JP2009121693A - Thermal stratification type heat storage tank and terminal structure of water supplying/draining flow channel of the same - Google Patents

Thermal stratification type heat storage tank and terminal structure of water supplying/draining flow channel of the same Download PDF

Info

Publication number
JP2009121693A
JP2009121693A JP2007292651A JP2007292651A JP2009121693A JP 2009121693 A JP2009121693 A JP 2009121693A JP 2007292651 A JP2007292651 A JP 2007292651A JP 2007292651 A JP2007292651 A JP 2007292651A JP 2009121693 A JP2009121693 A JP 2009121693A
Authority
JP
Japan
Prior art keywords
water
flow path
branch pipe
storage tank
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292651A
Other languages
Japanese (ja)
Other versions
JP5170524B2 (en
Inventor
Maki Yanase
真紀 柳瀬
Hajime Sakata
一 坂田
Naoto Sumi
直人 隅
Norihiko Kodera
典彦 古寺
Kenji Komiyama
研二 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2007292651A priority Critical patent/JP5170524B2/en
Publication of JP2009121693A publication Critical patent/JP2009121693A/en
Application granted granted Critical
Publication of JP5170524B2 publication Critical patent/JP5170524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a terminal structure of a water supplying/draining flow channel of a thermal stratification type heat storage tank capable of realizing the flow of sufficiently-low flow velocity and high uniformity in flow velocity distribution. <P>SOLUTION: This terminal structure of the water supplying/draining flow channel formed on a branch pipe extending from a main pipe, is composed of a tip portion 10a of at least one branch pipe 10 and a head member 14 connected with the tip portion of the branch pipe, and the head member 14 is composed of a hollow body connected with the tip portion 10a of the branch pipe 10 at one of its upper and lower portions, and provided with an opening portion 28 at the other portion, and includes a water channel 20 from the tip portion 10a to the opening portion 28. The water channel 20 is composed of a single flow channel excluding the neighborhood of the tip portion 10a of the branch pipe, and formed while an area of the flow channel is minimum at a connecting portion with the tip of the branch pipe and maximum at the opening portion 28, and a speed reducing means 34 by combination of pressure loss by enlargement e1 of the flow channel area and frictional resistance in accompany with bending c1 of the flow channel, is disposed in the water channel 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度成層型蓄熱槽及びこの槽の給水乃至排水流路の末端構造に関する。   The present invention relates to a temperature stratified heat storage tank and a terminal structure of a water supply or drainage channel of the tank.

水蓄熱槽に冷水や温水を貯えて電力ピーク時に冷凍機等の熱源機器を動かすことなく冷房や暖房を行うことは、電力負荷平準化のために有効な手段である。   It is an effective means for power load leveling to store cold water or hot water in a water heat storage tank and perform cooling or heating without moving a heat source device such as a refrigerator at the time of power peak.

水蓄熱槽には混合型水蓄熱槽(特許文献1)と、温度成層型蓄熱槽(特許文献2)とがある。混合型水蓄熱槽は、例えば蓄熱槽の上方から水を注ぎ込むとともに、蓄熱槽の底部から水を吸い上げるものなので、槽内の水が攪拌されてしまい、混合損失が大きい。これに対して、温度成層型蓄熱槽は、槽内の水の温度の違いによる密度の差を利用して、温度が高くて密度が小さい水を槽内の上部へ、温度が低くて密度が大きい水を槽内の下部へ備える方式である。この方式は、水蓄熱槽の利用効率からいうと混合型水蓄熱槽に比べて混合損失が少なく有効である。また、温度成層型蓄熱槽は、水深が大きい槽の方が温度の異なる水の混合が起こりにくいため温度成層状態を保ち易いが、地下に構築する場合は、土止めや掘削費用、残土処理費用など多大な建築費がかかり、地上に構築する場合においても、躯体工事費用等が多くかかる。   The water heat storage tank includes a mixed water heat storage tank (Patent Document 1) and a temperature stratified heat storage tank (Patent Document 2). The mixed water heat storage tank, for example, pours water from above the heat storage tank and sucks water from the bottom of the heat storage tank, so the water in the tank is agitated and the mixing loss is large. On the other hand, the thermal stratification type heat storage tank utilizes the difference in density due to the difference in the temperature of water in the tank, so that the water having a high temperature and a low density is transferred to the upper part of the tank and the density is low. This is a method in which large water is provided in the lower part of the tank. This method is effective from the viewpoint of the utilization efficiency of the water heat storage tank with less mixing loss than the mixed water heat storage tank. In addition, the temperature stratification type heat storage tank is easier to maintain the temperature stratification because the water with different depths is less likely to mix with water at different temperatures. Such a construction cost is expensive, and even when building on the ground, the cost of building construction is high.

そこで出来るだけ低水深の水蓄熱槽とし、複数の槽を連結して有効水蓄熱量を確保できれば、より経済的であり、既存建物の地下ピットなどを利用して水蓄熱槽を行う場合にも適用できることから適用範囲が拡大するという利点がある。     Therefore, it is more economical if water storage tanks with as low a depth as possible are connected and multiple tanks can be connected to ensure effective water storage, and even when water storage tanks are used using underground pits in existing buildings. Since it can be applied, there is an advantage that the application range is expanded.

特許文献2は、こうした要望に応えるために満たすべき2つの条件、及びそのための手段を教示している。     Patent Document 2 teaches two conditions to be satisfied to meet such a demand, and means for that purpose.

第1は、各蓄熱槽内の各所に設置した給水口及び排水口における水の流入・流出速度を、温度成層を攪拌しない程度に小さくすることである。いうまでもなく水の流速が大きいと給水口・給水口から遠いところまで温度成層の撹乱を生ずるためである。これを実現する手段として、給水口(乃至排水口)を、上下両端を閉塞した背低筒形の分配器の周方向に穿設した複数の水の通孔で形成することを提案している。     The first is to reduce the water inflow / outflow rates at the water supply and drain outlets installed at various locations in each heat storage tank to such an extent that the temperature stratification is not agitated. Needless to say, if the flow rate of water is large, the temperature stratification may be disturbed far from the water supply port. As means for realizing this, it has been proposed to form the water supply port (or drainage port) with a plurality of water through holes drilled in the circumferential direction of a low-profile cylindrical distributor closed at both upper and lower ends. .

第2に、給水用主管に沿って付設した各給水口間の流速のバラつき、及び、排水用主管に沿って付設した各各排水口間の流速のバラつきを小さくすることである。例えば給水用主管では、管壁との摩擦により下流にいく流速速度が低下する傾向がある。これに対処するには、主管から給水口又は排水口に至るまでの分岐管の内径を、主管に比べて十分に小さく(好適には1/3〜1/6に)すればよいとされている。主管に対して分岐管の流体抵抗を大きくすれば、相対的に主管の上流と下流との間の管摩擦による損失水頭の差異が小さくなるからである。
特開平05−340570 特開2002−22382 特開2005−290848 特開2004−225972
Secondly, the variation in the flow velocity between the water supply ports provided along the water supply main pipe and the variation in the flow velocity between the respective water discharge ports provided along the drainage main pipe are reduced. For example, in a water supply main pipe, the flow velocity going downstream tends to decrease due to friction with the pipe wall. In order to cope with this, it is said that the inner diameter of the branch pipe from the main pipe to the water supply port or the drain outlet should be sufficiently smaller (preferably 1/3 to 1/6) than the main pipe. Yes. This is because if the fluid resistance of the branch pipe is increased with respect to the main pipe, the difference in loss head due to pipe friction between the upstream and downstream of the main pipe is relatively reduced.
JP 05-340570 JP2002-22382 JP-A-2005-290848 JP 2004-225972 A

上記引用文献2のシステムの分配器は、上下両端閉塞の大径筒状の分配器の周壁に多数の通孔を穿設したという形状であり、各分配器間の水の流速のバラつきを小さくすることに貢献したが、一つの分配器の周囲では通孔を穿設した箇所とそうでない箇所との間で流速に差があり、従って流速の十分な均一性が得られない。また、汎用製品にはない特殊な形状なので、製造コストの面でも問題がある。更に主管から分配器に至る通水路の末端で流路断面積が絞られるために、その末端よりやや上流側の箇所に比べて流速が増大し、温度成層を乱さないように徐々に給水するという要請に関してまだ課題を残す構成であった。   The distributor of the system of the above cited document 2 has a shape in which a large number of through holes are formed in the peripheral wall of a large-diameter cylindrical distributor closed at both upper and lower ends, and the variation in the flow rate of water between the distributors is reduced. However, there is a difference in flow velocity between the portion where the through hole is formed and the portion where the through hole is not formed around one distributor, so that sufficient uniformity of the flow velocity cannot be obtained. In addition, since it has a special shape not found in general-purpose products, there is a problem in terms of manufacturing cost. Furthermore, since the flow path cross-sectional area is reduced at the end of the water passage from the main pipe to the distributor, the flow velocity increases compared to the location slightly upstream from the end, and water is gradually supplied so as not to disturb the temperature stratification. It was the composition which still leaves the problem regarding the request.

ここで流路断面積が絞られないようにするためには、例えば分配器の頂板と底板との連結箇所を除いて、分配器の全周を開口部とすることも考えられる。しかし、そのようにすると、給水用経路のうち分岐路(分岐管及び分配器で形成する流路)での流体抵抗が主管内の流体抵抗に比べて相対的に小さくなる。逆に言えば主管から各分配器に至るまでの流体抵抗のうち主管を通るときの抵抗の比重が大きくなるので、水が主管の上流にある分配器に達するまでの圧力損失と、主流の下流にある分配器に達するまでの圧力損失との差が大きくなる。そうなると各分配器間の供給量を均一にすることができるという特許文献2のメリットがなくなってしまう。従って壁板に孔を穿設するという技術(オリフィス板)以外の方法で、流速を低減することが望まれる。   Here, in order to prevent the flow path cross-sectional area from being reduced, it is also conceivable that the entire circumference of the distributor is an opening, except for the connecting portion between the top plate and the bottom plate of the distributor, for example. However, by doing so, the fluid resistance in the branch path (flow path formed by the branch pipe and the distributor) in the water supply path is relatively smaller than the fluid resistance in the main pipe. In other words, the specific gravity of resistance when passing through the main pipe out of the fluid resistance from the main pipe to each distributor increases, so that the pressure loss until water reaches the distributor upstream of the main pipe and the downstream of the main flow The difference from the pressure loss until reaching the distributor is increased. If it becomes so, the merit of patent document 2 that the supply amount between each distributor can be made uniform will be lost. Therefore, it is desired to reduce the flow velocity by a method other than the technique of drilling holes in the wall plate (orifice plate).

本発明の第1の目的は、一つの分配器又は集水器の回りでも十分に流速が低くかつ流速分布の均一性が高い流れを実現できる、温度成層型蓄熱槽の給水用乃至排水用流路の末端構造を提供することである。   The first object of the present invention is to provide a flow for water supply or drainage of a temperature stratified heat storage tank capable of realizing a flow having a sufficiently low flow velocity and high uniformity of flow velocity distribution even around one distributor or water collector. Providing the end structure of the path.

本発明の第2の目的は、汎用性のある素材を組み合わせて廉価に製造できる給水用乃至排水用流路の末端構造を提供することである。   The second object of the present invention is to provide a terminal structure of a water supply or drainage channel that can be manufactured at a low cost by combining versatile materials.

本発明の第3の目的は、上記末端構造を含む給水用乃至排水用流路を具備する温度成層型蓄熱槽を提供することである。   A third object of the present invention is to provide a temperature-stratified heat storage tank having a water supply or drainage channel including the terminal structure.

第1の手段は、
温度成層型蓄熱槽の内部又は外部に配管した主管から延びる分岐管に、分配器モード又は集水器モードとして利用可能に形成した、給水乃至排水流路の末端構造であって、
少なくとも一本の分岐管10の先端部10aと、
分岐管の先端部と連結したヘッド部材14とで形成され、
ヘッド部材14は、上部及び下部の一方に分岐管10の先端部10aを接続し、他方に開口部28を形成した中空体であって、上記先端部10aから開口部28に至る通水路20を含み、
この通水路20を、分岐管の先端部10a付近を除いて単一の流路とするとともに、流路断面積が分岐管の先端との連続口で最小に、かつ開口部28で最大になるように形成し、
さらに通水路20内に減速手段34を施してなり、この減速手段は、流路断面積の拡大e…による圧力損失と、流路断面積の拡大箇所の、分配器モードでの下流に存する流路の曲りc…に伴う摩擦抵抗の組み合わせにより形成している。
The first means is
An end structure of a water supply or drainage channel formed to be usable as a distributor mode or a water collector mode on a branch pipe extending from a main pipe piped inside or outside a temperature stratified heat storage tank,
At least one tip 10a of one branch pipe 10, and
Formed by a head member 14 connected to the tip of the branch pipe,
The head member 14 is a hollow body in which the tip 10a of the branch pipe 10 is connected to one of the upper part and the lower part, and the opening 28 is formed in the other, and the water passage 20 extending from the tip 10a to the opening 28 is provided. Including
The water flow path 20 is a single flow path except for the vicinity of the tip 10a of the branch pipe, and the cross-sectional area of the flow path is minimized at the continuous port with the tip of the branch pipe and maximized at the opening 28. Formed as
Further, a speed reduction means 34 is provided in the water passage 20, and this speed reduction means exists downstream in the distributor mode of the pressure loss due to the flow path cross-sectional area expansion e 1 . It is formed by a combination of frictional resistance associated with the bend of the flow path c 1 .

本手段では、温度成層型蓄熱槽の給排水用流路の末端構造として、単一の流路であって、流路断面積が基端側(分岐管側)で最小かつ先端側(開口部側)で最大であり、流路断面積の拡大と流体摩擦とを組み合わせた減速手段を有するものを提案している。このような構成とした理由は次の通りである。     In this means, as a terminal structure of the water supply / drainage channel of the thermal stratification type heat storage tank, the flow channel cross-sectional area is the minimum on the base end side (branch pipe side) and the front end side (opening side) ), Which has a speed reduction means that combines the expansion of the flow path cross-sectional area and fluid friction. The reason for this configuration is as follows.

第1に、単一流路としたのは、前述の特許文献2の如く一つの基端から分岐して複数の先端へ至る枝分れの流路では分岐部分の構造・形状の不揃いにより流速にバラつきを生ずるからである。     First, the single flow path is formed by the flow rate of the branched flow path branched from one base end to a plurality of distal ends as in the above-mentioned Patent Document 2 due to uneven structure and shape of the branch portion. This is because a variation occurs.

