長さは同じとしている。そのために、図2(a)に示すように、駆動装置1Bの紐状形状記憶合金5は、掛け渡し部50から所定角度で同等な距離離間した位置に設けられる固定端子部22、22にその両端が固定されている。また、一方の固定端子部22の近傍に放熱部材8が装着されている。   In the present embodiment, the left and right lengths of the string-like shape memory alloy folded back from the spanning portion 50 are the same. For this purpose, as shown in FIG. 2A, the string-like shape memory alloy 5 of the driving device 1B is fixed to the fixed terminal portions 22 and 22 provided at positions spaced by an equal distance from the spanning portion 50 at a predetermined angle. Both ends are fixed. Further, the heat radiating member 8 is mounted in the vicinity of one fixed terminal portion 22.

放熱部材8が装着された領域の紐状形状記憶合金5は、加熱時には、加熱速度が遅くなり、冷却時には冷却速度が増加する。そのために、掛け渡し部50から固定端子部22までの長さが同等でも、その応答速度が異なることになり、見掛け上のばね定数が異なる結果となる。このことから、同様に、振動系をより複雑にすることができ、単純な振動系で生じ易い共振を抑制することができる。   The string-like shape memory alloy 5 in the region where the heat dissipating member 8 is attached has a slower heating rate during heating and an increased cooling rate during cooling. Therefore, even if the length from the spanning part 50 to the fixed terminal part 22 is the same, the response speed is different, and the apparent spring constant is different. Thus, similarly, the vibration system can be made more complicated, and resonance that is likely to occur in a simple vibration system can be suppressed.

前記放熱部材8としては、例えば、放熱グリースや放熱ゲル等を用いることができ、所定の位置に付着させることで、紐状形状記憶合金5に放熱性を付与することができる。また、付着する量を加減することで、加熱時と冷却時の応答速度の変化程度を調整可能であることは明らかである。   As the heat radiating member 8, for example, heat radiating grease, heat radiating gel, or the like can be used. By attaching the heat radiating member 8 to a predetermined position, heat dissipation can be imparted to the string-shaped shape memory alloy 5. It is clear that the degree of change in response speed during heating and cooling can be adjusted by adjusting the amount of adhesion.

上記したように、一本の紐状形状記憶合金5を用いた駆動装置の場合は、その中間部を被駆動体3に設ける懸架部、もしくは、別に設ける懸架部に掛け渡すようにして装着する掛け渡し部から前記紐状形状記憶合金の一方の端部までの第一領域と、他方の端部から前記掛け渡し部までの第二領域とで、その加熱時と冷却時の応答速度が異なる構成となり、共振防止機能を発揮することが可能となる。   As described above, in the case of a drive device using a single string-like shape memory alloy 5, the intermediate portion is mounted so as to be hung on a suspension portion provided on the driven body 3 or a suspension portion provided separately. The response speed at the time of heating and cooling differs between the first region from the spanning portion to one end of the string-shaped shape memory alloy and the second region from the other end to the spanning portion. It becomes a structure and it becomes possible to exhibit a resonance prevention function.

次に図3、図4より本発明に係る駆動装置の第三の実施形態、および、第四の実施形態について説明する。   Next, a third embodiment and a fourth embodiment of the drive device according to the present invention will be described with reference to FIGS.

図3には、ガイド軸11を備え、スライド軸10に沿って摺動する被駆動体3Aを有する第三の実施形態の駆動装置1Cを示している。また、図3(a)に示すように、被駆動体3Aが有するスライドブロック12の末端に紐状形状記憶合金5を掛け渡す懸架部材13が設けられている。そして、前記紐状形状記憶合金5が収縮して、図中の矢印D1方向に付勢し、被駆動体3Aを駆動する。このとき、前記紐状形状記憶合金5の収縮する方向とは逆方向(図中の矢印D2方向)に付勢するバイアスばね7Aを装着している。   FIG. 3 shows a drive device 1 </ b> C of the third embodiment that includes a driven body 3 </ b> A that includes the guide shaft 11 and slides along the slide shaft 10. Further, as shown in FIG. 3A, a suspension member 13 is provided that hangs the string-shaped shape memory alloy 5 on the end of the slide block 12 included in the driven body 3A. Then, the string-like shape memory alloy 5 contracts and is urged in the direction of the arrow D1 in the drawing to drive the driven body 3A. At this time, a bias spring 7A for biasing in the direction opposite to the direction in which the string-shaped memory alloy 5 contracts (direction of arrow D2 in the figure) is attached.

