JP2009120947A - Galvanized steel member having excellent corrosion resistance and weldability and coated steel member having excellent corrosion resistance - Google Patents

Galvanized steel member having excellent corrosion resistance and weldability and coated steel member having excellent corrosion resistance Download PDF

Info

Publication number
JP2009120947A
JP2009120947A JP2008272265A JP2008272265A JP2009120947A JP 2009120947 A JP2009120947 A JP 2009120947A JP 2008272265 A JP2008272265 A JP 2008272265A JP 2008272265 A JP2008272265 A JP 2008272265A JP 2009120947 A JP2009120947 A JP 2009120947A
Authority
JP
Japan
Prior art keywords
corrosion resistance
zinc
plating layer
based alloy
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008272265A
Other languages
Japanese (ja)
Other versions
JP5640312B2 (en
Inventor
Koichi Nose
幸一 能勢
Yasuhide Morimoto
康秀 森本
公平 ▲徳▼田
Kohei Tokuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008272265A priority Critical patent/JP5640312B2/en
Publication of JP2009120947A publication Critical patent/JP2009120947A/en
Application granted granted Critical
Publication of JP5640312B2 publication Critical patent/JP5640312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel member having excellent corrosion resistance and weldability, and to provide a coated steel member having excellent corrosion resistance obtained by applying coating to the steel member. <P>SOLUTION: The galvanized steel member having excellent corrosion resistance and weldability is characterized in that the surface of a steel member is provided with a galvanized layer comprising, by mass, 1 to 10% Mg, 2 to 19% Al, 0.01 to 2% Si and 2 to 75% Fe, and the balance Zn with inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐食性に優れる表面処理鋼材と、該鋼材に塗装を施した塗装鋼材、特に、耐食性と溶接性に優れる亜鉛系合金めっき鋼材、及び、該鋼材に塗装を施した塗装鋼材に関する。   The present invention relates to a surface-treated steel material excellent in corrosion resistance, a coated steel material coated on the steel material, in particular, a zinc-based alloy plated steel material excellent in corrosion resistance and weldability, and a coated steel material coated on the steel material.

亜鉛系めっき鋼材は、自動車、家電、建材等の幅広い分野で使用されているが、長期間の防錆効果を確保するため、通常、高付着量の亜鉛系めっきが施されている。   Zinc-based plated steel materials are used in a wide range of fields such as automobiles, home appliances, and building materials. However, in order to ensure a long-term rust prevention effect, zinc-based plating with a high adhesion amount is usually applied.

この理由は、亜鉛系めっきの腐食速度が鋼材に比較し遅いことに加え、地鉄が露出した場所において、腐食電位の低い亜鉛が犠牲防食機能を発揮するので、単位面積当たりの亜鉛量が多い程、亜鉛の消費で得られる上記耐食・防食効果を、長期間、保持することができるからである。   The reason for this is that the corrosion rate of zinc-based plating is slower than that of steel, and zinc with a low corrosion potential exerts a sacrificial anti-corrosion function in places where the steel is exposed, so there is a large amount of zinc per unit area. This is because the corrosion resistance and anticorrosion effect obtained by the consumption of zinc can be maintained for a long time.

また、通常、鋼材に塗装を施して耐食性を確保する場合、塗装後の鋼材において、地鉄に達する疵が塗膜に生じたとき、疵部及びその周辺の鋼材の腐食に伴い、塗膜に膨れを伴う腐食が進行することがある。この腐食形態に対しても、亜鉛系めっき鋼材は、めっきのない裸鋼材に比べ、優れた耐食性を発揮するが、この耐食性に対しても、めっきは、高付着量であるほうが有利である。   Also, normally, when applying corrosion to steel to ensure corrosion resistance, in the coated steel, when flaws that reach the base iron occur in the coating, Corrosion with blistering may progress. Even in this corrosion form, the zinc-based plated steel material exhibits excellent corrosion resistance as compared with the bare steel material without plating, but for this corrosion resistance, it is advantageous that the plating has a high adhesion amount.

しかし、亜鉛付着量が多くなると、鋼材の加工性、溶接性等の材質特性が劣化する傾向にあるので、可能であれば、より低付着量のめっきで、高耐食性を確保することが望ましい。それ故、亜鉛めっきに合金元素を添加し、低付着量で、充分な耐食性を確保することが、これまで、数多く提案されている。   However, when the zinc adhesion amount increases, the material properties such as workability and weldability of the steel material tend to deteriorate. Therefore, if possible, it is desirable to ensure high corrosion resistance with a lower adhesion amount plating. Therefore, many proposals have heretofore been made to add alloying elements to galvanizing to ensure sufficient corrosion resistance with a low adhesion amount.

実際に、Zn−Ni系合金めっき、Zn−Fe系合金めっき等は、自動車用鋼板を中心に広く適用され、また、Zn−Al系合金めっきは、建築材を中心に広く適用されている。特許文献1及び2には、耐食性のさらなる向上のため、MgやSiを、Zn−Al系合金めっきに添加しためっき鋼材が開示されている。   Actually, Zn—Ni alloy plating, Zn—Fe alloy plating, and the like are widely applied mainly to automobile steel plates, and Zn—Al alloy plating is widely applied mainly to building materials. Patent Documents 1 and 2 disclose plated steel materials in which Mg and Si are added to Zn—Al based alloy plating for further improvement of corrosion resistance.

しかし、めっきへのAlの添加は、塗装後の膨れを伴う腐食の進行に対する耐食性を劣化させる。この原因の一つは、Alを高濃度で添加すると、めっき層と塗膜との密着性を担う化成処理性が劣化して、塗膜の密着性が損なわれるためである。   However, the addition of Al to the plating deteriorates the corrosion resistance against the progress of corrosion accompanied by swelling after coating. One reason for this is that, when Al is added at a high concentration, the chemical conversion treatment that is responsible for the adhesion between the plating layer and the coating film deteriorates, and the adhesion of the coating film is impaired.

一方、Alの添加量が、充分な化成処理性を確保し得る比較的低濃度の量であっても、アルカリ環境下でのAlの溶解性が、Znより高いため、塗膜下で生じる腐食のカソード反応により、めっきが曝される水溶液環境がアルカリ化したときに、めっきの耐食性が劣化して、塗膜の膨れの進行が促進されるという問題が生じる。   On the other hand, even if the amount of Al added is a relatively low concentration that can ensure sufficient chemical conversion treatment, the solubility of Al in an alkaline environment is higher than that of Zn. When the aqueous solution environment to which the plating is exposed is alkalized by this cathode reaction, the corrosion resistance of the plating deteriorates, and the problem that the progress of the swelling of the coating film is promoted occurs.

また、めっきへのAlの添加は、めっき鋼材の溶接性を劣化させる。特に、スポット溶接で用いる電極の寿命に対する影響が大きく、非特許文献1には、Al含有量が多いほど、連続打点性が劣化することが開示されている。   Moreover, the addition of Al to the plating deteriorates the weldability of the plated steel material. In particular, the influence on the life of the electrode used in spot welding is great, and Non-Patent Document 1 discloses that the continuous spot property deteriorates as the Al content increases.

そのような背景のもとで、Zn系めっき鋼板において、地鉄(Fe)とZnを合金化し、スポット溶接性を高めた合金化溶融亜鉛めっき鋼板が開発されている。この鋼板は、めっき層の融点を、FeとZnの合金化により高温化して、溶接チップ(Cu合金製)のCuとの反応を抑制したものである。   Against this background, alloyed hot-dip galvanized steel sheets having improved spot weldability have been developed by alloying ground iron (Fe) and Zn in Zn-based plated steel sheets. In this steel sheet, the melting point of the plating layer is raised to a high temperature by alloying Fe and Zn, and the reaction with Cu of the welding tip (made of Cu alloy) is suppressed.

しかし、Alを含有するめっきにおいては、Alが、優先的にFeと合金化して、バリア層となり、めっき層全体の合金化が進行し難くなる。それ故、これまで、Alを1%以上含有する亜鉛系合金めっきを施した鉄−亜鉛系合金めっき鋼材は開発されていない。   However, in plating containing Al, Al is preferentially alloyed with Fe to form a barrier layer, and alloying of the entire plating layer is difficult to proceed. Therefore, until now, an iron-zinc alloy plated steel material subjected to zinc alloy plating containing 1% or more of Al has not been developed.

