JP2009118745A - Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene - Google Patents

Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene Download PDF

Info

Publication number
JP2009118745A
JP2009118745A JP2007292999A JP2007292999A JP2009118745A JP 2009118745 A JP2009118745 A JP 2009118745A JP 2007292999 A JP2007292999 A JP 2007292999A JP 2007292999 A JP2007292999 A JP 2007292999A JP 2009118745 A JP2009118745 A JP 2009118745A
Authority
JP
Japan
Prior art keywords
gene
efficiency
gene transfer
conjugation
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292999A
Other languages
Japanese (ja)
Inventor
Kazuki Moriguchi
和基 守口
Katsuyuki Tanaka
克幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2007292999A priority Critical patent/JP2009118745A/en
Publication of JP2009118745A publication Critical patent/JP2009118745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for transferring a gene to an eukaryotic cell by the utilization of a conjugation between living worlds, by which a gene transfer rate using the conjugation between the living worlds can be improved, while conventional gene transfer methods have a problem that gene transfer rates are low. <P>SOLUTION: Provided is the method for transferring the gene, by manipulating the functions of mitochondoria with a mitochondoria function inhibitor such as Antimycin A, Oligomycin or Erythromycin, and improving the gene transfer rate using the conjugation between the living worlds. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生物界間接合を用いた簡便かつ効率的な真核細胞への遺伝子導入法およびその方法から得られた真核細胞、ならびにその遺伝子導入用キットに関するものである。 The present invention relates to a simple and efficient method for introducing a gene into a eukaryotic cell using inter-biojunction, a eukaryotic cell obtained from the method, and a kit for gene transfer thereof.

遺伝子導入とは、遺伝子の実験系を用いて目的遺伝子の宿主でない他生物にクローニングしたベクターを導入し、その遺伝子が有効な形質を発現できるように仕向けることであり、具体的な方法としては、リポフェクション法ないしはリポソームトランスフェクション法、エレクトロポレーション法、ウイルスベクターを用いた方法およびマイクロインジェクション法などがある。   Gene transfer refers to introducing a cloned vector into another organism that is not the host of the target gene using an experimental system of the gene and directing the gene to express an effective trait. As a specific method, Examples include a lipofection method or a liposome transfection method, an electroporation method, a method using a viral vector, and a microinjection method.

リポフェクション法ないしはリポソームトランスフェクション法と呼ばれる方法は、細胞内に遺伝物質を導入するトランスフェクションの手法の一つであり、リポソームと呼ばれるリン脂質二重膜の小胞の内部に遺伝物質を封入して細胞膜を通過させるものである。具体的には、陽性荷電脂質などからなる脂質二重膜小胞(リポソーム)と導入するDNAの電気的な相互作用により複合体を形成させ、貪食や膜融合により細胞に取り込ませる方法。必ずしもリポソーム内にDNAを封入しない点がリポソーム法とは異なる。   The lipofection method or liposome transfection method is one of the transfection methods for introducing genetic material into cells. The genetic material is encapsulated inside a phospholipid bilayer vesicle called a liposome. It passes through the cell membrane. Specifically, a method in which a complex is formed by an electrical interaction between a lipid bilayer vesicle (liposome) composed of positively charged lipid and the like and DNA to be introduced, and is taken into a cell by phagocytosis or membrane fusion. It differs from the liposome method in that DNA is not necessarily encapsulated in the liposome.

リポフェクション法の長所としては、トランスフェクション効率が高い、オリゴヌクレオチド、高分子DNA 、mRNA 、二本鎖RNA の導入が可能である。 操作が簡単かつ短時間で終了するため、同時に多数のサンプル処理が可能。しかも、特別な装置・設備は不要である。そして、 他の方法にくらべ、細胞に対する毒性が少ないため、トランスフェクション後の細胞生存率が高く、一過性発現にも安定型発現にも用いることが可能である。最後に 幅広い細胞に適用できるなどの長所がある。しかし、短所としてトランスフェクションの細胞密度、DNA 量、リポソーム量、培養時間、培地などの至適条件の検討が必要でありかつ至適条件の範囲が狭い。そして 一般に試薬が高価であるとの欠点がある。   As an advantage of the lipofection method, it is possible to introduce oligonucleotides, polymer DNA, mRNA and double-stranded RNA with high transfection efficiency. Since the operation is completed easily and in a short time, a large number of samples can be processed simultaneously. Moreover, no special equipment / equipment is required. And since it is less toxic to cells than other methods, the cell viability after transfection is high, and it can be used for both transient expression and stable expression. Finally, it can be applied to a wide range of cells. However, as a disadvantage, it is necessary to study optimum conditions such as cell density, DNA amount, liposome amount, culture time, and culture medium for transfection, and the range of optimum conditions is narrow. In general, the reagent is expensive.

つぎに、エレクトロポレーション法は、高電圧パルスを細胞に加えることにより一過性に脂質二重層の細胞膜構造を不安定化し、DNAを取り込ませる方法である。トランスフェクションの効率は電圧・電気パルスの長さ・温度・細胞およびDNAの濃度・バッファー組成の条件により左右されるというものである。本法の長所としては、操作が簡単で、遺伝子導入効率が高いというものであるが、高価な機械を必要とすること、1回の電気パルスで1検体の遺伝子導入しかできない為に多検体の処理に手間がかかることなどの欠点が存在する。   Next, the electroporation method is a method in which DNA is incorporated by transiently destabilizing the cell membrane structure of the lipid bilayer by applying a high voltage pulse to the cells. The efficiency of transfection depends on the conditions of voltage, electric pulse length, temperature, cell and DNA concentration, and buffer composition. The advantages of this method are that it is easy to operate and has high gene transfer efficiency. However, it requires an expensive machine, and only one sample can be transferred with a single electric pulse. There are drawbacks such as time-consuming processing.

ウイルスベクターを用いた方法とはウイルスの細胞への感染方法を利用して、細胞の膜融合により吸着したウイルスベクターのエンベロープが細胞の細胞膜と融合し、ウイルス内部のベクターが細胞内に送り込まれ遺伝子導入する方法である。   The viral vector method uses the method of infecting cells with viruses, and the viral vector envelope adsorbed by cell membrane fusion fuses with the cell membrane of the cell, and the vector inside the virus is sent into the cell and the gene It is a method to introduce.

さらに、マイクロインジェクション法というものがあるが、1個の細胞に微細ガラス注入針を通じて試料を導入する方法。原理は簡単ながら、高度な技術を要する。細胞に与えるダメージを最小限に押さえるために可能な限り細い針を用い、きわめて短時間のうちに必要量を注入する必要がある。本法の長所としては、特定の細胞だけに導入でき、核と細胞質へ別々に導入できる。また、溶液であれば分子の種類(核酸・タンパク等)や大きさに限りがなく、導入効率が高く試料液が極めて少量との長所がある。しかし、特別な装置や技術が必要であり、浮遊細胞への適用が困難である。そして対象とする細胞数に限りがあるとの欠点が存在する。   Furthermore, although there is a microinjection method, a method for introducing a sample into one cell through a fine glass injection needle. Although the principle is simple, it requires advanced technology. In order to minimize the damage to the cells, it is necessary to use the finest needle possible and inject the required amount in a very short time. The advantage of this method is that it can be introduced only into specific cells and separately into the nucleus and cytoplasm. In addition, the type of molecules (nucleic acid, protein, etc.) and size of the solution are not limited, and there are advantages such as high introduction efficiency and a very small amount of sample solution. However, special devices and techniques are required, and application to suspension cells is difficult. And there is a disadvantage that the number of target cells is limited.