この際に、図3(b)に示すように、懸架部材13を巻回するように掛け渡す紐状形状記憶合金5の掛け渡し部から固定端子部までの長さを異ならせることで、共振防止機能を発揮する構成としている。   At this time, as shown in FIG. 3 (b), the length of the string-shaped shape memory alloy 5 to be hung so as to wind the suspension member 13 is varied by changing the length from the hanger to the fixed terminal. It is configured to demonstrate the prevention function.

つまり、固定端子部22Aから懸架部材13の掛け渡し部までの第一領域51Aの長さW1を、固定端子部22Bから懸架部材13の掛け渡し部までの第二領域52Aの長さW2より長くして、その加熱時と冷却時の応答速度が異なるように構成されることで、前述したようにガイド軸11の横方向の摩擦力を発生して、共振防止機能を発揮する構成となる。   That is, the length W1 of the first region 51A from the fixed terminal portion 22A to the suspension portion of the suspension member 13 is longer than the length W2 of the second region 52A from the fixed terminal portion 22B to the suspension portion of the suspension member 13. Then, by being configured such that the response speed at the time of heating and that at the time of cooling are different, as described above, a frictional force in the lateral direction of the guide shaft 11 is generated and the resonance preventing function is exhibited.

ガイド軸11は、被駆動体3の移動方向とは直交する方向の横方向の回転を防止するために装着されているので、発生する摩擦力により、紐状形状記憶合金5とバイアスばね7Aを備える振動系にエネルギ損失を発生させ、振動を防止するよう作用して共振を抑制する機能を発揮することになる。   Since the guide shaft 11 is mounted to prevent lateral rotation in a direction perpendicular to the direction of movement of the driven body 3, the string-shaped shape memory alloy 5 and the bias spring 7A are caused to move by the generated frictional force. An energy loss is generated in the vibration system provided, and the function of suppressing vibrations is exhibited by acting to prevent vibration.

この異なる長さの割合は前述した通り、5〜30%程度が好ましく、本実施の形態においては、前記第二領域52Aの長さを前記第一領域51Aの長さより、5〜30%短い長さとしている。   As described above, the ratio of the different lengths is preferably about 5 to 30%. In the present embodiment, the length of the second region 52A is 5 to 30% shorter than the length of the first region 51A. I am trying.

また、上記の第三の実施形態1Cでは、可動側の被駆動体に懸架部材を配設して、固定側に固定端子部を設けた構成であるが、これとは逆に、可動側の被駆動体に固定端子部を設け、固定側に懸架部材を設ける構成とすることも可能である。この例について図4より説明する。   In the third embodiment 1C, the suspension member is provided on the movable driven body and the fixed terminal portion is provided on the fixed side. On the contrary, on the movable side, It is also possible to provide a configuration in which a fixed terminal portion is provided on the driven body and a suspension member is provided on the fixed side. This example will be described with reference to FIG.

図4(a)に示す第四の実施形態の駆動装置1Dは、図3に示した第三の実施形態の駆動装置1Cと同様に、ガイド軸11を備え、スライド軸10に沿って摺動する被駆動体3Aを有している。また、紐状形状記憶合金5を懸架部材に掛け渡して、長さの異なる第一領域と第二領域とを設けている点も同様である。ただし、可動側のスライドブロック12Aに固定端子部22Aと22Bとを所定距離離間して設け、固定部14側に紐状形状記憶合金5の掛け渡し部13を設ける構成としている点が相違する。   The drive device 1D of the fourth embodiment shown in FIG. 4A includes a guide shaft 11 and slides along the slide shaft 10 in the same manner as the drive device 1C of the third embodiment shown in FIG. 3A to be driven. The same is true in that the string-shaped shape memory alloy 5 is stretched over the suspension member to provide the first region and the second region having different lengths. However, the difference is that the fixed terminal portions 22A and 22B are provided at a predetermined distance apart on the movable slide block 12A, and the spanning portion 13 of the string-like shape memory alloy 5 is provided on the fixed portion 14 side.

