JP2009114024A - Foam mortar kneaded product - Google Patents

Foam mortar kneaded product Download PDF

Info

Publication number
JP2009114024A
JP2009114024A JP2007289088A JP2007289088A JP2009114024A JP 2009114024 A JP2009114024 A JP 2009114024A JP 2007289088 A JP2007289088 A JP 2007289088A JP 2007289088 A JP2007289088 A JP 2007289088A JP 2009114024 A JP2009114024 A JP 2009114024A
Authority
JP
Japan
Prior art keywords
cement
foaming agent
mortar
water
kneaded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007289088A
Other languages
Japanese (ja)
Other versions
JP4550103B2 (en
Inventor
Toshio Ono
俊夫 大野
Makoto Sakamoto
真 坂本
Arihisa Watanabe
有寿 渡邊
Hiromitsu Kida
博光 木田
Yoshiaki Shamoto
芳明 社本
Toshihiro Yamada
敏博 山田
Hiromasa Igarashi
寛昌 五十嵐
Hitoshi Araki
均 荒木
Yasutomo Sakurai
康智 櫻井
Yuichi Fujimoto
勇一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Tachibana Material Co Ltd
Original Assignee
Kajima Corp
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Tachibana Material Co Ltd filed Critical Kajima Corp
Priority to JP2007289088A priority Critical patent/JP4550103B2/en
Publication of JP2009114024A publication Critical patent/JP2009114024A/en
Application granted granted Critical
Publication of JP4550103B2 publication Critical patent/JP4550103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0082Segregation-preventing agents; Sedimentation-preventing agents
    • C04B2103/0083Bleeding-preventing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00267Materials permeable to vapours or gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foam mortar suitable as a filling material for a charging process for a gas pipe which has a low specific gravity, a low strength, a high gas permeability and a low heat-generation, and a flowability in pressure feeding and a bleeding resistance as well. <P>SOLUTION: The foam mortar kneaded product is prepared by mixing cement C, a finely powdered aggregate P (e.g. limestone fine powder), mixing water W<SB>1</SB>and (A) a foaming agent mixed with one or both of an amine oxide type surfactant and a fluorine-based surfactant or (B) an anionic or a nonionic foaming agent to have a mixing composition satisfying (1) an air quantity; 63-75 vol.%, (2) a water powder ratio W<SB>1</SB>/(C+P); 0.35-0.70, (3) a cement powder ratio C/(C+P); ≥0.35, and a compressive strength at the age of 28 days of 0.1-0.7 N/mm<SP>2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硬化後に透気性を有しかつ手作業で掘削可能な低強度を呈し、特にガス管の中込め工法に使用する充填材に適した気泡モルタル混練物に関する。   The present invention relates to a foamed mortar kneaded material that has air permeability after curing and exhibits low strength that can be excavated manually, and is particularly suitable for a filler used in a gas pipe filling method.

従来から地下構造物の埋め戻し、軽量盛土、トンネルやシールドの裏込め等には、起泡剤を用いて発泡させた空気(気泡)を入れ強度を抑制した「気泡モルタル」が採用されている。近年、気泡モルタルは低強度であることに加え軽量性、断熱性、衝撃吸収性といった性質を活かせる材料として種々の用途での適用が期待されている。そのような用途の1つとしてガス管の中込め工法に用いる充填材が挙げられる。ガス管中込め工法は、埋設したガス管とこれを覆う外管の間に充填材を充填する工法であるが、万一、ガス管からガスが漏洩した場合に、充填材中に埋設したガス漏れセンサーの位置までガスが到達できるように、充填材には高い透気性が要求される。   Conventionally, “foam mortar” is used for backfilling underground structures, lightweight embankment, backfilling tunnels and shields, and so on. . In recent years, the foam mortar is expected to be applied in various applications as a material that can make use of properties such as lightness, heat insulation and shock absorption in addition to low strength. One such application is a filler used in a gas pipe filling method. The gas pipe filling method is a method in which a filler is filled between the buried gas pipe and the outer pipe covering it, but in the unlikely event that gas leaks from the gas pipe, the gas buried in the filler The filler is required to have high air permeability so that the gas can reach the position of the leak sensor.

従来の気泡モルタル用起泡剤は、主成分にアニオン系界面活性剤を用いたものが主流であるが、この種の気泡モルタルではアニオン系界面活性剤がセメントの水和によって生じた水酸化カルシウムと反応して疎水性のカルシウム塩を生成し、硬化した気泡モルタルは不透水性(不透気性)となる。このため、ガス管中込め工法の充填材用途には適用が困難である。そこで、アミンオキサイド型ノニオン系界面活性剤を主成分とする起泡剤が開発され、特許文献1にはこの起泡剤を使用することにより気泡モルタルに疎水性の性質を与えることなく良好な透気性を付与する技術が開示されている。   Conventional foaming agents for foam mortar are mainly made of anionic surfactant as the main component, but in this kind of foam mortar, the anionic surfactant is calcium hydroxide generated by hydration of cement. Reacts with to produce a hydrophobic calcium salt, and the cured foam mortar becomes impermeable (impermeable). For this reason, it is difficult to apply to the filler use of the gas pipe filling method. Therefore, a foaming agent having an amine oxide type nonionic surfactant as a main component has been developed. Patent Document 1 uses this foaming agent to provide good permeability without imparting hydrophobic properties to the cell mortar. A technique for imparting temper is disclosed.

また、骨材を使用しないような気泡セメントミルクでは、強度を抑制するためにセメント量を減らすと、水セメント比(W/C)が大きくなってブリーディングが発生しやすくなる。逆にセメント量を増やすと強度の過大、水和反応による温度上昇、粘性が高くなることによる流動性・長距離圧送性低下などが起こりやすくなる。このような問題を解決する手法として、特許文献3には骨材として最大粒径0.02mm以下の比重の大きいフェロニッケルスラグを使用する技術が記載されている。   In addition, in the foamed cement milk that does not use aggregates, if the amount of cement is reduced to suppress the strength, the water cement ratio (W / C) increases and bleeding tends to occur. Conversely, when the amount of cement is increased, excessive strength, temperature rise due to hydration reaction, fluidity / long-distance pumpability due to increased viscosity, etc. are likely to occur. As a technique for solving such a problem, Patent Document 3 describes a technique using ferronickel slag having a large specific gravity with a maximum particle size of 0.02 mm or less as an aggregate.

一方、硬化後に体積減少が生じない気泡セメントミルクや気泡モルタルを得る技術として、フッ素系界面活性剤を配合した起泡剤(以下「フッ素系界面活性剤配合型の起泡剤」という)の使用が有効であることが知られている(特許文献2)。また、気泡モルタルの強度を抑制するためには炭酸カルシウムの微粉末を添加することが有効であることが知られている(特許文献4)。   On the other hand, as a technique for obtaining foam cement milk and foam mortar that do not cause volume reduction after curing, use of a foaming agent containing a fluorosurfactant (hereinafter referred to as a "foaming agent containing a fluorosurfactant") Is known to be effective (Patent Document 2). In addition, it is known that adding fine calcium carbonate powder is effective in suppressing the strength of the bubble mortar (Patent Document 4).

