JP2009121616A - Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor - Google Patents

Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor Download PDF

Info

Publication number
JP2009121616A
JP2009121616A JP2007297092A JP2007297092A JP2009121616A JP 2009121616 A JP2009121616 A JP 2009121616A JP 2007297092 A JP2007297092 A JP 2007297092A JP 2007297092 A JP2007297092 A JP 2007297092A JP 2009121616 A JP2009121616 A JP 2009121616A
Authority
JP
Japan
Prior art keywords
bolt
layer
friction
friction stir
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007297092A
Other languages
Japanese (ja)
Inventor
Yoshinori Katayama
義紀 片山
Motoji Tsubota
基司 坪田
Yoshiaki Saito
善章 斉藤
Masashi Takahashi
雅士 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007297092A priority Critical patent/JP2009121616A/en
Publication of JP2009121616A publication Critical patent/JP2009121616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bolt having high strength and high corrosion resistance. <P>SOLUTION: This manufacturing method of the bolt 11 is characterized by forming a frictional padding layer 3 by cladding a highly hard-highly corrosion resistant material 2 on a surface 4 by frictional agitation, or forming a frictional agitation layer 23 by frictionally agitating an unconsumed highly hard material 22 on a surface of a stainless steel base material, and forming a thread on this frictional padding layer 3 or the frictional agitation layer 23. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強度および耐食性が要求されるボルトおよびボルトの製造方法、原子炉炉内構造物に関する。   The present invention relates to a bolt that requires strength and corrosion resistance, a method for manufacturing the bolt, and a reactor internal structure.

一般に、原子炉内構造物に使用されるボルト材には、強度および耐食性が要求されることから、析出硬化型ニッケル基合金や冷間加工したオーステナイト系ステンレス鋼などが使用されている。しかし、加圧水型原子炉ではバッフルフォーマーボルトと呼ばれる冷間加工したオーステナイト系ステンレス鋼製のボルトが使用されているが、硬度および耐食性に課題があった。   Generally, since bolts used for reactor internal structures are required to have strength and corrosion resistance, precipitation hardened nickel base alloys, cold worked austenitic stainless steels, and the like are used. However, cold-worked austenitic stainless steel bolts called baffle former bolts are used in pressurized water reactors, but there are problems with hardness and corrosion resistance.

そこで、高硬度および高耐食性材料を得る技術として低入熱プロセスである摩擦攪拌技術を利用した表面改質技術が考えられる。近年、開発された摩擦攪拌接合技術は、アルミニウムを中心に実用化されているが、鉄を中心とした高強度部材においては実用化されておらず、中でも表面改質技術については研究段階である。
特開2007−132898号公報 特開2003−074534号公報 特開2006−255711号公報
Therefore, as a technique for obtaining a material having high hardness and high corrosion resistance, a surface modification technique using a friction stir technique that is a low heat input process can be considered. In recent years, the friction stir welding technology that has been developed has been put to practical use mainly for aluminum, but has not been put to practical use for high-strength materials centered on iron, and the surface modification technology is in the research stage. .
JP 2007-132898 A Japanese Patent Laid-Open No. 2003-074534 JP 2006-255711 A

上述した従来の析出硬化型ニッケル基合金や冷間加工したオーステナイト系ステンレス鋼製ボルトにおいては、原子炉運転中の高温高圧水環境下において硬度および耐食性に劣るという課題があった。   The conventional precipitation hardening nickel-base alloy and cold-worked austenitic stainless steel bolts described above have problems that they are inferior in hardness and corrosion resistance in a high-temperature and high-pressure water environment during reactor operation.

本発明は上述した課題を解決するためになされたものであり、ボルト材料を低温プロセスである摩擦攪拌接合技術を用いて製造することにより、高強度および高耐食性を有するボルトを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a bolt having high strength and high corrosion resistance by manufacturing a bolt material using a friction stir welding technique which is a low temperature process. And

上記課題を解決するために本発明のボルトの製造方法は、高硬度高耐食材料を摩擦攪拌によって基材に肉盛りして形成された摩擦肉盛層、またはステンレス鋼基材の上に非消耗の高硬度材を摩擦攪拌させ、ステンレス鋼基材に形成された摩擦攪拌層を切り出し、この切り出された摩擦肉盛層または摩擦攪拌層から形成することを特徴とする。   In order to solve the above-described problems, the bolt manufacturing method of the present invention is a non-consumable friction build-up layer formed by overlaying a high-hardness and high-corrosion resistant material on a base material by friction stirring, or a stainless steel base material. The high-hardness material is friction-stirred, and the friction stir layer formed on the stainless steel substrate is cut out. The friction stir layer or the friction stir layer is cut out.

