JP2009121520A - Vibration suppression device - Google Patents

Vibration suppression device Download PDF

Info

Publication number
JP2009121520A
JP2009121520A JP2007293446A JP2007293446A JP2009121520A JP 2009121520 A JP2009121520 A JP 2009121520A JP 2007293446 A JP2007293446 A JP 2007293446A JP 2007293446 A JP2007293446 A JP 2007293446A JP 2009121520 A JP2009121520 A JP 2009121520A
Authority
JP
Japan
Prior art keywords
vibration
plate
elastomer
piezoelectric element
shunt circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293446A
Other languages
Japanese (ja)
Other versions
JP4810646B2 (en
Inventor
Giichi Hayakawa
義一 早川
Akira Nakajima
明 中島
Kazuhiko Oshima
和彦 大嶋
Daiyu Inagaki
大雄 稲垣
Jiro Maruta
二郎 丸田
Keiji Tagaya
恵士 多賀谷
Teruaki Sukeoka
輝明 祐岡
Tomokazu Tanimizu
友和 谷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Kitagawa Industries Co Ltd
Daido Gakuen School
Original Assignee
Nagoya University NUC
Kitagawa Industries Co Ltd
Daido Gakuen School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Kitagawa Industries Co Ltd, Daido Gakuen School filed Critical Nagoya University NUC
Priority to JP2007293446A priority Critical patent/JP4810646B2/en
Publication of JP2009121520A publication Critical patent/JP2009121520A/en
Application granted granted Critical
Publication of JP4810646B2 publication Critical patent/JP4810646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration suppression device using elastomer which is capable of excellently suppressing any vibration over the frequencies in a wide range. <P>SOLUTION: A damper 1 is affixed to a structure 93 to be excited by a vibration source 91. The damper 1 includes a plate-like piezoelectric device affixed to a surface of the structure 93, a plate-like elastomer to be laminated on and fixed to the side opposite to an affixing surface of the piezoelectric device to the structure 93, and a plate-like mass plate to be laminated on and fixed to the side opposite to a laminating surface of the elastomer on the piezoelectric, and an electrode provided on the piezoelectric device is connected to a shunt circuit 10. The vibration of the relatively low frequency and the vibration of the relatively high frequency can be excellently suppressed by the piezoelectric element and the shunt circuit, and the elastomer and the mass plate, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、撓みを伴って振動する板状体に貼着することでその板状体の振動を抑制することのできる振動抑制装置に関し、詳しくは、制振材としてのエラストマを利用した振動抑制装置に関する。   The present invention relates to a vibration suppressing device that can suppress vibration of a plate-like body by sticking to the plate-like body that vibrates with bending, and more specifically, vibration suppression using an elastomer as a damping material. Relates to the device.

従来より、各種構造物の振動を抑制する制振技術として、構造物にエラストマ等の制振材と質量板とを順次積層し、機械的な動吸振器を構成することが考えられている。また、その場合に、特性の異なる複数種類の制振材を積層することにより、広い周波数範囲に亘って制振性を確保しようとする試みもなされている(例えば、特許文献1参照)。
特開平7−139584号公報
Conventionally, as a vibration damping technique for suppressing vibrations of various structures, it has been considered to sequentially laminate a damping material such as an elastomer and a mass plate on the structure to constitute a mechanical dynamic vibration absorber. In that case, an attempt has been made to secure damping performance over a wide frequency range by laminating a plurality of types of damping materials having different characteristics (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 7-139384

ところが、エラストマ等の制振材を利用した振動抑制装置では、比較的高い周波数の振動は良好に抑制することができるものの、比較的低い周波数の振動は十分に抑制できない場合があり、更なる改善の余地があった。そこで、本発明は、エラストマを利用した振動抑制装置において、広い範囲の周波数に亘って振動を良好に抑制可能とすることを目的としてなされた。   However, the vibration suppression device using a damping material such as an elastomer can satisfactorily suppress vibration at a relatively high frequency, but may not sufficiently suppress vibration at a relatively low frequency. There was room for. Accordingly, the present invention has been made for the purpose of enabling vibration to be satisfactorily suppressed over a wide range of frequencies in a vibration suppressing device using an elastomer.