第2に、流路断面積が基端側で最小で先端側で最大としたのは、流速を自然に減速させるためである。一般の管路機構では流量を制限するために管路の末端部付近にオリフィスを設けて流路を搾ることが行われているが、搾り作用により流路の一部に流れの速い部分が出来てしまう。それにより温度成層を乱さないように流路の先端側の面積を最大としている。     Second, the reason why the cross-sectional area of the flow path is minimized on the proximal end side and maximized on the distal end side is to naturally reduce the flow velocity. In general pipe mechanisms, an orifice is provided near the end of the pipe to limit the flow rate, and the flow path is squeezed. End up. Thereby, the area on the front end side of the flow path is maximized so as not to disturb the temperature stratification.

第3に、減速手段として、流路断面積の拡大と流路の曲りによる流体摩擦とを組み合わせたのは、低い速度(好ましくは25〜50mm/s)まで流速を減速する必要があるからである。流路断面積の拡大により水流を減速する技術(例えば減勢工)は従来から公知であるが(特許文献3)、そうした減速技術に比べて、本発明では速度分布の均等な水流を非常にゆっくりと供給することを狙いとしている。流体の抵抗には、流路の形状に依存する要素(形状抵抗)と粘性に依存する要素(粘性抵抗)とがあり、レイノルズ数が大きいときには形状抵抗が支配的であるが、レイノルズ数が小さくなるにつれて、粘性抵抗の寄与が大きくなる。そこで通水路のうち流速の大きい上流側部分で流路断面積の拡大による形状抵抗で流れの速度エネルギーを奪い、次にその下流側で流路を曲げることで粘性抵抗を高めて、更に勢いを殺ぐという2段階の行程により、十分な減速作用を得られるようにしている。     Thirdly, the reason for combining the expansion of the flow path cross-sectional area and the fluid friction due to the bending of the flow path as the speed reduction means is that it is necessary to reduce the flow speed to a low speed (preferably 25 to 50 mm / s). is there. A technique for slowing down the water flow by expanding the cross-sectional area of the channel (for example, a depressurization method) has been conventionally known (Patent Document 3). However, compared with such a speed reduction technique, the present invention has a very uniform water velocity distribution. The aim is to supply slowly. The fluid resistance has an element that depends on the shape of the channel (shape resistance) and an element that depends on the viscosity (viscosity resistance). When the Reynolds number is large, the shape resistance is dominant, but the Reynolds number is small. As it becomes, the contribution of viscous resistance increases. Therefore, the flow velocity energy is deprived by the shape resistance due to the enlargement of the cross-sectional area of the flow path in the upstream part where the flow velocity is large in the water passage, and the viscous resistance is increased by bending the flow path on the downstream side. A two-step process of killing provides sufficient deceleration.

なお、流路拡大の後で流路が曲るということは例えば特許文献2の分配器もそうであるが、少なくとも末端で大きく開口している流路でそれを行うことに意味がある。末端の開口が窄まっていると、流路の末端部と比べて流路途中の曲り箇所での流速が低下し、流体摩擦による減勢効果が低減するからである。     The fact that the flow path bends after the expansion of the flow path, for example, is the same as that of the distributor of Patent Document 2, but it is meaningful to do so at least in the flow path that is largely open at the end. This is because when the opening at the end is narrowed, the flow velocity at the bent portion in the middle of the flow path is reduced as compared with the end portion of the flow path, and the de-energizing effect due to fluid friction is reduced.

「分配器モード」とは分配器として利用される状態を、また「集水器モード」とは集水器として利用される状態を指すものとする。ここで「分配器」とは、給水用主管から複数の分岐管を経て水を蓄熱槽の各所に供給するための給水口の機能を有する機構(ディストリビュータ)をいい、「集水器」とは、蓄熱槽の各所から複数の分岐管を経て排水用主管に水を回収するための回収口となる機構である。もっとも大きな相違は給水側又は排水側の流路のどちらに取り付けられているかであって、構造的には同じものであってよい。一般に温度成層型蓄熱槽は、槽内の上部及び下部にそれぞれ槽の外部と接続される流路(管路)を持っているが、蓄熱槽を冷水蓄熱に用いるか温水蓄熱に利用するかによって、また蓄熱運転時と放熱運転時とで、給水路及び排水路の役割も入れ替わるのが通常である。そこで以下の説明では流路の末端構造が給水に利用される場合を想定して説明する。     “Distributor mode” refers to the state used as a distributor, and “water collector mode” refers to the state used as a water collector. Here, the “distributor” means a mechanism (distributor) having a function of a water supply port for supplying water to various places of the heat storage tank through a plurality of branch pipes from the water supply main pipe. It is a mechanism that serves as a recovery port for recovering water from various locations of the heat storage tank to the drainage main pipe through a plurality of branch pipes. The biggest difference is whether it is attached to the flow path on the water supply side or the drainage side, and may be the same structurally. In general, a thermal stratification type heat storage tank has a flow path (pipe) connected to the outside of the tank at the upper and lower parts of the tank, depending on whether the heat storage tank is used for cold water heat storage or hot water heat storage. In addition, the roles of the water supply channel and the drainage channel are usually switched between the heat storage operation and the heat radiation operation. Therefore, in the following description, the case where the end structure of the flow path is used for water supply will be described.

「分岐管の先端部」とは、分岐管のうち主管とは反対側の端部であり、管軸方向にある程度の長さを有する部分である。後述の如くヘッド部材内に分岐管が突入しているときには、この突入部分が分岐管の先端部である。分岐管の先端部はヘッド部材に対して水平に接続してもよく、又垂直方向に設けても良い。なお、本発明に係る流路の末端構造に分岐管の先端部を含めたのは、分岐管の先端部が径や向きなどがヘッド部材内の水流の向きなどに寄与するからである。   The “tip portion of the branch pipe” is an end portion of the branch pipe opposite to the main pipe, and is a portion having a certain length in the pipe axis direction. As will be described later, when the branch pipe enters into the head member, this entry is the tip of the branch pipe. The tip of the branch pipe may be connected horizontally to the head member or may be provided in the vertical direction. The reason why the distal end portion of the branch pipe is included in the end structure of the flow path according to the present invention is that the distal end portion of the branch pipe contributes to the direction of the water flow in the head member and the like.

「ヘッド部材」とは、流路の末端にあってヘッド状に拡大した中空の部分である。そうすることで流路断面積を拡大させることができるからである。「中空」とは、内部に流路を形成する空間を有するということであって、内部が全くの“がらんどう”であるものに限定されない。その空間を仕切るための流路形成要素を有している構造であってもよい。空間を仕切ることで流路長を増やし、効率良く水流を減勢することができるからである。   The “head member” is a hollow portion at the end of the flow path that expands in a head shape. This is because the channel cross-sectional area can be enlarged by doing so. “Hollow” means that there is a space for forming a flow path in the interior, and the interior is not limited to a completely “garland”. The structure which has the flow-path formation element for partitioning the space may be sufficient. This is because partitioning the space can increase the flow path length and efficiently reduce the water flow.

「通水路」は、ヘッド部材内に形成された単一の流路であって水流を減勢する機能を有する。「単一の流路」としたのは、水流が槽内に突入する開口箇所において場所によって流速が異なることを防止するためである。一旦分離しても再び合流するものは、単一流路に含まれる。例えばヘッド部材内に流路形成要素を設置するときに、この要素を支える材(好適な実施例では小径筒部を支える分岐管先端部)により流れが遮られる場合があるが、そうした構造の流路も単一流路に含まれる。   The “water channel” is a single channel formed in the head member and has a function of reducing the water flow. The reason for the “single flow path” is to prevent the flow velocity from changing depending on the location at the opening where the water flow enters the tank. What once merges again is included in a single flow path. For example, when the flow path forming element is installed in the head member, the flow may be blocked by a material that supports this element (in the preferred embodiment, the tip of the branch pipe that supports the small-diameter cylindrical portion). The path is also included in the single flow path.

「減速手段」は、流体抵抗により流れの運動エネルギーを奪う手段である。例えば流れの途中で運動エネルギーを保存したまま流路が緩やかに拡大したときにも、連続の式(流路断面積×流速=一定)により流れが遅くなるが、その場合には、開口部での流路断面積が同じであれば水の供給速度も同じなので本発明の目的においては意味がない。本発明の減速手段は、流路断面積の拡大による圧力損失と、流路の曲りによる摩擦抵抗との組み合わせである。前者は主として形状抵抗の性格を、後者は主として粘性抵抗の性格を有する。従って両者を組み合わせることで、高流速の上流側だけでなく低流速の下流側まで十分に減勢効果が得られる。     "Deceleration means" is means for depriving the flow of kinetic energy by fluid resistance. For example, even when the flow path is gradually expanded while preserving kinetic energy in the middle of the flow, the flow is slowed by a continuous equation (flow path cross-sectional area x flow velocity = constant). For the purposes of the present invention, it is meaningless because the water supply speed is the same if the flow path cross-sectional areas of the water are the same. The speed reduction means of the present invention is a combination of pressure loss due to expansion of the cross-sectional area of the flow path and frictional resistance due to the bending of the flow path. The former mainly has the characteristic of shape resistance, and the latter mainly has the characteristic of viscous resistance. Therefore, by combining the two, a sufficient de-energizing effect can be obtained not only on the upstream side of the high flow rate but also on the downstream side of the low flow rate.

「流路断面積の拡大」は、流路断面積の不連続な拡大又は流路断面積の急拡大とすることができる。流路の拡大箇所の一例として、分岐管の先端を挙げることができ、先端部内からヘッド部材内へ流路が拡大している。流路断面積の拡大による圧力損失を減勢手段として用いることは従来公知なので、これ以上の説明は省略する。     “Enlarging the channel cross-sectional area” can be a discontinuous expansion of the channel cross-sectional area or a rapid expansion of the channel cross-sectional area. As an example of the enlarged portion of the flow path, the tip of the branch pipe can be cited, and the flow path is expanded from the tip portion into the head member. Since it is conventionally known to use the pressure loss due to the enlargement of the cross-sectional area of the flow path as the depressing means, further explanation is omitted.

「流路の曲りによる摩擦抵抗」とは、曲り箇所での遠心力を利用して水を界面に圧接させ、抵抗を高めるという意図である。温度成層型蓄熱槽では流れが分岐管内へ流入する段階で流速が抑え気味に設計してあるので、流路の拡大箇所の下流では、そのまま蓄熱槽に送り込むことができるレベルではないとしても、流速はかなり低くなっている。流速を低下させることは、温度成層型蓄熱槽にとって望ましいことであるが、その反面、摩擦抵抗による減速手段の効き目が低下することも意味する。そこで流路の拡大箇所を通過して減速した緩流を曲り箇所に突入させ、流路拡大による圧力損失の代わりに遠心力を利用して水と界面との摩擦を増大させるようにしている。   “Friction resistance due to bending of the flow path” is intended to increase resistance by bringing water into contact with the interface using centrifugal force at the bending portion. The temperature stratification type heat storage tank is designed to suppress the flow rate at the stage where the flow flows into the branch pipe, so even if it is not at a level where it can be sent directly to the heat storage tank downstream of the enlarged portion of the flow path, Is quite low. Lowering the flow rate is desirable for a temperature stratified heat storage tank, but on the other hand, it also means that the effectiveness of the speed reduction means due to frictional resistance is reduced. Therefore, the slow flow that has slowed down after passing through the enlarged portion of the flow path is made to enter the bent portion, and the friction between water and the interface is increased by using centrifugal force instead of the pressure loss due to the enlarged flow path.

この場合において大切であるのは、流路の拡大箇所直前で(流速大)→流路の曲り箇所で(流速中)→開口部で(流速小)というように徐々に流速が低下していくように流路が構成されていることである。仮に流速大→流速小→流速中というように途中で流速が小さいと、遠心力も小さくなるから、曲り箇所での摩擦作用が十分ではなくなる。特に流路の曲り箇所の下流では、曲り終わりの流路部分に比べて流路断面積の狭い箇所がないようにすると望ましい。また通水路を段階的に複数回拡大させ、それら各段階で流路の拡大箇所の次に流路の曲がり箇所を設けてもよい。     In this case, what is important is that the flow velocity gradually decreases immediately before the flow channel expansion point (high flow velocity) → at the flow channel bending portion (medium flow velocity) → at the opening (low flow velocity). The flow path is configured as described above. If the flow velocity is small, such as high flow velocity → low flow velocity → in the middle of the flow velocity, the centrifugal force also becomes small, so that the frictional action at the bending portion is not sufficient. In particular, it is desirable that there is no portion having a narrow channel cross-sectional area downstream of the bent portion of the flow path as compared with the flow path portion at the end of the bend. Further, the water passage may be expanded stepwise a plurality of times, and a curved portion of the flow passage may be provided next to the enlarged portion of the flow passage in each step.

第2の手段は、第1の手段を有しており、かつ
上記通水路20を画成する流路形成面のうち、通水路の曲り箇所の外側部分に、その周囲に比べて摩擦作用の大きい抵抗部38を流路形成面に沿って形成している。
The second means includes the first means, and, of the flow path forming surface that defines the water passage 20, the outer portion of the bent portion of the water passage has a frictional action as compared to its surroundings. A large resistance portion 38 is formed along the flow path forming surface.

この構成により摩擦抵抗による減速効果を高めることができる。「曲り箇所の外側部分」とは、流路を形成する壁のうち流線のカーブ箇所の中心に対して外側の部分である。   With this configuration, the deceleration effect due to frictional resistance can be enhanced. The “outer portion of the curved portion” is a portion outside the center of the curved portion of the streamline in the wall forming the flow path.

「抵抗部」とは、流路の形成面に沿って設けられた摩擦の強い部分である。流路形成面を摩擦係数の大きい粗面として形成すること(摩擦係数の大きいシートなどを貼着すること)でもよく、また曲り箇所の一部に隅部を形成して、この隅部に強く水流を衝突させることで摩擦抵抗を大きくすることもできる。     The “resistive portion” is a portion with high friction provided along the formation surface of the flow path. It is also possible to form the flow path forming surface as a rough surface with a large coefficient of friction (paste a sheet with a large coefficient of friction, etc.). The frictional resistance can be increased by colliding the water flow.

第3の手段は、第1の手段又は第2の手段を有し、かつ
通水性の繊維塊で形成した摩擦層42を通水路の流路形成面に沿って形成している。
The third means has the first means or the second means, and is formed along the flow path forming surface of the water passage through the friction layer 42 formed of a water-permeable fiber lump.