また、本発明のボルトの製造方法は、表面に高硬度高耐食材料を摩擦攪拌により肉盛して摩擦肉盛層を形成し、またはステンレス鋼基材の表面に非消耗の高硬度材を摩擦攪拌して摩擦攪拌層を形成し、この摩擦肉盛層または摩擦攪拌層にねじ山を形成することを特徴とする。   In addition, the bolt manufacturing method of the present invention is configured such that a high hardness and high corrosion resistance material is deposited on the surface by friction stirring to form a friction buildup layer, or a non-consumable high hardness material is rubbed on the surface of the stainless steel substrate. A friction stir layer is formed by stirring, and a thread is formed on the friction build-up layer or the friction stir layer.

またさらに、本発明のボルトの製造方法は、表面に耐食性が良好な箔、粉末、液体のいずれかを塗布し、その表面に非消耗の高硬度材を摩擦攪拌して摩擦攪拌層を形成し、この摩擦攪拌層にねじ山を形成することを特徴とする。   Furthermore, in the bolt manufacturing method of the present invention, a foil, powder, or liquid having good corrosion resistance is applied to the surface, and a non-consumable high hardness material is frictionally stirred on the surface to form a friction stirring layer. In this friction stir layer, a screw thread is formed.

また、本発明は上記製造方法によって製造されたボルトおよびこのボルトが形成された原子炉炉内構造物を特徴とする。   Further, the present invention is characterized by a bolt manufactured by the above-described manufacturing method and a reactor internal structure in which the bolt is formed.

本発明によれば、高硬度高耐食材料を摩擦攪拌により形成された肉盛層をボルト材料とすることにより、高硬度かつ高耐食性を有するボルトおよび原子炉炉内構造物を得ることが出来る。   According to the present invention, a bolt and a reactor internal structure having high hardness and high corrosion resistance can be obtained by using a built-up layer formed by friction stir of a high hardness and high corrosion resistance material as a bolt material.

また、本発明によれば、非消耗型の高硬度材料を摩擦攪拌により形成された摩擦攪拌層をボルト材料またはボルトのねじ部とすることにより、高硬度かつ高耐食を有するボルトおよび原子炉炉内構造物を得ることが出来る。   Further, according to the present invention, a bolt and a nuclear reactor having high hardness and high corrosion resistance can be obtained by using a friction stir layer formed by friction stir of a non-consumable high hardness material as a bolt material or a screw portion of the bolt. An internal structure can be obtained.

以下、本発明に係る摩擦攪拌技術を用いたボルトの実施の形態について、図面を参照して説明する。   Embodiments of a bolt using the friction stir technique according to the present invention will be described below with reference to the drawings.

(実施例1)
まず、図1を参照して実施例1を説明する。本実施例1は、基材1、高硬度高耐食材料による回転治具2、摩擦攪拌により形成された肉盛層3から構成されている。
Example 1
First, Embodiment 1 will be described with reference to FIG. The present Example 1 is comprised from the base material 1, the rotating jig 2 by a high-hardness high corrosion-resistant material, and the build-up layer 3 formed by friction stirring.

このように構成された本実施の形態において、図1(a)に示すように基材1に対し回転治具2を摩擦攪拌により肉盛りする。   In the present embodiment configured as described above, as shown in FIG. 1A, the rotating jig 2 is built up on the base material 1 by friction stirring.

図2に高硬度ステンレス鋼であるSUS440Cを回転冶具2とし、基材1をSUS316Lで加圧荷重22500N、回転数400rpmの施工条件で摩擦攪拌による肉盛を行った後の肉盛層の断面観察例を示す。肉盛層の結晶粒は1μm以下と微細になっており、一般的に微細材料は高硬度で、耐食性に優れていることがわかっている。   FIG. 2 shows cross-sectional observation of the built-up layer after SUS440C, which is a high-hardness stainless steel, is used as the rotating jig 2 and the base material 1 is built up by friction stirring with SUS316L under a pressing load of 22500 N and a rotational speed of 400 rpm. An example is shown. The crystal grains of the overlay layer are as fine as 1 μm or less, and it is generally known that fine materials have high hardness and excellent corrosion resistance.