上記目的を達するためになされた本発明の振動抑制装置は、撓みを伴って振動する板状体に貼着される板状の圧電素子と、該圧電素子に接続されたシャント回路と、上記圧電素子の、上記板状体への貼着面とは反対面に積層された板状のエラストマと、該エラストマの、上記圧電素子への積層面とは反対面に積層された質量板と、を備えたことを特徴としている。   In order to achieve the above object, the vibration suppressing device of the present invention includes a plate-like piezoelectric element attached to a plate-like body that vibrates with bending, a shunt circuit connected to the piezoelectric element, and the piezoelectric element. A plate-like elastomer laminated on the surface opposite to the surface of the element attached to the plate-like body, and a mass plate laminated on the opposite surface of the elastomer to the surface laminated on the piezoelectric element. It is characterized by having prepared.

このように構成された本発明では、板状体が撓みを伴って振動すると、その板状体に貼着された圧電素子が変形して電圧を生じる。このため、板状体の振動エネルギは圧電素子によって電気エネルギに変換され、その電気エネルギをシャント回路を介して熱エネルギとして消散させることによって、上記板状体の低い周波数の振動も良好に抑制することができる。また、本発明では、上記圧電素子に板状のエラストマを挟んで質量板を積層している。このため、圧電素子に比べて柔軟なエラストマと質量板とによって構成される機械的な動吸振器により、高周波の振動エネルギも吸収して板状体の振動を抑制することができる。従って、本発明の振動抑制装置では、板状体の振動を広い範囲の周波数に亘って良好に抑制することができる。   In the present invention configured as described above, when the plate-like body vibrates with bending, the piezoelectric element attached to the plate-like body is deformed to generate a voltage. For this reason, the vibration energy of the plate-like body is converted into electric energy by the piezoelectric element, and the electric energy is dissipated as thermal energy through the shunt circuit, so that the low-frequency vibration of the plate-like body is also well suppressed. be able to. In the present invention, a mass plate is laminated on the piezoelectric element with a plate-like elastomer interposed therebetween. For this reason, a mechanical dynamic vibration absorber composed of an elastomer and a mass plate that are more flexible than a piezoelectric element can absorb high-frequency vibration energy and suppress vibrations of the plate-like body. Therefore, in the vibration suppressing device of the present invention, it is possible to satisfactorily suppress the vibration of the plate-like body over a wide range of frequencies.

なお、本発明は以下の構成に限定されるものではないが、上記圧電素子は、厚さ方向に分極され、その圧電素子の厚さ方向の両面に一対の電極が設けられ、該一対の電極間に上記シャント回路が接続されてもよい。この場合、圧電素子に厚さと直交する方向(以下、横方向という)に加わる歪が、上記一対の電極間に発生する電圧に良好に反映される。逆に、上記一対の電極間に電圧が加わると、その電圧は圧電素子の横方向の歪に良好に変換される。本発明では、圧電素子は撓みを伴って振動する板状体に貼着されているので、その板状体の振動により圧電素子には横方向の歪が発生する。従って、上記のように圧電素子の分極方向及び電極配置を規定した場合、一層良好に板状体の振動を抑制することができる。しかも、上記エラストマと質量板とによって構成される動吸振器の吸収する振動は上記厚さ方向であるので、圧電素子の上記制振作用とは干渉せず、板状体の振動を極めて良好に抑制することができる。   Although the present invention is not limited to the following configuration, the piezoelectric element is polarized in the thickness direction, and a pair of electrodes are provided on both surfaces of the piezoelectric element in the thickness direction. The shunt circuit may be connected between them. In this case, the strain applied to the piezoelectric element in the direction perpendicular to the thickness (hereinafter referred to as the lateral direction) is favorably reflected in the voltage generated between the pair of electrodes. On the contrary, when a voltage is applied between the pair of electrodes, the voltage is favorably converted into a lateral strain of the piezoelectric element. In the present invention, since the piezoelectric element is attached to a plate-like body that vibrates with bending, lateral vibration occurs in the piezoelectric element due to the vibration of the plate-like body. Therefore, when the polarization direction and electrode arrangement of the piezoelectric element are defined as described above, vibration of the plate-like body can be suppressed more satisfactorily. Moreover, since the vibration absorbed by the dynamic vibration absorber constituted by the elastomer and the mass plate is in the thickness direction, it does not interfere with the vibration damping action of the piezoelectric element, and the vibration of the plate-like body is very good. Can be suppressed.