この構成であっても、図4(b)に示すように、固定端子部22Aから懸架部材13の掛け渡し部までの第一領域51Bの長さW1を、固定端子部22Bから懸架部材13の掛け渡し部までの第二領域52Bの長さW2より長くして、その加熱時と冷却時の応答速度を異ならせ、共振防止機能を発揮する構成とすることができる。   Even in this configuration, as shown in FIG. 4B, the length W1 of the first region 51B from the fixed terminal portion 22A to the spanning portion of the suspension member 13 is set to be equal to the length of the suspension member 13 from the fixed terminal portion 22B. The length can be made longer than the length W2 of the second region 52B to the spanning portion, and the response speed at the time of heating and cooling can be made different so that the resonance preventing function can be exhibited.

例えば、図6に示す振動波形の周波数分析結果によれば、防振対策前の状態の共振部のゲイン(振動の大きさ)G1が、防振対策後(第一領域と第二領域とで長さを変えて、その加熱時と冷却時の応答速度を異ならせた例)ではゲインG2まで低下していることが判る。このように、本実施の形態によれば、部品を追加しない簡単な構成で被駆動体の移動方向に生じる共振を抑制する駆動装置を得ることができる。   For example, according to the frequency analysis result of the vibration waveform shown in FIG. 6, the gain (vibration magnitude) G1 of the resonance part before the vibration prevention measures is obtained after the vibration prevention measures (in the first region and the second region). In an example in which the length is changed and the response speed at the time of heating is different from that at the time of cooling, it can be seen that the gain is reduced to G2. Thus, according to the present embodiment, it is possible to obtain a drive device that suppresses resonance that occurs in the direction of movement of the driven body with a simple configuration in which no components are added.

上記したように、紐状形状記憶合金の中間部を所定の懸架部に掛け渡して、その両端を固定端子部に固定し、前記掛け渡し部から一方の固定端子部までの前記紐状形状記憶合金の第一領域と、他方の固定端子部から前記掛け渡し部までの第二領域とで、その加熱時と冷却時の応答速度が異なるように構成されることで、掛け渡し部に滑りや摩擦が生じ、被駆動体の移動方向に生じる振動を抑制する摩擦力として作用し共振防止機能を発揮することができる。   As described above, an intermediate portion of the string-shaped shape memory alloy is stretched over a predetermined suspension portion, both ends thereof are fixed to the fixed terminal portion, and the string-shaped shape memory from the spanning portion to one fixed terminal portion. The first region of the alloy and the second region from the other fixed terminal portion to the spanning portion are configured to have different response speeds at the time of heating and cooling, so that the spanning portion can slip. Friction occurs and acts as a frictional force that suppresses vibrations generated in the direction of movement of the driven body, thereby exhibiting a resonance prevention function.

また、複数の紐状形状記憶合金を用いた構成の駆動装置の場合には、複数の前記紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なるように構成されることでも、共振防止機能を発揮することができる。   Further, in the case of a drive device configured using a plurality of string-like shape memory alloys, the response speed at the time of heating and cooling of at least one string-like shape memory alloy of the plurality of string-like shape memory alloys, The anti-resonance function can also be exhibited by being configured differently from other string-like shape memory alloys.

例えば、図5に示す例は、固定部14Aと可動部12Bとの間に複数、例えば3本の紐状形状記憶合金5A、5B、5Cをそれぞれ直線状に架設した例(第五の実施形態)を示している。   For example, the example shown in FIG. 5 is an example in which a plurality of, for example, three string-like shape memory alloys 5A, 5B, and 5C are installed in a straight line between the fixed portion 14A and the movable portion 12B (fifth embodiment). ).