しかしながら、以上の遺伝子導入の方法のすべてに於いては、通常の大腸菌等からプラスミドDNAを抽出・調整しなければならず、操作ステップが多く時間とコストが余分にかかるという問題がある。   However, in all of the gene introduction methods described above, plasmid DNA must be extracted and adjusted from normal Escherichia coli and the like, and there are problems that many operation steps are required and time and cost are excessive.

そこで、大腸菌等からプラスミドDNAを抽出・調整する必要がなく、余分な時間とコストを必要としない遺伝子導入法として生物界間接合法がある。   Therefore, there is a biogenetic junction method as a gene introduction method that does not require extraction and adjustment of plasmid DNA from E. coli or the like and does not require extra time and cost.

生物界間接合は1989年にHeinenmannとSpragueにより大腸菌と出芽酵母を用いて最初に報告された現象である
。この現象は、本来バクテリア間の遺伝子伝達システムであるプラスミドの移行システムが、バクテリアから真核生物へも低頻度ながらもプラスミドが伝達し得るというものである。80年代末から90年代初頭にかけてこの現象を真核生物への遺伝子導入法へ応用するための研究が行われたが、遺伝子導入効率を実用レベルまで上げる事が出来ず、その後バクテリアの遺伝子伝達システムを応用した遺伝子導入法は、アグロバクテリアのT−DNA伝達システムを用いるものに取って代わられた。近年Watersにより大腸菌から動物培養細胞への生物界間接合による遺伝子導入の成功が報告され 、その潜在的な応用の可能性の高さが示されたものの、ほぼ休眠技術となっている。
Biological junction is the first phenomenon reported by Heinenmann and Sprague in 1989 using Escherichia coli and budding yeast.
. This phenomenon is that the plasmid transfer system, which is essentially a gene transfer system between bacteria, can transmit the plasmid from bacteria to eukaryotes with a low frequency. From the late 1980s to the early 1990s, research was carried out to apply this phenomenon to eukaryotic gene transfer methods, but the gene transfer efficiency could not be increased to a practical level. The gene transfer method using the above has been replaced by the one using the Agrobacterium T-DNA transfer system. In recent years, Waters has reported successful gene transfer from Escherichia coli to animal cultured cells by inter-organism junctions. Although the potential for its potential application has been shown, it has become a dormant technique.

そして、これまでの生物界間接合の研究は主に遺伝子伝達用ベクターの改変に限られており、実用レベルの遺伝子導入効率獲得には到っていない。
Heinemann, J. A. and Sprague G. F. Jr. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205-209 (1989). Waters, V. L. Conjugation between bacterial and mammalian cells. Nat. Genet., 29, 375-376 (2001). Kawai, S., Pham, T. A., Nguyen, H. T., Nankai, H., Utsumi, T., Fukuda, Y. and Murata, K. Molecular insights on DNA delivery into Saccharomycescerevisiae. Biochem. Biophys. Res. Commun. 317,100-107 (2004). Ito, H., Fukuda, Y., Murata, K. and Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168 (1983). Nishikawa, M., Suzuki, K. and Yoshida, K. DNA integration into recipient yeast chromosomes by trans-kingdom conjugation between Escherichia coliand Saccharomycescerevisiae. Curr. Genet., 21,101-108 (1992).
So far, research on the junction between organisms has been limited mainly to the modification of gene transfer vectors, and has not yet reached the level of practical gene transfer efficiency.
Heinemann, JA and Sprague GF Jr. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast.Nature 340, 205-209 (1989). Waters, VL Conjugation between bacterial and mammalian cells. Nat. Genet., 29, 375-376 (2001). Kawai, S., Pham, TA, Nguyen, HT, Nankai, H., Utsumi, T., Fukuda, Y. and Murata, K. Molecular insights on DNA delivery into Saccharomycescerevisiae. Biochem. Biophys. Res. Commun. 317,100- 107 (2004). Ito, H., Fukuda, Y., Murata, K. and Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168 (1983). Nishikawa, M., Suzuki, K. and Yoshida, K. DNA integration into recipient yeast chromosomes by trans-kingdom conjugation between Escherichia coliand Saccharomycescerevisiae. Curr. Genet., 21,101-108 (1992).

そこで、生物界間接合による遺伝子導入率が従来の遺伝子導入法より低いことが問題であり、その遺伝子導入率を向上することが課題である。さらに、生物界間接合を実用的な遺伝子導入法として確立するためには、遺伝子導入効率を高めなければならない。   Therefore, it is a problem that the gene transfer rate by the junction between organisms is lower than the conventional gene transfer method, and it is a problem to improve the gene transfer rate. Furthermore, in order to establish the inter-biojunction as a practical gene transfer method, gene transfer efficiency must be increased.

本発明は、上記問題点に鑑みなされたものであって、その目的は、生物界間接合を実用的な遺伝子導入法として真核細胞への遺伝子導入効率を増幅させる方法及びその方法から得られた真核細胞、ならびにその遺伝子導入用キットを提供することにある。   The present invention has been made in view of the above problems, and the object thereof is obtained from a method for amplifying the efficiency of gene transfer into a eukaryotic cell using a junction between organisms as a practical gene transfer method and the method. Another object of the present invention is to provide a eukaryotic cell and its gene transfer kit.

受容側真核細胞が接合を拒む機能についてはこれまで検討されておらず、その接合を拒む為に機能する遺伝子を探索し、それらを破壊、もしくはそれら遺伝子の発現もしくは機能を薬剤等により阻害する事で遺伝子導入効率を高めるのではないかと考えた。   The function of accepting eukaryotic cells to reject conjugation has not been studied so far, searching for genes that function to refuse conjugation, destroying them, or inhibiting the expression or function of these genes with drugs, etc. I thought that this could increase the efficiency of gene transfer.

そこで本発明者らは、上記課題に鑑み鋭意検討した結果、真核細胞に対してミトコンドリア機能を操作することにより生物界間結合による遺伝子導入効率を向上することができることを独自に見出し、本発明を完成させるに至った。すなわち、本発明は、以下の産業場有用な発明を包含する。   Thus, as a result of intensive studies in view of the above problems, the present inventors have found that the efficiency of gene introduction by inter-organism binding can be improved by manipulating mitochondrial functions for eukaryotic cells, and the present invention. It came to complete. That is, the present invention includes the following industrial fields useful invention.

(1)大腸菌から真核細胞に遺伝子導入する方法において、真核細胞のミトコンドリアの機能を操作することを特徴とする、生物界間接合を用いた遺伝子導入方法。   (1) A gene introduction method using inter-organism junctions, characterized in that in the method of gene introduction from E. coli to eukaryotic cells, the function of mitochondria of eukaryotic cells is manipulated.

(2)(1)記載のミトコンドリアの機能の操作を、ミトコンドリア機能阻害剤を使用して行なうものである、請求項1記載の生物界間接合を用いた遺伝子導入方法。   (2) The gene introduction method using junction between organisms according to claim 1, wherein the operation of the function of mitochondria according to (1) is performed using a mitochondrial function inhibitor.