また、本発明の振動抑制装置において、上記エラストマは、スチレン系エラストマにオイルを充填してなるゲル状物質であってもよい。このようなエラストマは、極めて良好な柔軟性を有し、機械的な動吸振器としての粘性成分を良好に備えているので、前述のような高周波の振動エネルギを極めて良好に吸収することができる。従って、この場合、一層良好に板状体の振動を抑制することができる。   In the vibration suppressing device of the present invention, the elastomer may be a gel substance obtained by filling a styrene elastomer with oil. Such an elastomer has a very good flexibility and has a viscous component as a mechanical dynamic vibration absorber, so that it can absorb the high-frequency vibration energy as described above very well. . Therefore, in this case, vibration of the plate-like body can be suppressed more satisfactorily.

また、本発明の振動抑制装置において、上記シャント回路は、インダクタと抵抗器との直列回路からなるものであってもよい。拘束状態の圧電素子は、コンデンサと等価と考えることができる。このため、シャント回路がインダクタと抵抗器との直列回路からなる場合、そのシャント回路が圧電素子に接続されることによって共振回路が構成される。そして、圧電素子の静電容量に応じたインダクタを用いることによって、板状体の共振周波数に上記共振回路の共振周波数を合わせることができる。また、抵抗器の抵抗値は定点理論等によって適宜に設定することができる。従って、シャント回路を上記のように構成した場合、上記のような設定を適切に行うことにより一層良好に板状体の振動を抑制することができる。   In the vibration suppressing device of the present invention, the shunt circuit may be a series circuit of an inductor and a resistor. A constrained piezoelectric element can be considered equivalent to a capacitor. For this reason, when a shunt circuit consists of a series circuit of an inductor and a resistor, a resonance circuit is configured by connecting the shunt circuit to a piezoelectric element. Then, by using an inductor corresponding to the capacitance of the piezoelectric element, the resonance frequency of the resonance circuit can be matched with the resonance frequency of the plate-like body. Further, the resistance value of the resistor can be appropriately set by fixed point theory or the like. Therefore, when the shunt circuit is configured as described above, the vibration of the plate-like body can be more effectively suppressed by appropriately performing the above setting.

次に、本発明の実施の形態を図面と共に説明する。図1は、本発明が適用された振動抑制装置の構成を表す斜視図である。図1に示すように、本実施の形態の振動抑制装置は、振動源91によって加振される板状体の一例としての構造物93に貼着されたダンパ1を備えている。すなわち、構造物93は長尺状の板状に構成され、片持ち梁状に振動源91に支持されており、振動源91に内蔵されたアクチュエータ(図示省略)によって加振されることにより、振動源91側を中心にして撓みながら振動される。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view illustrating a configuration of a vibration suppressing device to which the present invention is applied. As shown in FIG. 1, the vibration suppressing device of the present embodiment includes a damper 1 attached to a structure 93 as an example of a plate-like body that is vibrated by a vibration source 91. That is, the structure 93 is formed in a long plate shape, is supported by the vibration source 91 in a cantilever shape, and is vibrated by an actuator (not shown) built in the vibration source 91. It is vibrated while being bent around the vibration source 91 side.

ダンパ1は、図2に示すように、粘着剤等によって構造物93の表面に貼着される板状の圧電素子3(ピエゾセラミックス)と、その圧電素子3の構造物93への貼着面とは反対側に積層固定される板状のエラストマ5と、そのエラストマ5の圧電素子3への積層面とは反対側に積層固定される板状の質量板7とを備えている。また、圧電素子3は、図3に矢印Prで示すように厚さ方向に分極されており、その圧電素子3の厚さ方向両面に一対の面状の電極9が設けられている。更に、この一対の電極9は、リード線11を介して図1に示すようなシャント回路10に接続されている。   As shown in FIG. 2, the damper 1 includes a plate-like piezoelectric element 3 (piezoceramics) that is adhered to the surface of the structure 93 with an adhesive or the like, and an adhesion surface of the piezoelectric element 3 to the structure 93. And a plate-like mass plate 7 which is laminated and fixed on the opposite side to the laminated surface of the elastomer 5 on the piezoelectric element 3. Further, the piezoelectric element 3 is polarized in the thickness direction as indicated by an arrow Pr in FIG. 3, and a pair of planar electrodes 9 are provided on both surfaces of the piezoelectric element 3 in the thickness direction. Further, the pair of electrodes 9 are connected to a shunt circuit 10 as shown in FIG.