この例では、紐状形状記憶合金5Aの両端を固定端子部22C、22Cに固定し、紐状形状記憶合金5Bの両端を固定端子部22D、22Dに固定し、紐状形状記憶合金5Cの両端を固定端子部22E、22Eに固定している。また、これらの固定端子部からそれぞれ通電して、それぞれの紐状形状記憶合金5A、5B、5Cを同時に収縮させ、可動部を変位することができる。   In this example, both ends of the string-like shape memory alloy 5A are fixed to the fixed terminal portions 22C and 22C, both ends of the string-like shape memory alloy 5B are fixed to the fixed terminal portions 22D and 22D, and both ends of the string-like shape memory alloy 5C. Is fixed to the fixed terminal portions 22E and 22E. Moreover, it can energize from these fixed terminal parts, respectively, can shrink each string-like shape memory alloy 5A, 5B, 5C simultaneously, and can displace a movable part.

この場合では、紐状形状記憶合金5Aの長さWAと、紐状形状記憶合金5Bの長さWBと、紐状形状記憶合金5Cの長さWCとの長さの中で、少なくとも一本の紐状形状記憶合金の長さを異ならせる構成としている。このように、複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金の長さを異ならせることで、複数の前記紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度を他の紐状形状記憶合金と異ならせて、複数のばね定数を発揮する複雑な振動系を構成して共振防止機能を発揮可能となる。   In this case, at least one of the length WA of the string-like shape memory alloy 5A, the length WB of the string-like shape memory alloy 5B, and the length WC of the string-like shape memory alloy 5C. The length of the string-like shape memory alloy is made different. In this way, at least one string-like shape memory alloy of the plurality of string-like shape memory alloys is made different by changing the length of at least one string-like shape memory alloy among the plurality of string-like shape memory alloys. By making the response speed at the time of heating and cooling different from those of other string-like shape memory alloys, a complex vibration system that exhibits a plurality of spring constants can be configured to exhibit a resonance preventing function.

また、複数の紐状形状記憶合金の長さを全て異ならせるようにしてもよい。また、複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金に前述した放熱部材を装着する構成とすることでも、複数の前記紐状形状記憶合金のなかで少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度を他の紐状形状記憶合金と異ならせて、共振防止機能を発揮する構成とすることも可能である。さらに、放熱部材を装着することと、長さを異ならせることを併用することも可能である。   Further, the lengths of the plurality of string-like shape memory alloys may all be different. Further, it is also possible to adopt a configuration in which the above-described heat dissipation member is attached to at least one of the plurality of string-like shape memory alloys, or at least one of the plurality of string-like shape memory alloys. It is also possible to adopt a configuration that exhibits a resonance preventing function by making the response speed at the time of heating and cooling the string-shaped shape memory alloy different from those of other string-shaped shape memory alloys. Furthermore, it is possible to use both mounting of the heat dissipating member and different lengths.

いずれにしても、被駆動体と、該被駆動体を弾性支持する弾性支持部材と、前記被駆動体を変位させる紐状形状記憶合金を備える駆動装置において、複数の紐状形状記憶合金を用いて、弾性支持された被駆動体を変位させる際に、複数の前記紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なるように構成されることで、複雑な振動系を構成すると共に振動を防止する摩擦力を発生し、効果的に共振防止機能を発揮する駆動装置を構成することができる。   In any case, in a driving device including a driven body, an elastic support member that elastically supports the driven body, and a string-shaped shape memory alloy that displaces the driven body, a plurality of string-shaped shape memory alloys are used. Thus, when displacing the elastically supported driven body, the response speed at the time of heating and cooling of at least one of the plurality of string-like shape memory alloys depends on the other string-like shape memory. By being configured differently from the alloy, it is possible to configure a driving device that forms a complex vibration system and generates a frictional force that prevents vibration and effectively exhibits a resonance preventing function.