本手段では、通水路の流路形成面付近の比較的速い水の流れを、繊維塊の摩擦層で低速化することを提案している。一般に物の近くを流れる流体は、物の表面に沿って流れ易いという傾向があるが、出願人が行った実験でも流路形成面付近では流路形成面から離れた場所に比べて流速が大きいことが確認されている(図18〜図21参照)。即ち、流路を形成する壁面付近では水流は速く遠方まで達するのである。これは、例えば流速が25mm/s程度のゆっくりした水流である場合に起こる現象であり、流速の大きな一般的な管内流れと異なる点である。そこで本手段では、繊維塊からなる摩擦層を流路形成面に沿って形成することでゆっくりした水の流れをより効果的に減速することを提案している。こうした繊維塊は通水フィルターなどとして公知であるが、本発明のポイントは低速流のうち比較的流速の大きい流路形成面に沿って繊維塊の摩擦層を設けた点にある。この摩擦層は、通水路の曲り箇所の抵抗部として設けてもよいが、曲り箇所以外の部分に形成してもよい。   In this means, it is proposed that the flow rate of the relatively fast water near the flow path forming surface of the water passage is reduced by the friction layer of the fiber mass. In general, a fluid flowing near an object tends to flow along the surface of the object, but even in the experiment conducted by the applicant, the flow velocity near the flow path forming surface is larger than the place away from the flow path forming surface. This has been confirmed (see FIGS. 18 to 21). That is, the water flow quickly reaches far away in the vicinity of the wall surface forming the flow path. This is a phenomenon that occurs when the flow velocity is a slow water flow of about 25 mm / s, for example, and is different from a general pipe flow with a high flow velocity. Therefore, this means proposes that the slow water flow is more effectively decelerated by forming a friction layer made of fiber mass along the flow path forming surface. Such a fiber lump is known as a water flow filter or the like, but the point of the present invention is that a friction layer of the fiber lump is provided along a flow path forming surface having a relatively high flow rate in a low-speed flow. The friction layer may be provided as a resistance portion at a bent portion of the water passage, but may be formed at a portion other than the bent portion.

「繊維塊」とは、一定の定形性を有し、水が容易に通過するのに十分な隙間を有する繊維体であって、摩擦抵抗を有するものである。好適な素材は耐久性の高い合成樹脂(例えば塩化ビニール)である。この繊維塊(あるいは繊維体)は、水槽の浄化用フィルターや台所たわしなどとしてごく汎用的に使用されているものと基本的に同じ構造及び素材であってよい。本発明では、この種の繊維塊を流体の摩擦抵抗という用途に使用した点に新しさがある。フィルターは、流体中の不純物を除去するために使用目的によって目の細かいものとすることがあるが、本発明のものでは比較的目の粗いもの(太い繊維で隙間も多いもの)を用いることが望ましい。好適例である建物の地下ピットに設置する場合には、メンテナンスを頻繁に行うことは困難なので、目を細かくして不純物がひっかかることは好ましくない。また、水流の中で繊維がほぐれないようにするため、繊維塊はロック材とすることが望ましい。この点に関しては、実施形態の欄で詳しく説明する。   A “fiber lump” is a fibrous body having a certain regularity and having a gap enough to allow water to easily pass through, and has a frictional resistance. A suitable material is a highly durable synthetic resin (for example, vinyl chloride). This fiber lump (or fiber body) may have basically the same structure and material as those used for general purposes as a filter for purifying water tanks and kitchen scourers. The present invention is novel in that this type of fiber mass is used for the purpose of fluid friction resistance. The filter may be fine-grained depending on the purpose of use in order to remove impurities in the fluid. However, in the present invention, a filter with relatively coarse eyes (thick fibers and many gaps) should be used. desirable. When it is installed in an underground pit of a building which is a preferred example, it is difficult to perform maintenance frequently. Further, in order to prevent the fibers from being loosened in the water flow, it is desirable that the fiber mass is a lock material. This point will be described in detail in the column of the embodiment.

「摩擦層」は、主として層の内部で流体との抵抗を生ずるものである。界面の凹凸に過ぎない通常の粗面とは異なるし、抵抗といっても厳密に言えば形状抵抗と粘性抵抗とが合成したものであって、単なる流体摩擦ではない。本手段において、流路を形成する壁の一部ではなく、流路、即ち水の通り道の一部であるという考え方である(本願図10参照)。後述の実験例によると繊維塊を用いない試験体での開口部の縦方向の速度分布は、中央部で10mm/secの、外周部で最大35mm/secとかなりの差がある。これは曲がり箇所で内側に比べて外側が速くなり、この外側の速い流れがそのまま流路形成面(図示例では大径筒部内面)に沿って開口部まで維持されているからと考えられる。従って、流路の高速部分に対応する曲り箇所の外側部分に摩擦層を設置し、遠心力で高速流を摩擦層内へ押し込むことで流れの内側との速度差を緩和するようにしている。従って摩擦層の厚さがある程度大きい方が摩擦効果も大きいと考えられる。その厚さは曲り箇所の流路幅や流速に応じて設定する。後述の図示例では75mm程度の幅の曲り箇所で25mmの厚さの摩擦層を設けている。   A “friction layer” is one that produces resistance to a fluid primarily within the layer. It is different from a normal rough surface that is merely irregularities on the interface. Strictly speaking, resistance is a combination of shape resistance and viscous resistance, and is not merely fluid friction. In this means, it is an idea that it is not a part of a wall forming the flow path but a flow path, that is, a part of a water passage (see FIG. 10 of the present application). According to an experimental example to be described later, the vertical velocity distribution of the opening in a test body that does not use a fiber lump is considerably different from 10 mm / sec at the center and up to 35 mm / sec at the outer periphery. This is considered to be because the outer side becomes faster than the inner side at the bent portion, and the fast flow outside this side is maintained as it is along the flow path forming surface (in the illustrated example, the inner surface of the large-diameter cylindrical portion) up to the opening. Therefore, a friction layer is installed in the outer portion of the curved portion corresponding to the high-speed portion of the flow path, and the high-speed flow is pushed into the friction layer by centrifugal force so as to reduce the speed difference from the inside of the flow. Therefore, it is considered that the friction effect is larger when the thickness of the friction layer is larger to some extent. The thickness is set according to the flow path width and flow velocity at the bent portion. In the illustrated example described later, a friction layer having a thickness of 25 mm is provided at a bent portion having a width of about 75 mm.

第4の手段は、第1の手段から第3の手段を有し、かつ
上記通水路20は、分岐管の先端部10aから開口部28に向かって、流路断面積が急拡大する箇所と、流路が屈曲或いは湾曲する曲り箇所とを繰り返すように構成している。
The fourth means includes the first means to the third means, and the water passage 20 has a portion where the flow passage cross-sectional area rapidly increases from the distal end portion 10a of the branch pipe toward the opening portion 28. In addition, the flow path is configured to be repeatedly bent or curved.

本手段では、流路を180度折り返すことで曲り箇所での遠心力を増大させ、摩擦作用を高めることができる。折り返しの態様としては、平行層状に折り返すものや、同心筒状に内外方向に折り返すものが考えられる。   In this means, the centrifugal force at the bent portion can be increased by folding the flow path 180 degrees, and the frictional action can be enhanced. As a manner of folding, a folding back in a parallel layer shape or a folding back in a concentric tube shape in the inner and outer directions can be considered.

第5の手段は、第4の手段を有し、かつ
上記通水路20は、相互に重なる複数の流路部分20a…からなり、一つの流路部分から次の流路部分へ折り返すように形成し、
かつこれら流路部分は、柱形に形成した最初の一つの流路部分を中心に、内側から外側へ同心環状に折り返すようにしている。
The fifth means includes the fourth means, and the water flow path 20 includes a plurality of mutually overlapping flow path portions 20a, and is formed so as to be folded from one flow path portion to the next flow path portion. And
These flow channel portions are folded concentrically from the inside to the outside with the first one flow channel portion formed in a column shape as the center.

本手段では、流路部分が同心環状に折り返すことで、周方向に均等な流速分布を実現できるようにしている。また例えば筒状の各流路部分の幅を一定とすると、径差により内側の流路部分より外側の流路部分の面積が大となり、流路が段階的に拡大する通水路を容易に実現することができる。     In this means, the flow path portion is folded concentrically so that a uniform flow velocity distribution in the circumferential direction can be realized. For example, if the width of each cylindrical flow path portion is constant, the area of the flow path portion outside the inner flow path portion becomes larger due to the difference in diameter, and a water flow path that expands the flow path in steps is easily realized. can do.

第6の手段は、第3の手段又は第4の手段を有し、かつ
上記ヘッド部材14は、
垂直方向へ延びる分岐管10の先端に付設した水平な外向きフランジ状壁48と、
この外向きフランジ状壁の外縁から分岐管と同じ方向に突出した筒壁50と、
上記主管8内部から、分岐管10内を通って筒壁50内へ突出した支持棒52と、
この支持棒の上端に付設するとともに外向きフランジ状壁48との間に一定間隙を存して筒壁内面側へ延長した邪魔板54とを具備し、
上記支持棒52は、分岐管内面に触れないように分岐管の軸に沿って延びるとともに、
支持棒52外面と分岐管10内面との距離L、及び邪魔板54外縁と筒壁50内面との距離Lをそれぞれ周方向に一定としている。
The sixth means includes third means or fourth means, and the head member 14 includes:
A horizontal outward flange-like wall 48 attached to the tip of the branch pipe 10 extending in the vertical direction;
A cylindrical wall 50 protruding in the same direction as the branch pipe from the outer edge of the outward flange-shaped wall;
A support rod 52 protruding from the inside of the main pipe 8 through the branch pipe 10 into the cylindrical wall 50;
A baffle plate 54 attached to the upper end of the support bar and extending toward the inner surface of the cylindrical wall with a certain gap between the outward flange-like wall 48,
The support bar 52 extends along the axis of the branch pipe so as not to touch the inner surface of the branch pipe,
The distance L 1 between the outer surface of the support bar 52 and the inner surface of the branch pipe 10 and the distance L 2 between the outer edge of the baffle plate 54 and the inner surface of the cylindrical wall 50 are constant in the circumferential direction.

流体吹出し口付近に吹出し方向を変更するための邪魔板を設けるという技術は従来公知であるが(例えば特許文献4)、本手段では、筒形のヘッド部材の内部で、吹出し口に相当する分岐管先端開口を超えて筒壁側へ邪魔板を延長することを提案している。それにより分岐管の先端部内、外向きフランジ状壁と邪魔板との間隙、邪魔板の外縁部と筒壁内面の3つの流路部分を経て、流れ線が縦−横−縦と折れ曲がるように設計している。前述のように180度に折れ曲がる場合と比べて曲り箇所での遠心力は小さくなるが、比較的構成を簡易とすることができる。上記3つの流路部分は段階的に流路断面積が拡大していくように構成するとよい。また分岐管の管軸と筒壁の筒軸とが一致するように設計すると、周方向に対して流路分布を一様とすることができて好適である。   The technique of providing a baffle plate for changing the blowing direction in the vicinity of the fluid blowing port is conventionally known (for example, Patent Document 4). In this means, a branch corresponding to the blowing port is formed inside the cylindrical head member. It has been proposed to extend the baffle plate to the tube wall side beyond the tube tip opening. As a result, the flow line bends in the vertical-horizontal-vertical direction in the tip of the branch pipe, through the gap between the outward flange-like wall and the baffle plate, and the three flow passage portions of the outer edge of the baffle plate and the inner surface of the cylindrical wall. Designing. As described above, the centrifugal force at the bent portion is smaller than the case of bending at 180 degrees, but the configuration can be made relatively simple. The three channel portions may be configured such that the channel cross-sectional area gradually increases. In addition, it is preferable to design the branch pipe so that the pipe axis of the branch pipe and the cylinder axis of the cylinder wall coincide with each other in order to make the flow path distribution uniform in the circumferential direction.

第7の手段は、
温度成層型蓄熱槽の内部又は外部に配管した主管から延びる分岐管に、分配器モード又は集水器モードで利用可能に設けられ、少なくとも一本の分岐管の先端部と、この分岐管の先端部と連結したヘッド部材とで形成される、給水乃至排水流路の末端構造であって、
上記ヘッド部材14は、
上下両端面の一方を開口部28とすると共に他方を閉塞した背高の大径筒部16と、
上下両端面の一方を閉塞すると共に他方を連通口24とする背低の小径筒部18と、
を具備し、大径筒部16の閉塞端部と小径筒部18の連通口24とが向かい合うように、大径筒部16の奥部内に小径筒部18を同心状に挿入させてなる中空体であって、
これら大径筒部16及び小径筒部18の適所を貫通して分岐管10の先端部10aを突入させ、
この先端部から小径筒部の内部及び小径筒部と大径筒部との各筒壁の間隙を経て上記開口部28に至る通水路20を形成している。
The seventh means is
A branch pipe extending from a main pipe piped inside or outside the temperature-stratified heat storage tank is provided so as to be usable in a distributor mode or a water collector mode. At least one branch pipe tip and a tip of the branch pipe A terminal structure of a water supply or drainage channel formed by a head member connected to a portion,
The head member 14 is
A tall large-diameter cylindrical portion 16 having one of the upper and lower end faces as an opening 28 and the other closed;
A low-profile, small-diameter cylindrical portion 18 that closes one of the upper and lower end faces and has the other communicating port 24;
A hollow formed by concentrically inserting the small diameter cylindrical portion 18 into the back of the large diameter cylindrical portion 16 so that the closed end of the large diameter cylindrical portion 16 and the communication port 24 of the small diameter cylindrical portion 18 face each other. Body,
The distal end portion 10a of the branch pipe 10 is inserted through appropriate positions of the large diameter cylindrical portion 16 and the small diameter cylindrical portion 18,
A water passage 20 is formed from the tip portion to the inside of the small-diameter cylindrical portion and through the gap between the cylindrical walls of the small-diameter cylindrical portion and the large-diameter cylindrical portion to the opening 28.

本手段は、第1の手段で述べたアイディアのうち、流路断面積の拡大と、流路断面積の拡大箇所の、分配器モードでの下流に存する流路の曲り(折り返し)という点を具体的に実現する方策を提案するものである。本手段では、ヘッド部材を大小の筒部のようにありふれた汎用的な要素を組み合わせているので、簡易に製造することができる。ヘッド部材内に突入した分岐管の先端部は、給水を小径筒部内に導く手段であると同時に、小径筒部を支える手段とすることができる。分岐管はヘッド部材の側方から突入してもよいし、垂直方向から突入してもよい。ヘッド部材に突入する分岐管は1本に限らず、2本以上でもよい。先行の各手段で述べたこと(例えば摩擦層)は技術的に本手段の内容に反しない限り、この手段に援用することができるものとする。尚、上記摩擦層は、通水路の曲り箇所だけではなく、大径筒部の筒壁内面及び小径筒部の筒壁内面のうち、筒長全長或いは筒長の任意の一部に亘って形成することができる。     This means is that, among the ideas described in the first means, the expansion of the channel cross-sectional area and the bending (turning back) of the channel existing downstream in the distributor mode at the location where the channel cross-sectional area is enlarged. It proposes a specific measure to be realized. In this means, since the head member is combined with common general-purpose elements such as large and small cylindrical portions, it can be easily manufactured. The tip of the branch pipe that has entered the head member can be used as a means for guiding the water supply into the small-diameter cylindrical portion and at the same time as a means for supporting the small-diameter cylindrical portion. The branch pipe may enter from the side of the head member or may enter from the vertical direction. The number of branch pipes that enter the head member is not limited to one, and may be two or more. What has been described in the preceding means (for example, the friction layer) can be incorporated into this means unless technically contrary to the contents of this means. The friction layer is formed not only at the bent portion of the water passage, but also over the entire length of the tube length or any part of the tube length among the tube wall inner surface of the large diameter tube portion and the tube wall inner surface of the small diameter tube portion. can do.