特許第3179446号公報Japanese Patent No. 3179446 特許第3561421号公報Japanese Patent No. 3561421 江里口徹、曽我聡、朝田博、井上正二:日新製鋼技報、72(1995)p.35−44Toru Eriguchi, Soga So, Hiroshi Asada, Shoji Inoue: Nisshin Steel Engineering Reports, 72 (1995) p. 35-44

本発明は、亜鉛系合金めっき鋼板のめっき層において、Al添加による一般的な耐食性の向上効果を保持しながら、溶接性の劣化、及び、塗装後の膨れに対する耐食性の劣化を抑制し、耐食性と溶接性に優れる亜鉛系合金めっき鋼材、及び、該鋼材に塗装を施した耐食性に優れる塗装鋼材を提供することを目的とする。   The present invention suppresses deterioration of weldability and corrosion resistance against blistering after coating while maintaining the general effect of improving corrosion resistance due to the addition of Al in the plated layer of the zinc-based alloy-plated steel sheet. An object is to provide a zinc-based alloy-plated steel material excellent in weldability, and a coated steel material excellent in corrosion resistance obtained by coating the steel material.

本発明者らは、特許文献1及び特許文献2を参考に、スポット溶接性に優れた高耐食性の亜鉛系合金めっき鋼材の開発に、鋭意取り組んだ。   With reference to Patent Literature 1 and Patent Literature 2, the present inventors diligently developed a highly corrosion-resistant zinc-based alloy plated steel material excellent in spot weldability.

亜鉛系合金めっき鋼材の一つに、めっき層の溶接性を高めた合金化溶融亜鉛めっき鋼材がある。これは、亜鉛と地鉄(Fe)を合金化して、高融点のZn−Fe合金のめっき層を形成して、電極チップ(Cu合金製)のCuの合金化反応を大幅に抑制したものである。   One of the zinc-based alloy-plated steel materials is an alloyed hot-dip galvanized steel material with improved weldability of the plating layer. This is an alloy of zinc and ground iron (Fe) to form a high melting point Zn-Fe alloy plating layer, which significantly suppresses the Cu alloying reaction of the electrode tip (made of Cu alloy). is there.

めっき層がAlを含有していても、亜鉛が地鉄と合金化し、高融点のめっき層が形成されれば、スポット溶接性は向上すると考えられるが、通常、めっき層が、Alを1%以上含有していると、地鉄との界面に、Fe−Al合金層が生成し、これがバリア層となって、合金化が進行しない。   Even if the plating layer contains Al, it is considered that spot weldability is improved if zinc is alloyed with the base iron to form a high melting point plating layer, but the plating layer usually contains 1% of Al. When it contains above, a Fe-Al alloy layer will produce | generate at an interface with a ground iron, this will become a barrier layer, and alloying will not advance.

本発明者らは、これらのことを踏まえ、スポット溶接性を高める手法について、熱処理、又は、蒸着による合金化法も駆使して、詳細に検討した。   Based on these facts, the present inventors have studied in detail the technique for enhancing the spot weldability, using heat treatment or alloying method by vapor deposition.

その結果、所要量のFeを含有する亜鉛系めっきにおいては、大容量の誘導加熱装置などを利用して、高速で、高温に昇温する熱処理や、蒸着による合金めっきにより、
(i)めっき層のスポット溶接性が有意に向上すること、及び、
(ii)塗装後の膨れに対する耐食性も向上すること、
を見出した。
As a result, in zinc-based plating containing the required amount of Fe, by using a large-capacity induction heating device or the like, heat treatment to raise the temperature to high temperature at high speed or alloy plating by vapor deposition,
(I) the spot weldability of the plating layer is significantly improved, and
(Ii) improved corrosion resistance against blistering after painting;
I found.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1) 鋼材の表面に、質量%で、
Mg:1〜10%、
Al:2〜19%、
Si:0.01〜2%、及び、
Fe:2〜75%を含有し、残部がZn及び不可避的不純物よりなる亜鉛系合金めっき層を有することを特徴とする耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
(1) On the surface of the steel material,
Mg: 1-10%
Al: 2 to 19%,
Si: 0.01-2%, and
A zinc-based alloy-plated steel material excellent in corrosion resistance and weldability, characterized by having a zinc-based alloy plating layer containing Fe: 2 to 75%, the balance being Zn and inevitable impurities.

(2) 前記亜鉛系合金めっき層が、質量%で、Fe:2〜72%を含有し、かつ、該めっき層中のFe、Mg、及び、Alが、下記式、
Fe(%)+Mg(%)+Al(%)≦75
を満たすことを特徴とする前記(1)に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
(2) The zinc-based alloy plating layer contains, in mass%, Fe: 2 to 72%, and Fe, Mg, and Al in the plating layer are represented by the following formulas:
Fe (%) + Mg (%) + Al (%) ≦ 75
The zinc-based alloy plated steel material having excellent corrosion resistance and weldability as described in (1) above.

(3) 前記亜鉛系合金めっき層が、質量%で、Fe:2〜50%を含有することを特徴とする前記(1)又は(2)に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。   (3) The zinc-based alloy plating layer having excellent corrosion resistance and weldability according to (1) or (2), wherein the zinc-based alloy plating layer contains Fe: 2 to 50% by mass%. Steel material.

(4) 前記亜鉛系合金めっき層が、質量%で、Feを、20%を超えて含有することを特徴とする前記(1)〜(3)のいずれかに記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。   (4) The zinc-based alloy plating layer is excellent in corrosion resistance and weldability according to any one of (1) to (3), wherein the zinc-based alloy plating layer contains Fe in an amount of 20% by mass. Zinc-based alloy plated steel.

(5) 前記亜鉛系合金めっき層の中に、Mg2Siが分散して存在することを特徴とする前記(1)〜(4)のいずれかに記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。 (5) The zinc-based alloy having excellent corrosion resistance and weldability according to any one of (1) to (4), wherein Mg 2 Si is dispersed in the zinc-based alloy plating layer Plated steel.

(6) 前記亜鉛系合金めっき層が、さらに、質量%で、
Ca:0.01〜0.5%、
Ti:0.01〜0.2%、
Cu:0.1〜1.0%、
Ni:0.01〜0.2%、
Co:0.01〜0.3%、
Cr:0.01〜0.2%、及び、
Mn:0.01〜0.5%の1種又は2種以上を含有することを特徴とする前記(1)〜(5)のいずれかに記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
(6) The zinc-based alloy plating layer is further in mass%,
Ca: 0.01 to 0.5%,
Ti: 0.01-0.2%
Cu: 0.1 to 1.0%
Ni: 0.01-0.2%
Co: 0.01 to 0.3%
Cr: 0.01 to 0.2%, and
Mn: zinc-based alloy-plated steel material excellent in corrosion resistance and weldability according to any one of (1) to (5), characterized by containing one or more of 0.01 to 0.5% .

(7) 前記(1)〜(6)のいずれかに記載の亜鉛系合金めっき鋼材の亜鉛系合金めっき層の上に、中間層として化成処理被膜層を形成し、さらに、その上に、有機被膜層を形成したことを特徴とする耐食性に優れる塗装鋼材。   (7) A chemical conversion coating layer is formed as an intermediate layer on the zinc-based alloy plated steel layer of the zinc-based alloy-plated steel material according to any one of (1) to (6), and an organic layer is further formed thereon. Painted steel material with excellent corrosion resistance, characterized by forming a coating layer.

本発明によれば、耐食性と溶接性に優れる亜鉛系合金めっき鋼材と、該鋼材に塗装を施した、塗装後の一般的な耐食性に優れるとともに、疵部からの膨れに対する耐食性にも優れる塗装鋼材を提供することができる。   According to the present invention, a zinc-based alloy-plated steel material excellent in corrosion resistance and weldability, and a coated steel material excellent in general corrosion resistance after coating and excellent in corrosion resistance against swelling from the buttock, which is applied to the steel material Can be provided.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の亜鉛系合金めっき鋼材(本発明めっき鋼材)は、鋼材の表面に、質量%で、Mg:1〜10%、Al:2〜19%、Si:0.01〜2%、及び、Fe:2〜75%を含有し、残部がZn及び不可避的不純物よりなる亜鉛系合金めっき層を有することを特徴とするものである。   The zinc-based alloy-plated steel material of the present invention (the present invention-plated steel material) is, on the surface of the steel material, in mass%, Mg: 1 to 10%, Al: 2 to 19%, Si: 0.01 to 2%, and Fe: 2 to 75% is contained, and the balance has a zinc-based alloy plating layer made of Zn and inevitable impurities.

はじめに、亜鉛系合金めっき層の成分組成に係る限定理由について説明する。なお、以下、%は、質量%を意味する。   First, the reason for limitation related to the component composition of the zinc-based alloy plating layer will be described. Hereinafter, “%” means mass%.

Mgは、めっき層の耐食性を高めるために添加する。Mgが1%未満では、耐食性向上効果が発現しないので、下限を1%とする。一方、Mgが10%を超えると、多すぎて、めっき層が脆くなり、密着性が低下するので、上限を10%とする。好ましくは、3〜6%である。   Mg is added to increase the corrosion resistance of the plating layer. If Mg is less than 1%, the effect of improving corrosion resistance is not manifested, so the lower limit is made 1%. On the other hand, if Mg exceeds 10%, it is too much, the plating layer becomes brittle, and the adhesion decreases, so the upper limit is made 10%. Preferably, it is 3 to 6%.