図1に示すように、シャント回路10は、インダクタの一例としてのコイル13と抵抗器15とを直列に接続して構成されている。このため、拘束状態ではコンデンサ(C)と等価と考えられる圧電素子3と、シャント回路10のコイル13(L)と抵抗器15(R)とによって共振回路が構成される。従って、コイル13のインダクタンスLを圧電素子3の静電容量Cに合わせて設定することによって、構造物93の共振周波数に上記共振回路の共振周波数を合わせることができる。また、抵抗器15の抵抗値Rは定点理論等によって適宜に設定することができる。このようにしてコイル13のインダクタンスLや抵抗器15の抵抗値Rを構造物93の共振周波数等に合わせて適切に設定すれば、構造物93の振動エネルギを圧電素子3によって電気エネルギに変換し、その電気エネルギをシャント回路10を介して熱エネルギとして良好に消散させることができる。   As shown in FIG. 1, the shunt circuit 10 is configured by connecting a coil 13 as an example of an inductor and a resistor 15 in series. For this reason, a resonance circuit is constituted by the piezoelectric element 3 considered to be equivalent to the capacitor (C) in the restrained state, the coil 13 (L) of the shunt circuit 10 and the resistor 15 (R). Therefore, by setting the inductance L of the coil 13 according to the capacitance C of the piezoelectric element 3, the resonance frequency of the resonance circuit can be matched with the resonance frequency of the structure 93. Further, the resistance value R of the resistor 15 can be appropriately set by a fixed point theory or the like. Thus, if the inductance L of the coil 13 and the resistance value R of the resistor 15 are appropriately set in accordance with the resonance frequency of the structure 93, the vibration energy of the structure 93 is converted into electric energy by the piezoelectric element 3. The electric energy can be favorably dissipated as heat energy through the shunt circuit 10.

すなわち、圧電素子3は前述のように分極されているので、構造物93の振動よって圧電素子3に横方向の歪が加わると、その歪は一対の電極9の間の電圧に良好に反映される。このため、構造物93の振動は上記電気エネルギに効率的に変換され、その電気エネルギはシャント回路10により熱エネルギとして効率的に消散される。従って、本実施の形態では、構造物93の振動を良好に抑制することができる。   That is, since the piezoelectric element 3 is polarized as described above, when a lateral strain is applied to the piezoelectric element 3 due to the vibration of the structure 93, the strain is well reflected in the voltage between the pair of electrodes 9. The For this reason, the vibration of the structure 93 is efficiently converted into the electric energy, and the electric energy is efficiently dissipated as heat energy by the shunt circuit 10. Therefore, in the present embodiment, the vibration of the structure 93 can be satisfactorily suppressed.

また、本実施の形態では、圧電素子3の表面にエラストマ5,質量板7を順次積層固定している。ここで、エラストマ5としては種々の材料を使用可能であるが、例えば、スチレン系エラストマにオイルを充填してなるゲル状物質(例えば特開2000−143399号参照)などの柔軟性に富む材料を使用するのが好ましい。このような構成により、エラストマ5と質量板7とによって機械的な動吸振器が形成される。   In the present embodiment, the elastomer 5 and the mass plate 7 are sequentially laminated and fixed on the surface of the piezoelectric element 3. Here, various materials can be used as the elastomer 5. For example, a material having high flexibility such as a gel material (for example, see Japanese Patent Application Laid-Open No. 2000-143399) formed by filling an oil into a styrene elastomer. It is preferred to use. With such a configuration, a mechanical dynamic vibration absorber is formed by the elastomer 5 and the mass plate 7.

すなわち、図4に模式的に示すように、エラストマ5は弾性成分kと粘性成分cとを備えており、質量板7の質量mと共に機械的な動吸振器を形成している。エラストマ5の弾性成分k,粘性成分cを自由に設定することはできないので、上記のように柔軟性に富む(すなわち十分な粘性成分cを有する)適切なエラストマ5を選定した上でそのエラストマ5の弾性成分k,粘性成分cを測定し、それに応じて適切な質量板7の質量mを設定すれば、構造物93の振動を良好に抑制することができる。しかも、エラストマ5と質量板7とによって構成される動吸振器が吸収する振動は構造物93の厚さ方向であるので、圧電素子3の上記制振作用とは干渉せず、板状体の振動を極めて良好に抑制することができる。   That is, as schematically shown in FIG. 4, the elastomer 5 includes an elastic component k and a viscous component c, and forms a mechanical dynamic vibration absorber together with the mass m of the mass plate 7. Since the elastic component k and the viscous component c of the elastomer 5 cannot be set freely, an appropriate elastomer 5 having a high flexibility (that is, having a sufficient viscous component c) as described above is selected and then the elastomer 5 is selected. If the elastic component k and the viscous component c are measured and an appropriate mass m of the mass plate 7 is set accordingly, the vibration of the structure 93 can be satisfactorily suppressed. Moreover, since the vibration absorbed by the dynamic vibration absorber constituted by the elastomer 5 and the mass plate 7 is in the thickness direction of the structure 93, it does not interfere with the vibration damping action of the piezoelectric element 3 and Vibration can be suppressed very well.