第8の手段は、第1の手段から第7の手段を有し、かつ
上記ヘッド部材14のうち開口部28と反対側の部分に、蓄熱槽2内に水を充填するとき又は蓄熱槽2から水を吸い出すときに開き、蓄熱時又は放熱時には閉じる、水抜き用及びエア抜き用の弁機構60を設けている。
The eighth means includes the first means to the seventh means, and the portion of the head member 14 opposite to the opening 28 is filled with water in the heat storage tank 2 or the heat storage tank 2. There is provided a valve mechanism 60 for draining and venting air that opens when water is sucked from the air and closes when heat is stored or released.

本手段では、ヘッド部材内の水抜き又はエア抜きのためのメカニズムを提案している。一般的に蓄熱槽内の水量は一定であることが多く、通常の動作では水抜きやエア抜きが必要となることはないが、最初に蓄熱槽に注水をする際にはヘッド部材の外部は充填されているのに、ヘッド部材からエアが抜けないという状況が起こりうる。また最近では蓄熱槽内の水を消火用水として兼用することが行われており、消火用水を取水するときには、蓄熱槽内の水位が急減に低下するため、ヘッド部材の外部では水がないのにヘッド部材内に水が残っているという状況が起こりうる。何れの場合でもヘッド部材に大きな荷重がかかることになる。これを回避するために水抜き又はエア抜きの弁機構を設けている。   This means proposes a mechanism for draining or bleeding air from the head member. In general, the amount of water in the heat storage tank is often constant, and it is not necessary to drain water or vent the air in normal operation.However, when water is poured into the heat storage tank for the first time, A situation may occur where air does not escape from the head member even though it is filled. Recently, water in the heat storage tank has also been used as fire extinguishing water, and when water for fire extinguishing is taken, the water level in the heat storage tank drops rapidly, so there is no water outside the head member. A situation can occur where water remains in the head member. In either case, a large load is applied to the head member. In order to avoid this, a valve mechanism for draining or bleeding air is provided.

この弁機構を実現するためには、水より軽い「浮き」タイプの弁体、水より重い「錘」タイプの弁体を利用して、ヘッド部材の内外を水が充填している通常の運転時(蓄熱・放熱時)には、その浮力又は荷重により恒常的にヘッド部材に穿設した弁座を塞ぐが、注水又は放水の途中では水位によりそれら弁体が弁座から離脱し、水や空気の出入りが可能に設けるとよい。   In order to realize this valve mechanism, normal operation in which the inside and outside of the head member is filled with water using a “floating” type valve body that is lighter than water and a “weight” type valve body that is heavier than water. At the time of heat storage (heat storage and heat dissipation), the valve seats pierced in the head member are permanently blocked by the buoyancy or load, but during the water injection or water discharge, the valve bodies are detached from the valve seats due to the water level. It is recommended that air can enter and exit.

具体的には、上面開口のヘッド部材においては、図14A〜Cに示すように水抜き弁とエア抜き弁をそれぞれ設ける。水抜き弁はヘッド部材の底壁に貫設する弁筒の上部を弁座とし、弁筒内に浮きである弁体を上下動自在に保持する。エア抜き弁はヘッド部材の底壁に貫設する弁筒の下部を弁座とし、水より重い弁体を上下動自在に保持すればよい。また下面開口のヘッド部材においては、図14D〜Fに示すように水抜き及びエア抜き兼用の弁を設ける。この弁は、ヘッド部材の頂壁に貫設する弁筒の上部を弁座とし、弁筒内に浮きである弁体を上下動自在に保持する。これらの構成については実施形態の欄で詳しく説明する。   Specifically, in the head member having an upper surface opening, a water drain valve and an air vent valve are respectively provided as shown in FIGS. The drain valve uses the upper part of the valve cylinder penetrating the bottom wall of the head member as a valve seat, and holds the floating valve body in the valve cylinder so as to be movable up and down. The air vent valve may be configured such that a lower part of a valve cylinder penetrating the bottom wall of the head member is used as a valve seat, and a valve body heavier than water is held up and down freely. Further, as shown in FIGS. 14D to 14F, the head member having the lower surface opening is provided with a valve for both draining and bleeding. In this valve, an upper portion of a valve cylinder penetrating the top wall of the head member is used as a valve seat, and a valve body floating in the valve cylinder is held up and down freely. These configurations will be described in detail in the embodiment section.

第9の手段は、
槽内の上部及び下部の一方に給水用主管8を、他方に排水用主管8を配管するとともに、給水側の主管8からの分岐管10の先端に分配器Eを、排水側の主管8からの分岐管10の先端に集水器Eをそれぞれ付設してなる温度成層型蓄熱槽において、
上記分配器E及び集水器Eを請求項1から請求項8に記載の給水乃至排水流路の末端構造とし、
分配器E乃至集水器Eの開口部28のうち、下側の主管8と連なるものは蓄熱槽2の底面に向かい合わせて下向きに、上側の主管8と連なるものは蓄熱槽2の上端面に向かい合わせて上向きに配向している。
The ninth means is
A water supply main pipe 8 is connected to one of the upper and lower parts of the tank, and a drain main pipe 8 is connected to the other, and a distributor E 1 is connected to the tip of the branch pipe 10 from the water supply side main pipe 8, and the drain side main pipe 8 is connected. at a temperature stratified storage tank comprising a water collecting unit E 2 is attached respectively to the tip of the branch pipe 10 from,
The distributor E 1 and the water collector E 2 have a terminal structure of a water supply or drainage channel according to any one of claims 1 to 8,
Of the openings 28 of the distributors E 1 to E 2 , those that are connected to the lower main pipe 8 face downward toward the bottom of the heat storage tank 2, and those that are connected to the upper main pipe 8 are those of the heat storage tank 2. It is oriented upward facing the top surface.

本手段では、前述の流路末端構造を含む温度成層型蓄熱槽を提案している。下側の開口部を蓄熱槽の底面に向かい合わせ、下側の開口部を蓄熱槽の上端面に向かい合わせることで流速を低減するようにしている。蓄熱槽は多槽連結型の蓄熱槽とすることができる。     In this means, a temperature stratified heat storage tank including the above-described channel end structure is proposed. The flow rate is reduced by making the lower opening face the bottom surface of the heat storage tank and the lower opening face the upper end face of the heat storage tank. The heat storage tank can be a multi-tank connection type heat storage tank.

第1の手段に係る発明によれば次の効果を奏する。
○通水路20を単一流路としたから、複数に枝分かれした流路の如く各枝分かれ部分毎に流れの遅速を生じることがなく、速度分布のコントロールが容易である。
○通水路20は、流路断面積が分岐管の先端との連続口で最小にかつ開口部28で最大になるように形成したから、給水の際に流出速度を抑制でき、これにより低水深の槽を用いて温度成層型蓄熱槽を実現することができる。
○減速手段は、流路断面積の拡大と拡大箇所の下流の流体摩擦とを組み合わせたから、高流速の上流側でも低流速の下流側でも効果的に減勢作用を発揮する。
○流体摩擦を減速手段とするために流路の曲り箇所での遠心力を利用するので、流路の拡大によりゆっくりとなった流れに対して効果的に減勢することができる。
The invention according to the first means has the following effects.
O Since the water flow path 20 is a single flow path, the flow speed is not easily controlled at each branch portion as in the case of a plurality of branched flow paths, and the speed distribution can be easily controlled.
○ Since the water flow channel 20 is formed so that the cross-sectional area of the flow channel is minimized at the continuous port with the tip of the branch pipe and maximized at the opening portion 28, the outflow speed can be suppressed during water supply, thereby reducing the low water depth. A temperature stratified heat storage tank can be realized using this tank.
○ Since the speed reduction means combines the expansion of the cross-sectional area of the flow path and the fluid friction downstream of the expanded portion, it effectively exerts a depressurizing action on both the upstream side of the high flow rate and the downstream side of the low flow rate.
O Centrifugal force at the curved portion of the flow path is used to reduce fluid friction as a speed reduction means, so that it is possible to effectively reduce the flow that has become slow due to the expansion of the flow path.

第2の手段に係る発明によれば、次の効果を奏する。
○曲り箇所の外側部分に周囲よりも摩擦作用の大きい抵抗部を設けたから、遠心力を有効に利用して摩擦力が増大し、効果的に減速することができる。
○抵抗部は流路形成面に沿っているから、流れを撹乱することがなく、均質性の高いゆっくりした流れを作ることに適している。
The invention according to the second means has the following effects.
O Since the resistance portion having a larger frictional action than the surroundings is provided on the outer portion of the bent portion, the frictional force is increased by effectively utilizing the centrifugal force, and the deceleration can be effectively performed.
○ Since the resistance part is along the flow path formation surface, it does not disturb the flow and is suitable for creating a slow flow with high homogeneity.

第3の手段に係る発明によれば、繊維塊による摩擦層を通水路の流路形成面に沿って形成したから、普通の粗面に比べてダイナミックな減勢作用が得られる。   According to the invention relating to the third means, since the friction layer formed by the fiber mass is formed along the flow path forming surface of the water channel, a dynamic depressing action can be obtained as compared with a normal rough surface.

第4の手段に係る発明によれば、流路の急拡大により減速させた後、曲り箇所で流れの速い部分を遠心力により内壁面に圧接させるようにしたから、さらに効果的に運動エネルギーを奪うことができる。   According to the fourth aspect of the invention, after the deceleration by the rapid expansion of the flow path, the fast flow portion at the bending portion is pressed against the inner wall surface by centrifugal force, so that the kinetic energy can be more effectively obtained. I can take it away.

第5の手段に係る発明によれば、次の効果を奏する。
○折り返しているので遠心力を利用した摩擦効果が高まる。
○環状に折り返したから、最初の流路部分に比べて2番目以降の流路部分の流路断面積を大きく水路幅を狭く設計することが容易であり、流路拡大及び摩擦抵抗による減速効果を十分に確保できる。
○同心状にしたから、同一流路面内断面の流速分布のばらつきを少なくすることができる。
The invention according to the fifth means has the following effects.
○ Friction effect using centrifugal force increases because it is folded.
○ Since it is folded back in an annular shape, it is easy to design the channel cross-sectional area of the second and subsequent channel parts larger and narrower the channel width than the first channel part. Enough can be secured.
○ Because it is concentric, it is possible to reduce the variation in flow velocity distribution in the same flow path plane cross section.

第6の手段に係る発明によれば、次の効果を奏する。
○分岐管内から突出した支持棒52の先端に邪魔板54を付設したから、分岐管10内から筒壁50の先端まで流路が仕切られない完全な単一流路として設計することができる。
○分岐管と支持棒との距離、邪魔板54外縁と筒壁50内面との距離を周方向にそれぞれ一定とし、かつ邪魔板54と外向きフランジ状壁とを一定にしたから、更に流速分布の均一性を高いレベルで保障できる。
The invention according to the sixth means has the following effects.
Since the baffle plate 54 is attached to the tip of the support rod 52 protruding from the branch pipe, it can be designed as a complete single flow path in which the flow path is not partitioned from the branch pipe 10 to the tip of the cylindrical wall 50.
○ The distance between the branch pipe and the support rod, the distance between the outer edge of the baffle plate 54 and the inner surface of the cylindrical wall 50 are made constant in the circumferential direction, and the baffle plate 54 and the outward flange-like wall are made constant. Can ensure a high level of uniformity.

第7の手段に係る発明によれば、大小の筒部を主要部材とするから、市場に流通している汎用的な素材を組み合わせて製造することができ、製造コストを廉価にすることができる。     According to the seventh aspect of the invention, since the large and small cylindrical portions are the main members, it can be manufactured by combining general-purpose materials distributed in the market, and the manufacturing cost can be reduced. .

第8の手段に係る発明によれば、水抜き用又はエア抜き用の弁機構60を設けたから、ヘッド部材の周囲が空気で内部が水で満たされた状態、或いは逆に周囲が水で内部が空気で満たされた状態となることで主管や分岐管に無用の荷重がかかることを防止できる。   According to the eighth aspect of the invention, the valve mechanism 60 for draining or bleeding is provided, so that the periphery of the head member is filled with air and filled with water, or conversely, the surrounding is filled with water. Can be prevented from applying unnecessary load to the main pipe and the branch pipe.

第9の手段に係る発明によれば、分配器E乃至集水器Eの開口部28のうち、下側の主管8と連なるものは蓄熱槽2の底面に向かい合わせて下向きに、上側の主管8と連なるものは蓄熱槽2の上端面に向かい合わせて上向きに配向したから、蓄熱槽2の下面及び上面(又は水面)が流路規制板(邪魔板)の代わりになって、水の流れを水平方向とすることができ、槽の水深を低くすることができるとともに、構成を簡易にすることができる。 According to the ninth aspect of the invention, among the openings 28 of the distributors E 1 to E 2 , the ones connected to the lower main pipe 8 face the bottom surface of the heat storage tank 2 and face the upper side downward. Since the pipe connected to the main pipe 8 is oriented upward facing the upper end surface of the heat storage tank 2, the lower surface and the upper surface (or water surface) of the heat storage tank 2 are replaced with a flow path regulating plate (baffle plate), and water. The flow of water can be made horizontal, the water depth of the tank can be lowered, and the configuration can be simplified.

図1から図8は、第1の実施形態に係る温度成層型蓄熱槽及び給排水用流路の末端構造を示している。   FIG. 1 to FIG. 8 show the terminal structures of the temperature stratified heat storage tank and the water supply / drainage channel according to the first embodiment.

図1中、2は、温度成層型蓄熱槽であり、4は熱交換器であり、6は給排水用流路である。   In FIG. 1, 2 is a temperature-stratified heat storage tank, 4 is a heat exchanger, and 6 is a water supply / drainage channel.