(3)(2)記載のミトコンドリア機能阻害剤が、Antimycin A、 OligomycinおよびErythromycinである、請求項2に記載の生物界間接合を用いた遺伝子導入方法。   (3) The gene introduction method using the junction between organisms according to claim 2, wherein the mitochondrial function inhibitor according to (2) is Antimycin A, Oligomycin and Erythromycin.

(4)(1)記載の真核細胞が酵母である、請求項1乃至3のいずれか1項に記載の生物界間接合を用いた遺伝子導入方法 。   (4) The gene transfer method using inter-organism junction according to any one of claims 1 to 3, wherein the eukaryotic cell according to (1) is yeast.

(5)(1)乃至(4)のいずれか1項に記載の方法により遺伝子を導入した真核細胞。   (5) A eukaryotic cell into which a gene has been introduced by the method according to any one of (1) to (4).

(6)(5)記載の真核細胞が酵母である請求項1乃至4のいずれか1項に記載の方法により遺伝子を導入した酵母。   (6) The eukaryotic cell according to (5) is a yeast, wherein the gene is introduced by the method according to any one of claims 1 to 4.

(7)(1)乃至(4)のいずれか1項に記載の方法により遺伝子を導入することを目的とした遺伝子導入率増幅キット。   (7) A gene introduction rate amplification kit for introducing a gene by the method according to any one of (1) to (4).

本発明にかかる、遺伝子導入率が向上する方法は、以上のように生物界間接合による遺伝子導入率が向上する方法であって、真核細胞のミトコンドリアの機能を操作することを特徴とする。   The method for improving the gene transfer rate according to the present invention is a method for improving the gene transfer rate by inter-biojunction as described above, and is characterized by manipulating the function of mitochondria in eukaryotic cells.

したがって、真核細胞のミトコンドリア機能を操作することにより、生物界間結合の遺伝子導入率が向上し、通常用いられる大腸菌のステップの少なくすることが可能となる。   Therefore, by manipulating the mitochondrial function of eukaryotic cells, the rate of gene transfer for inter-organism junctions can be improved, and the number of commonly used E. coli steps can be reduced.

さらに具体的にミトコンドリア機能を操作することとは、ミトコンドリア機能阻害剤を用いて真核細胞のミトコンドリアの機能を阻害することにより、生物界間接合による遺伝子導入率が上昇するという効果を奏する。
つまり、本発明の方法を用いる事により、大腸菌という、生物工学で誰もが有用遺伝子のクローニングに用いる生物材料から、酵母等の真核生物に簡便かつ高効率に有用遺伝子を直接導入する事が可能になり、生物界間接合を実用的な遺伝子導入法として真核細胞への遺伝子導入効率を増幅するという効果を奏する。
Manipulating the mitochondrial function more specifically has the effect of increasing the gene transfer rate due to the junction between organisms by inhibiting the mitochondrial function of eukaryotic cells using a mitochondrial function inhibitor.
That is, by using the method of the present invention, a useful gene can be directly and efficiently introduced into a eukaryote such as yeast from a biological material that is used for cloning of a useful gene in biotechnology, such as E. coli. It becomes possible, and it has the effect of amplifying the efficiency of gene transfer into eukaryotic cells using the junction between organisms as a practical gene transfer method.

以下、本発明について詳しく説明するが、本発明の範囲はこれら説明に拘束されることはなく、以下の事例以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。また、本明細書中に記載された公知文献のすべてが、本明細書中において参考として援用される。 Hereinafter, the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention. Moreover, all the well-known literatures described in this specification are used as reference in this specification.

<1.本発明の用語の定義>
本発明に於いて、真核細胞とは、細胞内に細胞核と呼ばれる構造を持ち、細胞のそれ以外の部分からは膜(核膜)で区切られている細胞をいい、酵母、菌類、植物および動物細胞を指す。
<1. Definition of terms of the present invention>
In the present invention, a eukaryotic cell refers to a cell having a structure called a cell nucleus in the cell and separated from the other part of the cell by a membrane (nuclear membrane), such as yeast, fungi, plant and Refers to animal cells.

そして、本発明に於いて、遺伝子導入とは目的遺伝子の宿主でない他生物にクローニングしたベクターを導入し、その遺伝子が有効な形質を発現できるように仕向けることであり、また、遺伝子導入をする方法とは、目的遺伝子を宿主でない他生物にクローニングしたベクターを導入し、その遺伝子を有効な形質を出現できるほうに仕向ける方法をいう。   In the present invention, gene transfer refers to introducing a cloned vector into another organism that is not the host of the target gene and directing the gene to express an effective trait, and a method for gene transfer The term “method” refers to a method in which a vector obtained by cloning a target gene into another organism that is not a host is introduced, and the gene is directed to the direction where an effective trait can appear.

また、本発明に於いて、ミトコンドリアとは、ほとんど全ての真核生物の細胞に含まれる細胞小器官であり、脂肪酸のβ酸化や、電子伝達系による酸化的リン酸化によるエネルギーの生産を行う器官である。   Further, in the present invention, mitochondria are organelles contained in almost all eukaryotic cells, and are organs that produce energy by β-oxidation of fatty acids or oxidative phosphorylation by an electron transport system. It is.

そして、ミトコンドリアの機能を操作するとは、ミトコンドリア機能阻害剤による機能阻害、嫌気条件での培養、ミトコンドリアゲノムへの突然変異の導入、ミトコンドリアタンパク質遺伝子への突然変異の導入、ミトコンドリアタンパク質遺伝子の発現を誘導する転写調節因子遺伝子の破壊などを指す。   And manipulating mitochondrial function means function inhibition by mitochondrial function inhibitors, culture under anaerobic conditions, introduction of mutation into mitochondrial genome, introduction of mutation into mitochondrial protein gene, induction of expression of mitochondrial protein gene This refers to the destruction of transcriptional regulator gene.

さらに、そのミトコンドリアのその細胞器官の機能を阻害する、ミトコンドリア機能阻害剤には、Antimycin A、 Oligomycin、Erythromycin、Chloramphenicol、Mitomycin C、Rutamycin、Ethidiumbromide、5-iododeoxyuridine、Trichosporin-B類、Enniatin A、Valinomycin、Gramicidin、Nigericin、Dianemycin、Mikamycinなどがある。   In addition, mitochondrial function inhibitors that inhibit the function of the organelles of the mitochondria include Antimycin A, Oligomycin, Erythromycin, Chloramphenicol, Mitomycin C, Rutamycin, Ethidiumbromide, 5-iododeoxyuridine, Trichosporin-B class, Enniatin A, Valinomycin , Gramicidin, Nigericin, Dianemycin, Mikamycin.

本発明に於いて、生物界間接合とは原核生物である大腸菌と真核生物が生物界を越えて接合し遺伝子の伝達を行うという興味深い現象のことである。   In the present invention, the junction between organisms is an interesting phenomenon in which Escherichia coli, which is a prokaryote, and eukaryotes join and transduce genes across the organism.

そして本発明の技術を用いることにより、従来からあるリポフェクション法ないしはリポソームトランスフェクション法、エレクトロポレーション法、ウイルスベクターを用いた方法およびマイクロインジェクション法などの遺伝子導入法に比べてプラスミドDNAの調製というステップを余分に必要とせず時間とコストをかけることなく、真核細胞に対して大腸菌からダイレクトに遺伝子を導入することができるようになる。   Then, by using the technique of the present invention, a step of preparing plasmid DNA as compared with conventional gene transfection methods such as lipofection method or liposome transfection method, electroporation method, viral vector method and microinjection method. The gene can be directly introduced from E. coli into eukaryotic cells without requiring extra time and cost.