なお、耐食性の向上に寄与するMg2Siを、めっき層の凝固組織に分散させるため、Mgは3%以上が好ましい。 In order to disperse Mg 2 Si contributing to the improvement of corrosion resistance in the solidified structure of the plating layer, the Mg content is preferably 3% or more.

Alは、めっき層の耐食性を高めるとともに、めっき層に所要の強度、靭性を付与するために添加する。Alが2%未満では、所要の強度、靭性が得られず、めっき層が脆くなって、密着性が低下するので、下限を2%とする。一方、Alが19%を超えると、耐食性向上効果が飽和するので、上限を19%とする。好ましくは、5〜15%である。   Al is added to increase the corrosion resistance of the plating layer and to impart the required strength and toughness to the plating layer. If Al is less than 2%, the required strength and toughness cannot be obtained, the plating layer becomes brittle, and the adhesion decreases, so the lower limit is made 2%. On the other hand, if Al exceeds 19%, the effect of improving corrosion resistance is saturated, so the upper limit is made 19%. Preferably, it is 5 to 15%.

なお、耐食性の向上に寄与するMg2Siを、めっき層の凝固組織に分散させるため、Alは4%以上が好ましい。 In order to disperse Mg 2 Si contributing to the improvement of corrosion resistance in the solidified structure of the plating layer, Al is preferably 4% or more.

Siは、めっき中のAlと鋼板中のFeの反応を抑制し、鋼板とめっき層の密着性を確保するために添加する。Siが0.01%未満では、めっき中のAlと鋼板中のFeが反応してめっき層が脆くなり、密着性が低下するので、下限を0.01%とする。一方、Siが2%を超えると、密着性向上効果が飽和するので、上限を2%とする。   Si is added to suppress the reaction between Al in the plating and Fe in the steel sheet and to secure the adhesion between the steel sheet and the plating layer. When Si is less than 0.01%, Al in the plating reacts with Fe in the steel sheet to make the plating layer brittle and lower the adhesion, so the lower limit is made 0.01%. On the other hand, if Si exceeds 2%, the adhesion improving effect is saturated, so the upper limit is made 2%.

Feは、めっき層のスポット溶接性を高め、また、塗装後の膨れに対する耐食性を高めるために添加する。Feが2%未満では、上記向上効果が顕著に発現しないので、下限を2%とする。スポット溶接性、塗装後の膨れ耐食性の観点から、Feは、20%超であるとさらに好ましい。   Fe is added to increase the spot weldability of the plating layer and to increase the corrosion resistance against swelling after coating. If the Fe content is less than 2%, the above improvement effect does not appear remarkably, so the lower limit is made 2%. From the viewpoint of spot weldability and blistering corrosion resistance after coating, Fe is more preferably more than 20%.

一方、Feが75%を超えると、めっき層の腐食電位が地鉄の腐食電位と近くなり、犠牲防食能が低下するので、上限を75%とする。Feの含有量は、次に説明するMg及びAlの含有量との関係で、2〜72%が好ましく、2〜50%が、より好ましい。   On the other hand, if Fe exceeds 75%, the corrosion potential of the plating layer becomes close to the corrosion potential of the base iron, and the sacrificial anticorrosive ability decreases, so the upper limit is made 75%. The content of Fe is preferably 2 to 72% and more preferably 2 to 50% in relation to the contents of Mg and Al described below.

また、製造性の観点から、Feの含有量は、Alの含有量の3倍以内が好ましい。これは、この成分範囲での金属間化合物(Al5Fe2相やAlFe相)を、短時間の合金化熱処理によっても、比較的、形成させ易いからである。Feの含有量がAlの含有量の3倍を超えると、合金化のための熱処理時間が長すぎて、実用的でない場合が生じる。 Further, from the viewpoint of manufacturability, the Fe content is preferably within 3 times the Al content. This is because an intermetallic compound (Al 5 Fe 2 phase or AlFe phase) in this component range is relatively easily formed even by a short alloying heat treatment. If the Fe content exceeds 3 times the Al content, the heat treatment time for alloying is too long, which may be impractical.

これらを踏まえためっき層中のFeの好適な含有量は、質量%で、20%超、50%以下である。   The suitable content of Fe in the plating layer based on these is mass%, more than 20% and not more than 50%.

本発明めっき鋼材においては、めっき層中のFe、Mg、及び、Alの含有量は、
Fe(%)+Mg(%)+Al(%)≦75%
を満たすことが好ましい。
In the present plated steel material, the contents of Fe, Mg, and Al in the plating layer are as follows:
Fe (%) + Mg (%) + Al (%) ≦ 75%
It is preferable to satisfy.

Fe、Mg、及び、Alの合計量が75%を超えると、めっき層中のZn量が相対的に少量となって、Znの犠牲防食効果が小さくなり、耐食性が低下する。それ故、上記合計量の上限を75%にする。   If the total amount of Fe, Mg, and Al exceeds 75%, the amount of Zn in the plating layer becomes relatively small, and the sacrificial anticorrosive effect of Zn is reduced, and the corrosion resistance is lowered. Therefore, the upper limit of the total amount is set to 75%.

本発明めっき鋼材において、Al、Mg、及び、Siの含有量を多くし、めっき層の凝固組織にMg2Siを分散せしめると、耐食性がより向上する。Mg2Siは、めっき層の凝固組織において、光学的顕微鏡で、明瞭な島状の輪郭をもって観察できる金属間化合物であり、Al−Mg−Siの三元系平衡状態図に示されている初晶Mg2Siである。 In the plated steel material of the present invention, when the contents of Al, Mg, and Si are increased and Mg 2 Si is dispersed in the solidified structure of the plating layer, the corrosion resistance is further improved. Mg 2 Si is an intermetallic compound that can be observed with a clear island-like outline in the solidification structure of the plating layer with an optical microscope, and is the first shown in the Al—Mg—Si ternary equilibrium diagram. It is crystalline Mg 2 Si.

初晶のMg2Siは、めっき層の耐食性の向上に大きくに寄与するが、このことは、Mg2Siが非常に活性な金属間化合物であることに由来する。 The primary crystal Mg 2 Si greatly contributes to the improvement of the corrosion resistance of the plating layer. This is because Mg 2 Si is a very active intermetallic compound.

Mg2Si以外の、めっき金属の母相を形成する、Zn−Al−Mg−Fe系合金は、Feとの合金化の程度によって、Zn相、Al相、Zn−Fe相(Γ相、δ相、ζ相など)、Al−Fe相(主に、Al5Fe2相、Al3Fe4相、AlFe相)、Mg−Zn相(主に、MgZn2相)の1つ以上から構成されているが、これらのいずれもが、Mg2Si相より電位が貴であり、優先してMg2Si相が水と反応するのである。 A Zn—Al—Mg—Fe alloy other than Mg 2 Si, which forms the matrix phase of the plated metal, has a Zn phase, Al phase, Zn—Fe phase (Γ phase, δ, depending on the degree of alloying with Fe. Phase, ζ phase, etc.), Al—Fe phase (mainly Al 5 Fe 2 phase, Al 3 Fe 4 phase, AlFe phase), Mg—Zn phase (mainly MgZn 2 phase). However, all of these have a higher potential than the Mg 2 Si phase, and the Mg 2 Si phase reacts preferentially with water.

即ち、腐食環境下において、活性なMg2Siが、水と反応して分解し、Zn−Al−Mg−Fe系合金である、めっきの母相金属組織を犠牲防食作用で防食するとともに、上記反応で生成するMg水酸化物が、保護性の被膜を形成して、腐食の進行を抑制すると考えられる。 That is, in a corrosive environment, active Mg 2 Si reacts with water and decomposes, and the matrix metal structure of the plating, which is a Zn—Al—Mg—Fe alloy, is prevented by sacrificial anticorrosive action. It is considered that Mg hydroxide generated by the reaction forms a protective film and suppresses the progress of corrosion.

なお、めっき層の凝固組織に、所要量の活性Mg2Siを分散させるには、前述したように、Mgは3%以上が好ましく、Alは4%以上が好ましい。 In order to disperse a required amount of active Mg 2 Si in the solidified structure of the plating layer, as described above, Mg is preferably 3% or more, and Al is preferably 4% or more.

本発明めっき鋼材においては、めっき層に、塗装後の耐食性の向上を図るため、Ca、Ti、Cu、Ni、Co、Cr、及び、Mnの1種又は2種以上を添加する。   In the plated steel material of the present invention, one or more of Ca, Ti, Cu, Ni, Co, Cr, and Mn are added to the plating layer in order to improve the corrosion resistance after coating.