特開2005−60188号公報Japanese Patent Laid-Open No. 2005-60188 特開平11−100286号公報JP-A-11-1000028 特開平9−249441号公報JP-A-9-249441 特開平3−115146号公報Japanese Patent Laid-Open No. 3-115146

ガス管中込め工法の充填材には、以下のような特性が望まれる。
(i)低比重(密度)であること。充填材中でのガス管の浮き上がりを安定的に防止する上で例えば比重(密度)0.50〜0.65g/cm3程度以下であることが望まれる。
(ii)低強度であること。緊急時に人力で充填材を掘削できるに足る低強度が要求される。
(iii)透気性に優れること。ガス漏れが生じた際に充填材中に埋設されたガス漏れセンサーでのガス検知を可能にするために、1×10-1cm/sec以上の透気係数が要求される。
(iv)低発熱性であること。硬化時の発熱量が大きいとガス管(鉄管)の表面保護膜を劣化させ錆の発生を招く場合がある。またガス管の熱膨張による伸びを招き好ましくない。ガス管温度が例えば60℃以下になるような低発熱性が望まれる。
(v)その他、充填時の圧送において流動性が良く、材料分離(ブリーディング)が生じないこと。
The following properties are desired for the filling material of the gas pipe filling method.
(I) Low specific gravity (density). In order to stably prevent the gas pipe from floating in the filler, for example, the specific gravity (density) is preferably about 0.50 to 0.65 g / cm 3 or less.
(Ii) Low strength. Low strength is required to enable excavation of the filler by manpower in an emergency.
(Iii) Excellent air permeability. An air permeability coefficient of 1 × 10 −1 cm / sec or more is required in order to enable gas detection with a gas leak sensor embedded in the filler when a gas leak occurs.
(Iv) Low exothermic property. If the amount of heat generated during curing is large, the surface protective film of the gas pipe (iron pipe) may be deteriorated and rust may be generated. In addition, the elongation due to thermal expansion of the gas pipe is unfavorable. Low exothermicity is desired such that the gas pipe temperature is, for example, 60 ° C. or lower.
(V) In addition, fluidity is good in pumping during filling, and material separation (bleeding) does not occur.

しかし、セメント系材料において、これら全てを満足させることは非常に難しい。例えば、低比重や透気性を確保しようとして空気量(気泡量)を増すと、気泡安定性が低下し、圧送により気泡が消滅したり流動性が低下したりする。気泡が消滅するともはや透気性は確保できない。逆に空気量を減らすことは低比重・低強度・高透気性にとって不利な要因となり、所定の特性を満たすことが難しくなる。また、セメントを減らすことは低強度や発熱量抑制に有効であるが、反面、ブリーディングの発生、粘性低下による材料分離を招く要因となる。   However, it is very difficult to satisfy all of these in cementitious materials. For example, when the amount of air (bubble amount) is increased in order to ensure low specific gravity and air permeability, the bubble stability is lowered, and the bubbles disappear or the fluidity is lowered by pressure feeding. When the bubbles disappear, air permeability can no longer be secured. Conversely, reducing the amount of air is a disadvantageous factor for low specific gravity, low strength, and high air permeability, and it is difficult to satisfy predetermined characteristics. Further, reducing the cement is effective in reducing the strength and suppressing the amount of heat generation, but on the other hand, it causes bleeding and material separation due to a decrease in viscosity.

特許文献1のアミンオキサイド型ノニオン系界面活性剤を使用する技術によれば、気泡量70%以上の気泡モルタルを得ることができるという。しかし、上記(i)〜(v)の要求特性を満足するような配合のモルタルは知られておらず、単にこの種の界面活性剤を成分とする起泡剤を適用するだけでは上記の要求特性はクリアできない。   According to the technique using the amine oxide type nonionic surfactant of Patent Document 1, it is possible to obtain a bubble mortar having a bubble amount of 70% or more. However, there is no known mortar having a composition that satisfies the above required properties (i) to (v). Simply applying a foaming agent containing this type of surfactant as the component described above requires the above requirements. Characteristics cannot be cleared.

特許文献2の技術では気泡安定性に優れるフッ素系界面活性剤配合型の起泡剤を使用しているものの、上記各特性を同時に満たすようなガス管中込め工法の充填材に適した気泡モルタルの配合に関し教示がない。   Although the technology of Patent Document 2 uses a foaming agent containing a fluorosurfactant that is excellent in bubble stability, it is a bubble mortar suitable for a filling material in a gas pipe filling method that simultaneously satisfies the above characteristics. There is no teaching on the formulation of

特許文献3の技術では比重(密度)の大きいフェロニッケルスラグを使用しているので気泡モルタルの強度調整が容易であるが、ガス管中込め工法の充填材として十分な透気性が得られるに足る気泡量を確保しようとすると、材料分離が生じやすい。現にこの文献に開示されている気泡モルタルの空気量は高々45%程度である。   The technique of Patent Document 3 uses ferronickel slag having a large specific gravity (density), so that it is easy to adjust the strength of the bubble mortar, but sufficient gas permeability can be obtained as a filling material for the gas pipe filling method. When trying to secure the amount of bubbles, material separation tends to occur. In fact, the amount of air in the bubble mortar disclosed in this document is at most about 45%.

特許文献4の技術では炭酸カルシウムの微粉末を骨材に使用しているが、やはり空気量は最大45体積%までに止まる。これではガス管中込め工法の充填材としての透気性は不十分である。この文献にも上記各特性を同時に満たすような気泡モルタルを得るための手法に関し、何ら教示がない。   In the technique of Patent Document 4, a fine powder of calcium carbonate is used for the aggregate, but the air amount is still limited to a maximum of 45% by volume. In this case, the air permeability as a filler for the gas pipe filling method is insufficient. This document also teaches nothing about a method for obtaining a bubble mortar that satisfies the above-mentioned characteristics at the same time.

このように、上記(i)〜(v)の各特性を満たすような、ガス管中込め工法に好適な充填材は未だ出現していない。本発明はかかる現状に鑑み、上記の要求を満たす気泡モルタルを提供しようというものである。   Thus, the filler suitable for the filling method in a gas pipe which satisfy | fills each characteristic of said (i)-(v) has not yet appeared. In view of the present situation, the present invention is intended to provide a bubble mortar that satisfies the above requirements.