なお、このような機械的な動吸振器では、低周波の振動を十分に抑制できない場合があたったが、本実施の形態では、圧電素子3及びシャント回路10によって低周波の振動エネルギも吸収して構造物93の振動を抑制することができる。従って、本実施の形態では、構造物93の振動を広い範囲の周波数に亘って良好に抑制することができる。   Such mechanical dynamic vibration absorbers may not sufficiently suppress low-frequency vibrations, but in this embodiment, low-frequency vibration energy is also absorbed by the piezoelectric element 3 and the shunt circuit 10. Thus, the vibration of the structure 93 can be suppressed. Therefore, in the present embodiment, the vibration of the structure 93 can be satisfactorily suppressed over a wide range of frequencies.

図5は、その効果を説明するためのシミュレーション結果を表すグラフである。なお、このシミュレーションでは、次のような条件を設定した。先ず、構造物93の1次モードの振動に関するパラメータは、m1 =15.364[g]、k1 =1064.6[N/m]、c1 =0.8087[Ns/m]である。ここで、m1 は構造物93の1次モードの等価質量であり、k1 は構造物93の1次モードのばね係数である。このため構造物93の1次共振周波数は、k1 =m1 ×(1次共振周波数[rad/sec])2 なる式より、263.2335[rad/sec]=41.9[Hz]となる。また、c1 は構造物93の1次モードの減衰係数である。 FIG. 5 is a graph showing a simulation result for explaining the effect. In this simulation, the following conditions were set. First, the parameters relating to the vibration of the primary mode of the structure 93 are m 1 = 15.364 [g], k 1 = 1064.6 [N / m], and c 1 = 0.8087 [Ns / m]. . Here, m 1 is an equivalent mass of the primary mode of the structure 93, and k 1 is a spring coefficient of the primary mode of the structure 93. Therefore, the primary resonance frequency of the structure 93 is 263.2335 [rad / sec] = 41.9 [Hz] from the equation k 1 = m 1 × (primary resonance frequency [rad / sec]) 2 . Become. C 1 is the attenuation coefficient of the primary mode of the structure 93.

構造物93の2次モードの振動に関するパラメータは、m2 =8.28[g]、k2 =22541[N/m]、c2 =2.6730[Ns/m]である。ここで、m2 は構造物93の2次モードの等価質量であり、k2 は構造物93の2次モードのばね係数である。このため構造物93の2次共振周波数は1650[rad/sec]=262.6[Hz]となる。また、c2 は構造物93の2次モードの減衰係数である。 The parameters relating to the vibration of the secondary mode of the structure 93 are m 2 = 8.28 [g], k 2 = 22541 [N / m], and c 2 = 2.6730 [Ns / m]. Here, m 2 is the equivalent mass of the secondary mode of the structure 93, and k 2 is the spring coefficient of the secondary mode of the structure 93. Therefore, the secondary resonance frequency of the structure 93 is 1650 [rad / sec] = 262.6 [Hz]. C 2 is the attenuation coefficient of the secondary mode of the structure 93.