これらの元素がめっき層中に存在すると、(a)めっき層の表面に生成する薄膜がより不働態化し、該薄膜下のめっき層の腐食が遅延し、(b)上記薄膜が、めっき層と塗膜の界面での反応を抑制して塗膜を安定化し、及び/又は、(c)めっき層の表面に微細な凹凸が形成され、該微細凹凸が、塗膜に対して投錨効果を発揮して、塗装後の耐食性が向上する。   When these elements are present in the plating layer, (a) the thin film formed on the surface of the plating layer is more passivated, the corrosion of the plating layer under the thin film is delayed, and (b) the thin film is formed with the plating layer. Suppresses the reaction at the interface of the coating to stabilize the coating and / or (c) the surface of the plating layer has fine irregularities, and the fine irregularities exert an anchoring effect on the coating Thus, the corrosion resistance after painting is improved.

塗装後の耐食性向上効果は、Ca、Ti、Ni、Co、Cr、及び、Mnについては、いずれも、0.01%以上の添加で発現し、Cuについては、0.1%以上で発現する。   The effect of improving the corrosion resistance after painting is manifested by adding 0.01% or more for Ca, Ti, Ni, Co, Cr, and Mn, and manifesting by 0.1% or more for Cu. .

一方、添加量が多くなると、めっき後の外観が粗雑になり、例えば、ドロス、酸化物等の付着で、外観不良が発生するので、添加量の上限は、Ca:0.5%、Ti:0.2%、Cu:1.0%、Ni:0.2%、Co:0.3%、Cr:0.2%、Mn:0.5%とする。   On the other hand, when the addition amount increases, the appearance after plating becomes rough. For example, poor appearance occurs due to adhesion of dross, oxide, etc., so the upper limit of the addition amount is Ca: 0.5%, Ti: 0.2%, Cu: 1.0%, Ni: 0.2%, Co: 0.3%, Cr: 0.2%, Mn: 0.5%.

なお、めっき層中のPb、Sn、及び、Sbについては、それぞれ、0.1%以下、0.02%以下、及び、0.1%以下に抑制するのが望ましい。   In addition, about Pb, Sn, and Sb in a plating layer, it is desirable to suppress to 0.1% or less, 0.02% or less, and 0.1% or less, respectively.

これは、めっき浴中において、Pb、Sn、及び、Sbの量を抑制すると、初期のめっきと鋼材表面の初期反応性が向上し、合金化が進行し易いためである。   This is because when the amounts of Pb, Sn, and Sb are suppressed in the plating bath, the initial plating and the initial reactivity of the steel material surface are improved, and alloying easily proceeds.

本発明めっき鋼材に係る溶融めっき方法は、所望の組成及び特性のめっき層を形成することができる限りにおいて、特定のめっき方法に限定されない。ゼンジミアタイプ、フラックスタイプ、又は、プレめっきタイプ等のめっき方法によらず、溶融めっき方法を用いることができる。   The hot dip plating method according to the present invention is not limited to a specific plating method as long as a plating layer having a desired composition and characteristics can be formed. Regardless of the plating method such as the Sendzimir type, the flux type, or the pre-plating type, a hot dipping method can be used.

通常の無酸化炉方式の溶融めっき法が好ましいが、下層としてNiプレめっきを施すプレめっき方法も用いることができる。プレめっき方法を用いる場合、下地鋼材にプレNiめっきを施した後、無酸化又は還元雰囲気中で急速・低温加熱を行い、次いで、溶融めっきを行うことが好ましい。   A normal non-oxidizing furnace type hot-dip plating method is preferable, but a pre-plating method in which Ni pre-plating is applied as a lower layer can also be used. When the pre-plating method is used, it is preferable that after the pre-Ni plating is applied to the base steel material, rapid and low-temperature heating is performed in a non-oxidizing or reducing atmosphere, and then hot-dip plating is performed.

また、めっき層の凝固組織中に初晶Mg2Siを分散せしめるには、めっき浴中のMg及びAlを、それぞれ、3%以上及び4%以上とし、浴温を450℃以上650℃以下とし、めっき後の冷却速度を0.5℃/秒以上にすることが好ましい。 In order to disperse primary Mg 2 Si in the solidified structure of the plating layer, Mg and Al in the plating bath are 3% or more and 4% or more, respectively, and the bath temperature is 450 ° C. or more and 650 ° C. or less. The cooling rate after plating is preferably 0.5 ° C./second or more.

めっき浴中のMg及びAlを、それぞれ、3%以上及び4%以上とすることにより、初晶Mg2Siを、確実に、めっき層の凝固組織中に分散せしめることができる。 By setting Mg and Al in the plating bath to 3% or more and 4% or more, respectively, primary crystal Mg 2 Si can be surely dispersed in the solidified structure of the plating layer.

浴温が450℃未満であると、初晶Mg2Siが晶出せず、650℃を超えると、めっき表面に被膜が生成し外観が悪化する。冷却速度は、大きいほど結晶が微細化するので好ましいが、小さくとも、初晶Mg2Siを晶出させるためには、0.5℃/秒以上の冷却速度を維持する必要がある。 When the bath temperature is lower than 450 ° C., primary Mg 2 Si cannot be crystallized, and when it exceeds 650 ° C., a coating is formed on the plating surface and the appearance is deteriorated. A larger cooling rate is preferable because the crystal becomes finer. However, in order to crystallize the primary Mg 2 Si, it is necessary to maintain a cooling rate of 0.5 ° C./second or more.

本発明めっき鋼材におけるめっきの付着量は、耐食性の確保の点から、10g/m2以上が望ましく、スポット溶接性の確保の点から、片面当り150g/m2以下が望ましい。付着量が少ないほど、スポット溶接性は向上するが、耐食性の確保の点から、片面当り10g/m2以上の付着量が必要である。耐食性−スポット溶接性の良好なバランスを維持するためには、めっきの付着量は、15g/m2以上70g/m2以下が望ましい。 The coating amount of the plated steel material of the present invention is preferably 10 g / m 2 or more from the viewpoint of ensuring corrosion resistance, and is preferably 150 g / m 2 or less per side from the viewpoint of ensuring spot weldability. The smaller the amount of adhesion, the better the spot weldability, but an amount of adhesion of 10 g / m 2 or more per side is required from the viewpoint of ensuring corrosion resistance. In order to maintain a good balance between corrosion resistance and spot weldability, the amount of plating is preferably 15 g / m 2 or more and 70 g / m 2 or less.

本発明めっき鋼材を、通常の使用方法で使用する場合、鋼材の全表面に、例えば、鋼板の場合には両面に、めっきを施すが、鋼板の片面の耐食性が塗装等で確実に保証されている場合には、鋼板の片面のみにめっきを施してもよい。即ち、鋼材の表面の一部にめっきを施す態様も、本発明めっき鋼材の範囲である。   When the plated steel material of the present invention is used in a normal usage method, plating is performed on the entire surface of the steel material, for example, on both surfaces in the case of a steel plate, but the corrosion resistance of one surface of the steel plate is reliably guaranteed by coating or the like. When it exists, you may plate only on the single side | surface of a steel plate. That is, an aspect in which a part of the surface of the steel material is plated is also within the scope of the plated steel material of the present invention.

本発明めっき鋼材の基材として用いる鋼材は、特定の鋼材に限定されない。例えば、Alキルド鋼材、極低炭素鋼材、高炭素鋼材、各種高張力鋼材、Ni・Cr含有鋼材等を、機械的特性や材質特性にかかわりなく使用することができる。また、上記鋼材の製造に係る製鋼方法、熱間圧延方法、酸洗方法、冷間圧延方法等の前処理方法についても、特に制限はない。   The steel material used as the base material of the plated steel material of the present invention is not limited to a specific steel material. For example, Al killed steel materials, ultra-low carbon steel materials, high carbon steel materials, various high-tensile steel materials, Ni / Cr-containing steel materials and the like can be used regardless of mechanical characteristics and material characteristics. Moreover, there is no restriction | limiting in particular also about pre-processing methods, such as the steel manufacturing method, hot rolling method, pickling method, and cold rolling method which concern on manufacture of the said steel materials.

ここで、本発明の塗装鋼材(本発明塗装鋼材)は、本発明めっき鋼材の亜鉛系合金めっき層の上に、中間層として化成処理被膜層を形成し、さらに、その上に、有機被膜層を形成したものである。   Here, the coated steel material of the present invention (the coated steel material of the present invention) forms a chemical conversion coating layer as an intermediate layer on the zinc-based alloy plating layer of the plated steel material of the present invention, and further, an organic coating layer thereon Is formed.

塗装鋼板の中間層としての化成処理被膜層は、リン酸亜鉛系化成処理、塗布クロメート処理、電解クロム酸処理、反応クロメート処理、クロメートフリー系化成処理等を用いて形成することができる。   The chemical conversion coating layer as an intermediate layer of the coated steel sheet can be formed by using a zinc phosphate chemical conversion treatment, a coating chromate treatment, an electrolytic chromic acid treatment, a reaction chromate treatment, a chromate-free chemical conversion treatment, or the like.