温度成層型蓄熱槽2は、上端閉塞の槽である。図示のものは多槽連結型であるが、単槽型であってもよい。この蓄熱槽は、既存の建物の基礎ピットを利用して構築することができる。図面では省略されているが蓄熱槽の上壁には人通孔を設けている。   The temperature stratification type heat storage tank 2 is a tank whose upper end is closed. The illustrated one is a multi-tank connection type, but may be a single tank type. This heat storage tank can be constructed using the basic pit of an existing building. Although omitted in the drawing, a through hole is provided in the upper wall of the heat storage tank.

熱交換器4は、蓄熱運転時には熱源で生成された熱を蓄熱槽に供給し、放熱運転時には蓄熱槽から取り出した熱を外部に供給するものである。   The heat exchanger 4 supplies heat generated by a heat source to the heat storage tank during the heat storage operation, and supplies heat extracted from the heat storage tank to the outside during the heat dissipation operation.

給排水用流路6は、温度成層型蓄熱槽2及び熱交換器4の間に構成され、給水用流路6Aの主管8を槽の下部に、排水用流路6Bの主管8を槽の上部にそれぞれ配管している。なお、図面中Pは蓄熱/放熱ポンプであり、Vは流路切替バルブである。   The water supply / drainage channel 6 is configured between the temperature-stratified heat storage tank 2 and the heat exchanger 4, and the main pipe 8 of the water supply path 6A is at the lower part of the tank, and the main pipe 8 of the drainage channel 6B is at the upper part of the tank. Each has a piping. In the drawings, P is a heat storage / heat dissipation pump, and V is a flow path switching valve.

各主管8には、上流から下流に亘って間欠的に分岐管10を延出しており、その先に各流路の末端構造12として分配器及び集水器を形成している。図示例では、主管の各場所から一対の分岐管が延びている。   In each main pipe 8, a branch pipe 10 is intermittently extended from upstream to downstream, and a distributor and a water collector are formed as a terminal structure 12 of each flow path. In the illustrated example, a pair of branch pipes extend from each location of the main pipe.

この末端構造12は、少なくとも分岐管の先端部10aと、ヘッド部材14とで形成されている。図2及び図3では、上側の主管の末端構造が、また図4及び図5では、下側の主管の末端構造がそれぞれ記載されているが、向きが上下反転しているほかは殆ど同じ構造なので、以下図2及び図3の末端構造を例にとって構成を説明する。   This end structure 12 is formed of at least a tip portion 10 a of the branch pipe and a head member 14. FIGS. 2 and 3 show the end structure of the upper main pipe, and FIGS. 4 and 5 show the end structure of the lower main pipe, respectively. Therefore, the configuration will be described below by taking the terminal structure of FIGS. 2 and 3 as an example.

ヘッド部材14は、有底の大径筒部16と有頂の小径筒部18とを有しており、小径筒部は、大径筒部16の奥部(或いは下半部)内に配置されている。大径筒部16の下半部左右側壁及び小径筒部の左右側壁を貫いて、一対の分岐管の先端部10aを小径筒部内へ突入させている。これら分岐管は小径筒部を支持する手段を兼ねている。大径筒部16及び小径筒部18は上下方向に亘って内径及び外径一定の直筒形であり、かつ上方から見て同心状に配置された円筒形である。このようにすることで、小径筒部の内部から両筒部の間隙を経て大径筒部の開口部へ至る通水路20を形成している。   The head member 14 has a large-diameter cylindrical portion 16 with a bottom and a small-diameter cylindrical portion 18 with a top, and the small-diameter cylindrical portion is disposed in the back (or lower half) of the large-diameter cylindrical portion 16. Has been. The distal end portions 10a of the pair of branch pipes are inserted into the small diameter cylindrical portion through the lower left and right side walls of the large diameter cylindrical portion 16 and the left and right side walls of the small diameter cylindrical portion. These branch pipes also serve as means for supporting the small-diameter cylindrical portion. The large-diameter cylindrical portion 16 and the small-diameter cylindrical portion 18 are straight cylindrical shapes having a constant inner diameter and outer diameter in the vertical direction, and are cylindrical shapes arranged concentrically as viewed from above. By doing in this way, the water flow path 20 from the inside of a small diameter cylinder part to the opening part of a large diameter cylinder part through the clearance gap between both cylinder parts is formed.

分岐管の先端部10aは、図示の例では、分岐管の残りの部分とは別のパーツとしてヘッド部材に付設して末端構造を一つのユニットに形成している。そして分岐管の残余部分を分岐管の先端部に嵌合可能としている。     In the illustrated example, the distal end portion 10a of the branch pipe is attached to the head member as a separate part from the remaining portion of the branch pipe to form a terminal structure as one unit. The remaining portion of the branch pipe can be fitted to the tip of the branch pipe.

上記小径筒部18は、下端面を大径筒部への連通口24としている。小径筒部の内部には分岐管先端部の軸方向と直角な隔壁26を横設しており、分岐管の先端からの流水が隔壁の両面に当たるように分岐管先端面に対向させている。   The small diameter cylindrical portion 18 has a lower end surface as a communication port 24 to the large diameter cylindrical portion. A partition wall 26 perpendicular to the axial direction of the branch pipe tip is provided inside the small-diameter cylindrical portion, and is opposed to the branch pipe tip surface so that running water from the tip of the branch pipe hits both surfaces of the partition wall.

上記大径筒部16は、上端面を蓄熱槽内への開口部28としている。また、その筒壁外面に適数の支持部30を付設し、この支持部に例えばチェーンを掛けて蓄熱槽内にヘッド部材14を吊下げることができるように構成している。もっとも支持方法は適宜変更することができる。更に大径筒部16内のうち大径筒部と小径筒部との間隙より下流の通流路部分、図示例では小径筒部上方部分内を横断して、繊維塊からなる通水フィルター32を横設している。この繊維塊は好ましくは合成樹脂製のものであり、この通水フィルターは、塩化ビニールで形成することができる。なお、繊維製の通水フィルターを支えるため、大径筒部内に支持材(例えば網板など)を設置すればよい。   The large-diameter cylindrical portion 16 has an upper end surface as an opening 28 into the heat storage tank. Further, an appropriate number of support portions 30 are attached to the outer surface of the cylindrical wall, and the head member 14 can be suspended in the heat storage tank by hanging a chain on the support portion, for example. However, the support method can be changed as appropriate. Further, in the large-diameter cylindrical portion 16, a water flow filter 32 made of a fiber mass traverses the passage portion downstream of the gap between the large-diameter cylindrical portion and the small-diameter cylindrical portion, in the illustrated example, in the upper portion of the small-diameter cylindrical portion. Is installed side by side. The fiber mass is preferably made of a synthetic resin, and the water filter can be formed of vinyl chloride. In order to support the fiber water filter, a support material (for example, a mesh plate) may be installed in the large-diameter cylindrical portion.

上記通水路20は、この実施例では、小径筒部内部から外側に折り返す上流部分20aと、小径筒部及び大径筒部の各筒壁間の中流部分20bと、大径筒部より上方の下流部分20cとを含む。そして上流部分20aは、連通口から外側に曲る曲り箇所22で遠心力による摩擦作用を生ずるようにしている。図示例では、上流部分20aの小径筒部内の流路断面積に比べると中流部分20bの流路断面積(小径筒部と大径筒部との間隙の横断面積)は若干大きく、また中流部分20bに比べると下流部分20cの流路断面積はさらに大きい。このように通水路は、途中で無為に窄まることなく上流から下流へおおよそ段階的に拡大している。   In this embodiment, the water flow path 20 includes an upstream portion 20a that folds outward from the inside of the small-diameter cylindrical portion, a midstream portion 20b between the cylindrical walls of the small-diameter cylindrical portion and the large-diameter cylindrical portion, and an upper portion above the large-diameter cylindrical portion. And a downstream portion 20c. And the upstream part 20a is made to produce the frictional effect by a centrifugal force in the bending location 22 which curves outside from a communicating port. In the illustrated example, the channel cross-sectional area of the midstream portion 20b (the cross-sectional area of the gap between the small diameter cylindrical portion and the large diameter cylindrical portion) is slightly larger than the channel cross sectional area in the small diameter cylindrical portion of the upstream portion 20a. Compared to 20b, the flow path cross-sectional area of the downstream portion 20c is larger. In this way, the water passage is expanded in stages from upstream to downstream without being involuntarily constricted on the way.

図4及び図5の上向き開口の末端構造は、下向き開口のものと比べて支持部の位置が若干異なる。   The end structure of the upward opening in FIGS. 4 and 5 is slightly different from the position of the support portion in comparison with that of the downward opening.

上記構成において、分岐管の先端部10aから小径筒部内に流入させると、図6に示す如く水の流れは、分岐管の先端での流路拡大e→隔壁への衝突による流路の曲りc→連通口での流路拡大e→曲り箇所22での曲りc→中流部分の末端部の流路拡大eを繰り返しながら開口部へ向かう。これにより減速手段34を構成している。また曲り箇所22では流れの外側部分が内側部分に比べて流速が速くなり、出願人の実験によれば曲り箇所22の外側部分と内側部分との速度差が開口部28での速度分布にそのまま表れてしまう傾向がある。そこで図示例では大径筒部を有底筒形として、底板と筒壁との間の隅部40を抵抗部38としている。すなわち、隅部40に流れが衝突することで摩擦作用が高まり、流れの外側部分の速度を抑制し、流路分布のばらつきを小さくしている。 In the above configuration, when flowing into the small-diameter cylindrical portion from the distal end portion 10a of the branch pipe, the flow of water as shown in FIG. 6 causes the flow path enlargement e 1 at the front end of the branch pipe to bend the flow path due to the collision with the partition wall. c 1 → channel expansion e 2 at the communication port e 2 → bending c 2 at the curved portion 22 → flow path expansion e 3 at the end of the midstream portion toward the opening. Thereby, the deceleration means 34 is comprised. Further, the flow velocity at the outer portion of the flow is higher at the bent portion 22 than at the inner portion, and according to the applicant's experiment, the speed difference between the outer portion and the inner portion of the bent portion 22 remains in the velocity distribution at the opening 28. There is a tendency to appear. Therefore, in the illustrated example, the large-diameter cylindrical portion is a bottomed cylindrical shape, and the corner portion 40 between the bottom plate and the cylindrical wall is a resistance portion 38. That is, the collision of the flow with the corner 40 increases the frictional action, suppresses the speed of the outer portion of the flow, and reduces the variation in the flow path distribution.

図7は、第1の実施形態の変形例であり、小径筒部の隅を丸めることで曲り箇所の流れの内側部分の速度が速くなるようにしたものである。   FIG. 7 shows a modified example of the first embodiment, in which the speed of the inner portion of the flow at the bent portion is increased by rounding the corner of the small-diameter cylindrical portion.

図8は本実施形態の動作を示しており、同図(A)は冷水蓄熱時を、同図(B)は冷水放熱時を示している。     FIG. 8 shows the operation of this embodiment. FIG. 8A shows the cold water heat storage time and FIG. 8B shows the cold water heat release time.

冷水蓄熱時には、同図(A)中、熱交換器4の上部の両端が省略された配管を、図示しない冷熱源と熱搬送媒体の循環路をなすよう接続する。冷熱源で生成され搬送された熱搬送媒体は、蓄熱槽側の循環路の冷水と熱交換器4を介して熱交換される。蓄熱槽側では、下側の主管と分岐管を含む給水用流路6Aを介して、槽内の下方に存し、底面に向けて開口された末端構造を分配器として、熱交換器4で熱交換された冷水が槽内に給水されて、蓄熱される。同時に槽内から、槽内の上方に存し、上面に向けて開口された末端構造を集水器として、上側の主管と分岐管を含む排水用流路6Bを介して、熱交換器4に還流される。   At the time of cold water heat storage, a pipe in which both ends of the upper portion of the heat exchanger 4 are omitted in FIG. 1A is connected so as to form a circulation path between a cold heat source (not shown) and a heat transfer medium. The heat transport medium generated and transported by the cold heat source is heat-exchanged with the cold water in the circulation path on the heat storage tank side via the heat exchanger 4. On the heat storage tank side, through the water supply flow path 6A including the lower main pipe and the branch pipe, the end structure that opens below the tank and opens toward the bottom is used as a distributor. The heat-exchanged cold water is supplied into the tank and stored. At the same time, from the inside of the tank to the heat exchanger 4 via the drainage flow path 6B including the upper main pipe and the branch pipe, with the terminal structure existing above the inside of the tank and opened toward the upper surface as a water collector. Refluxed.

冷水放熱時には、同図(B)中、熱交換器4の上部の両端が省略された配管を、図示しない空調機などの負荷側の熱交換器と熱搬送媒体の循環路をなすよう接続する。負荷側では、蓄熱槽側の冷水と熱交換器4を介して熱交換された熱搬送媒体は、負荷側の熱交換器に搬送され、負荷側で熱交換された後、熱交換器4に還流される。蓄熱槽側では、槽内の下方に存し、底面に向けて開口された末端構造を集水器として、下側の主管と分岐管を含む排水用流路6Bを介して、槽内に蓄えられていた冷水を熱交換器4に送水し、負荷側の熱搬送媒体と熱交換する。熱交換器4で熱交換された冷水は、上側の主管と分岐管を含む給水用流路6Aを介し、槽内の上方に存し上面に向けて開口された末端構造を分配器として、槽内に還流する。     When chilled water is dissipated, a pipe in which both ends of the upper portion of the heat exchanger 4 are omitted is connected to a heat exchanger on the load side such as an air conditioner (not shown) so as to form a circulation path of the heat transfer medium. . On the load side, the heat transfer medium exchanged with the cold water on the heat storage tank side via the heat exchanger 4 is transferred to the heat exchanger on the load side, and heat exchange is performed on the load side. Refluxed. On the heat storage tank side, it is stored in the tank via the drainage flow path 6B including the lower main pipe and the branch pipe, with the terminal structure existing below the tank and opened toward the bottom as a water collector. The cold water that has been supplied is sent to the heat exchanger 4 to exchange heat with the heat transfer medium on the load side. The cold water heat-exchanged by the heat exchanger 4 passes through the water supply flow path 6A including the upper main pipe and the branch pipe, and the end structure opened upward toward the upper surface in the tank is used as a distributor. Reflux in.

以下本発明の他の実施形態を説明する。これらの説明において第1の実施形態と同じ構成については同一の符号を付することで説明を省略する。     Other embodiments of the present invention will be described below. In these descriptions, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図9及び図10は、本発明の第2の実施形態に係る末端構造を示している。     9 and 10 show a terminal structure according to the second embodiment of the present invention.