圧電素子3としては、拘束静電容量Cpが25.477e−9[uF]で、電気機械変換係数Psiが0.0060333[N/V]のものを想定した。また、シャント回路10のコイル13のインダクタンスの最適値Lopt は554.8840[H]とし、抵抗器15の抵抗の最適値Ropt は25786[kΩ]とした。なお、コイル13の代わりに、図6に例示するようないわゆる電子インダクタを利用してもよい。図6の回路では、L=R1 ×R3 ×R4 ×C/R2 なる式でインダクタンスLが表されるので、R1 =100[kΩ]、R2 =100[kΩ]、R3 =100[kΩ]、R4 =55.488[kΩ]、C=0.1[uF]とすることで前述のLopt が容易に得られる。このような電子インダクタを利用することで装置を小型化することができる。 The piezoelectric element 3 is assumed to have a restraining capacitance Cp of 25.477e-9 [uF] and an electromechanical conversion coefficient Psi of 0.0060333 [N / V]. Further, the optimum value Lopt of the inductance of the coil 13 of the shunt circuit 10 is 5544.8840 [H], and the optimum value Ropt of the resistor 15 is 25786 [kΩ]. In place of the coil 13, a so-called electronic inductor as illustrated in FIG. In the circuit of FIG. 6, since the inductance L is expressed by the equation L = R 1 × R 3 × R 4 × C / R 2 , R 1 = 100 [kΩ], R 2 = 100 [kΩ], R 3 By setting = 100 [kΩ], R 4 = 55.488 [kΩ], and C = 0.1 [uF], the aforementioned Lopt can be easily obtained. By using such an electronic inductor, the apparatus can be miniaturized.

動吸振器としてはエラストマ5を5mm角厚さ2mmに切り出したものを質量板7の四隅に各1個配置した場合を想定した。エラストマ5としては、前述の特開2000−143994号に例示される材料の加振実験のゲイン線図をもとにカーブフィッティングを行い、エラストマ5の弾性成分k,粘性成分cはそれぞれk=4212[N/m],c=1.4571[Ns/m]であるとの結果を得た。この結果よりエラストマ5に応じた質量板7の最適な質量mはmopt =3.001[g]と求められた。   As the dynamic vibration absorber, it was assumed that one piece of elastomer 5 cut out to a thickness of 2 mm was disposed at each of the four corners of the mass plate 7. As the elastomer 5, curve fitting is performed based on the gain diagram of the material vibration experiment exemplified in the above-mentioned JP 2000-143994A, and the elastic component k and the viscous component c of the elastomer 5 are k = 4212, respectively. The result of [N / m], c = 1.4571 [Ns / m] was obtained. From this result, the optimum mass m of the mass plate 7 corresponding to the elastomer 5 was determined to be mopt = 3.001 [g].

図5に示すように、構造物93に何も対策を施さなかった無制御の場合は1次モード,2次モード共に振動を抑制することができず、シャント回路10が接続された圧電素子3のみを構造物93に貼着した場合は高周波側の2次モードで振動を抑制することができず、エラストマ5及び質量板7のみを構造物93に貼着した場合は低周波側の1次モードで振動を抑制することができなかった。これに対して、圧電素子3とエラストマ5との両方を備えた本実施の形態の振動抑制装置では、1次モード,2次モード共に振動を良好に抑制することができた。このため、例えばノートパソコンの筐体等に本実施の形態の振動抑制装置を適用すれば、その筐体がハードディスク等から伝わる振動によって騒音を立てるいわゆるビビリが発生するのを良好に抑制することができる。   As shown in FIG. 5, in the case of no control in which no measures are taken on the structure 93, vibration cannot be suppressed in both the primary mode and the secondary mode, and the piezoelectric element 3 to which the shunt circuit 10 is connected. In the case where only the elastomer 5 and the mass plate 7 are adhered to the structure 93, vibration cannot be suppressed in the secondary mode on the high frequency side. The vibration could not be suppressed in the mode. On the other hand, in the vibration suppressing device of the present embodiment including both the piezoelectric element 3 and the elastomer 5, vibrations can be suppressed well in both the primary mode and the secondary mode. For this reason, for example, if the vibration suppression device according to the present embodiment is applied to a casing of a notebook computer or the like, it is possible to satisfactorily suppress the occurrence of so-called chatter that makes noise due to vibration transmitted from the hard disk or the like. it can.

なお、本発明は上記実施の形態になんら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、圧電素子3やエラストマ5としては上記以外の種々の素材を使用することができる。また、シャント回路10は抵抗器のみで構成されてもよく、更にコンデンサ等を備えた回路であってもよい。   In addition, this invention is not limited to the said embodiment at all, It can implement with a various form in the range which does not deviate from the summary of this invention. For example, various materials other than those described above can be used as the piezoelectric element 3 and the elastomer 5. Further, the shunt circuit 10 may be configured only by a resistor, and may be a circuit further including a capacitor or the like.