先に示した図1に示す駆動装置1A、図2に示す駆動装置1Bは、レンズの光軸方向の直進移動を行う小型のレンズユニットを有する撮影装置に用いることができる。その際には、被駆動体3がレンズ鏡胴であり、軸心が光軸となる。また断面が円形のレンズ鏡胴を支持する基台2を、前記光軸と直交する方向の断面を矩形とする直方体ユニットとすることで、レンズ鏡胴の周囲の四隅を構成部品装着スペースとして利用可能となる。そのために、前記矩形の一隅に、変倍機構6を軸支し紐状形状記憶合金5を巻回するための支持部21を設けることが容易となる。また、前記一隅に隣接した2遇に前記紐状形状記憶合金5の固定端子部22、22を設けることができる。この構成であれば、小型のレンズユニットにも搭載可能な駆動装置となって、レンズの光軸方向の直進移動を行うことが容易となり、携帯電話等にも搭載可能なレンズの駆動装置となる。   The driving device 1A shown in FIG. 1 and the driving device 1B shown in FIG. 2 described above can be used for an imaging device having a small lens unit that linearly moves the lens in the optical axis direction. In that case, the driven body 3 is a lens barrel, and the axis is the optical axis. The base 2 supporting the lens barrel having a circular cross section is a rectangular parallelepiped unit having a rectangular cross section in a direction perpendicular to the optical axis, so that the four corners around the lens barrel are used as component mounting spaces. It becomes possible. Therefore, it becomes easy to provide a support portion 21 for pivotally supporting the magnification changing mechanism 6 and winding the string-shaped shape memory alloy 5 at one corner of the rectangle. Moreover, the fixed terminal portions 22 and 22 of the string-like shape memory alloy 5 can be provided in two places adjacent to the one corner. If it is this structure, it will become a drive device which can be mounted also on a small lens unit, and it will become easy to carry out the straight movement of the optical axis direction of a lens, and it will become a drive device of a lens which can be mounted also in a mobile phone etc. .

紐状形状記憶合金5は、通電していない状態では、超弾性状態にあり、一対の平行板ばねの復元力で伸長している。また、このときに、紐状形状記憶合金5を伸長させるバイアスばねを別に設ける構成とすることもできる。両端の固定端子部から電源部(不図示)から給電して通電された状態となると、紐状形状記憶合金5は、ジュール熱により加熱されて記憶された長さに収縮する。紐状形状記憶合金5が収縮すると、図1(b)中の矢印E1方向に付勢力が作用し、駆動アーム61を矢印E2方向に押し上げることになる。つまり、レンズ鏡胴を光軸方向に移動させることができる。   The string-like shape memory alloy 5 is in a superelastic state when not energized, and is stretched by the restoring force of a pair of parallel leaf springs. At this time, it is also possible to provide a separate bias spring for extending the string-shaped shape memory alloy 5. When power is supplied from a power supply unit (not shown) from the fixed terminal portions at both ends, the cord-shaped memory alloy 5 is heated by Joule heat and contracts to the stored length. When the string-shaped shape memory alloy 5 contracts, an urging force acts in the direction of arrow E1 in FIG. 1B, and pushes up the drive arm 61 in the direction of arrow E2. That is, the lens barrel can be moved in the optical axis direction.

この際に、前述したように、レンズ鏡胴の上下を一対の平行板ばねで挟持し、一方の板ばねを両持ち状態として安定した平行移動可能に支持すると共に、紐状形状記憶合金の中間部を掛け渡して懸架して、懸架部から一方の端部までの第一領域と、懸架部から他方の端部までの第二領域とで、その加熱時と冷却時の応答速度を異ならせ、共振防止機能を発揮する構成としているので、レンズ鏡胴を光軸方向に共振することなく安定して直進移動させることが可能となる。   At this time, as described above, the upper and lower portions of the lens barrel are sandwiched between a pair of parallel leaf springs, and one leaf spring is held in a supported state so as to be stably movable, and the middle of the string-like shape memory alloy. The response speed during heating and cooling differs between the first area from the suspension to one end and the second area from the suspension to the other end. Since the anti-resonance function is exhibited, the lens barrel can be stably moved straight without resonating in the optical axis direction.