従って、図1(b)に示すように、肉盛層3からボルト材3aを採取することにより、高硬度かつ高耐食を有するボルト材料3aを得ることが出来る。そして採取されたボルト材3aからボルトを切り出し、高硬度かつ高耐食性を有するボルトを製作することができる。   Therefore, as shown in FIG. 1B, by extracting the bolt material 3a from the build-up layer 3, a bolt material 3a having high hardness and high corrosion resistance can be obtained. A bolt having a high hardness and high corrosion resistance can be manufactured by cutting out the bolt from the collected bolt material 3a.

また、図3に示すようにボルト11のねじ部4となる丸棒状態の部材の表面に回転冶具2による摩擦攪拌による肉盛層3を形成させた場合においても、肉盛層3からねじを切り出してねじ部4を形成することにより、高硬度かつ高耐食性を有するボルトを得ることが出来る。   Also, as shown in FIG. 3, even when the build-up layer 3 is formed by frictional stirring by the rotary jig 2 on the surface of the round bar member that becomes the screw portion 4 of the bolt 11, By cutting out and forming the screw part 4, the bolt which has high hardness and high corrosion resistance can be obtained.

また、本実施例に示した耐食性材料による回転治具2に肉盛溶接材料として実績があるコルモノイなどのニッケル基合金を適用することで、高硬度かつ高耐食を有するボルト材料を得ることが出来る。   In addition, a bolt material having high hardness and high corrosion resistance can be obtained by applying a nickel-based alloy such as Colmonoy, which has a proven record as a build-up welding material, to the rotary jig 2 made of the corrosion-resistant material shown in the present embodiment. .

また、本実施例に示した耐食性材料による回転治具2に肉盛溶接材料として実績があるステライトなどのコバルト基合金を適用することで、高硬度かつ高耐食を有するボルト材料を得ることが出来る。   Moreover, the bolt material which has high hardness and high corrosion resistance can be obtained by applying cobalt base alloys, such as stellite, which has a track record as overlay welding material to the rotary jig 2 made of the corrosion resistant material shown in the present embodiment. .

本実施の形態によれば、高硬度高耐食材料を摩擦攪拌により形成された肉盛層をボルト材料とすることにより、高硬度かつ高耐食性を有するボルトを得ることが出来る。   According to the present embodiment, a bolt having high hardness and high corrosion resistance can be obtained by using a built-up layer formed by friction stir of a high hardness and high corrosion resistance material as a bolt material.

(実施例2)
次に、本発明に係る実施例2について図4を参照して説明する。本実施例2は、基材1、非消耗型の高硬度を有する回転治具22、摩擦攪拌層23から構成されている。
(Example 2)
Next, Embodiment 2 according to the present invention will be described with reference to FIG. The second embodiment is composed of a base material 1, a non-consumable rotating jig 22 having high hardness, and a friction stir layer 23.

このように構成された本実施の形態において、基材1に対し非消耗型の高硬度を有する回転治具22を摩擦攪拌することにより基材1内に摩擦攪拌層23が形成される。摩擦攪拌層23は、結晶粒が微細化することから高硬度かつ高耐食性材料に変換される。従って、摩擦攪拌層23から図1(b)と同様にボルト材を採取することにより、高硬度かつ高耐食を有するボルト材を得ることが出来る。そして採取されたボルト材からボルトを切り出し、高硬度かつ高耐食性を有するボルトを製作することができる。   In the present embodiment configured as described above, the friction stir layer 23 is formed in the substrate 1 by friction-stirring the non-consumable rotating jig 22 having high hardness with respect to the substrate 1. The friction stir layer 23 is converted into a material having high hardness and high corrosion resistance because the crystal grains become finer. Therefore, a bolt material having high hardness and high corrosion resistance can be obtained by collecting the bolt material from the friction stir layer 23 in the same manner as in FIG. Then, a bolt having a high hardness and high corrosion resistance can be manufactured by cutting out the bolt from the collected bolt material.

また、図3と同様にボルト11のねじ部となる丸棒状態の部材の表面に非消耗型の高硬度を有する回転治具22を摩擦攪拌することによりボルト11表面に摩擦攪拌層23を形成する。従って、摩擦攪拌層23からねじを切り出してねじ部を形成することにより、ボルト11表面に高硬度かつ高耐食を有する摩擦攪拌層23を有するボルトを得ることが出来る。   Further, as in FIG. 3, a friction stir layer 23 is formed on the surface of the bolt 11 by friction stir of a non-consumable high-hardness rotating jig 22 on the surface of the round bar member that becomes the threaded portion of the bolt 11. To do. Therefore, a bolt having the friction stir layer 23 having high hardness and high corrosion resistance on the surface of the bolt 11 can be obtained by cutting a screw from the friction stir layer 23 to form a threaded portion.