本発明が適用された振動抑制装置の構成を表す斜視図である。It is a perspective view showing the structure of the vibration suppression apparatus to which this invention was applied. その振動抑制装置のダンパの構成を一部破断して表す斜視図である。It is a perspective view which represents the structure of the damper of the vibration suppression device partly broken. そのダンパの圧電素子及び電極の構成を模式的に表す断面図である。It is sectional drawing which represents typically the structure of the piezoelectric element and electrode of the damper. そのダンパの動吸振器としての構成を模式的に表す説明図である。It is explanatory drawing which represents typically the structure as a dynamic vibration absorber of the damper. 上記振動抑制装置の効果をシミュレーションで表すグラフである。It is a graph showing the effect of the said vibration suppression apparatus by simulation. 上記振動抑制装置に適用可能な電子インダクタを例示する回路図である。It is a circuit diagram which illustrates the electronic inductor applicable to the said vibration suppression apparatus.

符号の説明Explanation of symbols

1…ダンパ 3…圧電素子 5…エラストマ 7…質量板
10…シャント回路 11…リード線 13…コイル 15…抵抗器
91…振動源 93…構造物
DESCRIPTION OF SYMBOLS 1 ... Damper 3 ... Piezoelectric element 5 ... Elastomer 7 ... Mass board 10 ... Shunt circuit 11 ... Lead wire 13 ... Coil 15 ... Resistor 91 ... Vibration source 93 ... Structure

Claims (4)

撓みを伴って振動する板状体に貼着される板状の圧電素子と、
該圧電素子に接続されたシャント回路と、
上記圧電素子の、上記板状体への貼着面とは反対面に積層された板状のエラストマと、
該エラストマの、上記圧電素子への積層面とは反対面に積層された質量板と、
を備えたことを特徴とする振動抑制装置。
A plate-like piezoelectric element adhered to a plate-like body that vibrates with bending;
A shunt circuit connected to the piezoelectric element;
A plate-like elastomer laminated on the opposite surface of the piezoelectric element to the plate-like body;
A mass plate laminated on a surface opposite to the laminated surface of the elastomer on the piezoelectric element;
A vibration suppressing device comprising:
上記圧電素子は、厚さ方向に分極され、
その圧電素子の厚さ方向の両面に一対の電極が設けられ、
該一対の電極間に上記シャント回路が接続されたことを特徴とする請求項1記載の振動抑制装置。
The piezoelectric element is polarized in the thickness direction,
A pair of electrodes are provided on both sides of the piezoelectric element in the thickness direction,
2. The vibration suppressing device according to claim 1, wherein the shunt circuit is connected between the pair of electrodes.
上記エラストマは、スチレン系エラストマにオイルを充填してなるゲル状物質であることを特徴とする請求項1または2記載の振動抑制装置。   The vibration suppressing device according to claim 1 or 2, wherein the elastomer is a gel-like substance obtained by filling a styrene elastomer with oil. 上記シャント回路は、インダクタと抵抗器との直列回路からなることを特徴とする請求項1〜3のいずれかに記載の振動抑制装置。   The vibration suppression apparatus according to claim 1, wherein the shunt circuit includes a series circuit of an inductor and a resistor.
JP2007293446A 2007-11-12 2007-11-12 Vibration suppression device Active JP4810646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293446A JP4810646B2 (en) 2007-11-12 2007-11-12 Vibration suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293446A JP4810646B2 (en) 2007-11-12 2007-11-12 Vibration suppression device

Publications (2)

Publication Number Publication Date
JP2009121520A true JP2009121520A (en) 2009-06-04
JP4810646B2 JP4810646B2 (en) 2011-11-09

Family

ID=40813881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293446A Active JP4810646B2 (en) 2007-11-12 2007-11-12 Vibration suppression device

Country Status (1)

Country Link
JP (1) JP4810646B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971228B1 (en) 2009-08-14 2010-07-20 전남대학교산학협력단 The shunt damper using ionic polymer metal composite
CN105402300A (en) * 2015-11-24 2016-03-16 南昌航空大学 Frequency-adjustable arm beam type dynamic vibration absorber based on piezoelectric shunt circuit
CN105443635A (en) * 2016-01-07 2016-03-30 南昌航空大学 Frequency adjustable stair beam type dynamic vibration absorber based on piezoelectric feedback control
JP2016109283A (en) * 2014-12-10 2016-06-20 学校法人 関西大学 Dynamic vibration absorber and design method of the same
JP2017141948A (en) * 2016-02-10 2017-08-17 テセラ・テクノロジー株式会社 Vibration absorber
JP2018091437A (en) * 2016-12-06 2018-06-14 株式会社免制震ディバイス Multilayer rubber base isolation device or viscous mass damper with spring
CN114483869A (en) * 2022-01-26 2022-05-13 同济大学 Flexible plate vibration reduction device and method based on piezoelectric nonlinear energy trap
CN114483869B (en) * 2022-01-26 2024-04-23 同济大学 Flexible plate vibration reduction device and method based on piezoelectric nonlinear energy well