また、平行板ばね4を構成する第一板ばね4Aと第二板ばね4Bとのばね力は、その光軸方向からみて重なり合う部分のばね力が略同等であることが好ましい。これは平行板ばねを構成する部分のばね力を同等とし、基台との固着部とレンズ鏡胴(被駆動体)との固着部との位置を揃えることを意味している。また、光軸方向から見て重なり合わない部分、つまり、両持ち部分のばね力は、挟持する被駆動体もしくはレンズ鏡胴がチルトせず直進するために必要な所定範囲のばね力であればよい。   Moreover, it is preferable that the spring force of the 1st leaf | plate spring 4A and the 2nd leaf | plate spring 4B which comprise the parallel leaf | plate spring 4 is substantially equivalent to the spring force of the part which overlaps seeing from the optical axis direction. This means that the spring forces of the parts constituting the parallel leaf springs are made equal, and the positions of the fixed part with the base and the fixed part with the lens barrel (driven body) are aligned. In addition, the spring force of the portion that does not overlap when viewed from the optical axis direction, that is, the both-end support portion, is a spring force within a predetermined range required for the driven body or the lens barrel to be clamped to move straight without being tilted. Good.

そのために、両持ちタイプの第一板ばね4Aは、一枚の板ばねから構成することも、複数、例えば二枚の板ばねから構成することも可能となる。また、複数の板ばね構成であれば、それぞれのばね力を所望される適当な値に変更容易となり好適である。   Therefore, the double-supported first leaf spring 4A can be composed of a single leaf spring or a plurality of, for example, two leaf springs. Also, a plurality of leaf spring configurations is preferable because each spring force can be easily changed to a desired value.

上記の構成であれば、レンズ鏡胴を駆動する際に、共振を効果的に抑制して振動の少ない駆動装置となると共に、レンズユニットを直進移動可能とする駆動装置を得ることができる。   With the above configuration, when the lens barrel is driven, it is possible to obtain a driving device that effectively suppresses resonance and has less vibration and enables the lens unit to move straight.

以上説明したように、本発明に係る駆動装置によれば、紐状形状記憶合金を介して被駆動体をする際に、この被駆動体に掛け渡す紐状記憶合金の左右の第一領域と第二領域とで、もしくは、装着する複数の紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なるように構成されるので、複雑な振動系を構成すると共に振動を防止するのに有効な摩擦力を発生して共振防止機能を発揮して、振動防止のための特別な部品を追加しない簡単な構成で、被駆動体の移動方向に生じる共振を容易に抑制する駆動装置を得ることができる。また、紐状形状記憶合金を介して被駆動体を安定して直進移動することができるので、レンズ体の光軸方向の直進移動を行う小型のレンズユニットを有する撮影装置に好適な駆動装置として用いることができる。   As described above, according to the drive device according to the present invention, when the driven body is driven via the string-shaped shape memory alloy, the left and right first regions of the string-shaped memory alloy passed over the driven body and The response speed at the time of heating and cooling of at least one string-like shape memory alloy of the plurality of string-like shape memory alloys to be mounted is different from that of the other string-like shape memory alloys. Therefore, it is a simple structure that creates a complex vibration system and generates frictional force effective to prevent vibration, exhibits resonance prevention function, and does not add special parts for vibration prevention, It is possible to obtain a drive device that easily suppresses resonance that occurs in the moving direction of the driven body. Further, since the driven body can be stably moved straight through the string-shaped shape memory alloy, the driving apparatus is suitable for a photographing apparatus having a small lens unit that moves the lens body straight in the optical axis direction. Can be used.