本実施の形態によれば、非消耗型の高硬度材料を摩擦攪拌により形成された摩擦攪拌層をボルト材料またはボルトのねじ部とすることにより、高硬度かつ高耐食を有するボルトを得ることが出来る。   According to the present embodiment, a bolt having high hardness and high corrosion resistance can be obtained by using a friction stir layer formed by friction stir of a non-consumable high hardness material as a bolt material or a screw portion of the bolt. I can do it.

(実施例3)
次に、本発明に係る実施例3について図5を用いて説明する。本実施例3は、基材1、耐食性材料31、非消耗型の高硬度を有する回転治具22、摩擦攪拌層23から構成されている。
(Example 3)
Next, Embodiment 3 according to the present invention will be described with reference to FIG. The third embodiment includes a base material 1, a corrosion-resistant material 31, a non-consumable rotating jig 22 having high hardness, and a friction stir layer 23.

このように構成された本実施の形態において、基材1に対し耐食性が良好な薄板、箔、粉末、液体のいずれかから成る耐食性材料31を塗布または接触させ、非消耗型の高硬度を有する回転治具22を摩擦攪拌することにより基材1と耐食性材料31を接合させる。形成された摩擦攪拌層23は、耐食性材料31と同一材料であるため、基材に比べ耐食性が良好である。   In the present embodiment configured as described above, the base material 1 is coated or brought into contact with a corrosion-resistant material 31 made of any one of a thin plate, foil, powder, and liquid having good corrosion resistance, and has a non-consumable high hardness. The base material 1 and the corrosion-resistant material 31 are joined by friction stirring the rotating jig 22. The formed friction stir layer 23 is the same material as the corrosion-resistant material 31, and therefore has better corrosion resistance than the base material.

本実施の形態によれば、基材に耐食性材料を接触させ、非消耗型の高硬度を有する回転治具を用いて摩擦攪拌することにより摩擦攪拌層を得ることが出来る。   According to the present embodiment, a friction stir layer can be obtained by bringing a corrosion-resistant material into contact with a base material and performing friction stir using a non-consumable high-hardness rotating jig.

従って、摩擦攪拌層23から図1(b)と同様にボルト材を採取することにより、高硬度かつ高耐食を有するボルト材を得ることが出来る。そして採取されたボルト材からボルトを切り出し、高硬度かつ高耐食性を有するボルトを製作することができる。   Therefore, a bolt material having high hardness and high corrosion resistance can be obtained by collecting the bolt material from the friction stir layer 23 in the same manner as in FIG. Then, a bolt having a high hardness and high corrosion resistance can be manufactured by cutting out the bolt from the collected bolt material.

また、図3と同様にボルト11のねじ部となる丸棒状態の部材の表面に非消耗型の高硬度を有する回転治具22を摩擦攪拌することによりボルト11表面に摩擦攪拌層23を形成する。従って、摩擦攪拌層23からねじを切り出してねじ部を形成することにより、ボルト11表面に高硬度かつ高耐食を有する摩擦攪拌層23を有するボルトを得ることが出来る。   Further, as in FIG. 3, a friction stir layer 23 is formed on the surface of the bolt 11 by friction stir of a non-consumable high-hardness rotating jig 22 on the surface of the round bar member that becomes the threaded portion of the bolt 11. To do. Therefore, a bolt having the friction stir layer 23 having high hardness and high corrosion resistance on the surface of the bolt 11 can be obtained by cutting a screw from the friction stir layer 23 to form a threaded portion.

本実施の形態によれば、非消耗型の高硬度材料を摩擦攪拌により形成された摩擦攪拌層をボルト材料またはボルトのねじ部とすることにより、高硬度かつ高耐食性を有するボルトを得ることが出来る。   According to the present embodiment, a bolt having high hardness and high corrosion resistance can be obtained by using a friction stir layer formed by friction stirring of a non-consumable high hardness material as a bolt material or a screw portion of the bolt. I can do it.