クロメートフリー系化成処理被膜層としては、シランカップリング剤、ジルコニウム化合物、チタニウム化合物、タンニン又はタンニン酸、樹脂、シリカ等を含む水溶液で処理したものが知られているが、特開昭53−9238号公報、特開平9−241576号公報、特開2001−89868号公報、特開2001−316845号公報、特開2002−60959号公報、特開2002−38280号公報、特開2002−266081号公報、特開2003−253464号公報等に記載されている公知の処理技術を使用して形成してもよい。   As a chromate-free chemical conversion coating layer, a layer treated with an aqueous solution containing a silane coupling agent, a zirconium compound, a titanium compound, tannin or tannic acid, a resin, silica and the like is known. JP, JP 9-241576, JP 2001-89868, JP 2001-316845, JP 2002-60959, JP 2002-38280, JP 2002-266081. Alternatively, a known processing technique described in JP 2003-253464 A may be used.

これらの化成処理は、市販のもの、例えば、日本パーカライジング社製のクロメート処理「ZM−1300AN」、日本パーカライジング社製のクロメートフリー化成処理「CT−E300N」、日本ペイント社製の3価クロム系化成処理「サーフコートTM NRC1000」等を使用して行うことができる。 These chemical conversion treatments are commercially available, for example, chromate treatment “ZM-1300AN” manufactured by Nippon Parkerizing Co., Ltd., chromate-free chemical conversion treatment “CT-E300N” manufactured by Nippon Parkerizing Co., Ltd., and trivalent chromium-based chemical conversion manufactured by Nippon Paint Co., Ltd. The treatment can be performed using “Surfcoat NRC1000” or the like.

塗装鋼板の上層の有機被膜層は、ポリエステル樹脂、アミノ樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フッ素樹脂等を用いて形成することができ、特に、特定の樹脂膜に限定されるものではないが、強加工が施される塗装鋼板の有機被膜としては、熱硬化型の樹脂塗膜が最も好ましい。   The upper organic coating layer of the coated steel sheet can be formed using a polyester resin, an amino resin, an epoxy resin, an acrylic resin, a urethane resin, a fluorine resin, or the like, and is not particularly limited to a specific resin film. However, a thermosetting resin coating is most preferable as the organic coating on the coated steel sheet to be subjected to strong processing.

熱硬化型の樹脂塗膜は、エポキシポリエステル塗料、ポリエステル塗料、メラミンポリエステル塗料、ウレタンポリエステル塗料等のポリエステル系塗料や、アクリル塗料を用いて形成することができる。   The thermosetting resin coating film can be formed using polyester-based paints such as epoxy polyester paints, polyester paints, melamine polyester paints, urethane polyester paints, and acrylic paints.

ポリエステル樹脂の酸成分の一部を脂肪酸に置き換えたアルキッド樹脂や、油で変性しないオイルフリーアルキッド樹脂に、メラミン樹脂やポリイソシアネート樹脂を硬化剤として併用したポリエステル系の塗料、及び、各種架橋剤と組み合わせたアクリル塗料は、他の塗料に比べて加工性がよいので、これらの塗料で形成した有機被膜層は、厳しい加工を受けても、亀裂などを発生しない。   Polyester-based paints in which part of the acid component of the polyester resin is replaced with fatty acids, oil-free alkyd resins that are not modified with oil, melamine resin or polyisocyanate resin as a curing agent, and various crosslinking agents Since the combined acrylic paint has better processability than other paints, the organic coating layer formed with these paints does not crack or the like even when subjected to severe processing.

有機被膜層の膜厚は、1〜100μmが好ましい。膜厚が1μm未満であると、耐食性を確保することが難しく、一方、膜厚が100μmを超えると、コスト面で不利になる。有機被膜層は、単層でも複層でもよく、膜厚は、20μm以下が好ましい。   The film thickness of the organic coating layer is preferably 1 to 100 μm. If the film thickness is less than 1 μm, it is difficult to ensure corrosion resistance, while if the film thickness exceeds 100 μm, it is disadvantageous in terms of cost. The organic coating layer may be a single layer or multiple layers, and the film thickness is preferably 20 μm or less.

なお、有機被膜層に、必要に応じ、可塑剤、酸化防止剤、熱安定剤、無機粒子、顔料、有機潤滑などの添加剤を配合してもよい。   In addition, you may mix | blend additives, such as a plasticizer, antioxidant, a heat stabilizer, an inorganic particle, a pigment, and organic lubrication, with an organic coating layer as needed.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
板厚0.8mmの冷延鋼板、肉厚10mmで辺の長さが10cmの等辺山形鋼、及び、板厚10mmの熱延鋼板を基材とし、表1に示す合金めっき層を有する表面処理鋼材を製造した。
Example 1
Surface treatment having a cold-rolled steel sheet having a thickness of 0.8 mm, an equilateral mountain-shaped steel having a thickness of 10 mm and a side length of 10 cm, and a hot-rolled steel sheet having a thickness of 10 mm as a base material and having an alloy plating layer shown in Table 1 Steel was produced.

板厚0.8mmの冷延鋼板を基材とした場合、浴温400〜600℃で、浴中のMg量、Al量、及び、Si量を変化させたZn−Mg−Al−Siめっき浴に3秒間浸漬し、引き上げた後、窒素ガスを吹き付けて、合金化後の付着量が50g/m2となるように調整した。 When a cold-rolled steel sheet having a thickness of 0.8 mm is used as a base material, a Zn-Mg-Al-Si plating bath in which the amount of Mg, Al, and Si in the bath is changed at a bath temperature of 400 to 600 ° C. After being dipped for 3 seconds and pulled up, nitrogen gas was sprayed to adjust the adhesion amount after alloying to 50 g / m 2 .

例えば、Fe:10%の合金めっき層を形成する場合、Fe以外のめっき成分を、45g/m2付着させ、次いで、誘導加熱炉で急速昇温して合金化加熱処理を施し、合金化後、5g/m2分のFeをめっき層に含有せしめ、合金化後のめっき層の付着量を50g/m2とした。Fe濃度は、誘導加熱炉による合金化加熱処理の温度及び保持時間を調整して合金化度を制御して調整した。 For example, when an alloy plating layer of Fe: 10% is formed, 45 g / m 2 of plating components other than Fe are adhered, and then rapidly heated in an induction heating furnace and subjected to alloying heat treatment. 5 g / m 2 min of Fe was contained in the plating layer, and the adhesion amount of the plating layer after alloying was 50 g / m 2 . The Fe concentration was adjusted by controlling the degree of alloying by adjusting the temperature and holding time of the alloying heat treatment in the induction heating furnace.

なお、所定のFe濃度を得るために要した合金化加熱処理の保持時間を、製造性の評価指標とし、この保持時間が20秒を超えたものは、製造性課題あり(△)、20秒以内の熱処理で所定組成を得られたものは、製造性良好(○)として、他の性能評価結果とともに、表1に記した。   In addition, the holding time of the alloying heat treatment required for obtaining a predetermined Fe concentration was used as an evaluation index for manufacturability, and when this holding time exceeded 20 seconds, there was a manufacturability problem (Δ), 20 seconds. Those obtained with a predetermined composition by the heat treatment within the range are shown in Table 1 together with other performance evaluation results as good manufacturability (◯).

得られためっき鋼板のめっき層の付着量及び成分組成は、めっき層を酸剥離した前後の質量変化、及び、酸剥離後、溶液をICPで分析した分析結果で確認した。得られためっき鋼板のめっき層の成分組成を、表1に、併せて示す。   The adhesion amount and the component composition of the plated layer of the obtained plated steel sheet were confirmed by the mass change before and after acid peeling of the plating layer and the analysis result obtained by analyzing the solution by ICP after acid peeling. The component composition of the plating layer of the obtained plated steel sheet is also shown in Table 1.

等辺山形鋼については、長手方向に10cmで切断し、また、熱延鋼板については、10cm×10cmの正方形に切断して、試料を作製した。るつぼ炉を用い、該試料に、フラックス法によるどぶ漬けめっきを施した。浸漬時間、及び、引抜き速度を調整して、めっき付着量を調整した。合金化加熱処理は、別途、誘導加熱炉を用いて行った。   The equilateral angle steel was cut at 10 cm in the longitudinal direction, and the hot rolled steel sheet was cut into a 10 cm × 10 cm square to prepare a sample. Using a crucible furnace, the sample was subjected to soaking plating by the flux method. The plating adhesion amount was adjusted by adjusting the dipping time and the drawing speed. The alloying heat treatment was separately performed using an induction heating furnace.

作製した試料を、以下の評価試験に供した。   The prepared sample was subjected to the following evaluation test.

めっき層中のMg2Siの分散は、試料を埋め込んだ試験片をSEM観察することにより確認した。 The dispersion of Mg 2 Si in the plating layer was confirmed by SEM observation of the test piece in which the sample was embedded.