すなわち、大腸菌と真核細胞のサスペンジョンを混合するのみで簡便に遺伝子を導入することが可能となる。   That is, it is possible to introduce a gene simply by mixing E. coli and eukaryotic cell suspension.

さらに、遺伝子導入率増幅キットとは、本発明の生物界間接合を用いた遺伝子導入法を含むことを特徴としており、本発明のキットは遺伝子導入効率を向上させる生物界間接合による遺伝子導入法を実施しうるものであれば良く、その他の構成を含んでいてもよい。たとえば、真核細胞のミトコンドリア機能阻害剤などの生物界間接合抑制遺伝子の機能阻害剤を含む緩衝液、嫌気培養用の酸素吸収剤を同封したパック、RNAiやアンチセンスRNAによるミトコンドリア機能遺伝子などの生物界間接合を抑制する遺伝子の発現抑制などがある。   Furthermore, the gene transfer rate amplification kit is characterized by including the gene transfer method using the junction between organisms of the present invention, and the kit of the present invention is a gene transfer method by junction between organisms that improves gene transfer efficiency. Any other configuration may be included as long as the configuration can be implemented. For example, a buffer containing a function inhibitor of the inter-organism junction suppressor gene such as a mitochondria function inhibitor of eukaryotic cells, a pack containing an oxygen absorber for anaerobic culture, a mitochondrial function gene by RNAi or antisense RNA, etc. Inhibition of gene expression that suppresses junctions between organisms.

<2.本発明の生物界間接合効率上昇株の選択方法>
本発明に於いて生物界間接合反応は、pAY205などInc Q型プラスミドのoriT配列やmob遺伝子群を含むドナープラスミド、もしくはInc P型プラスミドのoriT配列を持つドナープラスミドを、例えばS17-1 l pir株などtra遺伝子群をゲノム中に含む大腸菌、もしくはpRH210, pRH220などtra遺伝子群を含むヘルパープラスミドを保持する大腸菌に保持させて前培養する。
<2. Selection method of strain with increased bioa conjugation efficiency of the present invention>
In the present invention, the biosphere conjugation reaction is carried out by using a donor plasmid containing an oriT sequence of an Inc Q-type plasmid such as pAY205, or a mob gene group, or a donor plasmid having an oriT sequence of an Inc P-type plasmid, for example, Pre-cultured in E. coli containing a tra gene group such as a strain in the genome or E. coli holding a helper plasmid containing a tra gene group such as pRH210, pRH220.

そして、その前培養した大腸菌と、各々の出芽酵母ノックアウト変異株についTNB緩衝液中で反応を行う。   Then, the pre-cultured E. coli is reacted with each budding yeast knockout mutant in TNB buffer.

α型出芽酵母BY4742株またはBY4739株から作製された、非必須遺伝子ノックアウト変異株キット (Yeast Deletion Clones (Mat-Alpha Complete Set), Invitrogen社製)、もしくはa型出芽酵母BY4741株またはBY4730株から作製された、非必須遺伝子ノックアウト変異株キット (Yeast Deletion Clones (Mat-a Complete Set), Invitrogen社製)を用いて、生物界間接合阻害遺伝子のゲノム網羅的スクリーニングを行う。   Non-essential gene knockout mutant kit (Yeast Deletion Clones (Mat-Alpha Complete Set), manufactured by Invitrogen) made from α-type budding yeast BY4742 or BY4739, or a-type budding yeast BY4741 or BY4730 Using the non-essential gene knockout mutant kit (Yeast Deletion Clones (Mat-a Complete Set), manufactured by Invitrogen), genome-wide screening of inter-organism junction inhibition genes is performed.

本発明の生物界間接合効率上昇株の選択では3回のスクリーニングを行う。   Screening is performed three times in the selection of the strain with increased bioa conjugation efficiency of the present invention.

1回目のスクリーニングでは、生物界間接合反応後、反応液を選抜培地(SC−Ura)プレートにスポットし、pAY205の移行によりURA3遺伝子が相補されてウラシル合成能が回復した酵母のコロニー数を計測し、コントロールと比較して4倍以上のコロニー数の上昇が観察された変異株を得る。   In the first screening, the reaction mixture was spotted on a selective medium (SC-Ura) plate after the inter-organism junction reaction, and the number of yeast colonies whose URA3 gene was complemented by the transfer of pAY205 and the ability to synthesize uracil was recovered. Thus, a mutant strain in which an increase in the number of colonies of 4 times or more compared to the control is observed is obtained.

次に、2回目のスクリーニングでは、1回目のスクリーニングで得られた変異株について更に2回の接合反応を行い、合計3回の接合反応の平均値で出芽酵母株の8倍以上のコロニー数の上昇が観察された変異株を得た。   Next, in the second screening, the mutant strain obtained in the first screening is further subjected to two conjugation reactions, and the average value of the total three conjugation reactions is 8 times more colonies than the budding yeast strain. A mutant strain in which an increase was observed was obtained.

3回目のスクリーニングでは、2回目のスクリーニングで得られた変異株について更に3回の生物界間接合反応を行い、接合反応液の半分の量を選抜培地(SC−Ura)プレート、5000分の1量に相当する希釈液を大腸菌殺菌用に抗生物質を加えた完全培地 (YPD+Chloramphenicol) プレートにスポットし、transconjugantとrecipient の細胞数を計測して生物界間接合効率を決定した。   In the third screening, the mutant obtained in the second screening is subjected to three more biological junction reactions, and half the amount of the conjugation reaction solution is selected in a selective medium (SC-Ura) plate, 1/5000. The diluted solution corresponding to the amount was spotted on a complete medium (YPD + Chloramphenicol) plate supplemented with antibiotics for sterilization of Escherichia coli, and the number of transconjugant and recipient cells was counted to determine the interconjugation efficiency between organisms.

2回目のスクリーニング、3回目のスクリーニングの相方またはいずれかにおいて、コントロールの出芽酵母に比べ16倍以上の上昇が観察される生物界間接合効率上昇変異株が得られる。   In the second screening, the third screening, or either, a mutant strain with increased bioa conjugation efficiency in which an increase of 16 times or more is observed as compared with the control budding yeast is obtained.

1 transconjugant/ 500 recipient yeast cells以上の高い効率を示す変異株を得ることにも成功した(図2)。   We also succeeded in obtaining mutant strains with higher efficiency than 1 transconjugant / 500 recipient yeast cells (Fig. 2).

コントロールの出芽酵母との2倍体作製による相補実験では、全ての変異が相補され、野生型の接合効率に戻るとの結果を得た。すなわち、上記の結果より、生物界間接合阻害遺伝子の破壊株は、生物界間接合を用いた遺伝子導入法で有用な受容 (recipient) 株となる事が証明された。   In a complementation experiment by producing a diploid with a control budding yeast, all mutations were complemented, and the result returned to the wild-type conjugation efficiency. That is, from the above results, it was proved that the disrupted strain of the inter-organism junction inhibiting gene is a useful recipient strain by the gene transfer method using inter-organism junction.