上記目的は、セメントC、微粉末骨材P、練混ぜ水W1および下記(A)に示す起泡剤を用いて発泡させた気泡を混合して、下記(1)〜(3)を満たす配合組成とした気泡モルタル混練物によって達成される。
(A)アミンオキサイド型界面活性剤、フッ素系界面活性剤の一方または双方を配合する起泡剤
(1)空気量;63〜75体積%
(2)水粉体比W1/(C+P);0.35〜0.70
(3)セメント粉体比C/(C+P);0.35以上かつ材齢28日の圧縮強度が0.1〜0.7N/mm2となる範囲
The above-mentioned purpose is to satisfy the following (1) to (3) by mixing cement C, fine powder aggregate P, kneaded water W 1 and bubbles foamed using the foaming agent shown in (A) below. This is achieved by a foam mortar kneaded product having a blended composition.
(A) Foaming agent containing one or both of amine oxide type surfactant and fluorosurfactant (1) Air content; 63 to 75% by volume
(2) Water powder ratio W 1 / ( C + P); 0.35 to 0.70
(3) Cement powder ratio C / (C + P); range in which the compressive strength is 0.35 or more and the compressive strength at 28 days of age is 0.1 to 0.7 N / mm 2

あるいは、起泡剤として下記(B)のものを規定することができる。すなわち本発明では、セメントC、微粉末骨材P、練混ぜ水W1および下記(B)に示す起泡剤を用いて発泡させた気泡を混合して、前記(1)〜(3)を満たす配合組成とした気泡モルタル混練物が提供される。
(B)アニオン系またはノニオン系の起泡剤
Or the thing of the following (B) can be prescribed | regulated as a foaming agent. That is, in the present invention, the cement C, fine powder aggregate P, by mixing bubbles by foaming with a foaming agent shown in Mixing water W 1 and below (B), wherein the (1) to (3) A foamed mortar kneaded material having a composition to satisfy is provided.
(B) Anionic or nonionic foaming agent

起泡剤として、例えばアミンオキサイド型ノニオン系界面活性剤を成分とするものが例示できる。微粉末骨材Pとしては石灰石微粉末が好適である。特に、ブレーン比表面積がセメントCの0.5倍以上2.5倍以下の石灰石微粉末を使用することが好ましい。この混練物中には、本発明の効果を阻害しない限り一般的な気泡モルタルに添加可能な混和材や混和剤が配合されていて構わない。   Examples of the foaming agent include those containing an amine oxide type nonionic surfactant as a component. Limestone fine powder is suitable as the fine powder aggregate P. In particular, it is preferable to use a fine limestone powder having a Blaine specific surface area of 0.5 to 2.5 times that of cement C. The kneaded material may contain an admixture or an admixture that can be added to a general cell mortar as long as the effects of the present invention are not impaired.

本発明によれば、「低比重」、「低強度」、「高透気性」、「低発熱性」を同時に具備し、かつ「流動性」、「耐ブリーディング性」を兼ね備えた気泡モルタルが実現可能になった。この気泡モルタルは種々の用途に適用できるが、特にガス管中込め工法の充填材に好適である。また、このモルタル混練物を作るためのベースモルタルは、長距離の圧送性に優れた組成物とすることができるので、ベースモルタルを打設現場近くまで圧送したのち気泡を混合して打設する工法に適用しやすい。したがって本発明は特にガス管中込め工法の普及に寄与するものである。   According to the present invention, a foam mortar having both “low specific gravity”, “low strength”, “high air permeability”, and “low heat generation” and also having “flowability” and “bleeding resistance” is realized. It became possible. Although this foam mortar can be applied to various uses, it is particularly suitable for a filler used in a gas pipe filling method. Moreover, since the base mortar for making this mortar kneaded material can be made into a composition excellent in long-distance pumpability, after the base mortar is pumped to the vicinity of the setting site, the bubbles are mixed and cast. Easy to apply to construction methods. Therefore, the present invention contributes particularly to the spread of the gas pipe filling method.

気泡モルタルにおいて透気性を向上させるためには、モルタル混練物中の空気量を多くすることが必要であるが、それだけでは十分でない。気泡モルタルの混練物を打設した後のモルタル硬化体の中に、ガスの通り道となる空隙(連続気泡)が形成されなければならない。発明者らの詳細な検討の結果、一般的なアニオン系やカチオン系の起泡剤では透気性の高いモルタル硬化体を得ることが困難であり、本発明には適さない。これは硬化後の気泡内面に残っている疎水性のカルシウム塩の膜がマトリックスを保護し、連続気泡を出来にくくしているのではないかと推察される。   In order to improve the air permeability in the foam mortar, it is necessary to increase the amount of air in the mortar kneaded material, but that alone is not sufficient. In the mortar hardened body after the foamed mortar kneaded product has been placed, voids (open cells) serving as gas passages must be formed. As a result of detailed studies by the inventors, it is difficult to obtain a hardened mortar cured product with a general anionic or cationic foaming agent, which is not suitable for the present invention. This is presumed that the hydrophobic calcium salt film remaining on the inner surface of the foam after curing protects the matrix and makes it difficult to form open cells.

一方、アニオン系またはノニオン系の起泡剤では、界面活性剤の成分を工夫することによって安定性の高い気泡を形成させることができる。また、アミンオキサイド型界面活性剤、あるいはフッ素系界面活性剤を配合する起泡剤を用いて発泡させた気泡はモルタル混練物中での安定性が極めて良好であることが確かめられた。すなわちその気泡は混練、圧送、打設の過程を通して破泡しにくく、打設後のモルタル中に健全な空隙形状を保ったまま均一性の高い分布状態で留まる。アニオン系界面活性剤を主体とする起泡剤であっても、アミンオキサイド型界面活性剤、あるいはフッ素系界面活性剤を配合することにより、アニオンと水酸化カルシウムの反応による透気性への悪影響はほとんど問題にならない。これは、モルタル混練物中での気泡の安定性が高く、元の気泡の形状を反映した球状に近い空隙が形成されることにより、たとえ疎水性の反応生成物が生じても気泡に由来する空隙にはガスが通れるだけのスペースが十分に確保されるからではないかと推察される。また特に、ノニオン系または両性界面活性剤を主体としたものでは疎水性のカルシウム塩が生成されにくくなり、透気性の更なる向上効果が期待できる。   On the other hand, in the case of an anionic or nonionic foaming agent, highly stable bubbles can be formed by devising a surfactant component. In addition, it was confirmed that bubbles foamed using an amine oxide type surfactant or a foaming agent containing a fluorine-based surfactant have extremely good stability in a mortar kneaded product. That is, the bubbles are hard to break through the processes of kneading, pumping, and placing, and remain in a highly uniform distribution state while maintaining a healthy void shape in the mortar after placement. Even if it is a foaming agent mainly composed of an anionic surfactant, the adverse effect on the air permeability caused by the reaction between the anion and calcium hydroxide can be reduced by adding an amine oxide type surfactant or a fluorochemical surfactant. Almost no problem. This is because the stability of the bubbles in the mortar kneaded material is high, and even when a hydrophobic reaction product is generated due to the formation of a nearly spherical space reflecting the shape of the original bubbles, it is derived from the bubbles. It is assumed that there is sufficient space in the gap to allow gas to pass. In particular, a nonionic or amphoteric surfactant as a main component makes it difficult to form a hydrophobic calcium salt, and a further improvement in air permeability can be expected.