Mg2Siは島状に分散するので、形状からも容易に判定することができるが、さらに、EDXで成分を分析した。 Since Mg 2 Si is dispersed in islands, it can be easily determined from the shape, but the components were further analyzed by EDX.

EDXの検出成分の範囲で、80%以上がMgとSiであって、MgとSiの原子成分比が1.5:1〜3:1であることが確認できた場合、Mg2Siの分散あり(○)とした。 In the range of EDX detection components, when it is confirmed that 80% or more is Mg and Si and the atomic component ratio of Mg and Si is 1.5: 1 to 3: 1, the dispersion of Mg 2 Si Yes (O).

原子成分比に上記幅を持たせたのは、粒の大きさや、分析時の深さ方向の影響で、他の相(金属間化合物、析出物等)の影響を受けても、原子成分比が上記範囲にあれば、観察対象がMg2Siであると特定することができるからである。 The above-mentioned range was given to the atomic component ratio because of the influence of other phases (intermetallic compounds, precipitates, etc.) due to the influence of grain size and depth direction during analysis. This is because it can be specified that the observation object is Mg 2 Si.

裸鋼板の腐食試験は、JIS−Z−2371に記載されている塩水噴霧試験(SST)に準拠して行い、塩水濃度を10g/Lとした試験を300時間行った後の腐食減量で、耐食性を評価した。   The corrosion test of the bare steel plate is conducted in accordance with the salt spray test (SST) described in JIS-Z-2371, and the corrosion weight loss after 300 hours of the salt water concentration test is 10 g / L. Evaluated.

腐食減量が2g/m2未満を「◎◎」とし、2〜5g/m2を「◎」とし、5〜10g/m2を「○」とし、10g/m2以上を「×」とした。 Corrosion weight loss of less than 2 g / m 2 is “◎”, 2-5 g / m 2 is “◎”, 5-10 g / m 2 is “◯”, and 10 g / m 2 or more is “x”. .

塗膜膨れ試験は、試験材を、市販のアルカリ脱脂液(pH=10.5、40℃、1分浸漬)で脱脂した後、自動車用化成処理(日本ペイント製サーフダイン2500MZL)を施し、その後、自動車用カチオン電着塗装(日本ペイント製V20、20μm、170℃×20分焼き付け)を施し、一昼夜放置した後、試験材の片面に、カッターナイフで、被覆及びめっきを貫通し、下地鋼材に達する、長さ80mmの直線疵を形成し、SAE J2234に準拠した複合サイクル腐食試験に供して行った。   In the coating film swelling test, the test material was degreased with a commercially available alkaline degreasing solution (pH = 10.5, 40 ° C., 1 minute immersion), and then subjected to a chemical conversion treatment for automobiles (Surfdyne 2500MZL manufactured by Nippon Paint). After applying the cationic electrodeposition coating for automobile (Nihon Paint V20, 20μm, baking at 170 ° C for 20 minutes) and letting it stand all day and night, it penetrates the coating and plating with a cutter knife on one side of the test material. An 80 mm long straight wrinkle was formed and subjected to a combined cycle corrosion test in accordance with SAE J2234.

3000時間の後の塗膜膨れ幅で、塗装後耐食性を評価した。最大ふくれ幅が3mm未満を「◎」とし、3mm以上5mm未満を「○」とし、5mm以上を「×」とした。   Corrosion resistance after coating was evaluated by the swollen width of the coating film after 3000 hours. The maximum blister width of less than 3 mm was “◎”, 3 mm or more and less than 5 mm was “◯”, and 5 mm or more was “x”.

スポット溶接試験は、以下の溶接条件下で、スポット溶接時の連続打点数を調査して行った。先端径4.5mmφ、先端角120度、外径13mmφのCu−Cr製電極を使用した。50Hz電源により、10サイクルの通電を行った。1.7kNの加圧力で通電前30サイクル、通電後10サイクル、アップダウンスロープなしで加圧した。   The spot welding test was conducted by investigating the number of consecutive dots during spot welding under the following welding conditions. A Cu—Cr electrode having a tip diameter of 4.5 mmφ, a tip angle of 120 degrees, and an outer diameter of 13 mmφ was used. Ten cycles of energization were performed using a 50 Hz power source. Pressurization was performed at a pressure of 1.7 kN for 30 cycles before energization, 10 cycles after energization, and without an up-down slope.

なお、連続打点性調査における溶接電流値は、板厚をt(mm)とした時の4√tで示すナゲット径が得られる電流値I1(kA)、及び、溶着電流値I2(kA)の平均値を用い、4√tのナゲット径が維持される最大打点数を求めた。 In addition, the welding current value in the continuous spot property investigation is the current value I 1 (kA) that gives the nugget diameter indicated by 4√t when the plate thickness is t (mm), and the welding current value I 2 (kA). ) Was used to determine the maximum number of hit points at which a nugget diameter of 4√t was maintained.

8000点以上の連続打点数が得られたものは、特にスポット溶接性が優れるものとして「◎◎」とし、8000点には満たないが、6000点以上の連続打点数が得られたものは、「◎」とし、6000点には満たないが、3000点以上の連続打点数が得られたものは、「○」とした。3000点に満たなかったものは、「×」とした。
各試験の評価結果を、表1に併せて示す。
Those with a continuous score of 8000 points or more, especially “Excellent spot weldability”, “◎◎”, less than 8000 points, but with a score of 6000 points or more, “A” indicates that the number of consecutive hit points of 3000 points or more was obtained, but “B” was not satisfied. Those that did not reach 3000 points were marked with “x”.
The evaluation results of each test are also shown in Table 1.

Figure 2009120947
Figure 2009120947

表1に示すように、本発明鋼材は、裸耐食性、塗装後耐食性、及び、溶接性のいずれも優れているものである。また、本発明鋼材の中でも、めっき層のFe/Alが3以下の鋼材は、製造性が良好であった。比較鋼材は、耐食性が良好でも、溶接性に劣るか、又は、溶接性に優れていても、耐食性が劣るものである。   As shown in Table 1, the steel material of the present invention has excellent bare corrosion resistance, post-coating corrosion resistance, and weldability. Further, among the steel materials of the present invention, steel materials having a plating layer with Fe / Al of 3 or less had good manufacturability. The comparative steel material has poor corrosion resistance even if it has good corrosion resistance, poor weldability, or excellent weldability.

(実施例2)
表1のNo.3、5、19、及び、21に示す成分組成のめっき浴を使用して、添加元素の効果を調査した。
(Example 2)
No. in Table 1 Using the plating bath having the component composition shown in 3, 5, 19, and 21, the effect of the additive element was investigated.

めっき浴に、高純度金属の粉、又は、Alとの合金を添加して、表2のその他の欄に示す元素を添加した。その他の条件は、実施例1と同様である。   High purity metal powder or an alloy with Al was added to the plating bath, and the elements shown in the other columns of Table 2 were added. Other conditions are the same as in the first embodiment.

作製しためっき鋼板を、実施例1と同様の塗膜膨れ試験に供した。ただし、化成処理及び塗装を、以下のように変更した。   The produced plated steel sheet was subjected to the same film swelling test as in Example 1. However, the chemical conversion treatment and painting were changed as follows.

(a)化成処理
日本パーカライジング社製のクロメートフリー化成処理液「CT−E300N」をロールコーターにて塗布し、熱風オーブンで乾燥した。熱風オーブンでの乾燥条件は、鋼板の到達板温で、60℃とした。クロメートフリー処理被膜は、付着量が、全固形分で200mg/m2となるように塗装した。
(A) Chemical conversion treatment A chromate-free chemical conversion treatment solution “CT-E300N” manufactured by Nihon Parkerizing Co., Ltd. was applied with a roll coater and dried in a hot air oven. The drying conditions in the hot air oven were 60 ° C., the ultimate plate temperature of the steel plate. The chromate-free coating was applied so that the amount of adhesion was 200 mg / m 2 in terms of the total solid content.

(b)プライマー
日本ファインコーティングス社製のFL641EUプライマーのクリヤー塗料を準備し、これにクロメートフリー防錆顔料としてテイカ社製のトリポリリン酸2水素アルミニウムである「K−WHITE #105」(以下「リン酸AL」)と、GRACE社製のカルシウムイオン交換シリカである「SHIELDEXC303(登録商標)」(以下「Caシリカ」)を添加したものを、ロールコーターで、乾燥膜厚が5μmとなるように塗装し、熱風オーブンにて、到達板温が215℃となる条件で焼き付けた。
(B) Primer A clear paint of FL641EU primer manufactured by Nippon Fine Coatings Co., Ltd. was prepared, and “K-WHITE # 105” (hereinafter referred to as “phosphorus aluminum trihydrogen phosphate manufactured by Teika Co., Ltd.) as a chromate-free anticorrosive pigment. Acid AL ”) and“ SHIELDEX C303 (registered trademark) ”(hereinafter referred to as“ Ca silica ”), which is a calcium ion exchange silica manufactured by GRACE, were applied with a roll coater so that the dry film thickness was 5 μm. Then, it was baked in a hot air oven under conditions where the ultimate plate temperature was 215 ° C.