本実施形態では、小径筒部18から小径筒部と大径筒部16との間隙へ折り返すときの曲り箇所22の外側に対応する場所に、より具体的には、曲り箇所22及び中流部分20bの外側部分の流路形成面に、抵抗部38として摩擦層を形成している。     In the present embodiment, the bent portion 22 and the midstream portion 20b are more specifically located at locations corresponding to the outside of the bent portion 22 when the small diameter cylindrical portion 18 is folded back into the gap between the small diameter cylindrical portion and the large diameter cylindrical portion 16. A friction layer is formed as the resistance portion 38 on the flow path forming surface of the outer portion.

この摩擦層は、通水性を有する、好ましくは合成樹脂製の繊維塊として形成している。摩擦層の素材として好ましい条件を観念的に説明すると、第1に摩擦抵抗が過大とならない程度に空隙率が大きく、第2に摩擦面を十分確保できるように表面積がある程度大きく、第3に分配器又は集水器の支持を容易とするために軽い素材であり、第4に水にぬれても性質がかわらない素材であることである。特に耐水性のある材料、換言すれば吸水性の少ないものであると良い。また水に触れて形が崩れたりしない、即ち、水流中で保形性があることも要求される。このためには、化学繊維のロック材とすることが望ましい。ロック材というのは、動植物繊維や合成樹脂などを、図10の如く羊の巻き毛(ロック)のような形にカール加工して多くの小さな弾性体を形成し、さらに結合剤で結合固定したものである。こうしたロック材は、繊維の太さに比べてかなり大きな不規則な間隙を有している。例えば市販品で繊維の太さが0.5mm以下とすると間隙が数mmのものが公知である。そうして間隙は通水路の一部をなしている。即ち、図10に示す如く小径筒部18の内部から曲り箇所22内へ流れ込む水のうち、曲り箇所外側を流れる水は抵抗部38である摩擦層内を通過する。摩擦層内では繊維がランダムに交差・錯綜しているため、水の流れを妨げる。本来曲り箇所22の外側部分では、内側部分に比べて流速が大きくなるはずであるが、摩擦層の作用により外側部分での流速を低下させ、内側部分との流速の差異を小さくすることができる。     This friction layer is formed as a fiber mass having water permeability, preferably made of synthetic resin. The ideal conditions for the material of the friction layer can be explained conceptually. First, the porosity is large enough that the frictional resistance does not become excessive, and secondly, the surface area is large enough to secure a sufficient friction surface, and thirdly distributed. It is a light material for facilitating the support of the water collector or the water collector, and fourthly, it is a material that does not change its properties even when wet with water. In particular, a material having water resistance, in other words, a material having low water absorption is preferable. It is also required that the shape does not collapse when touched by water, that is, has shape retention in a water stream. For this purpose, it is desirable to use a chemical fiber locking material. The lock material is made by curling animal and plant fibers, synthetic resins, etc. into a shape like a curly sheep (lock) as shown in FIG. 10 to form many small elastic bodies, and further bonded and fixed with a binder. Is. Such locks have irregular gaps that are significantly larger than the fiber thickness. For example, a commercially available product having a gap of several mm is known when the fiber thickness is 0.5 mm or less. Thus, the gap forms part of the water channel. That is, as shown in FIG. 10, out of the water flowing from the inside of the small diameter cylindrical portion 18 into the bent portion 22, the water flowing outside the bent portion passes through the friction layer that is the resistance portion 38. In the friction layer, the fibers are randomly crossed and confused, preventing the flow of water. The outer portion of the bent portion 22 should naturally have a higher flow velocity than the inner portion, but the friction layer can reduce the flow velocity at the outer portion and reduce the difference in flow velocity from the inner portion. .

ヘッド部材14に摩擦層42を付設するときには、汎用材料として当該繊維を板状又は層状に形成したものを、大径筒部の底面に対して、或いは、大径筒部の周壁下部の周面に対して水流により剥がれないようにそれぞれ固定すればよい。図示例では大径筒部の周壁下部及び底壁の双方に摩擦層を形成しているが、後述の如くその一方にのみ摩擦層を形成してもよい。     When attaching the friction layer 42 to the head member 14, the general-purpose material in which the fibers are formed in a plate shape or a layer shape is used with respect to the bottom surface of the large diameter cylindrical portion or the peripheral surface of the lower peripheral wall of the large diameter cylindrical portion. It is sufficient to fix each so as not to be peeled off by water flow. In the illustrated example, the friction layer is formed on both the lower portion of the peripheral wall and the bottom wall of the large-diameter cylindrical portion, but the friction layer may be formed only on one of them as described later.

図示例では、摩擦層42は通水路20のうち上流部分20aの曲り箇所22を超えて、小径筒部18と大径筒部16との間の中流部分20b内へ延長している。もっとも摩擦層42をさらに下流部分20cまで、例えば開口部38まで延長してもよい。図示例では、流速分布を均一化するために、大径筒部16にのみ摩擦層を形成しているが、平均流速の低下という観点から小径筒部18の筒壁内面又は外面に摩擦層を形成してもよい。     In the illustrated example, the friction layer 42 extends beyond the bent portion 22 of the upstream portion 20 a in the water passage 20 and into the midstream portion 20 b between the small diameter cylindrical portion 18 and the large diameter cylindrical portion 16. However, the friction layer 42 may be further extended to the downstream portion 20c, for example, to the opening 38. In the illustrated example, the friction layer is formed only on the large-diameter cylindrical portion 16 in order to make the flow velocity distribution uniform, but the friction layer is formed on the inner surface or the outer surface of the small-diameter cylindrical portion 18 from the viewpoint of lowering the average flow velocity. It may be formed.

図11は、本発明の第3の実施形態を示している。この実施形態では、主管8から垂直方向に分岐管10を突出するとともに、この分岐管にヘッド部材14を付設している。このヘッド部材は、分岐管の先端部10aからは、外向きフランジ状壁48を介して筒壁50を同一垂直方向に突出するとともに、分岐管の内部から同軸状に支持棒52を筒壁50の内側へ突出し、この支持棒の先端に水平の邪魔板54を付設している。     FIG. 11 shows a third embodiment of the present invention. In this embodiment, the branch pipe 10 protrudes from the main pipe 8 in the vertical direction, and a head member 14 is attached to the branch pipe. The head member protrudes from the distal end portion 10a of the branch pipe in the same vertical direction through the outward flange-like wall 48, and the support rod 52 is coaxially formed from the inside of the branch pipe. A horizontal baffle plate 54 is attached to the tip of the support bar.

支持棒と分岐管の内面との間の距離L、邪魔板54外縁と筒壁50内面との距離Lはそれぞれ周方向に一定とし、流速分布のバラつきを小さくしている。 The distance L 1 between the support bar and the inner surface of the branch pipe and the distance L 2 between the outer edge of the baffle plate 54 and the inner surface of the cylindrical wall 50 are constant in the circumferential direction, thereby reducing the variation in the flow velocity distribution.

また、上記外向きフランジ状壁48の上面及び筒壁50の内面に抵抗部として繊維塊からなる摩擦層42を付設してもよい。   Further, a friction layer 42 made of a fiber lump may be provided as a resistance portion on the upper surface of the outward flange-like wall 48 and the inner surface of the cylindrical wall 50.

図12から図16は、本発明の第4の実施形態を示している。この実施形態では、ヘッド部材14に、水抜き及びエア抜き用の弁機構60を設けている。発明の課題を解決する手段で述べたことを補足すると、水蓄熱槽内の清掃を行う際には、主管及び蓄熱/放熱ポンプを経由して水抜きを行うものの、既存の建物ではコストとスペース節減のために水蓄熱槽と防火水槽とを兼用していることがあり、周辺敷地で火災が発生した場合、消防隊による急激な水抜きがあり得る。先の実施形態で図示した構成は、水蓄熱槽に対する流入及び流出速度を抑えるためにヘッド部材の容量を大きくしているため、水張り時や水抜き時の水位変動をうけ易い。図15(A)に示すように水張り時にヘッド部材内に水が入らないために浮力を受けたり、図15(B)に示すような急激な水抜き時には周囲の水位が下がっても水が抜けず、ヘッド部材の強度が十分でないときには、これにより破損の可能性がある。本実施形態はこうした現象を防止するものである。   12 to 16 show a fourth embodiment of the present invention. In this embodiment, the head member 14 is provided with a valve mechanism 60 for draining and bleeding air. Supplementing what has been described in the means for solving the problems of the invention, when cleaning the water heat storage tank, water is drained via the main pipe and the heat storage / radiation pump. A water heat storage tank and a fire prevention water tank may be used together to save energy, and when a fire breaks out in the surrounding site, there may be a sudden drainage by the fire brigade. In the configuration shown in the previous embodiment, the capacity of the head member is increased in order to suppress the inflow and outflow rates with respect to the water heat storage tank, and therefore, the water level is easily changed during water filling or draining. As shown in FIG. 15 (A), when water is filled, water does not enter the head member, so it receives buoyancy, or when water is drastically drained as shown in FIG. 15 (B), water is drained even if the surrounding water level drops. If the strength of the head member is not sufficient, this may cause damage. This embodiment prevents such a phenomenon.

図12には、上方開口のヘッド部材に用いる水抜き用及びエア抜き用の弁機構60を示している。この場合には、水抜き弁62とエア抜き弁64とをそれぞれ別々に設ければよい。各弁はそれぞれヘッド部材の底壁を貫通して垂下する弁筒66を有する。   FIG. 12 shows a water draining and air venting valve mechanism 60 used for the head member having an upper opening. In this case, the water drain valve 62 and the air vent valve 64 may be provided separately. Each valve has a valve barrel 66 that hangs down through the bottom wall of the head member.

水抜き弁62は、弁筒66の上部を弁座68とするとともに、弁筒内に、水より軽い浮きとして機能する弁体70Aを上下動可能に遊挿して保持する。弁筒の下部には弁体を載置するための手段(図示例では係止フランジ)を付設している。弁体70Aが載置されている状態ではエアを上方から下方へ通すものとする。弁体70Aの浮力は、蓄熱/放熱時の給排水路内の流体の静圧より大きくなるように設計する。     The drain valve 62 has an upper part of the valve cylinder 66 as a valve seat 68, and holds a valve body 70A functioning as a float lighter than water in the valve cylinder so as to be movable up and down. Means (a locking flange in the illustrated example) for mounting the valve body is attached to the lower part of the valve cylinder. In a state where the valve body 70A is placed, air is passed from above to below. The buoyancy of the valve body 70A is designed so as to be larger than the static pressure of the fluid in the water supply / drainage channel during heat storage / heat radiation.

エア抜き弁64は、弁筒の下部を弁座68とするとともに、弁筒内に、水より重い錘として機能する弁体70Bを上下動自在に遊挿して保持する。     The air vent valve 64 has a valve seat 68 at the lower part of the valve cylinder, and holds a valve body 70B functioning as a weight heavier than water in the valve cylinder so as to be freely movable up and down.

なお、本実施形態では、ヘッド部材の底壁に弁機構の弁孔を設けるために、底壁上面への摩擦層の形成を省略し、筒壁下部内面だけに摩擦層42を周設している。下記の図13の構造でも同様とする。     In this embodiment, in order to provide the valve hole of the valve mechanism on the bottom wall of the head member, the formation of the friction layer on the upper surface of the bottom wall is omitted, and the friction layer 42 is provided only around the inner surface of the lower part of the cylindrical wall. Yes. The same applies to the structure shown in FIG.

図13には、下方開口のヘッド部材14に用いる水抜き用及びエア抜き用の弁機構60を示している。この場合には、水抜き及びエア抜き兼用の単一の弁を設けるとよい。この弁は、ヘッド部材の頂壁を貫通して起立する弁筒66を有する。そのほかの構造は、図12の水抜き弁と同じであり、弁筒66の上部を弁座68とするとともに、弁筒内に、水より軽い浮きとして機能する弁体70Aを上下動可能に遊挿して保持する。次に上方開口のヘッド部材における弁機構の作用を説明する。     FIG. 13 shows a water draining and air venting valve mechanism 60 used for the head member 14 having a lower opening. In this case, it is preferable to provide a single valve for both draining and bleeding. This valve has a valve barrel 66 that stands up through the top wall of the head member. The other structure is the same as the drain valve of FIG. 12, and the upper part of the valve cylinder 66 is used as a valve seat 68, and a valve body 70A that functions as a float that is lighter than water is allowed to move up and down in the valve cylinder. Insert and hold. Next, the operation of the valve mechanism in the upper opening head member will be described.

図14(A)に示すように蓄熱槽2に水を張るときには、弁機構60のうち水抜き弁62は、弁筒内への水の流入により浮き型の弁体70Aが弁座68に着座して閉塞されるが、エア抜き弁64では、錘型の弁体70Bが水に押し上げられて弁座から少し浮き、この状態で弁筒66を経由して水がヘッド部材14内に流入する。これにより、ヘッド部材内のエアが外に押し出される。   As shown in FIG. 14A, when water is filled in the heat storage tank 2, the drain valve 62 of the valve mechanism 60 has the floating valve element 70 </ b> A seated on the valve seat 68 due to the inflow of water into the valve cylinder. In the air vent valve 64, the weight-type valve body 70B is pushed up by water and slightly floats from the valve seat, and in this state, water flows into the head member 14 via the valve cylinder 66. . Thereby, the air in the head member is pushed out.

図14(B)に示すように通常の蓄熱乃至放熱時には、水抜き弁62は浮き型弁体70Aの浮力により、エア抜き弁64は錘型弁体70Bの荷重により閉鎖されている。これにより蓄熱槽2内の温度成層状態が保たれる。   As shown in FIG. 14B, during normal heat storage or heat dissipation, the drain valve 62 is closed by the buoyancy of the floating valve body 70A and the air vent valve 64 is closed by the load of the weight type valve body 70B. Thereby, the temperature stratification state in the heat storage tank 2 is maintained.

図14(C)に示す水抜き時には、水抜き弁62において浮き型の弁体70Aが弁座68から下降して、水が抜ける。   At the time of draining shown in FIG. 14C, the floating valve body 70A descends from the valve seat 68 in the drain valve 62, and water is drained.

次に下方開口のヘッド部材における弁機構の作用を説明する。   Next, the operation of the valve mechanism in the head member having the lower opening will be described.

図14(D)に示す水張り時には、浮き型の弁体70Aが浮くことでヘッド部材内の空気が上方に抜け、これによりヘッド部材内に水が入る。   At the time of water filling shown in FIG. 14D, air in the head member escapes upward by floating of the floating valve body 70A, whereby water enters the head member.