また、硬化したモルタル中の気泡に由来する各空隙の間には微粉末が混合されたセメントペーストの骨格が形成されていると考えられるが、その微粉末は気泡を取り囲むマトリックスを弱くする(セメント膜の弱い部分を形成させる)作用を有するものと推察される。この場合、硬化発熱中の体積膨張や乾燥収縮などの外力によってマトリックスが壊れやすくなり、連続気泡の形成に有利となる。現に本発明に従えば良好な透気性が得られることから、その骨格はセメント粒子に比較的近い粒径の微粉末骨材粒子が混合されていることによりガスの透過が比較的容易な「弱い骨格構造」となっているのではないかと推察される。いずれにしても、本発明のモルタル混練物が硬化した気泡モルタルでは、上述のタイプの起泡剤を用いた健全な気泡に由来する空隙と、微粉末骨材を混合した骨格構造とのマッチングによって、高い透気性が得られるものと考えられる。   Also, it is thought that a cement paste skeleton mixed with fine powder is formed between the voids derived from the bubbles in the hardened mortar, but the fine powder weakens the matrix surrounding the bubbles (cement). It is presumed to have an action of forming a weak part of the film. In this case, the matrix is easily broken by an external force such as volume expansion or drying shrinkage during heat generation during curing, which is advantageous for the formation of open cells. In fact, according to the present invention, good air permeability can be obtained. Therefore, the skeleton is mixed with fine powder aggregate particles having a particle size relatively close to that of cement particles. It is inferred that it has a “skeletal structure”. In any case, in the foam mortar in which the mortar kneaded product of the present invention is cured, by matching the voids derived from healthy bubbles using the above-mentioned type of foaming agent and the skeletal structure mixed with fine powder aggregate It is considered that high air permeability can be obtained.

以下、本発明を特定するための事項について説明する。
〔セメントC〕
通常のポルトランドセメントを使用することができる。例えば普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等が挙げられる。
Hereinafter, matters for specifying the present invention will be described.
[Cement C]
Normal Portland cement can be used. For example, ordinary Portland cement, moderately hot Portland cement, low heat Portland cement, and the like can be mentioned.

〔微粉末骨材P〕
微粉末骨材Pは、比重(密度)がセメントC以下と小さく、ブレーン比表面積がセメントCの0.5倍以上2.5倍以下である天然鉱物由来の無機粉体が適している。セメントより比重(密度)が大きいと硬化後の気泡モルタルの低比重化に不利となるだけでなく、材料分離を生じやすくなるのでベースモルタルを長距離圧送する工法に適用し難くなる。ブレーン比表面積は粒径に大きく依存する因子であるが、天然鉱物を粉砕した微粉末の場合、ブレーン比表面積がセメントCの0.5倍以上2.5倍以下であれば、セメント粒子に近い粒径を有していることから材料分離に対する抵抗力が高まる。
[Fine powder aggregate P]
As the fine powder aggregate P, a natural mineral-derived inorganic powder having a specific gravity (density) as small as cement C or less and a brane specific surface area of 0.5 to 2.5 times that of cement C is suitable. When the specific gravity (density) is higher than that of cement, it is not only disadvantageous for lowering the specific gravity of the foamed mortar after hardening, but also material separation tends to occur, making it difficult to apply to a construction method in which the base mortar is pumped over a long distance. The specific surface area of the brane is a factor that greatly depends on the particle diameter, but in the case of fine powder obtained by pulverizing natural minerals, if the specific surface area of the brane is 0.5 to 2.5 times that of the cement C, it is close to the cement particle. Since it has a particle size, resistance to material separation is increased.

飛灰系の微粉(例えば高炉スラグ)はガス検知で問題となる成分を含有していることがあり、また、気泡安定性を阻害しやすいもの(例えばフライアッシュ)もあるので、天然鉱物由来の無機粉体を採用するのが良い。   Fly ash-based fine powder (eg blast furnace slag) may contain components that cause problems in gas detection, and there are also those that tend to hinder bubble stability (eg fly ash). Inorganic powder should be used.

中でも石灰石を破砕・分級した石灰石微粉末(タンカル)が好適であり、ブレーン比表面積がセメントCの0.5倍以上2.5倍以下のものが特に好ましい。平均粒径は3〜20μm程度のものが好適な対象となる。石灰石微粉末は主成分のCaCO3の他に、通常MgがMgO換算で5質量%以下、FeがFe23換算で1質量%以下、AlがAl23換算で5質量%以下、SiがSiO2換算で5質量%以下の範囲で含まれる。 Among them, limestone fine powder (tankal) obtained by crushing and classifying limestone is preferable, and those having a Blaine specific surface area of 0.5 to 2.5 times that of cement C are particularly preferable. An average particle size of about 3 to 20 μm is a suitable target. In addition to the main component CaCO 3 , the limestone fine powder is usually Mg of 5 mass% or less in terms of MgO, Fe is 1 mass% or less in terms of Fe 2 O 3 , and Al is 5 mass% or less in terms of Al 2 O 3 , Si is contained in a range of 5% by mass or less in terms of SiO 2 .

〔練混ぜ水W1
練混ぜ水W1には一般的なモルタルやコンクリートに使用可能な地下水、水道水等が使用できる。
[Mixing water W 1]
General mortar and concrete that can be used for underground water, tap water or the like can be used for Mixing water W 1.

〔起泡剤〕
本発明で適用する起泡剤は、アニオン系またはノニオン系のものが採用できる。特に、アミンオキサイド型界面活性剤、あるいはフッ素系界面活性剤を配合する起泡剤が好適な対象として挙げられる。この種の起泡剤は前述のように優れた気泡安定性を発揮する。アミンオキサイド型界面活性剤、フッ素系界面活性剤のうちいずれか一方の界面活性剤を配合するタイプのものを採用すればよいが、これら両方を配合するタイプのものを採用しても構わない。なお、フッ素系界面活性剤を配合するものでは、カチオン系であっても、気泡安定性を改善させることが可能であると考えられる。
(Foaming agent)
As the foaming agent applied in the present invention, an anionic or nonionic one can be adopted. In particular, an amine oxide type surfactant or a foaming agent containing a fluorosurfactant is a suitable target. This type of foaming agent exhibits excellent bubble stability as described above. What is necessary is just to employ | adopt the type which mix | blends any one surfactant among an amine oxide type surfactant and a fluorine-type surfactant, However, You may employ | adopt the type which mix | blends these both. In addition, it is thought that in the case of blending a fluorosurfactant, it is possible to improve the bubble stability even if it is cationic.

なかでも、アミンオキサイド型ノニオン系界面活性剤を成分とする起泡剤は、従来一般的なアニオン系界面活性剤を成分とする起泡剤とは異なり、気泡モルタル・コンクリートに疎水性の性質を与えない効果を併せもち、石灰石微粉末とのマッチング(硬化段階まで健全な気泡を維持する気泡安定性と、気泡を囲むマトリックスの弱体化との相乗作用による連続気泡の形成能力)も良好である。アミンオキサイド型ノニオン系界面活性剤を成分とする起泡剤としては、例えば第一化成産業製「エアーボールS」が挙げられる。この種の起泡剤は、他の一般的な起泡剤と同様、水で例えば10〜30倍程度に稀釈してから使用すればよい。発泡方法は公知の手法が適用できる。稀釈した起泡剤の量に対し、発泡後の体積が20〜30倍になるように発泡させることが望ましい。   In particular, foaming agents composed of amine oxide type nonionic surfactants are different from foaming agents composed of conventional anionic surfactants in that they have hydrophobic properties in cellular mortar and concrete. Combined with limestone fine powder (cell stability that maintains sound bubbles until the hardening stage and ability to form open cells by synergistic weakening of the matrix surrounding the bubbles). . Examples of the foaming agent containing an amine oxide type nonionic surfactant as a component include “Air Ball S” manufactured by Daiichi Kasei Sangyo. This type of foaming agent, like other general foaming agents, may be used after being diluted with water, for example, about 10 to 30 times. A known method can be applied as the foaming method. It is desirable to foam so that the volume after foaming is 20 to 30 times the amount of the diluted foaming agent.