<3.本発明のミトコンドリア機能阻害を用いた生物界間接合効率上昇の方法>
2の本発明の生物界間接合効率上昇株の選択方法により、選択された生物界間接合効率上昇変異株の中には、核コードのミトコンドリアタンパク質遺伝子欠損株が含まれていた。
<3. Method for Increasing Biological Junction Efficiency Using Mitochondrial Function Inhibition of the Present Invention>
According to the method for selecting strains with increased bioa conjugation efficiency of the present invention in 2, the mutant strains with increased bioa conjugation efficiency selected include a mitochondrial protein gene deficient strain of the nuclear code.

そこで、ミトコンドリアの機能を操作するため、ミトコンドリア機能阻害剤のAntimycin A, Oligomycin, Erythromycin、Chloramphenicol、Mitomycin C、Rutamycin、Ethidiumbromide、5-iododeoxyuridine、Trichosporin-B類、Enniatin A、Valinomycin、Gramicidin、Nigericin、Dianemycin、Mikamycinを添加する(。   Therefore, in order to manipulate the function of mitochondria, mitochondrial function inhibitors Antimycin A, Oligomycin, Erythromycin, Chloramphenicol, Mitomycin C, Rutamycin, Ethidiumbromide, 5-iododeoxyuridine, Trichosporin-B, Enniatin A, Valinomycin, Gramicidin, Nigericin, Dianemycin Add Mikamycin (.

出芽酵母である、α型 (BY4742), a型 (BY4741)相方の酵母の生物界間接合効率の上昇が観察された(図3)。   An increase in the efficiency of conjugation between biospheres was observed in yeasts of α type (BY4742) and a type (BY4741), which are budding yeast (FIG. 3).

Antimycin Aについては、YPDプレート上で28℃にて2日間にわたり前培養を行った。出芽酵母を好ましくは2.5 μM以上40 μM以下、より好ましくは5 μM以上20 μM以下、さらに好ましくは7.5 μM以上15 μM以下の範囲でAntimycin Aを添加したYPDプレートへ植えつぎ、更に28℃にて1日間、培養を行った。2.5 μM以下はミトコンドリアの機能阻害が不十分との理由で好ましくなく、また40 μM以上は薬剤による細胞毒性の影響が強くなるとの理由から好ましくない。そして、Antimycin Aを添加したYPDプレートへ植えつぎ、更に28℃にて1日間、培養を行った。   Antimycin A was pre-cultured on a YPD plate at 28 ° C. for 2 days. Saccharomyces cerevisiae is preferably planted on an YPD plate supplemented with Antimycin A in a range of 2.5 μM to 40 μM, more preferably 5 μM to 20 μM, and even more preferably 7.5 μM to 15 μM, and further at 28 ° C. Culture was performed for 1 day. 2.5 μM or less is not preferable because mitochondrial function is insufficiently inhibited, and 40 μM or more is not preferable because the influence of cytotoxicity by the drug becomes strong. And it planted to the YPD plate which added Antimycin A, and also culture | cultivated at 28 degreeC for 1 day.

Antimycin A処理後の酵母を用いて生物界間接合反応を行い、3回目のスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、設定した処理濃度において、コントロールと比較して生物界間接合効率上昇することができる。   The biosphere conjugation reaction was carried out using yeast after antimycin A treatment, and the interorganism conjugation efficiency was determined in the same manner as in the third screening. As a result, the biological junction efficiency can be increased compared to the control at the set treatment concentration.

Oligomycinについては、YPDプレート上で28℃にて2日間にわたり前培養を行った。出芽酵母を好ましくは2 mg/ml以上32 mg/ml以下、より好ましくは4 mg/ml以上16 mg/ml以下、さらに好ましくは6 mg/ml以上12 mg/ml以下の範囲でOligomycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。2 mg/ml以下はミトコンドリアの機能阻害が不十分との理由で好ましくなく、また32 mg/ml以上は薬剤による細胞毒性の影響が強くなるとの理由から好ましくない。そして、Oligomycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。   Oligomycin was precultured on a YPD plate at 28 ° C. for 2 days. Oligomycin was added in the range of preferably 2 mg / ml to 32 mg / ml, more preferably 4 mg / ml to 16 mg / ml, and even more preferably 6 mg / ml to 12 mg / ml. It was planted on a YPD plate and further cultured at 28 ° C. for 2 days. 2 mg / ml or less is not preferable because mitochondrial function is insufficiently inhibited, and 32 mg / ml or more is not preferable because the effect of cytotoxicity by drugs becomes strong. Then, it was planted on a YPD plate supplemented with Oligomycin and further cultured at 28 ° C. for 2 days.

Oligomycin処理後の酵母を用いて生物界間接合反応を行い、3rdスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、設定した処理濃度においてコントロールと比較して出芽酵母の生物界間接合効率上昇を観察した。   Bioligation reaction was carried out using yeast after Oligomycin treatment, and the efficiency of bioligation was determined by the same method as 3rd screening. As a result, an increase in the efficiency of budding yeast between the organisms was observed compared to the control at the set treatment concentration.

Erythromycinについては、YPDプレート上で28℃にて2日間にわたり前培養を行った。出芽酵母を好ましくは0.2 mg/ml以上12.8 mg/ml以下、より好ましくは0.4 mg/ml以上6.4 mg/ml以下、さらに好ましくは0.8 mg/ml以上3.2 mg/ml以下の範囲でErythromycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。0.2 mg/ml以下はミトコンドリアの機能阻害が不十分との理由で好ましくなく、また12.8 mg/ml以上は薬剤による細胞毒性の影響が強くなるとの理由から好ましくない。そして、Erythromycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。   Erythromycin was pre-cultured on a YPD plate at 28 ° C. for 2 days. Erythromycin was added in the range of preferably 0.2 mg / ml to 12.8 mg / ml, more preferably 0.4 mg / ml to 6.4 mg / ml, and even more preferably 0.8 mg / ml to 3.2 mg / ml. It was planted on a YPD plate and further cultured at 28 ° C. for 2 days. 0.2 mg / ml or less is not preferable because of insufficient mitochondrial function inhibition, and 12.8 mg / ml or more is not preferable because the effect of cytotoxicity by drugs becomes strong. Then, it was planted on a YPD plate supplemented with erythromycin and further cultured at 28 ° C. for 2 days.

Erythromycin処理後の酵母を用いて生物界間接合反応を行い、3rdスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、設定した処理濃度においてコントロールと比較して出芽酵母の生物界間接合効率上昇を観察した。   Biological conjugation reaction was performed using yeast after erythromycin treatment, and bioconjugation efficiency was determined by the same method as 3rd screening. As a result, an increase in the efficiency of budding yeast between the organisms was observed compared to the control at the set treatment concentration.

以上のように、生物界間接合阻害遺伝子に対する機能阻害剤の添加は、生物界間接合を用いた遺伝子導入において有用な遺伝子導入効率上昇法となる事が証明された。   As described above, it has been proved that the addition of a function inhibitor to an inter-organism junction-inhibiting gene is a useful method for increasing gene introduction efficiency in gene introduction using inter-organism junction.