図14(E)に示す通常の蓄熱乃至放熱時には、浮き型の弁体70Aが浮力により弁座に着座しており、これにより蓄熱槽の温度成層状態が保たれる。   During normal heat storage or heat dissipation shown in FIG. 14E, the floating valve body 70A is seated on the valve seat by buoyancy, thereby maintaining the temperature stratification state of the heat storage tank.

図14(F)に示す水抜き時には、弁座から弁筒内へ空気が入ることで、弁体70Aも下降する。さらにその空気が弁筒からヘッド部材内へ入ることでヘッド部材内の水が抜ける。   At the time of draining shown in FIG. 14 (F), the valve body 70A is also lowered by the air entering the valve cylinder from the valve seat. Furthermore, when the air enters the head member from the valve cylinder, water in the head member is drained.

図16は、本実施形態の実施例であり、水張り時エア抜き用のバルブ72を設けている。
[実施例]
図12に記載した上向きの末端構造の好適な実施例の詳細を記載する。この実施例は後述の実験の試験体として利用したものであるので、寸法などのデータを詳しく既述する。前述の通り図12の構造では、摩擦層42は大径筒部の周壁下部内面にのみ形成されている。表1に記載した通り、摩擦層の上下長は100mm、厚さ25mmであり、空隙率は95%である。試験体として図12の構成を選んだのは、摩擦層の付設範囲をあまり大きく出来ない場合にどの程度の減速の抵抗作用が期待できるかを調べるためである。
FIG. 16 is an example of the present embodiment, and a valve 72 for bleeding air when water is filled is provided.
[Example]
Details of a preferred embodiment of the upward end structure described in FIG. 12 will be described. Since this example was used as a test specimen for an experiment described later, data such as dimensions will be described in detail. As described above, in the structure of FIG. 12, the friction layer 42 is formed only on the inner surface of the lower portion of the peripheral wall of the large-diameter cylindrical portion. As described in Table 1, the vertical length of the friction layer is 100 mm, the thickness is 25 mm, and the porosity is 95%. The reason why the configuration shown in FIG. 12 is selected as the test specimen is to examine how much the resistance effect of deceleration can be expected when the attachment range of the friction layer cannot be made very large.

Figure 2009121693
Figure 2009121693

本発明の第1実施形態に示す流路の末端構造の性能試験のために試験を行ったので、その結果を以下に記載する。   Since the test was conducted for the performance test of the end structure of the flow channel shown in the first embodiment of the present invention, the result will be described below.

図17から図21には、ヘッド部材の開口部における鉛直方向の流速分布の実験の方法及び結果を示している。   FIGS. 17 to 21 show a method and results of an experiment of the flow velocity distribution in the vertical direction at the opening of the head member.

図17(A)に示すようにヘッド部材の開口部において、分岐管の向きと直角な方向に測定点1〜9を、分岐管と同じ方向に測定点10〜17をとってそれぞれ速度分布を測定した。実験のため図17(B)に示すようにL字形の治具80の先に速度センサー82を取り付けて各測定点で測定を行った。速度センサーは、測定レンジが±100mm/sで、測定誤差が±2%/FSのものを用いた。センサ部(感速部)は長さ20mm、径8mmφの大きさである。水面からの開口部の位置は96mmである。その際には、各測定点について1秒間隔で30秒間測定し、その平均値、最小値、最大値を計測した。   As shown in FIG. 17 (A), at the opening of the head member, the measurement points 1 to 9 are taken in the direction perpendicular to the direction of the branch pipe, and the measurement points 10 to 17 are taken in the same direction as the branch pipe. It was measured. For the experiment, a speed sensor 82 was attached to the tip of an L-shaped jig 80 as shown in FIG. A speed sensor having a measurement range of ± 100 mm / s and a measurement error of ± 2% / FS was used. The sensor part (speed-sensitive part) has a length of 20 mm and a diameter of 8 mmφ. The position of the opening from the water surface is 96 mm. At that time, each measurement point was measured at intervals of 1 second for 30 seconds, and the average value, minimum value, and maximum value were measured.

試験は、流量の条件及び構造の状態及びを変えた4つのケースについて行った。第1〜第3のケースでは、流量条件は同じで(左右からの流入量がそれぞれ90L/分)であり、第1のケースで下側の繊維塊(摩擦層)及び上側の繊維塊(通水フィルター)を有する試験体を、第2のケースで下側の繊維塊を有する試験体を、第3のケースでは、繊維塊を有しない試験体を用いた。第4のケースでは、流量条件を左から110L/分、右から70L/分として、繊維塊を有しない試験体を用いた。   The test was conducted on four cases with varying flow rate conditions and structural conditions. In the first to third cases, the flow rate conditions are the same (the inflows from the left and right are 90 L / min each), and in the first case, the lower fiber mass (friction layer) and the upper fiber mass (passage) A test body having a water filter was used as a test body having a lower fiber mass in the second case, and a test body having no fiber mass was used in the third case. In the fourth case, a test body having no fiber mass was used with the flow rate conditions set to 110 L / min from the left and 70 L / min from the right.

Figure 2009121693
Figure 2009121693

この表のデータは、各ケースにおいて流速分布が十分に小さく、流速の速すぎるところがないことを確認するために示している。数値の上ではケース1で最も平均流速が大きくなっている。しかしながら、実験誤差を考慮すると有意の差異ではないし、そもそも各ケース間の流体抵抗を比較するために実験条件を調整した試験ではない。ここで重要なことは、図18〜図21のデータが、ヘッド部材の中心部にいくほど流速が小さく、外側にいくほど流速が速くなる傾向があることを示していることである。   The data in this table is shown in order to confirm that the flow velocity distribution is sufficiently small in each case and there is no place where the flow velocity is too fast. In terms of numerical values, the average flow velocity is highest in Case 1. However, considering experimental error, it is not a significant difference, and it is not a test in which experimental conditions are adjusted in order to compare fluid resistance between cases. What is important here is that the data in FIG. 18 to FIG. 21 indicate that the flow velocity tends to decrease as it goes to the center of the head member, and the flow velocity tends to increase as it goes outward.

さらにケース2(摩擦層有+通水フィルタ無)の結果を示す図19と、ケース3(摩擦層無+通水フィルタ無)の結果を示す図20とを比較すると、大径筒部の内縁に対応する測定点1、9、10、17においては、全ての観測点でケース2の方が約3〜5mm/sec程度流速が低くなっていることが判る。これは摩擦層の抵抗により、通水路の曲り箇所22の外側部分において流速を低減することができたものと解釈される。   Further, comparing FIG. 19 showing the result of case 2 (with friction layer + no water passage filter) and FIG. 20 showing the result of case 3 (without friction layer + no water passage filter), the inner edge of the large-diameter cylindrical portion is compared. At measurement points 1, 9, 10, and 17 corresponding to, it can be seen that the flow velocity is lower by about 3 to 5 mm / sec in case 2 at all observation points. This is interpreted that the flow velocity can be reduced in the outer portion of the bent portion 22 of the water passage due to the resistance of the friction layer.

図22から図26には、ヘッド部材の開口部近傍における水平方向の流速分布の実験の方法及び結果を示している。     FIG. 22 to FIG. 26 show a method and results of an experiment of horizontal flow velocity distribution in the vicinity of the opening of the head member.

図22(A)に示すようにヘッド部材の開口部近傍において、半径方向水平向きに観測点1〜8をとってそれぞれ速度分布を測定した。     As shown in FIG. 22A, in the vicinity of the opening of the head member, the observation points 1 to 8 were taken in the horizontal direction in the radial direction, and the velocity distribution was measured.

実験のため図22(B)に示すようにI字形の治具80の先に速度センサー82を取り付けて各測定点で測定を行った。水面からの開口部の位置は96mm、水面からのセンサーの位置は50mmである。測定の際には、各測定点について1秒間隔で30秒間測定し、その平均値、最小値、最大値を計測した。     For the experiment, a speed sensor 82 was attached to the tip of an I-shaped jig 80 as shown in FIG. The position of the opening from the water surface is 96 mm, and the position of the sensor from the water surface is 50 mm. In the measurement, each measurement point was measured at an interval of 1 second for 30 seconds, and the average value, minimum value, and maximum value were measured.

試験は、図17〜図21の場合と同じ4つのケースについて行った。   The test was performed for the same four cases as in FIGS.

Figure 2009121693
Figure 2009121693

この実験では、次のことが判った。
○いずれのケースでも全体の平均流速±8mm/sec以下で8方向に流出していた。
○ケース1に比べて測定データの変動幅(最大値と最小値の幅)が大きくなるが、殆どは流速8mm/sec以下であった。
In this experiment, the following was found.
○ In all cases, the total average flow velocity was 8mm / sec or less, and it flowed out in 8 directions.
○ Compared to Case 1, the fluctuation range of the measurement data (maximum value and minimum value width) is larger, but in most cases, the flow velocity was 8 mm / sec or less.

図23〜図26はこの実験の結果を示している。ケース1では、図23(B)に示すように殆ど全ての方向の平均流速が均一であった。ケース2では、図24(B)に示すように平均流速に5mm/sec程度のばらつきがあった。ケース3でも、図25(B)に示すように平均流速に若干のバラつきがある。ケース4では、図26(B)に示すようにほぼ均一な平均速度であるが、各測定点での流速の変動が大きい。   23 to 26 show the results of this experiment. In case 1, the average flow velocity in almost all directions was uniform as shown in FIG. In case 2, as shown in FIG. 24 (B), the average flow velocity had a variation of about 5 mm / sec. Even in case 3, there is a slight variation in the average flow velocity as shown in FIG. In case 4, as shown in FIG. 26 (B), the average speed is substantially uniform, but the fluctuation of the flow velocity at each measurement point is large.

本発明の第1の実施形態に係る温度成層型蓄熱槽の全体構成図である。1 is an overall configuration diagram of a temperature stratified heat storage tank according to a first embodiment of the present invention. 図1の蓄熱槽の流路の末端構造のうち上方開口のものの平面図である。It is a top view of the thing of an upper opening among the terminal structures of the flow path of the thermal storage tank of FIG. 図2の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of FIG. 図1の蓄熱槽の流路の末端構造のうち下方開口のものの平面図である。It is a top view of the thing of a downward opening among the terminal structures of the flow path of the thermal storage tank of FIG. 図4の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of FIG. 図2の末端構造の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the terminal structure of FIG. 図2の末端構造の変形例の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the modification of the terminal structure of FIG. 図1の蓄熱槽の作用説明図である。It is operation | movement explanatory drawing of the thermal storage tank of FIG. 本発明の第2の実施形態に係る温度成層型蓄熱槽の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of the temperature stratification type heat storage tank which concerns on the 2nd Embodiment of this invention. 図9の末端構造の要部の拡大図面である。FIG. 10 is an enlarged view of a main part of the terminal structure of FIG. 9. 本発明の第3の実施形態に係る温度成層型蓄熱槽の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of the temperature stratification type heat storage tank which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る温度成層型蓄熱槽の上方開口の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of the upper opening of the temperature stratification type heat storage tank which concerns on the 4th Embodiment of this invention. 同実施形態に係る温度成層型蓄熱槽の下方開口の末端構造の縦断面図である。It is a longitudinal cross-sectional view of the terminal structure of the downward opening of the temperature stratification type heat storage tank concerning the embodiment. 同実施形態に係る温度成層型蓄熱槽の要部の作用説明図である。It is operation | movement explanatory drawing of the principal part of the temperature stratification type heat storage tank which concerns on the same embodiment. 同実施形態に係る温度成層型蓄熱槽の要部の作用説明図である。It is operation | movement explanatory drawing of the principal part of the temperature stratification type heat storage tank which concerns on the same embodiment. 同実施形態の実施例である。It is an Example of the same embodiment. 本発明の第1実施形態について行った実験例の説明図である。It is explanatory drawing of the experiment example conducted about 1st Embodiment of this invention. この実験の第1のケースの結果を表す図である。It is a figure showing the result of the 1st case of this experiment. この実験の第2のケースの結果を表す図である。It is a figure showing the result of the 2nd case of this experiment. この実験の第3のケースの結果を表す図である。It is a figure showing the result of the 3rd case of this experiment. この実験の第4のケースの結果を表す図である。It is a figure showing the result of the 4th case of this experiment. 本発明の第1実施形態について行った他の実験例の説明図である。It is explanatory drawing of the other experiment example conducted about 1st Embodiment of this invention. この実験の第1のケースの結果を表す図である。It is a figure showing the result of the 1st case of this experiment. この実験の第2のケースの結果を表す図である。It is a figure showing the result of the 2nd case of this experiment. この実験の第3のケースの結果を表す図である。It is a figure showing the result of the 3rd case of this experiment. この実験の第4のケースの結果を表す図である。It is a figure showing the result of the 4th case of this experiment.