〔空気量〕
気泡によって供給される混練物中の空気量が少なすぎると、気泡モルタル硬化体の低比重化および高透気性化が実現できない。種々検討の結果、前記の微粉末骨材Pを配合させ、かつ上述した種類の起泡剤を用いて発泡させた気泡を混合させる場合においては、空気量が63体積%を下回ると、水粉体比W1/(C+P)やセメント粉体比C/(C+P)を変動させても、ガス管中込め工法の充填材に望まれる1×10-1cm/sec以上の透気係数を実現するための解を見出せない場合がある。一方、空気量が75体積%を超えると、適正な起泡剤を用いても気泡安定性が不十分となることがあり、その場合、特に圧送後において気泡モルタルの流動性(フロー)が低下することが懸念される。したがって、モルタル混練物中の空気量は63〜75体積%の範囲で調整する。
[Air volume]
If the amount of air in the kneaded material supplied by the bubbles is too small, it is impossible to achieve a low specific gravity and high air permeability of the foamed mortar cured body. As a result of various studies, in the case where the fine powder aggregate P is blended and the bubbles foamed using the type of foaming agent described above are mixed, if the amount of air falls below 63% by volume, Even if the body ratio W 1 / (C + P) and the cement powder ratio C / (C + P) are changed, the air permeability coefficient of 1 × 10 -1 cm / sec or more, which is desired for the filling material in the gas pipe filling method, is realized. May not find a solution to do this. On the other hand, if the amount of air exceeds 75% by volume, the foam stability may be insufficient even when an appropriate foaming agent is used. In this case, the fluidity (flow) of the foam mortar is lowered particularly after pumping. There is a concern to do. Therefore, the amount of air in the mortar kneaded material is adjusted in the range of 63 to 75% by volume.

〔水粉体比W1/(C+P)〕
水粉体比W1/(C+P)が小さすぎると相対的に粉体量が多くなり、気泡と混合する前のベースモルタルにおいては粘性増大によるポンプ圧送性の低下が生じるようになり、気泡モルタル混練物においても打設時の圧送性に支障をきたすことが懸念される。種々検討の結果、水粉体比W1/(C+P)は0.35以上とすることが望ましい。一方、水粉体比W1/(C+P)が大きくなりすぎると粘性が低下し、ベースモルタルおよび気泡モルタル混練物とも、材料分離が生じやすくなる。また、水粉体比W1/(C+P)が高くなると透気係数を1×10-1cm/sec以上の透気係数を実現するための配合自由度が狭くなることがわかった。これらのことから水粉体比W1/(C+P)の上限は0.70に規定される。
[Water powder ratio W 1 / (C + P)]
If the water-powder ratio W 1 / (C + P) is too small, the amount of powder is relatively large, and in the base mortar before mixing with bubbles, the pumpability decreases due to increased viscosity. There is also a concern that the kneaded product may interfere with the pumpability at the time of placing. As a result of various studies, the water powder ratio W 1 / (C + P) is preferably 0.35 or more. On the other hand, when the water powder ratio W 1 / (C + P) becomes too large, the viscosity is lowered, and the base mortar and the foamed mortar kneaded material are liable to cause material separation. Further, it was found that when the water powder ratio W 1 / (C + P) is increased, the degree of freedom of blending for realizing the air permeability coefficient of 1 × 10 −1 cm / sec or more becomes narrower. For these reasons, the upper limit of the water powder ratio W 1 / (C + P) is defined as 0.70.

〔セメント粉体比C/(C+P)〕
ガス管中込め工法の充填材には前述のように人力で掘削できる低強度が要求されるが、発明者らの検討によれば、この種の気泡モルタル硬化体で材齢28日の圧縮強度が0.7N/mm2以下であればガス管中込め工法の充填材に適用可能である。0.6N/mm2以下であることがより好ましい。ただし、ガス管と外管の間にはある程度の拘束力を付与することが必要であり、調査の結果、気泡モルタル硬化体の強度は材齢28日の圧縮強度で0.1N/mm2以上であることが望まれる。
[Cement powder ratio C / (C + P)]
As described above, the filling material of the gas pipe filling method is required to have low strength that can be excavated by human power. According to the inventors' investigation, this type of foamed mortar hardened body has a compressive strength of 28 days of age. Is 0.7 N / mm 2 or less, it can be applied to a filling material for a gas pipe filling method. More preferably, it is 0.6 N / mm 2 or less. However, it is necessary to apply a certain restraining force between the gas pipe and the outer pipe. As a result of the investigation, the strength of the foamed mortar hardened body is 0.1 N / mm 2 or more as the compressive strength at the age of 28 days. It is desirable that

セメント粉体比C/(C+P)は気泡モルタル硬化体の強度に大きく影響する因子であり、セメント粉体比C/(C+P)の増大に伴って一般的にはモルタル硬化体の強度レベルは上昇する傾向にある。しかし、このセメント粉体比C/(C+P)だけを単独に設定しても気泡モルタル硬化体の強度レベルを所望の値にコントロールすることはできない。前述の空気量や、水粉体比W1/(C+P)によっても強度レベルが変動するからである。そこで本発明では、空気量および水粉体比W1/(C+P)をそれぞれ前述の適正範囲に設定し、かつセメント粉体比C/(C+P)に関しては材齢28日の圧縮強度が0.1〜0.7N/mm2好ましくは0.1〜0.6N/mm2となる範囲に設定する。 The cement powder ratio C / (C + P) is a factor that greatly affects the strength of the foamed mortar hardened body, and generally the strength level of the mortar hardened body increases as the cement powder ratio C / (C + P) increases. Tend to. However, even if only this cement powder ratio C / (C + P) is set alone, the strength level of the cured foam mortar cannot be controlled to a desired value. This is because the strength level varies depending on the amount of air and the water powder ratio W 1 / (C + P). Therefore, in the present invention, the air amount and the water powder ratio W 1 / (C + P) are set to the above-mentioned appropriate ranges, respectively, and the compressive strength at the age of 28 days of the cement powder ratio C / (C + P) is 0.00. 1 to 0.7 N / mm 2, preferably in the range of 0.1 to 0.6 N / mm 2 .