は、本発明に係る駆動装置の第一の実施形態を示し、(a)は平面図であり、(b)は側面図である。These show 1st embodiment of the drive device which concerns on this invention, (a) is a top view, (b) is a side view. は、本発明に係る駆動装置の第二の実施形態を示し、(a)は平面図であり、(b)は側面図である。These show 2nd embodiment of the drive device which concerns on this invention, (a) is a top view, (b) is a side view. は、本発明に係る駆動装置の第三の実施形態を示す模式図であり、(a)に一部断面図を示し、(b)にその側面図を示す。These are the schematic diagrams which show 3rd embodiment of the drive device which concerns on this invention, (a) shows a partial cross section figure, (b) shows the side view. は、本発明に係る駆動装置の第四の実施形態を示す模式図であり、(a)に一部断面図を示し、(b)にその側面図を示す。These are the schematic diagrams which show 4th embodiment of the drive device which concerns on this invention, (a) shows a partial cross section figure, (b) shows the side view. は、本発明に係る駆動装置の第五の実施形態を示す側面図である。These are side views which show 5th embodiment of the drive device which concerns on this invention. は、振動波形の周波数分析結果である。Is a frequency analysis result of the vibration waveform.

符号の説明Explanation of symbols

1A、1B、1C、1D、1E 駆動装置
2 基台
3 被駆動体
4 平行板ばね
4A 第一板ばね
4B 第二板ばね
5 紐状形状記憶合金
6 変倍機構
22、22A、22B 固定端子部
50 掛け渡し部
51 第一領域
52 第二領域
63 懸架部
1A, 1B, 1C, 1D, 1E Driving device 2 Base 3 Driven body 4 Parallel leaf spring 4A First leaf spring 4B Second leaf spring 5 String-shaped shape memory alloy 6 Scaling mechanism 22, 22A, 22B Fixed terminal portion 50 Hanging part 51 First area 52 Second area 63 Suspension part

Claims (6)

被駆動体と、該被駆動体を弾性支持する弾性支持部材と、前記被駆動体を変位させる紐状形状記憶合金を備える駆動装置において、
前記紐状形状記憶合金の中間部を所定の懸架部に掛け渡して、その両端を固定端子部に固定すると共に、前記掛け渡し部から一方の固定端子部までの前記紐状形状記憶合金の第一領域と、他方の固定端子部から前記掛け渡し部までの第二領域とで、その加熱時と冷却時の応答速度が異なるように構成されたことを特徴とする駆動装置。
In a drive device comprising: a driven body; an elastic support member that elastically supports the driven body; and a string-shaped shape memory alloy that displaces the driven body.
The middle part of the string-like shape memory alloy is hung on a predetermined suspension part, both ends thereof are fixed to the fixed terminal part, and the string-like shape memory alloy from the hanging part to one fixed terminal part is A drive device characterized in that one region and a second region from the other fixed terminal portion to the transfer portion have different response speeds during heating and cooling.
前記第一領域と前記第二領域とで前記紐状形状記憶合金の長さを異ならせたことを特徴とする請求項1に記載の駆動装置。   2. The driving device according to claim 1, wherein the first region and the second region have different lengths of the string-like shape memory alloy. 前記第一領域と前記第二領域とのいずれか一方の前記紐状形状記憶合金に放熱部材を装着したことを特徴とする請求項1または2に記載の駆動装置。   3. The drive device according to claim 1, wherein a heat radiating member is attached to one of the string-shaped shape memory alloys of the first region and the second region. 被駆動体と、該被駆動体を弾性支持する弾性支持部材と、前記被駆動体を変位させる紐状形状記憶合金を備える駆動装置において、
複数の紐状形状記憶合金を用いて前記被駆動体を変位させると共に、複数の前記紐状形状記憶合金の少なくとも一本の紐状形状記憶合金の加熱時と冷却時の応答速度が、他の紐状形状記憶合金と異なるように構成されたことを特徴とする駆動装置。
In a drive device comprising: a driven body; an elastic support member that elastically supports the driven body; and a string-shaped shape memory alloy that displaces the driven body.
The driven body is displaced using a plurality of string-like shape memory alloys, and the response speed at the time of heating and cooling of at least one string-like shape memory alloy of the plurality of string-like shape memory alloys A driving device configured to be different from the string-like shape memory alloy.
複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金の長さを異ならせたことを特徴とする請求項4に記載の駆動装置。   5. The drive device according to claim 4, wherein at least one of the string-like shape memory alloys has a different length. 複数の前記紐状形状記憶合金のうち少なくとも一本の紐状形状記憶合金に放熱部材を装着したことを特徴とする請求項4または5に記載の駆動装置。   6. The drive device according to claim 4, wherein a heat radiating member is attached to at least one of the string-like shape memory alloys.
JP2007299371A 2007-11-19 2007-11-19 Driving device Pending JP2009122603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299371A JP2009122603A (en) 2007-11-19 2007-11-19 Driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299371A JP2009122603A (en) 2007-11-19 2007-11-19 Driving device