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793912B2 (en) * 2016-04-28 2020-12-02 国立大学法人東海国立大学機構 Vibration processing equipment and vibration processing method
CN110985592B (en) * 2019-11-12 2021-06-29 上海交通大学 Piezoelectric shunt semi-passive control device for vibration control of propulsion shafting and design method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140982A (en) * 1999-11-10 2001-05-22 Kitagawa Ind Co Ltd Vibration control device
JP2002061708A (en) * 2000-08-17 2002-02-28 Nkk Corp Structure vibration control device
JP2003288856A (en) * 2002-03-28 2003-10-10 Jeol Ltd Charged particle beam device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140982A (en) * 1999-11-10 2001-05-22 Kitagawa Ind Co Ltd Vibration control device
JP2002061708A (en) * 2000-08-17 2002-02-28 Nkk Corp Structure vibration control device
JP2003288856A (en) * 2002-03-28 2003-10-10 Jeol Ltd Charged particle beam device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971228B1 (en) 2009-08-14 2010-07-20 전남대학교산학협력단 The shunt damper using ionic polymer metal composite
JP2016109283A (en) * 2014-12-10 2016-06-20 学校法人 関西大学 Dynamic vibration absorber and design method of the same
CN105402300A (en) * 2015-11-24 2016-03-16 南昌航空大学 Frequency-adjustable arm beam type dynamic vibration absorber based on piezoelectric shunt circuit
CN105443635A (en) * 2016-01-07 2016-03-30 南昌航空大学 Frequency adjustable stair beam type dynamic vibration absorber based on piezoelectric feedback control
JP2017141948A (en) * 2016-02-10 2017-08-17 テセラ・テクノロジー株式会社 Vibration absorber
JP2018091437A (en) * 2016-12-06 2018-06-14 株式会社免制震ディバイス Multilayer rubber base isolation device or viscous mass damper with spring
CN114483869A (en) * 2022-01-26 2022-05-13 同济大学 Flexible plate vibration reduction device and method based on piezoelectric nonlinear energy trap
CN114483869B (en) * 2022-01-26 2024-04-23 同济大学 Flexible plate vibration reduction device and method based on piezoelectric nonlinear energy well

Also Published As

Publication number Publication date
JP4810646B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4810646B2 (en) Vibration suppression device
JP4761459B2 (en) Piezoelectric vibration unit and piezoelectric speaker
JP5665986B2 (en) Sound generator and sound generator using the same
JP5086146B2 (en) Ultrasonic vibrator and ultrasonic equipment including the same
JP2007103496A (en) Capacitor and substrate assembly
JP2003527046A (en) Packaged strain actuator
US20150333699A1 (en) Vibration generating apparatus and electronic apparatus including the same
JP2006229647A (en) Acoustic vibrator for bone conduction
JP2014198329A (en) Piezoelectric vibration module
JP2013233545A (en) Piezoelectric vibration module
Hollkamp et al. An experimental comparison of piezoelectric and constrained layer damping
US10830302B2 (en) Continuous framework for shock, vibration and thermal isolation and motion accommodation
JP2022516897A (en) Amplified deformation type piezoelectric actuator
Guyomar et al. Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique
JP2004266643A (en) Piezoelectric sounding element and its manufacturing method
JP4931073B2 (en) Piezoelectric device for generating acoustic signals
KR101640446B1 (en) Piezoelectric vibration actuator
JP2013099130A (en) Vibration power generation device
US11571712B2 (en) Vibration panel and electronic apparatus
JP5534938B2 (en) Piezoelectric speaker
WO2019130862A1 (en) Power generation device
JP2016046366A (en) Electronic apparatus
Aloufi et al. Modeling and design of a high-performance hybrid actuator
JP2003230193A (en) Piezoelectric speaker
Gao et al. Modeling and control of power flow in a double-beam system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4810646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250