なお、リン酸Alは、プライマーの乾燥塗膜中に25質量%となるように添加し、Caシリカは、プライマーの乾燥塗膜中に25質量%となるように添加した。   In addition, Al phosphate was added so that it might become 25 mass% in the dry coating film of a primer, and Ca silica was added so that it might become 25 mass% in the dry coating film of a primer.

(c)トップ
日本ファインコーティングス社製のプレコート鋼板用塗料である「フレキコート100HQ(登録商標)」の白色塗料を、ロールコーターで、乾燥膜厚が15μmとなるように塗装し、熱風オーブンにて、到達板温が230℃となる条件で焼き付けた。
(C) Top White paint of “Flexcoat 100HQ (registered trademark)”, a paint for precoated steel sheets manufactured by Nippon Fine Coatings Co., Ltd., is applied with a roll coater to a dry film thickness of 15 μm. Then, baking was performed under the condition that the ultimate plate temperature was 230 ° C.

塗装を施した試験片の一面に、カッターナイフで、被覆及びめっきを貫通し、下地鋼材まで達する長さ80mmの直線疵を形成し、SAE J2234に準拠した複合サイクル腐食試験を行った。   On one side of the coated test piece, a straight wrinkle with a length of 80 mm that penetrated the coating and plating with a cutter knife to reach the base steel was formed, and a combined cycle corrosion test in accordance with SAE J2234 was performed.

3000時間後の塗膜膨れ幅で、塗装後耐食性を評価した。最大膨れ幅が1mm未満のものを「◎◎」とし、最大膨れ幅が1mm以上3mm未満のものを「◎」とし、3mm以上5mm未満のものを「○」とし、5mm以上のものを「×」とした。評価結果を、表2に示す。   Corrosion resistance after coating was evaluated by the swollen width of the coating film after 3000 hours. Those with a maximum swollen width of less than 1 mm are designated as “◎◎”, those with a maximum swollen width of from 1 mm to less than 3 mm are designated as “◎”, those having a maximum swollen width of from 3 mm to less than 5 mm are designated as “◯”, " The evaluation results are shown in Table 2.

Figure 2009120947
Figure 2009120947

表2に示すように、添加元素を添加したもの(添え字a、b、cが付されているNo.のもの)は、添加元素を添加しないものに比べ、塗装後耐食性が向上している。   As shown in Table 2, the ones with added elements (No. with subscripts a, b, c) have improved post-coating corrosion resistance compared to those without added elements. .

前述したように、本発明によれば、耐食性と溶接性に優れる亜鉛系合金めっき鋼材と、該鋼材に塗装を施した、塗装後の一般的な耐食性に優れるとともに、疵部からの膨れに対する耐食性にも優れる塗装鋼材を提供することができる。   As described above, according to the present invention, the zinc-based alloy-plated steel material excellent in corrosion resistance and weldability, and the steel material coated, the general corrosion resistance after coating is excellent, and the corrosion resistance against swelling from the buttock In addition, it is possible to provide an excellent coated steel material.

したがって、本発明の鋼材は、自動車、建築・住宅等に広く適用することが可能で、従来と同様の製造性を保持しながら、部材の寿命を延ばして、資源の有効利用、環境負荷の低減、メンテナンスの労力・コストの低減等に資するので、産業の発展に大きく寄与するものである。   Therefore, the steel material of the present invention can be widely applied to automobiles, buildings, houses, etc., while maintaining the same productivity as the conventional one, extending the life of the members, effectively using resources, and reducing the environmental load. It contributes to the development of industry because it contributes to reduction of maintenance labor and cost.

Claims (7)

鋼材の表面に、質量%で、
Mg:1〜10%、
Al:2〜19%、
Si:0.01〜2%、及び、
Fe:2〜75%を含有し、残部がZn及び不可避的不純物よりなる亜鉛系合金めっき層を有することを特徴とする耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
On the surface of the steel material,
Mg: 1-10%
Al: 2 to 19%,
Si: 0.01-2%, and
A zinc-based alloy-plated steel material excellent in corrosion resistance and weldability, characterized by having a zinc-based alloy plating layer containing Fe: 2 to 75%, the balance being Zn and inevitable impurities.
前記亜鉛系合金めっき層が、質量%で、Fe:2〜72%を含有し、かつ、該めっき層中のFe、Mg、及び、Alが、下記式、
Fe(%)+Mg(%)+Al(%)≦75
を満たすことを特徴とする請求項1に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
The zinc-based alloy plating layer contains, by mass%, Fe: 2 to 72%, and Fe, Mg, and Al in the plating layer are represented by the following formula:
Fe (%) + Mg (%) + Al (%) ≦ 75
The zinc-based alloy-plated steel material having excellent corrosion resistance and weldability according to claim 1.
前記亜鉛系合金めっき層が、質量%で、Fe:2〜50%を含有することを特徴とする請求項1又は2に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。   The zinc-based alloy plated steel material having excellent corrosion resistance and weldability according to claim 1 or 2, wherein the zinc-based alloy plating layer contains Fe: 2 to 50% by mass. 前記亜鉛系合金めっき層が、質量%で、Feを、20%を超えて含有することを特徴とする請求項1〜3のいずれか1項に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。   The zinc-based alloy plating layer according to any one of claims 1 to 3, wherein the zinc-based alloy plating layer contains 20% by mass and Fe in excess of 20%. Steel material. 前記亜鉛系合金めっき層の中に、Mg2Siが分散して存在することを特徴とする請求項1〜4のいずれか1項に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。 5. The zinc-based alloy-plated steel material having excellent corrosion resistance and weldability according to claim 1, wherein Mg 2 Si is present in a dispersed manner in the zinc-based alloy plating layer. 前記亜鉛系合金めっき層が、さらに、質量%で、
Ca:0.01〜0.5%、
Ti:0.01〜0.2%、
Cu:0.1〜1.0%、
Ni:0.01〜0.2%、
Co:0.01〜0.3%、
Cr:0.01〜0.2%、及び、
Mn:0.01〜0.5%の1種又は2種以上を含有することを特徴とする請求項1〜5のいずれか1項に記載の耐食性と溶接性に優れる亜鉛系合金めっき鋼材。
The zinc-based alloy plating layer is further in mass%,
Ca: 0.01 to 0.5%,
Ti: 0.01-0.2%
Cu: 0.1 to 1.0%
Ni: 0.01-0.2%
Co: 0.01 to 0.3%
Cr: 0.01 to 0.2%, and
The zinc-based alloy-plated steel material having excellent corrosion resistance and weldability according to any one of claims 1 to 5, comprising Mn: 0.01-0.5% or two or more.
請求項1〜6のいずれか1項に記載の亜鉛系合金めっき鋼材の亜鉛系合金めっき層の上に、中間層として化成処理被膜層を形成し、さらに、その上に、有機被膜層を形成したことを特徴とする耐食性に優れる塗装鋼材。   A chemical conversion treatment coating layer is formed as an intermediate layer on the zinc-based alloy plating layer of the zinc-based alloy plating steel material according to any one of claims 1 to 6, and an organic coating layer is further formed thereon. Painted steel with excellent corrosion resistance characterized by
JP2008272265A 2007-10-24 2008-10-22 Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance Active JP5640312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272265A JP5640312B2 (en) 2007-10-24 2008-10-22 Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007276913 2007-10-24
JP2007276913 2007-10-24
JP2008272265A JP5640312B2 (en) 2007-10-24 2008-10-22 Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2009120947A true JP2009120947A (en) 2009-06-04
JP5640312B2 JP5640312B2 (en) 2014-12-17

Family

ID=40813410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272265A Active JP5640312B2 (en) 2007-10-24 2008-10-22 Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP5640312B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186097A (en) * 2015-03-27 2016-10-27 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
US20180118000A1 (en) * 2015-03-31 2018-05-03 Arcelormittal Panel for Vehicle Comprising a Coated Steel Sheet Locally Reinforced
WO2020121899A1 (en) * 2018-12-12 2020-06-18 Jfeスチール株式会社 HIGH-STRENGTH ZINC-PLATED STEEL SHEET HAVING TENSILE STRENGTH OF 1180 MPa OR MORE AND METHOD FOR MANUFACTURING SAME, AND SURFACE TREATMENT SOLUTION
WO2020213680A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel material
WO2020213688A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel sheet
WO2020213687A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel sheet
CN113646453A (en) * 2019-04-09 2021-11-12 安赛乐米塔尔公司 Assembly of an aluminium component and a press hardened steel part with an alloy coating comprising silicon, iron, zinc and magnesium, the balance being aluminium
WO2023248975A1 (en) * 2022-06-22 2023-12-28 日本製鉄株式会社 Plated steel sheet