Publications (1)

Publication Number Publication Date
JP2009122603A true JP2009122603A (en) 2009-06-04

Family

ID=40814779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299371A Pending JP2009122603A (en) 2007-11-19 2007-11-19 Driving device

Country Status (1)

Country Link
JP (1) JP2009122603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128897A (en) * 2007-11-20 2009-06-11 Chicony Electronics Co Ltd Actuation device having shape memory alloy component
WO2011065296A1 (en) * 2009-11-24 2011-06-03 コニカミノルタオプト株式会社 Drive device
JP2020518862A (en) * 2017-05-04 2020-06-25 アクチュエーター・ソリュ—ションズ・ゲーエムベーハー Camera module type auto focus actuator
WO2023142083A1 (en) * 2022-01-29 2023-08-03 深圳市大疆创新科技有限公司 Locking mechanism, motor locking system, and mounting platform

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128897A (en) * 2007-11-20 2009-06-11 Chicony Electronics Co Ltd Actuation device having shape memory alloy component
JP4625108B2 (en) * 2007-11-20 2011-02-02 チコニー エレクトロニクス カンパニー リミテッド Actuator with shape memory alloy member
WO2011065296A1 (en) * 2009-11-24 2011-06-03 コニカミノルタオプト株式会社 Drive device
JP2020518862A (en) * 2017-05-04 2020-06-25 アクチュエーター・ソリュ—ションズ・ゲーエムベーハー Camera module type auto focus actuator
JP7001713B2 (en) 2017-05-04 2022-01-20 アクチュエーター・ソリュ―ションズ・ゲーエムベーハー Camera module type autofocus actuator
WO2023142083A1 (en) * 2022-01-29 2023-08-03 深圳市大疆创新科技有限公司 Locking mechanism, motor locking system, and mounting platform

Similar Documents

Publication Publication Date Title
JP2009122602A (en) Driving device
Park et al. Bent-beam electrothermal actuators-Part II: Linear and rotary microengines
US7656073B2 (en) Driving device
US20190278102A1 (en) Optical device for enhancing resolution of an image using multistable states
JP4862703B2 (en) DRIVE DEVICE, DRIVE MECHANISM, AND IMAGING DEVICE
JP5124920B2 (en) Drive device
JP3782088B2 (en) Leaf spring and lens actuator provided with the same
EP2025932A2 (en) Driving mechanism, driving device, and lens driving device
KR100698438B1 (en) Piezoelectric linear motor with displacement amplifying device
JP6814245B2 (en) Optical element drive, camera and portable electronic equipment
JP2009104102A (en) Micro-electrical mechanical system (mems) scanner having actuator separated from mirror
JP2006343506A (en) Lens driving device and imaging apparatus
JP2009122603A (en) Driving device
JP2009080329A (en) Lens drive device
JP2007049879A (en) Actuator
WO2011065296A1 (en) Drive device
JP2008199826A (en) Drive device
JP2006293243A (en) Lens driving device
JP2005057907A (en) Driving device
JP5531184B2 (en) LENS DRIVE DEVICE, CAMERA, AND MOBILE TERMINAL DEVICE WITH CAMERA
JP2009174360A (en) Drive mechanism and drive device
KR101159171B1 (en) Lens actuator
JP2013120375A (en) Driving device
JP2012002230A (en) Drive mechanism and drive device
JP5521553B2 (en) Actuator mechanism