<4.従来の遺伝子導入に対しての本発明の遺伝子導入効率>
最も簡便な遺伝子導入法である簡便PEG法での導入効率は、5000株の変異体の中から、102transformants / μg DNA / 107 recipient yeast cellsで導入できる変異株が見出されている
。当然この系は大腸菌からのDNA抽出が必要である。
<4. Gene transfer efficiency of the present invention over conventional gene transfer>
The introduction efficiency of the simple PEG method, which is the simplest gene introduction method, has been found among the 5000 strain mutants that can be introduced with 102 transformants / μg DNA / 107 recipient yeast cells.
. Naturally, this system requires DNA extraction from E. coli.

これに対し本発明では、もっとも接合効率の高い変異株では、上記の効率基準に換算すると2x104transformants / 3.75x107 donor E. colicells/ 107 recipient yeast cellsと換算でき、すぐれているのは明らかである。   On the other hand, in the present invention, the mutant strain having the highest conjugation efficiency can be converted to 2 × 10 4 transformants / 3.75 × 10 7 donor E. coli cells / 107 recipient yeast cells when converted to the above efficiency standard, and it is clear that it is excellent.

一方、簡便PEG法よりは操作が煩雑であるものの、比較的遺伝子導入効率が高く最も汎用されている酢酸リチウム法では、4x102 transformants / μg DNA / 106 recipient yeast cells程度の導入効率である
。この系も大腸菌からのDNA抽出が必要である。
On the other hand, although the operation is more complicated than the simple PEG method, the most commonly used lithium acetate method has a relatively high gene transfer efficiency, and the transfer efficiency is about 4 × 10 2 transformants / μg DNA / 106 recipient yeast cells.
. This system also requires DNA extraction from E. coli.

これに対し本発明にあるミトコンドリア機能阻害剤で前処理した酵母を生物界間接合を用いることにより、生物界間接合効率上昇変異株でない酵母でも従来の方法より遺伝子導入効率は高くなる。それは、大腸菌で通常高コピープラスミド(一般的に使用されるもの)は2ml程度の培養液から2 μgほどのプラスミドDNAが得られる。この培養液の中には少なくとも2.5x108の大腸菌細胞が含まれている。ここから、生物界間接合による遺伝子導入で通常用いる3.75x106 大腸菌細胞から抽出できるプラスミドDNA量は0.03 μg程度と換算される。そこで、μg DNAあたりで換算すると,我々の生物界間接合効率上昇変異株は約6.7x104 transformants / μg DNA / 3.3x107 recipient yeast cells程度という事になり、非変異株においてもErythromycinでもっとも条件よく処理すると、7x103 transformants / μg DNA / 3.3x107 recipient yeast cells程度という事になる。   On the other hand, by using the inter-organism junction for the yeast pretreated with the mitochondrial function inhibitor of the present invention, the gene transfer efficiency is higher than that of the conventional method even in a yeast that is not a mutant with an increased interorganism junction efficiency. That is, about 2 μg of plasmid DNA can be obtained from a culture solution of about 2 ml of a high-copy plasmid (generally used) in E. coli. This culture solution contains at least 2.5 × 10 8 E. coli cells. From this, the amount of plasmid DNA that can be extracted from the 3.75 × 10 6 E. coli cells that are usually used for gene transfer by inter-biojunction is converted to about 0.03 μg. Therefore, when converted in terms of μg DNA, our mutants with increased biology conjugation efficiency are about 6.7 × 10 4 transformants / μg DNA / 3.3 × 107 recipient yeast cells. If treated well, it would be about 7x103 transformants / μg DNA / 3.3x107 recipient yeast cells.

すなわち、本発明を用いることにより簡便性、多検体操作性および形質転換効率を鼎立しており総合的に従来の遺伝子導入方法より勝っていることが示される。   That is, by using the present invention, simplicity, multi-sample operability, and transformation efficiency are established, and it is shown that the method is comprehensively superior to conventional gene transfer methods.

本発明について、実施例および図1〜図5に基づいてより具体的に説明するが
、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正および改変を行うことができる。
Although this invention is demonstrated more concretely based on an Example and FIGS. 1-5, this invention is not limited to this. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention.

<本発明の生物界間接合効率上昇株の選択方法>
大腸菌-酵母間の生物界間接合
をモデル系として解析を行った(図1)。
<Method for selecting strain with increased biological efficiency of the present invention>
Biological junction between E. coli and yeast
Was used as a model system (FIG. 1).

生物界間接合反応は、3.75x106cellの、ヘルパープラスミドpRH210とドナープラスミドpAY205を保持する大腸菌HB101を96穴マイクロタイタープレートに分注し、YPDプレートで前培養(28℃,2日間)した各々の出芽酵母ノックアウト変異株5×105以上10×105以下 cellと混合し、25 μlのTNB緩衝液 (80 mM Tris-HCl (pH 7.5), 0.05% NaCl) 中で28℃,1時間おこなった。   The inter-organism conjugation reaction was performed by dispensing 3.75 × 10 6 cells of E. coli HB101 carrying the helper plasmid pRH210 and the donor plasmid pAY205 into a 96-well microtiter plate, and pre-cultured on a YPD plate (28 ° C., 2 days). Saccharomyces cerevisiae knockout mutant 5 × 105 or more and 10 × 105 or less mixed with cells and in 28 μl of TNB buffer (80 mM Tris-HCl (pH 7.5), 0.05% NaCl) at 28 ° C. for 1 hour I did it.

α型出芽酵母BY4742株から作製された、4828株から成る非必須遺伝子ノックアウト変異株キット (Yeast Deletion Clones (Mat-Alpha Complete Set), Invitrogen社製) を用いて、以下の手順で生物界間接合阻害遺伝子のゲノム網羅的スクリーニングを行った。   Using a non-essential gene knockout mutant kit (Yeast Deletion Clones (Mat-Alpha Complete Set), manufactured by Invitrogen) consisting of 4828, produced from the α-type budding yeast BY4742 Genome-wide screening for inhibitory genes was performed.

1回目のスクリーニングでは、生物界間接合反応後、反応液を選抜培地(SC−Ura)プレートにスポットし、pAY205の移行によりURA3遺伝子が相補されてウラシル合成能が回復した酵母のコロニー数を計測した。コントロールのBY4742と比較し、4倍以上のコロニー数の上昇が観察された変異株341株を得た。   In the first screening, the reaction mixture was spotted on a selective medium (SC-Ura) plate after the inter-organism conjugation reaction, and the number of yeast colonies whose URA3 gene was complemented by the transfer of pAY205 and the uracil synthesis ability was recovered was counted. did. In comparison with control BY4742, 341 mutant strains were observed in which an increase in the number of colonies of 4 times or more was observed.

2回目のスクリーニングでは、1回目のスクリーニングで得られた変異株について更に2回の接合反応を行い、合計3回の接合反応の平均値でBY4742の8倍以上のコロニー数の上昇が観察された変異株99株を得た。   In the second screening, the mating strain obtained in the first screening was further subjected to two conjugation reactions, and an increase in the number of colonies of 8 times or more of BY4742 was observed in the average value of the total three conjugation reactions. 99 mutant strains were obtained.