符号の説明Explanation of symbols

2…温度成層型蓄熱槽 4…熱交換器 6…給排水用流路 6A…給水用流路
6B…排水用流路 8…主管 10…分岐管 10a…同先端部
12…末端構造 14…ヘッド部材 16…大径筒部 18…小径筒部
20…通水路 20a…上流部分 20b…中流部分 20c…下流部分
22…曲り箇所 24…連通口 26…隔壁 28…開口部
30…支持部 32…通水フィルター 34…減速手段 38…抵抗部
40…隅部 42…摩擦層
48…外向きフランジ状壁 50…筒壁 52…支持棒 54…邪魔板
60…水抜き及びエア抜き用弁機構 62…水抜き弁 64…エア抜き弁
66…弁筒 68…弁座 70A、70B…弁体 72…バルブ
74…給水管 75…排水管
80…治具 82…速度センサー
…分配器 E…集水器 v…流路切替バルブ p…蓄熱/放熱ポンプ
e…流路断面積の拡大 c…流路の曲り
DESCRIPTION OF SYMBOLS 2 ... Temperature stratification type thermal storage tank 4 ... Heat exchanger 6 ... Flow path for water supply / drainage 6A ... Flow path for water supply 6B ... Flow path for drainage 8 ... Main pipe 10 ... Branch pipe 10a ... End part 12 ... End structure 14 ... Head member DESCRIPTION OF SYMBOLS 16 ... Large diameter cylinder part 18 ... Small diameter cylinder part 20 ... Water flow path 20a ... Upstream part 20b ... Middle flow part 20c ... Downstream part 22 ... Curved part 24 ... Communication port 26 ... Septum 28 ... Opening part 30 ... Support part 32 ... Water flow Filter 34 ... Deceleration means 38 ... Resistance part 40 ... Corner part 42 ... Friction layer 48 ... Outward flange-like wall 50 ... Cylindrical wall 52 ... Support bar 54 ... Baffle plate 60 ... Valve mechanism 62 for draining and venting water Valve 64 ... Air bleeding valve 66 ... Valve barrel 68 ... Valve seat 70A, 70B ... Valve element 72 ... Valve
74 ... Water supply pipe 75 ... Drain pipe 80 ... Jig 82 ... Speed sensor E 1 ... Distributor E 2 ... Water collector v ... Flow path switching valve p ... Heat storage / radiation pump
e 1 ... Expansion of the cross-sectional area of the channel c 1 ... Bending of the channel

Claims (9)

温度成層型蓄熱槽の内部又は外部に配管した主管から延びる分岐管に、分配器モード又は集水器モードとして利用可能に形成した、給水乃至排水流路の末端構造であって、
少なくとも一本の分岐管10の先端部10aと、
分岐管の先端部と連結したヘッド部材14とで形成され、
ヘッド部材14は、上部及び下部の一方に分岐管10の先端部10aを接続し、他方に開口部28を形成した中空体であって、上記先端部10aから開口部28に至る通水路20を含み、
この通水路20を、分岐管の先端部10a付近を除いて単一の流路とするとともに、流路断面積が分岐管の先端との連続口で最小に、かつ開口部28で最大になるように形成し、
さらに通水路20内に減速手段34を施してなり、この減速手段は、流路断面積の拡大e…による圧力損失と、流路断面積の拡大箇所の、分配器モードでの下流に存する流路の曲りc…に伴う摩擦抵抗の組み合わせにより形成したことを特徴とする、温度成層型蓄熱槽の給水乃至排水流路の末端構造。
An end structure of a water supply or drainage channel formed to be usable as a distributor mode or a water collector mode on a branch pipe extending from a main pipe piped inside or outside a temperature stratified heat storage tank,
At least one tip 10a of one branch pipe 10, and
Formed by a head member 14 connected to the tip of the branch pipe,
The head member 14 is a hollow body in which the tip 10a of the branch pipe 10 is connected to one of the upper part and the lower part, and the opening 28 is formed in the other, and the water passage 20 extending from the tip 10a to the opening 28 is provided. Including
The water flow path 20 is a single flow path except for the vicinity of the tip 10a of the branch pipe, and the cross-sectional area of the flow path is minimized at the continuous port with the tip of the branch pipe and maximized at the opening 28. Formed as
Further, a speed reduction means 34 is provided in the water passage 20, and this speed reduction means exists downstream in the distributor mode of the pressure loss due to the flow path cross-sectional area expansion e 1 . A terminal structure of the water supply or drainage flow path of the temperature stratified heat storage tank, characterized by being formed by a combination of frictional resistance associated with the flow path bend c 1 .
上記通水路20を画成する流路形成面のうち、通水路の曲り箇所22の外側部分に、その周囲に比べて摩擦作用の大きい抵抗部38を流路形成面に沿って形成したことを特徴とする、請求項1記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。   Among the flow path forming surfaces that define the water flow path 20, a resistance portion 38 having a larger frictional action than that of the periphery is formed along the flow path forming surface on the outer portion of the bent portion 22 of the water flow path. The terminal structure of the water supply or drainage channel of the temperature stratified heat storage tank according to claim 1, 通水性の繊維塊で形成した摩擦層42を通水路の流路形成面に沿って形成したことを特徴とする、請求項1又は請求項2記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。   The water supply or drainage channel of the temperature stratified heat storage tank according to claim 1 or 2, wherein the friction layer 42 formed of a water-permeable fiber lump is formed along a flow path forming surface of the water channel. Terminal structure of. 上記通水路20は、分岐管の先端部10aから開口部28に向かって、流路断面積が急拡大する箇所と、流路が屈曲或いは湾曲する曲り箇所とを繰り返すように構成したことを特徴とする、請求項1から請求項3の何れかに記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。   The water flow path 20 is configured to repeat a portion where the cross-sectional area of the flow path suddenly expands from the distal end portion 10a of the branch pipe toward the opening 28 and a curved portion where the flow path is bent or curved. The terminal structure of the water supply or drainage channel of the temperature stratified heat storage tank according to any one of claims 1 to 3. 上記通水路20は、相互に重なる複数の流路部分20a…からなり、一つの流路部分から次の流路部分へ折り返すように形成し、
かつこれら流路部分は、柱形に形成した最初の一つの流路部分を中心に、内側から外側へ同心環状に折り返すようにしたことを特徴とする、請求項4記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。
The water flow path 20 is composed of a plurality of flow path portions 20a that overlap each other, and is formed so as to be folded back from one flow path portion to the next flow path portion.
5. The thermal stratification type heat storage tank according to claim 4, wherein the flow path portions are concentrically folded from the inside to the outside around the first one flow path portion formed in a column shape. Terminal structure of water supply or drainage channel.
上記ヘッド部材14は、
垂直方向へ延びる分岐管10の先端に付設した水平な外向きフランジ状壁48と、
この外向きフランジ状壁の外縁から分岐管と同じ方向に突出した筒壁50と、
上記主管8内部から、分岐管10内を通って筒壁50内へ突出した支持棒52と、
この支持棒の上端に付設するとともに外向きフランジ状壁48との間に一定間隙を存して筒壁内面側へ延長した邪魔板54とを具備し、
上記支持棒52は、分岐管内面に触れないように分岐管の軸に沿って延びるとともに、
支持棒52外面と分岐管10内面との距離L、及び邪魔板54外縁と筒壁50内面との距離Lをそれぞれ周方向に一定としたことを特徴とする、請求項3又は請求項4に記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。
The head member 14 is
A horizontal outward flange-like wall 48 attached to the tip of the branch pipe 10 extending in the vertical direction;
A cylindrical wall 50 protruding in the same direction as the branch pipe from the outer edge of the outward flange-shaped wall;
A support rod 52 protruding from the inside of the main pipe 8 through the branch pipe 10 into the cylindrical wall 50;
A baffle plate 54 attached to the upper end of the support bar and extending toward the inner surface of the cylindrical wall with a certain gap between the outward flange-like wall 48,
The support bar 52 extends along the axis of the branch pipe so as not to touch the inner surface of the branch pipe,
The distance L 1 between the outer surface of the support bar 52 and the inner surface of the branch pipe 10 and the distance L 2 between the outer edge of the baffle plate 54 and the inner surface of the cylindrical wall 50 are constant in the circumferential direction, respectively. The terminal structure of the water supply thru | or drainage flow path of the temperature stratification type heat storage tank of 4.
温度成層型蓄熱槽の内部又は外部に配管した主管から延びる分岐管に、分配器モード又は集水器モードで利用可能に設けられ、少なくとも一本の分岐管の先端部と、この分岐管の先端部と連結したヘッド部材とで形成される、給水乃至排水流路の末端構造であって、
上記ヘッド部材14は、
上下両端面の一方を開口部28とすると共に他方を閉塞した背高の大径筒部16と、
上下両端面の一方を閉塞すると共に他方を連通口24とする背低の小径筒部18と、
を具備し、大径筒部16の閉塞端部と小径筒部18の連通口24とが向かい合うように、大径筒部16の奥部内に小径筒部18を同心状に挿入させてなる中空体であって、
これら大径筒部16及び小径筒部18の適所を貫通して分岐管10の先端部10aを突入させ、
この先端部から小径筒部の内部及び小径筒部と大径筒部との各筒壁の間隙を経て上記開口部28に至る通水路20を形成したことを特徴とする、温度成層型蓄熱槽の給水乃至排水流路の末端構造。
A branch pipe extending from a main pipe piped inside or outside the temperature-stratified heat storage tank is provided so as to be usable in a distributor mode or a water collector mode. At least one branch pipe tip and a tip of the branch pipe A terminal structure of a water supply or drainage channel formed by a head member connected to a portion,
The head member 14 is
A tall large-diameter cylindrical portion 16 having one of the upper and lower end faces as an opening 28 and the other closed;
A low-profile, small-diameter cylindrical portion 18 that closes one of the upper and lower end faces and has the other communicating port 24;
A hollow formed by concentrically inserting the small diameter cylindrical portion 18 into the back of the large diameter cylindrical portion 16 so that the closed end of the large diameter cylindrical portion 16 and the communication port 24 of the small diameter cylindrical portion 18 face each other. Body,
The distal end portion 10a of the branch pipe 10 is inserted through appropriate positions of the large diameter cylindrical portion 16 and the small diameter cylindrical portion 18,
A temperature-stratified heat storage tank characterized in that a water passage 20 is formed from the tip portion to the inside of the small-diameter cylindrical portion and through the gap between the cylindrical walls of the small-diameter cylindrical portion and the large-diameter cylindrical portion to the opening 28. Terminal structure of water supply or drainage channel.
上記ヘッド部材14のうち開口部28と反対側の部分に、蓄熱槽2内に水を充填するとき又は蓄熱槽2から水を吸い出すときに開き、蓄熱時又は放熱時には閉じる、水抜き用及びエア抜き用の弁機構60を設けたことを特徴とする、請求項1から請求項7に記載の温度成層型蓄熱槽の給水乃至排水流路の末端構造。   The head member 14 is opened when filling the heat storage tank 2 with water or sucking water from the heat storage tank 2 on the opposite side of the opening 28 and closes when storing heat or releasing heat. The terminal structure of the water supply or drainage flow path of the temperature stratified heat storage tank according to claim 1, wherein a valve mechanism 60 for extraction is provided. 槽内の上部及び下部の一方に給水用主管8を、他方に排水用主管8を配管するとともに、給水側の主管8からの分岐管10の先端に分配器Eを、排水側の主管8からの分岐管10の先端に集水器Eをそれぞれ付設してなる温度成層型蓄熱槽において、
上記分配器E及び集水器Eを請求項1から請求項8に記載の給水乃至排水流路の末端構造とし、
分配器E乃至集水器Eの開口部28のうち、下側の主管8と連なるものは蓄熱槽2の底面に向かい合わせて下向きに、上側の主管8と連なるものは蓄熱槽2の上端面に向かい合わせて上向きに配向したことを特徴とする、温度成層型蓄熱槽。
A water supply main pipe 8 is connected to one of the upper and lower parts of the tank, and a drain main pipe 8 is connected to the other, and a distributor E 1 is connected to the tip of the branch pipe 10 from the water supply side main pipe 8, and the drain side main pipe 8 is connected. at a temperature stratified storage tank comprising a water collecting unit E 2 is attached respectively to the tip of the branch pipe 10 from,
The distributor E 1 and the water collector E 2 have a terminal structure of a water supply or drainage channel according to any one of claims 1 to 8,
Of the openings 28 of the distributors E 1 to E 2 , those that are connected to the lower main pipe 8 face downward toward the bottom of the heat storage tank 2, and those that are connected to the upper main pipe 8 are those of the heat storage tank 2. A temperature-stratified heat storage tank characterized by being oriented upward facing the upper end surface.
JP2007292651A 2007-11-09 2007-11-09 Thermally stratified heat storage tank and the terminal structure of the water supply or drainage channel of this tank Active JP5170524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292651A JP5170524B2 (en) 2007-11-09 2007-11-09 Thermally stratified heat storage tank and the terminal structure of the water supply or drainage channel of this tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292651A JP5170524B2 (en) 2007-11-09 2007-11-09 Thermally stratified heat storage tank and the terminal structure of the water supply or drainage channel of this tank

Publications (2)

Publication Number Publication Date
JP2009121693A true JP2009121693A (en) 2009-06-04
JP5170524B2 JP5170524B2 (en) 2013-03-27

Family

ID=40814028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292651A Active JP5170524B2 (en) 2007-11-09 2007-11-09 Thermally stratified heat storage tank and the terminal structure of the water supply or drainage channel of this tank

Country Status (1)

Country Link
JP (1) JP5170524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235983A (en) * 2014-09-17 2014-12-24 中山市蓝水能源科技发展有限公司 Current stabilizer in chilled water storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137682A (en) * 1997-07-18 1999-02-12 Toyo Netsu Kogyo Kk Temperature stratified heat storage tank
JP2001343193A (en) * 2000-06-01 2001-12-14 Chubu Electric Power Co Inc Heat storage tank
JP2002022382A (en) * 2000-07-04 2002-01-23 Ishimoto Kenchiku Jimusho:Kk Heat storage tank and heat storage system
JP2003232544A (en) * 2002-02-08 2003-08-22 Tokyo Electric Power Co Inc:The Rectifying/distributing device for thermal stratifying heat storage tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137682A (en) * 1997-07-18 1999-02-12 Toyo Netsu Kogyo Kk Temperature stratified heat storage tank
JP2001343193A (en) * 2000-06-01 2001-12-14 Chubu Electric Power Co Inc Heat storage tank
JP2002022382A (en) * 2000-07-04 2002-01-23 Ishimoto Kenchiku Jimusho:Kk Heat storage tank and heat storage system
JP2003232544A (en) * 2002-02-08 2003-08-22 Tokyo Electric Power Co Inc:The Rectifying/distributing device for thermal stratifying heat storage tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235983A (en) * 2014-09-17 2014-12-24 中山市蓝水能源科技发展有限公司 Current stabilizer in chilled water storage system

Also Published As

Publication number Publication date
JP5170524B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5571581B2 (en) Heat exchanger
KR101577569B1 (en) Nozzle for distribution of a fluid
CN102679518B (en) A kind of water distribution system
WO2013159415A1 (en) Water storage type water heater capable of improving hot water output rate
JP5170524B2 (en) Thermally stratified heat storage tank and the terminal structure of the water supply or drainage channel of this tank
CN101611272A (en) Boiler with movable inner partition
JP2012026601A (en) Hot water storage tank and storage type water heater
CN202992286U (en) Fireproofing check valve with fluidic device
CN103471448B (en) A kind of fluid distributor
CN202441680U (en) Anti-vortex device
CN104949563B (en) A kind of terraced density metal foam heat exchanger tube
US20090056648A1 (en) Protection for Heat Transfer Oil Boiler
CN207349608U (en) A kind of drainpipe for having explosion prevention shock absorption decrease of noise functions concurrently
KR101800711B1 (en) Apparatus for promoting hot-water circulator without power
KR101744554B1 (en) Water storage tank
JP2013024457A (en) Geothermal utilization heat exchange system
KR20110138318A (en) Container for boiled water
CN207487189U (en) A kind of liquid divider of air-conditioner
CN207512869U (en) A kind of anticlogging hydraulic engineering flood discharge pipeline
CN209655868U (en) A kind of spherical shape turbulent flow shell-and-tube heat exchanger
CN202209777U (en) Water heater inlet pipe subassembly and have its water heater
CN210051204U (en) Water energy storage water distributor
CN204779486U (en) Free water desorption device
DE102018100507A1 (en) Device for calming a fluid flow inside a fluid storage container
JP5942091B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

R150 Certificate of patent or registration of utility model

Ref document number: 5170524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150