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177446A (en) * 1982-04-09 1983-10-18 Nisshin Steel Co Ltd Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability
JPS63134653A (en) * 1986-11-22 1988-06-07 Nippon Steel Corp Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
JPH02122056A (en) * 1988-10-28 1990-05-09 Sumitomo Metal Ind Ltd Alloying hot dip galvanized steel sheet
JPH02194158A (en) * 1988-10-28 1990-07-31 Sumitomo Metal Ind Ltd Alloyed hot-dip galvanized steel sheet and its production
JPH0397840A (en) * 1989-09-11 1991-04-23 Sumitomo Metal Ind Ltd Alloying hot dip galvanized steel sheet
JP2000104154A (en) * 1998-07-02 2000-04-11 Nippon Steel Corp Plated steel sheet and coated steel sheet excellent in corrosion resistance and production of the same
JP2001131725A (en) * 1999-11-08 2001-05-15 Nippon Steel Corp Hot dip aluminized steel sheet excellent in heat resistance and corrosion resistance and its producing method
JP2001295018A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp HIGH STRENGTH Si-CONTAINING GALVANIZED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PRODUCTION METHOD THEREOF
JP2002180225A (en) * 2000-12-13 2002-06-26 Nippon Steel Corp Plated steel sheet having excellent corrosion resistance and workability
JP2003183797A (en) * 2001-12-17 2003-07-03 Nippon Steel Corp METHOD FOR MANUFACTURING HOT-DIP Zn-Mg-Al-COATED HIGH- TENSILE STEEL SHEET
JP2005113233A (en) * 2003-10-09 2005-04-28 Nippon Steel Corp Zn-BASED PLATED STEEL FOR HOT PRESS
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177446A (en) * 1982-04-09 1983-10-18 Nisshin Steel Co Ltd Manufacture of steel plate plated with alloy by hot dipping and provided with superior corrosion resistance and coatability
JPS63134653A (en) * 1986-11-22 1988-06-07 Nippon Steel Corp Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
JPH02122056A (en) * 1988-10-28 1990-05-09 Sumitomo Metal Ind Ltd Alloying hot dip galvanized steel sheet
JPH02194158A (en) * 1988-10-28 1990-07-31 Sumitomo Metal Ind Ltd Alloyed hot-dip galvanized steel sheet and its production
JPH0397840A (en) * 1989-09-11 1991-04-23 Sumitomo Metal Ind Ltd Alloying hot dip galvanized steel sheet
JP2000104154A (en) * 1998-07-02 2000-04-11 Nippon Steel Corp Plated steel sheet and coated steel sheet excellent in corrosion resistance and production of the same
JP2001131725A (en) * 1999-11-08 2001-05-15 Nippon Steel Corp Hot dip aluminized steel sheet excellent in heat resistance and corrosion resistance and its producing method
JP2001295018A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp HIGH STRENGTH Si-CONTAINING GALVANIZED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PRODUCTION METHOD THEREOF
JP2002180225A (en) * 2000-12-13 2002-06-26 Nippon Steel Corp Plated steel sheet having excellent corrosion resistance and workability
JP2003183797A (en) * 2001-12-17 2003-07-03 Nippon Steel Corp METHOD FOR MANUFACTURING HOT-DIP Zn-Mg-Al-COATED HIGH- TENSILE STEEL SHEET
JP2005113233A (en) * 2003-10-09 2005-04-28 Nippon Steel Corp Zn-BASED PLATED STEEL FOR HOT PRESS
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186097A (en) * 2015-03-27 2016-10-27 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
US20180118000A1 (en) * 2015-03-31 2018-05-03 Arcelormittal Panel for Vehicle Comprising a Coated Steel Sheet Locally Reinforced
US11312212B2 (en) * 2015-03-31 2022-04-26 Arcelormittal Panel for vehicle comprising a coated steel sheet locally reinforced
WO2020121899A1 (en) * 2018-12-12 2020-06-18 Jfeスチール株式会社 HIGH-STRENGTH ZINC-PLATED STEEL SHEET HAVING TENSILE STRENGTH OF 1180 MPa OR MORE AND METHOD FOR MANUFACTURING SAME, AND SURFACE TREATMENT SOLUTION
CN113646453A (en) * 2019-04-09 2021-11-12 安赛乐米塔尔公司 Assembly of an aluminium component and a press hardened steel part with an alloy coating comprising silicon, iron, zinc and magnesium, the balance being aluminium
US11753085B2 (en) 2019-04-09 2023-09-12 Arcelormittal Assembly of an aluminum component and of a press hardened steel part having an alloyed coating comprising silicon, iron, zinc and magnesium, the balance being aluminum
JPWO2020213687A1 (en) * 2019-04-19 2021-12-02 日本製鉄株式会社 Plated steel sheet
EP3957763A4 (en) * 2019-04-19 2022-08-24 Nippon Steel Corporation Plated steel material
KR20210127991A (en) 2019-04-19 2021-10-25 닛폰세이테츠 가부시키가이샤 plated steel
JPWO2020213688A1 (en) * 2019-04-19 2021-11-11 日本製鉄株式会社 Plated steel sheet
KR20210103537A (en) 2019-04-19 2021-08-23 닛폰세이테츠 가부시키가이샤 galvanized steel
KR20210135578A (en) 2019-04-19 2021-11-15 닛폰세이테츠 가부시키가이샤 galvanized steel
WO2020213687A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel sheet
US20220112589A1 (en) * 2019-04-19 2022-04-14 Nippon Steel Corporation Plated steel sheet
WO2020213688A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel sheet
JP7070795B2 (en) 2019-04-19 2022-05-18 日本製鉄株式会社 Plated steel sheet
EP3957766A4 (en) * 2019-04-19 2022-08-24 Nippon Steel Corporation Plated steel sheet
CN113383105A (en) * 2019-04-19 2021-09-10 日本制铁株式会社 Coated steel sheet
EP3957765A4 (en) * 2019-04-19 2022-08-24 Nippon Steel Corporation Plated steel sheet
JP7136342B2 (en) 2019-04-19 2022-09-13 日本製鉄株式会社 plated steel plate
US11584981B2 (en) 2019-04-19 2023-02-21 Nippon Steel Corporation Plated steel sheet
KR102544940B1 (en) * 2019-04-19 2023-06-20 닛폰세이테츠 가부시키가이샤 plated steel
US11697266B2 (en) 2019-04-19 2023-07-11 Nippon Steel Corporation Plated steel
US11725259B2 (en) 2019-04-19 2023-08-15 Nippon Steel Corporation Plated steel sheet
WO2020213680A1 (en) 2019-04-19 2020-10-22 日本製鉄株式会社 Plated steel material
WO2023248975A1 (en) * 2022-06-22 2023-12-28 日本製鉄株式会社 Plated steel sheet
JP7460943B1 (en) 2022-06-22 2024-04-03 日本製鉄株式会社 Galvanized Steel Sheet

Also Published As

Publication number Publication date
JP5640312B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP6728332B2 (en) Steel plates, parts and their use coated with an aluminum-based metal coating
JP5640312B2 (en) Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance
EP1315846B1 (en) Hexavalent chromium-free surface-treating agent for sn- or al-based coated steel sheet, and surface treated steel sheet
US11753709B2 (en) Hot-dip galvanized steel material having excellent weldability and press workability and manufacturing method therefor
JP5196074B2 (en) Hot-dip aluminum alloy plated steel with excellent cut end surface corrosion resistance and processed part corrosion resistance and method for producing the same
WO2000071773A1 (en) Plated steel product, plated steel sheet and precoated steel sheet having excellent resistance to corrosion
KR101249583B1 (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
EP3359704A1 (en) Steel sheet coated with a metallic coating based on aluminum and comprising titanium
JP5130486B2 (en) High corrosion resistance hot-dip galvanized steel
WO2022153694A1 (en) Plated steel material
JP2009120948A (en) Alloy plated steel member having excellent corrosion resistance and weldability
Townsend Continuous hot dip coatings
KR101621631B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
AU2012263323A1 (en) Molten Zn-Al-based alloy-plated steel sheet having excellent corrosion resistance and workability, and method for producing same
JP2002004018A (en) High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
WO2018043286A1 (en) Al-Zn-BASED HOT-DIP PLATED STEEL SHEET
JP2001355051A (en) HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE
JP6480132B2 (en) Al-plated steel sheet
JP2004277839A (en) Zinc based metal-coated steel
JP4704956B2 (en) Non-chromate coated hot-dip galvanized steel sheet with excellent white rust resistance
JP2002038250A (en) HOT-DIP PLATED STEEL-SHEET WITH Sn-Zn SUPERIOR IN CORROSION RESISTANCE
Dallin et al. Continuous Hot-Dip Galvanizing—Process and Products
JP2841898B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface smoothness
JP2006336088A (en) Surface-treated steel material
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350