発明者らは数多くの気泡モルタル配合実験により、「空気量」、「水粉体比W1/(C+P)」および「セメント粉体比C/(C+P)」によって、硬化体の「透気係数」、「強度」および「比重(密度)」をかなり広範囲でコントロールすることが可能であることを見出した。すなわち「空気量」、「水粉体比W1/(C+P)」、「セメント粉体比C/(C+P)」の3者を変数として取り上げたとき、「透気係数」、「強度」および「比重(密度)」は、いずれも上記変数を用いた関数と捉えることができることがわかった。そして、多くの配合実験結果に基づいてその関数関係を精度良く表す回帰式を設定することができる。それに従えば、材齢28日の圧縮強度が0.1〜0.7N/mm2好ましくは0.1〜0.6N/mm2となる範囲にセメント粉体比C/(C+P)を設定することは容易に実施できる。 The inventors have conducted numerous bubble mortar blending experiments to determine the “air permeability coefficient” of the cured product by “air amount”, “water powder ratio W 1 / (C + P)” and “cement powder ratio C / (C + P)”. "," Strength "and" specific gravity (density) "were found to be controllable over a fairly wide range. That is, when “air quantity”, “water powder ratio W 1 / (C + P)”, and “cement powder ratio C / (C + P)” are taken as variables, “air permeability coefficient”, “strength” and It was found that “specific gravity (density)” can be regarded as a function using the above variables. A regression equation that accurately represents the functional relationship can be set based on many blending experiment results. According to this, the cement powder ratio C / (C + P) is set in the range where the compressive strength at the age of 28 days is 0.1 to 0.7 N / mm 2, preferably 0.1 to 0.6 N / mm 2. Can be easily implemented.

ただし、セメント粉体比C/(C+P)が小さすぎると相対的に微粉末骨材Pの量が多くなり、ベースモルタルおよび気泡モルタル混練物とも、粘性低下による材料分離(沈降)および自由水が拘束できないことによるブリーディングが懸念される。詳細な検討によると、セメント粉体比C/(C+P)は0.35以上の範囲で調整することが望ましいことがわかった。したがって、セメント粉体比C/(C+P)は、0.35以上かつ材齢28日の圧縮強度が0.1〜0.7N/mm2好ましくは0.1〜0.6N/mm2となる範囲に規定される。 However, if the cement powder ratio C / (C + P) is too small, the amount of fine powder aggregate P is relatively increased, and both the base mortar and the foam mortar kneaded material have material separation (sedimentation) and free water due to viscosity reduction. There is concern about bleeding due to inability to restrain. According to a detailed examination, it was found that the cement powder ratio C / (C + P) is desirably adjusted within a range of 0.35 or more. Accordingly, the cement powder ratio C / (C + P) is 0.35 or more and the compressive strength at 28 days of age is 0.1 to 0.7 N / mm 2, preferably 0.1 to 0.6 N / mm 2. Specified in range.

〔気泡モルタル混練物の製造〕
本発明の気泡モルタル混練物は従来一般的な気泡モルタルの場合と同様の手法により製造することができる。例えば、ミキサー中に稀釈用の水W2と前述した種類の起泡剤Fを投入して泡立てを行い、その後、そのミキサー中に練混ぜ水W1、微粉末骨材P、セメントCを投入して混練する方法(ミキシング法)が採用できる。また、予め練混ぜ水W1、微粉末骨材P、セメントCを混練してベースモルタルを作っておき、別途、水W2で稀釈した起泡剤Fから発泡装置を用いて生成させた気泡を、前記のベースモルタルと混合する方法(プレフォーム法)が採用できる。本発明の気泡モルタル混練物の配合によれば、優れた長距離圧送性および耐材料分離性を有するベースモルタル(気泡を混合する前におけるセメントC、微粉末骨材P、練混ぜ水W1の混練物)を使用することができるので、ベースモルタルを例えば6000m程度の長距離圧送により打設現場まで移送し、打設直前にプレフォーム法により気泡と混合する製造方法が好適に採用できる。もちろん、優れた気泡安定性を有するため、ミキシング法およびプレフォーム法で製造した気泡モルタルを500m程度圧送することも可能である。
[Production of foam mortar kneaded product]
The foamed mortar kneaded product of the present invention can be produced by the same method as in the case of conventional general foamed mortar. For example, diluting water W 2 and foaming agent F of the type described above are put into a mixer to make foam, and then mixing water W 1 , fine powder aggregate P and cement C are put into the mixer. Then, a kneading method (mixing method) can be employed. In addition, a base mortar is prepared by kneading premixed water W 1 , fine powder aggregate P, and cement C, and bubbles are generated separately from foaming agent F diluted with water W 2 using a foaming device. A method (preform method) of mixing the above with the base mortar can be employed. According to the blend of the foam mortar kneaded material of the present invention, a base mortar having excellent long-distance pumpability and material separation resistance (cement C, fine powder aggregate P, mixed water W 1 before mixing the bubbles). For example, a production method in which the base mortar is transferred to the placement site by long-distance pumping of, for example, about 6000 m and mixed with bubbles by the preform method immediately before the placement can be suitably employed. Of course, since it has excellent bubble stability, the bubble mortar produced by the mixing method and the preform method can be pumped by about 500 m.

材料として、以下のものを用意した。
・セメントC; 普通ポルトランドセメント、比重(密度)3.15g/cm3、ブレーン比表面積3300cm2/g
・微粉末骨材P; 石灰石微粉末、比重(密度)2.70g/cm3、ブレーン比表面積5000cm2/g
・練混ぜ水W1; 水道水
・起泡剤F; 第一化成産業製のアミンオキサイド型ノニオン系界面活性剤配合型の起泡剤「エアーボールS」シリーズ
・稀釈水W2; 水道水
The following materials were prepared.
Cement C: ordinary Portland cement, specific gravity (density) 3.15 g / cm 3 , Blaine specific surface area 3300 cm 2 / g
Fine powder aggregate P; fine limestone powder, specific gravity (density) 2.70 g / cm 3 , Blaine specific surface area 5000 cm 2 / g
・ Mixed water W 1 : Tap water ・ Foaming agent F; Foaming agent “Airball S” series with amine oxide type nonionic surfactants manufactured by Daiichi Kasei Sangyo ・ Diluted water W 2 ; Tap water

これらの材料を用いて表1に示す各配合の気泡モルタル混練物をプレフォーム法により製造した。具体的には、セメントC、微粉末骨材P、練混ぜ水W1をミキサーで混練してベースモルタルを作った。別途、起泡剤Fを稀釈水W2にて稀釈したものを用いて発泡装置にて発泡させ、気泡(クリーム状のもの)を作った。そして気泡の入っている容器にベースモルタルを投入して混練することにより、供試材である気泡モルタル混練物を得た。なお、空気量は日本道路公団 JHS A313「エアモルタル及びエアミルクの試験方法」に準拠して求めた。 Using these materials, a foam mortar kneaded product of each formulation shown in Table 1 was produced by a preform method. Specifically, made based mortar cement C, fine powder aggregate P, and Mixing water W 1 was kneaded in a mixer. Separately, foaming agent F was diluted with dilution water W 2 and foamed with a foaming apparatus to form bubbles (cream-like). The base mortar was put into a container containing bubbles and kneaded to obtain a foam mortar kneaded material as a test material. The amount of air was determined according to Japan Highway Public Corporation JHS A313 “Testing method for air mortar and air milk”.