3回目のスクリーニングでは、2回目のスクリーニングで得られた変異株について更に3回の生物界間接合反応を行い、接合反応液の1/2量を選抜培地(SC-Ura)プレート、1/5000量に相当する希釈液を大腸菌殺菌用に抗生物質を加えた完全培地 (YPD+Chloramphenicol) プレートにスポットし、transconjugantとrecipient の細胞数を計測して生物界間接合効率を決定した。2回目のスクリーニング、3回目のスクリーニングの相方またはいずれかにおいて、コントロールのBY4742株に比べ16倍以上の上昇が観察される22株(22遺伝子)の生物界間接合効率上昇変異株が得られ、1 transconjugant / 500 recipient yeast cells以上の高い効率を示す変異株を得ることにも成功した(図2)。   In the third screening, the mutant obtained in the second screening is subjected to three more biological junction reactions, and one-half of the conjugation reaction solution is added to a selective medium (SC-Ura) plate, 1/5000. The diluted solution corresponding to the amount was spotted on a complete medium (YPD + Chloramphenicol) plate supplemented with antibiotics for sterilization of Escherichia coli, and the number of transconjugant and recipient cells was counted to determine the interconjugation efficiency between organisms. In either the second screening, the third screening, or any of them, 22 strains (22 genes) in which the increase in inter-organism junction efficiency is observed, which is observed to be 16 times or more higher than the control BY4742 strain, are obtained, It succeeded in obtaining the mutant which shows high efficiency more than 1 transconjugant / 500 recipient yeast cells (FIG. 2).

a型酵母(BY4741)との2倍体作製による相補実験では、22株全ての変異が相補され、野生型の接合効率に戻った。   In a complementation experiment by producing a diploid with a-type yeast (BY4741), all 22 mutations were complemented and returned to wild-type conjugation efficiency.

上記の結果より、生物界間接合阻害遺伝子の破壊株は、生物界間接合を用いた遺伝子導入法で有用な受容 (recipient) 株となる事が証明された。   From the above results, it was proved that the disrupted strain of the inter-organism junction-inhibiting gene is a useful recipient strain by the gene transfer method using inter-organism junction.

<本発明のミトコンドリア機能阻害を用いた生物界間接合効率上昇の方法>
22株の生物界間接合効率上昇変異株の中には8株の核コードのミトコンドリアタンパク質遺伝子欠損株が含まれていた為、ミトコンドリア機能阻害剤のAntimycin A, Oligomycin, Erythromycinを添加したところ、α型 (BY4742), a型 (BY4741), の両酵母の生物界間接合効率の上昇が観察された。以下にその詳細を記す。
<Method for Increasing Biological Junction Efficiency Using Mitochondrial Function Inhibition of the Present Invention>
Among the 22 strains with increased biological junction efficiency, 8 nuclear-encoded mitochondrial protein gene-deficient strains were included. An increase in the inter-organism conjugation efficiency of both type (BY4742) and type a (BY4741) yeast was observed. The details are described below.

Antimycin Aについては、YPDプレート上で28℃にて2日間にわたり前培養を行ったBY4742, BY4741株を、40 μM以下の範囲でAntimycin Aを添加したYPDプレートへ植えつぎ、更に28℃にて1日間、培養を行った。   For antimycin A, BY4742 and BY4741 strains precultured at 28 ° C for 2 days on YPD plates were planted on YPD plates supplemented with Antimycin A in the range of 40 µM or less, and 1 at 28 ° C. Cultures were performed for days.

Antimycin A処理後の酵母を用いて生物界間接合反応を行い、3rdスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、図3に示すように、10 μMの処理濃度において、0 mg/mlのものと比較してBY4742では4.9倍, BY4741では3.9倍の生物界間接合効率上昇を観察した。   Biological conjugation reaction was carried out using yeast after antimycin A treatment, and the conjugation efficiency between the biological kingdoms was obtained by the same method as 3rd screening. As a result, as shown in FIG. 3, at the treatment concentration of 10 μM, an increase in the biojunction efficiency was observed for BY4742 by 4.9 times and BY4741 by 3.9 times compared to 0 mg / ml.

Oligomycinについては、YPDプレート上で28℃にて2日間にわたり前培養を行ったBY4742, BY4741株を、8 μg/ml以下の範囲でOligomycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。   For Oligomycin, BY4742, BY4741 strains that had been pre-cultured on a YPD plate for 2 days at 28 ° C were planted on an YPD plate supplemented with Oligomycin in a range of 8 µg / ml or less. Cultures were performed for days.

Oligomycin処理後の酵母を用いて生物界間接合反応を行い、3rdスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、図4に示すように、8 μg/mlの処理濃度において0 mg/mlのものと比較してBY4742では4.7倍, BY4741では2.8倍の生物界間接合効率上昇を観察した。   Bioligation reaction was performed using yeast after treatment with Oligomycin, and the efficiency of bioligation was determined by the same method as 3rd screening. As a result, as shown in FIG. 4, an increase in biojunction efficiency was observed 4.7 times for BY4742 and 2.8 times for BY4741 compared to 0 mg / ml at a treatment concentration of 8 μg / ml.

Erythromycinについては、YPDプレート上で28℃にて2日間にわたり前培養を行ったBY4742, BY4741株を、6.4 mg/ml以下の範囲でErythromycinを添加したYPDプレートへ植えつぎ、更に28℃にて2日間、培養を行った。   For erythromycin, BY4742, BY4741 strains precultured at 28 ° C for 2 days on YPD plates were planted on YPD plates supplemented with erythromycin in the range of 6.4 mg / ml or less. Cultures were performed for days.

Erythromycin処理後の酵母を用いて生物界間接合反応を行い、3rdスクリーニングと同様の手法で生物界間接合効率を求めた。その結果、図5に示すように、1.6 mg/mlの処理濃度において0 mg/mlのものと比較してBY4742では6.8倍, BY4741では6.6倍の生物界間接合効率上昇を観察した。   Biological conjugation reaction was performed using yeast after erythromycin treatment, and bioconjugation efficiency was determined by the same method as 3rd screening. As a result, as shown in FIG. 5, an increase in the biojunction efficiency was observed for BY4742 by 6.8 times and BY4741 by 6.6 times compared to 0 mg / ml at a treatment concentration of 1.6 mg / ml.

以上のように、生物界間接合阻害遺伝子に対する機能阻害剤の添加は、生物界間接合を用いた遺伝子導入において有用な遺伝子導入効率上昇法となる事が証明された。   As described above, it has been proved that the addition of a function inhibitor to an inter-organism junction-inhibiting gene is a useful method for increasing gene introduction efficiency in gene introduction using inter-organism junction.

以上のように、本発明では、真核細胞のミトコンドリアの機能を阻害することにより、遺伝子導入率を向上することができるため、簡便かつ高効率に有用遺伝子を直接導入する事が出来る。   As described above, in the present invention, since the gene transfer rate can be improved by inhibiting the function of mitochondria in eukaryotic cells, a useful gene can be directly and simply introduced with high efficiency.

遺伝子導入は医学・薬学・農学・発酵工学・一般生物学研究すべてにおいて、基礎/応用分野を問わずおこなわれており、そのため本発明を用いることにより真核細胞への遺伝子導入において、本発明は安価で簡便な手法として広く利用できる可能性がある。   Gene transfer is performed in all fields of medicine, pharmacy, agriculture, fermentation engineering, and general biology, regardless of basic / application fields. Therefore, the present invention can be used for gene transfer into eukaryotic cells. It may be widely used as an inexpensive and simple method.