また、上記実施例1から3のボルトを原子炉炉内構造物を構成する沸騰水型原子炉においてはシュラウドヘッドボルト、加圧水型原子炉ではバッフルフォーマーボルトに採用することによって当該部分の硬度かつ耐食性を向上させることができる。   Further, the bolts of Examples 1 to 3 are adopted as shroud head bolts in boiling water reactors constituting the reactor internal structure, and baffle former bolts in pressurized water reactors, thereby increasing the hardness of the parts. Corrosion resistance can be improved.

本発明のボルトの製造方法の第1の実施例を示し、(a)は摩擦攪拌により肉盛りする概念を説明する斜視図、(b)は肉盛層からボルト材を採取する概念を説明する縦断面図。The 1st Example of the manufacturing method of the volt | bolt of this invention is shown, (a) is a perspective view explaining the concept which builds up by friction stirring, (b) demonstrates the concept which extract | collects bolt material from a build-up layer. FIG. 摩擦肉盛試験後の断面を示す顕微鏡写真。The microscope picture which shows the cross section after a friction buildup test. 本発明のボルトの製造方法の第1の実施例をボルトの表面に適用した状態を示す概略斜視図。The schematic perspective view which shows the state which applied the 1st Example of the manufacturing method of the volt | bolt of this invention to the surface of the volt | bolt. 本発明のボルトの製造方法の第2の実施例を示す斜視図。The perspective view which shows the 2nd Example of the manufacturing method of the volt | bolt of this invention. 本発明のボルトの製造方法の第3の実施例を示す斜視図。The perspective view which shows the 3rd Example of the manufacturing method of the volt | bolt of this invention.

符号の説明Explanation of symbols

1…基材
2…耐食材料で構成された回転冶具
3…肉盛層
11…ボルト
22…非消耗型回転冶具
23…摩擦攪拌層
31…耐食材料
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Rotary jig 3 comprised with corrosion resistant material ... Overlay layer 11 ... Bolt 22 ... Non-consumable rotary jig 23 ... Friction stirring layer 31 ... Corrosion resistant material

Claims (8)

高硬度高耐食材料を摩擦攪拌によって基材に肉盛りして形成された摩擦肉盛層を切り出し、この切り出された摩擦肉盛層から形成することを特徴とするボルトの製造方法。   A bolt manufacturing method comprising cutting out a friction buildup layer formed by depositing a high hardness and corrosion resistant material on a base material by friction stirring, and forming the cut out friction buildup layer. 表面に高硬度高耐食材料を摩擦攪拌により肉盛して摩擦肉盛層を形成し、この摩擦肉盛層にねじ山を形成することを特徴とするボルトの製造方法。   A method for producing a bolt, comprising forming a friction build-up layer by depositing a high hardness and corrosion-resistant material on the surface by friction stirring, and forming a screw thread on the friction build-up layer. 請求項1および2記載の高硬度高耐食材料はステンレス鋼、ニッケル基合金、コバルト基合金から選択されて成ることを特徴とするボルトの製造方法。   3. The bolt manufacturing method according to claim 1, wherein the high hardness and high corrosion resistance material is selected from stainless steel, nickel base alloy, and cobalt base alloy. ステンレス鋼基材の上に非消耗の高硬度材を摩擦攪拌させ、ステンレス鋼基材に形成された摩擦攪拌層を切り出し、この切り出された摩擦肉盛層から形成することを特徴とするボルトの製造方法。   A friction stir of a non-consumable high hardness material on a stainless steel base material, a friction stir layer formed on the stainless steel base material is cut out, and the bolt is formed from the cut friction build-up layer. Production method. ステンレス鋼基材の表面に非消耗の高硬度材を摩擦攪拌して摩擦攪拌層を形成し、この摩擦攪拌層にねじ山を形成することを特徴とするボルトの製造方法。   A method for manufacturing a bolt, comprising: friction-stirring a non-consumable high-hardness material on a surface of a stainless steel base material to form a friction stir layer; and forming a thread on the friction stir layer. 表面に耐食性が良好な箔、粉末、液体のいずれかを塗布または接触させ、その表面に非消耗の高硬度材を摩擦攪拌して摩擦攪拌層を形成し、この摩擦攪拌層にねじ山を形成することを特徴とするボルトの製造方法。   Apply or contact foil, powder, or liquid with good corrosion resistance on the surface, frictionally stir non-consumable high hardness material on the surface to form a friction stir layer, and form a thread on this friction stir layer A method for manufacturing a bolt, comprising: 請求項1から請求項6のいずれか1項記載の製造方法によって構成されたボルト。   The bolt comprised by the manufacturing method of any one of Claims 1-6. 請求項7に記載のボルトを高強度高耐食性が要求されるボルト締結部に使用することを特徴とする原子炉炉内構造物。  A reactor internal structure, wherein the bolt according to claim 7 is used in a bolt fastening portion that requires high strength and high corrosion resistance.
JP2007297092A 2007-11-15 2007-11-15 Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor Pending JP2009121616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297092A JP2009121616A (en) 2007-11-15 2007-11-15 Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297092A JP2009121616A (en) 2007-11-15 2007-11-15 Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor

Publications (1)

Publication Number Publication Date
JP2009121616A true JP2009121616A (en) 2009-06-04

Family

ID=40813969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297092A Pending JP2009121616A (en) 2007-11-15 2007-11-15 Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor

Country Status (1)

Country Link
JP (1) JP2009121616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158661A1 (en) * 2018-02-14 2019-08-22 Ejot Gmbh & Co. Kg Connecting element
WO2019158659A1 (en) * 2018-02-14 2019-08-22 Ejot Gmbh & Co. Kg Thread-forming screw and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019158661A1 (en) * 2018-02-14 2019-08-22 Ejot Gmbh & Co. Kg Connecting element
WO2019158659A1 (en) * 2018-02-14 2019-08-22 Ejot Gmbh & Co. Kg Thread-forming screw and production thereof
WO2019158660A1 (en) * 2018-02-14 2019-08-22 Ejot Gmbh & Co. Kg Thread-forming screw and production thereof

Similar Documents

Publication Publication Date Title
Rao et al. Weld overlay cladding of high strength low alloy steel with austenitic stainless steel–structure and properties
Soo et al. Machinability and surface integrity of RR1000 nickel based superalloy
Santa et al. Cavitation erosion of martensitic and austenitic stainless steel welded coatings
US8888069B2 (en) Valves having high wear-resistance and high corrosion-resistance
Kumar et al. Some studies on nickel based Inconel 625 hard overlays on AISI 316L plate by gas metal arc welding based hardfacing process
Ramesh et al. Microstructure and mechanical characterization of friction-stir-welded 316L austenitic stainless steels
Liu et al. Cutting performance and surface integrity for rotary ultrasonic elliptical milling of Inconel 718 with the ball end milling cutter
Anitha et al. Microstructural characterization and mechanical properties of friction-welded IN718 and SS410 dissimilar joint
Han et al. Laser cladding composite coating on mild steel using Ni–Cr–Ti–B4C powder
Troysi et al. Investigation of austenitic stainless steel coatings on mild steel produced by friction surfacing using a conventional CNC machining center
Han et al. Laser cladding Ni-Ti-Cr alloy coatings with different process parameters
Cheepu et al. Interfacial microstructures and characterization of the titanium—stainless steel friction welds using interlayer technique
Ren et al. The microstructure evolving and element transport of Ni-based laser-cladding layer in supercritical water
JP2009121616A (en) Bolt, method of manufacturing bolt and reactor inside structure of nuclear reactor
Arulsamy et al. Experimental investigation on microstructure and mechanical properties of friction welded dissimilar alloys
Fan et al. Evolution of γ′ particles in Ni-based superalloy weld joint and Its effect on impact toughness during long-term thermal exposure
Huang et al. Effects of molybdenum content and heat treatment on mechanical and tribological properties of a low-carbon Stellite® alloy
JP2009028756A (en) Surface cladding method
Wang et al. Fabrication of in situ tin ceramic particle reinforced high entropy alloy composite coatings by laser cladding processing
Anuradha et al. Effect of filler materials on dissimilar TIG welding of Inconel 718 to high strength steel
Pramod Kumar et al. Investigation of microstructure, mechanical, and corrosion properties of Inconel 617 joints welded by laser–MIG hybrid welding
Pham et al. Behaviour of TiC Particles on the Co50‐Based Coatings by Laser Cladding: Morphological Characteristics and Growth Mechanism
Keshavarz et al. A Comparison of weldability, structure, and mechanical properties of CM64 and Tribaloy T-800 welds for hard-facing of turbine blades
Ayan et al. Fabrication and fatigue properties of dissimilar steel functionally graded material structure through wire arc additive manufacturing
Sun et al. Research progress and prospect of friction stir welding of copper and copper alloys