前記のベースモルタルから分取したサンプルをP漏斗流下試験(日本道路公団JHSA313「エアモルタル及びエアミルクの試験方法」に準拠した方法)に供し、ガス管中込め工法を想定した場合のベースモルタルの長距離圧送性を評価した。すなわちP漏斗流下試験値が9.5sec以下のものを○評価(長距離圧送性;良好)、9.5sec超え12sec以下のものを△評価(長距離圧送性;やや良好)、12secを超えるものを×評価(長距離圧送性;不良)と表示した。   The sample collected from the base mortar is subjected to the P funnel flow-down test (method in accordance with JHSA 313 “Testing method for air mortar and air milk”), and the length of the base mortar when assuming a gas pipe filling method Distance pumpability was evaluated. That is, when the P funnel flow test value is 9.5 sec or less, it is evaluated as ◯ (long-distance pumping property: good), and when it exceeds 9.5 sec and 12 sec or less, △ evaluation (long-distance pumping property; slightly good), exceeds 12 sec Was indicated as x evaluation (long-distance pumpability; poor).

気泡モルタル混練物について、フロー値および比重(密度)を測定した。これらは日本道路公団 JHS A313「エアモルタル及びエアミルクの試験方法」に準拠した方法で行った。ガス管中込め工法での打設を想定して、フロー値が200mm以上のものを○評価(流動性;良好)、170mm以上200mm未満のものを△評価(流動性;やや良好)、170mm未満のものを×評価(流動性;不良)と表示した。また比重については、ガス管中込め工法での充填材を想定して、比重(密度)が0.63g/cm3以下のものを○評価(合格)、それを超えるものを×評価(不合格)とした。 About the foam mortar kneaded material, the flow value and specific gravity (density) were measured. These were performed by the method based on Japan Highway Public Corporation JHS A313 "Testing method of air mortar and air milk". Assuming placement in the gas pipe filling method, a flow value of 200 mm or more is evaluated as ◯ (fluidity: good), and a value of 170 mm or more but less than 200 mm is evaluated as △ (fluidity; slightly good), less than 170 mm Was evaluated as x evaluation (fluidity; poor). As for the specific gravity, assuming a filler in the gas pipe filling method, those having a specific gravity (density) of 0.63 g / cm 3 or less are evaluated as ○ (passed), and those exceeding it are evaluated as × (failed). ).

気泡モルタル混練物の硬化体を作り、材齢28日の圧縮強度および透気係数を測定した。圧縮強度はJIS R5201「セメントの物理試験方法」に準拠した方法で求めた。透気係数は、試験体側面に樹脂接着剤を塗り、一軸方向のみに透気し、流量計で測定した流量を一般的に用いられている透水係数の計算式に基づいた透気係数算定式に適用することにより求めた。ガス管中込め工法での充填材を想定して、圧縮強度は0.1〜0.7N/mm2の範囲にあるものを○評価(合格)、それを外れるものを×評価(不合格)とし、透気係数は1×10-1cm/sec以上のものを○評価(合格)、それを下回るものを×評価(不合格)とした。
これらの結果を表1中に示す。表中、ハイフン(「−」)の箇所は測定していない項目である。なお、本発明例のものについては、熱電対を用いて硬化時のガス管表面温度を測定したが、いずれも60℃を超えることはなかった。
A cured product of the foam mortar kneaded product was prepared, and the compressive strength and air permeability coefficient at the age of 28 days were measured. The compressive strength was determined by a method based on JIS R5201 “Physical testing method for cement”. The air permeability coefficient is a formula for calculating the air permeability coefficient based on the commonly used formula for calculating the air permeability. Obtained by applying to. Assuming a filler in the gas pipe filling method, those with a compressive strength in the range of 0.1 to 0.7 N / mm 2 are evaluated as ○ (passed), and those that deviate from it are evaluated as × (failed). The air permeability coefficient of 1 × 10 −1 cm / sec or more was evaluated as ○ evaluation (pass), and the air permeability coefficient was evaluated as × evaluation (fail).
These results are shown in Table 1. In the table, a hyphen (“−”) is an item not measured. In addition, about the thing of this invention example, although the gas pipe surface temperature at the time of hardening was measured using the thermocouple, all did not exceed 60 degreeC.

Figure 2009114024
Figure 2009114024

表1からわかるように、本発明例のものは前記(1)〜(3)の各条件を満たす配合を有し、高透気性、低強度、低比重を呈する気泡モルタルが実現できた。また、これらの特性を具備し、かつベースモルタルとしての長距離圧送性および気泡モルタルとしての流動性が良好な配合を採用することができ、ガス管中込め工法の充填材用途に好適な気泡モルタルが提供できる。   As can be seen from Table 1, the examples of the present invention had a composition satisfying the conditions (1) to (3), and a cell mortar exhibiting high air permeability, low strength, and low specific gravity could be realized. In addition, it is possible to adopt a blend that has these characteristics and has good long-distance pumpability as a base mortar and fluidity as a bubble mortar, and is suitable for use as a filler in a gas pipe filling method. Can be provided.

一方、比較例No.2は空気量が少なすぎたことにより、比重および透気係数に劣った。No.4、6、7は低強度が実現できる配合を採らなかったものである。これらは(2)の水粉体比W1/(C+P)を増大する方向、あるいは(3)のセメント粉体比C/(C+P)を低減する方向に配合組成を振ることで低強度を満たすことが可能になる。前述のように回帰式を求めておけば、このような配合設計の失敗を効果的に防止できる。 On the other hand, Comparative Example No. 2 was inferior in specific gravity and air permeability coefficient because the amount of air was too small. Nos. 4, 6, and 7 are those that did not adopt a blend that can realize low strength. These satisfy the low strength by changing the blending composition in the direction of increasing the water powder ratio W 1 / (C + P) of (2) or the direction of decreasing the cement powder ratio C / (C + P) of (3). It becomes possible. If the regression equation is obtained as described above, such a failure in blending design can be effectively prevented.

表1に示した本発明例の配合をもつ全ての気泡モルタル混練物について、混練直後の混練物を500mL(ミリリットル)のメスシリンダーに500mLの目盛り高さまで入れて120分放置するブリーディング試験に供した。   All the foam mortar kneaded materials having the composition of the present invention examples shown in Table 1 were subjected to a bleeding test in which the kneaded material immediately after kneading was placed in a 500 mL (milliliter) graduated cylinder to a scale height of 500 mL and left for 120 minutes. .

その結果、いずれもメスシリンダーの底部に水は観測されず、ブリーディングは認められなかった。このことから、アミンオキサイド型ノニオン系界面活性剤により発泡させた気泡は70%という高い空気量で含有させても極めて安定性が高いことがわかる。   As a result, no water was observed at the bottom of the graduated cylinder, and no bleeding was observed. From this, it can be seen that the bubbles foamed by the amine oxide type nonionic surfactant are extremely stable even if they are contained in an air amount as high as 70%.