さらに、ゲノム網羅的な遺伝子導入をおこなう時など、特に多サンプルの遺伝子導入が必要な時に、プラスミドDNA調製の必要がないため、自動化しやすく迅速な遺伝子導入法となる可能性がある。   Furthermore, there is no need for plasmid DNA preparation, especially when gene introduction of a large number of samples is required, such as when genome-wide gene introduction is performed, and thus there is a possibility that the gene introduction method is easy and can be automated quickly.

大腸菌から真核細胞に対して生物界間接合により遺伝子が導入されることを模式的に示した図である。It is the figure which showed typically that a gene is introduce | transduced by the junction between biological spheres from E. coli to a eukaryotic cell. 生物界間接合効率上昇変異株22株の生物界間接合効率を示した図である。It is the figure which showed the biojunction conjugation efficiency of 22 strains with an increase in biojunction efficiency. 生物界間接合阻害遺伝子機能阻害剤Antimycin Aの添加による接合効率の上昇、およびそれぞれの濃度の各薬剤を含むYPD培地で1日処理したBY4742株とBY4741株について検討した結果を示した図である。It is the figure which showed the result of having investigated the BY4742 stock | strain and BY4741 stock | stump which were processed with the YPD culture medium containing each drug of each density | concentration each increase in the conjugation efficiency by addition of the biophysical joint inhibition gene function inhibitor Antimycin A. . 生物界間接合阻害遺伝子機能阻害剤Oligomycinの添加による接合効率の上昇、およびそれぞれの濃度の各薬剤を含むYPD培地で2日処理したBY4742株とBY4741株について検討した結果を示した図である。It is the figure which showed the result of having examined the BY4742 stock | strain and BY4741 stock | strain which were processed for 2 days with the YPD culture medium containing each drug of each density | concentration increase of the conjugation efficiency by addition of Oligomycin. 生物界間接合阻害遺伝子機能阻害剤Erythromycinの添加による接合効率の上昇、およびそれぞれの濃度の各薬剤を含むYPD培地で1日処理したBY4742株とBY4741株について検討した結果を示した図である。It is the figure which showed the result of having examined the BY4742 strain | stump | stock and BY4741 strain | stump | stock which were processed with the YPD culture medium containing each chemical | medical agent of each density | concentration each increase in the conjugation efficiency by addition of the biophysical junction inhibition gene function inhibitor Erythromycin.

Claims (7)

大腸菌から真核細胞に遺伝子導入する方法において、
真核細胞のミトコンドリアの機能を操作することを特徴とする、
生物界間接合を用いた遺伝子導入方法。
In the method of gene transfer from E. coli to eukaryotic cells,
Manipulating the function of mitochondria in eukaryotic cells,
Gene transfer method using junction between organisms.
前記ミトコンドリアの機能の操作を、
ミトコンドリア機能阻害剤を使用して行なうものである、
請求項1記載の生物界間接合を用いた遺伝子導入方法。
Manipulation of the function of the mitochondria,
It is performed using a mitochondrial function inhibitor,
A gene transfer method using the junction between organisms according to claim 1.
前記ミトコンドリア機能阻害剤が、
Antimycin A、 OligomycinおよびErythromycinである、
請求項2に記載の生物界間接合を用いた遺伝子導入方法。
The mitochondrial function inhibitor is
Antimycin A, Oligomycin and Erythromycin,
A gene transfer method using the junction between organisms according to claim 2.
前記真核細胞が酵母である、
請求項1乃至3のいずれか1項に記載の生物界間接合を用いた遺伝子導入方法 。
The eukaryotic cell is yeast;
The gene transfer method using the junction between biological kingdoms of any one of Claims 1 thru | or 3.
請求項1乃至4のいずれか1項に記載の方法により遺伝子を導入した真核細胞。
A eukaryotic cell into which a gene has been introduced by the method according to any one of claims 1 to 4.
前記真核細胞が酵母である請求項1乃至4のいずれか1項に記載の方法により遺伝子を導入した酵母。
The yeast into which a gene has been introduced by the method according to any one of claims 1 to 4, wherein the eukaryotic cell is yeast.
請求項1乃至4のいずれか1項に記載の方法により遺伝子を導入することを目的とした遺伝子導入率増幅キット。
A gene introduction rate amplification kit for introducing a gene by the method according to any one of claims 1 to 4.
JP2007292999A 2007-11-12 2007-11-12 Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene Pending JP2009118745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292999A JP2009118745A (en) 2007-11-12 2007-11-12 Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292999A JP2009118745A (en) 2007-11-12 2007-11-12 Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene

Publications (1)

Publication Number Publication Date
JP2009118745A true JP2009118745A (en) 2009-06-04

Family

ID=40811614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292999A Pending JP2009118745A (en) 2007-11-12 2007-11-12 Method for transferring gene to eukaryotic cell by utilization of conjugation between living world, eukaryotic cell obtained by the method, and kit for transferring the gene

Country Status (1)

Country Link
JP (1) JP2009118745A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247999A (en) * 2001-02-26 2002-09-03 Japan Science & Technology Corp Method of screening cell death blocker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247999A (en) * 2001-02-26 2002-09-03 Japan Science & Technology Corp Method of screening cell death blocker

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012055088; Nature Vol.340, 1989, P.205-209 *
JPN6012055089; 日本分子生物学会年会講演要旨集 Vol.28th, 2005, P.202 *
JPN6012055090; Conjugation between bacterial and mammalian cells : Nature News *
JPN7012004332; 守口和基: 大腸菌から真核細胞へのハイスループット直接遺伝子導入法 *

Similar Documents

Publication Publication Date Title
Chen et al. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris
Liu et al. Metabolic engineering of probiotic Saccharomyces boulardii
Cernak et al. Engineering Kluyveromyces marxianus as a robust synthetic biology platform host
Zou et al. Efficient genome editing in filamentous fungi via an improved CRISPR‐Cas9 ribonucleoprotein method facilitated by chemical reagents
US20160090603A1 (en) Delivery platforms for the domestication of algae and plants
McCulloch et al. Transformation of monomorphic and pleomorphic Trypanosoma brucei
Ryan et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system
US20200291395A1 (en) Novel crispr-associated transposon systems and components
Gutiérrez et al. Gene delivery technologies with applications in microalgal genetic engineering
CN107904261A (en) The preparation of CRISPR/Cas9 nano gene systems and its application in terms of transfection
Liu et al. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments
Lee et al. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus
Lee et al. Application of sequential integration for metabolic engineering of 1, 2-propanediol production in yeast
Huang et al. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging
Yu et al. Screening neutral sites for metabolic engineering of methylotrophic yeast Ogataea polymorpha
Jaeger et al. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum
Sasvari et al. Co-opted cellular Sac1 lipid phosphatase and PI (4) P phosphoinositide are key host factors during the biogenesis of the tombusvirus replication compartment
Lichius et al. Genetic transformation of filamentous fungi: achievements and challenges
CA3187601A1 (en) Methods for manufacturing adas
Rau et al. Method development progress in genetic engineering of thraustochytrids
Cen et al. Deletion of the DNA ligase IV gene in Candida glabrata significantly increases gene-targeting efficiency
Mitrikeski Yeast competence for exogenous DNA uptake: towards understanding its genetic component
Shi et al. A CRISPR–Cas9 system-mediated genetic disruption and multi-fragment assembly in Starmerella bombicola
Zhang et al. Developing GDi-CRISPR system for multi-copy integration in Saccharomyces cerevisiae
Ding et al. Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312