Claims (5)

セメントC、微粉末骨材P、練混ぜ水W1および下記(A)に示す起泡剤を用いて発泡させた気泡を混合して、下記(1)〜(3)を満たす配合組成とした気泡モルタル混練物。
(A)アミンオキサイド型界面活性剤、フッ素系界面活性剤の一方または双方を配合する起泡剤
(1)空気量;63〜75体積%
(2)水粉体比W1/(C+P);0.35〜0.70
(3)セメント粉体比C/(C+P);0.35以上かつ材齢28日の圧縮強度が0.1〜0.7N/mm2となる範囲
Cement C, fine powder aggregate P, mixing water W 1 and bubbles foamed using the foaming agent shown in (A) below were mixed to obtain a composition satisfying the following (1) to (3). Bubble mortar kneaded product.
(A) Foaming agent containing one or both of amine oxide type surfactant and fluorosurfactant (1) Air content; 63 to 75% by volume
(2) Water powder ratio W 1 / ( C + P); 0.35 to 0.70
(3) Cement powder ratio C / (C + P); range in which the compressive strength is 0.35 or more and the compressive strength at 28 days of age is 0.1 to 0.7 N / mm 2
セメントC、微粉末骨材P、練混ぜ水W1および下記(B)に示す起泡剤を用いて発泡させた気泡を混合して、下記(1)〜(3)を満たす配合組成とした気泡モルタル混練物。
(B)アニオン系またはノニオン系の起泡剤
(1)空気量;63〜75体積%
(2)水粉体比W1/(C+P);0.35〜0.70
(3)セメント粉体比C/(C+P);0.35以上かつ材齢28日の圧縮強度が0.1〜0.7N/mm2となる範囲
Cement C, fine powder aggregate P, by mixing bubbles by foaming with a foaming agent shown in Mixing water and W 1 and below (B), and a blend composition satisfying the following (1) to (3) Bubble mortar kneaded product.
(B) Anionic or nonionic foaming agent (1) Air content: 63 to 75 vol%
(2) Water powder ratio W 1 / ( C + P); 0.35 to 0.70
(3) Cement powder ratio C / (C + P); range in which the compressive strength is 0.35 or more and the compressive strength at 28 days of age is 0.1 to 0.7 N / mm 2
起泡剤がアミンオキサイド型ノニオン系界面活性剤を成分とするものである請求項1に記載の気泡モルタル混練物。   The foam mortar kneaded product according to claim 1, wherein the foaming agent contains an amine oxide type nonionic surfactant as a component. 微粉末骨材Pが石灰石微粉末である請求項1〜3のいずれかに記載の気泡モルタル混練物。   The foam mortar kneaded product according to any one of claims 1 to 3, wherein the fine powder aggregate P is limestone fine powder. 微粉末骨材Pは、ブレーン比表面積がセメントCの0.5倍以上2.5倍以下の石灰石微粉末である請求項1〜3のいずれかに記載の気泡モルタル混練物。   The foam mortar kneaded product according to any one of claims 1 to 3, wherein the fine powder aggregate P is a fine limestone powder having a Blaine specific surface area of 0.5 to 2.5 times that of the cement C.
JP2007289088A 2007-11-06 2007-11-06 Control method of air permeability coefficient, strength and specific gravity of cured foam mortar Active JP4550103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289088A JP4550103B2 (en) 2007-11-06 2007-11-06 Control method of air permeability coefficient, strength and specific gravity of cured foam mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289088A JP4550103B2 (en) 2007-11-06 2007-11-06 Control method of air permeability coefficient, strength and specific gravity of cured foam mortar

Publications (2)

Publication Number Publication Date
JP2009114024A true JP2009114024A (en) 2009-05-28
JP4550103B2 JP4550103B2 (en) 2010-09-22

Family

ID=40781595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289088A Active JP4550103B2 (en) 2007-11-06 2007-11-06 Control method of air permeability coefficient, strength and specific gravity of cured foam mortar

Country Status (1)

Country Link
JP (1) JP4550103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095046A (en) * 2009-10-28 2011-05-12 Tokyo Gas Co Ltd Method for checking/testing gas permeability of gas-permeable filler material and gas permeability checking/testing device
JP2013035701A (en) * 2011-08-04 2013-02-21 Kizai Tecto Corp Foam mortar kneaded product and infilling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483064A (en) * 1990-07-26 1992-03-17 Kajima Corp Mortar filling into concrete gap in concrete reverse placing construction
JP2000128661A (en) * 1998-10-19 2000-05-09 East Japan Railway Co Production of water-permeable cellular mortar and the mortar and mortar material used therefor
JP2004091535A (en) * 2002-08-29 2004-03-25 Sumitomo Osaka Cement Co Ltd Grout for frozen ground, its preparation and grouting method
JP2005060188A (en) * 2003-08-19 2005-03-10 Takara Tsusho Co Ltd Foaming agent for cellular concrete excellent in gas permeability and water permeability, and cellular concrete composition
JP2005112708A (en) * 2003-10-10 2005-04-28 Takara Tsusho Co Ltd Foaming agent for cellular concrete having excellent air permeability/water permeability, and cellular concrete composition
JP2007169974A (en) * 2005-12-20 2007-07-05 Tachibana Material Co Ltd Inside filling material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483064A (en) * 1990-07-26 1992-03-17 Kajima Corp Mortar filling into concrete gap in concrete reverse placing construction
JP2000128661A (en) * 1998-10-19 2000-05-09 East Japan Railway Co Production of water-permeable cellular mortar and the mortar and mortar material used therefor
JP2004091535A (en) * 2002-08-29 2004-03-25 Sumitomo Osaka Cement Co Ltd Grout for frozen ground, its preparation and grouting method
JP2005060188A (en) * 2003-08-19 2005-03-10 Takara Tsusho Co Ltd Foaming agent for cellular concrete excellent in gas permeability and water permeability, and cellular concrete composition
JP2005112708A (en) * 2003-10-10 2005-04-28 Takara Tsusho Co Ltd Foaming agent for cellular concrete having excellent air permeability/water permeability, and cellular concrete composition
JP2007169974A (en) * 2005-12-20 2007-07-05 Tachibana Material Co Ltd Inside filling material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095046A (en) * 2009-10-28 2011-05-12 Tokyo Gas Co Ltd Method for checking/testing gas permeability of gas-permeable filler material and gas permeability checking/testing device
JP2013035701A (en) * 2011-08-04 2013-02-21 Kizai Tecto Corp Foam mortar kneaded product and infilling method

Also Published As

Publication number Publication date
JP4550103B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
Aggarwal et al. Self-compacting concrete-procedure for mix design
Mehdipour et al. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Packing Density and Compressive Strength of Sustainable Cement Paste.
JP4987316B2 (en) Cement composition for non-shrinkable concrete
JP6392553B2 (en) Method for producing hardened cement and hardened cement
JP2007001828A (en) Foaming agent for cement composition, cement composition containing the same, method for preventing shrinkage of cement composition and use of foaming agent for cement composition
JP2006131488A (en) Acid resistant grout composition
JP2007246308A (en) Concrete composition and method for determining composition of concrete
JP4550103B2 (en) Control method of air permeability coefficient, strength and specific gravity of cured foam mortar
JP4579724B2 (en) Lightweight conductive cement mortar cured body and anode protective material for cathodic protection comprising the conductive cement mortar cured body
JP5432431B2 (en) High strength grout material
JP2004091535A (en) Grout for frozen ground, its preparation and grouting method
JP2003286064A (en) Cement composition
JP6252851B2 (en) Dry shrinkage reducing agent composition for improving workability of premix mortar, premix mortar and hardened cement using the same
JP2020011891A (en) High strength concrete for spraying
JP2001270762A (en) Grouting mortar composition for prepacked concrete
JP3706670B2 (en) Foam mortar composition
JP3806420B2 (en) Low strength mortar filler using shirasu
JP2012255269A (en) Earthquake-resistant slit material and manufacturing method thereof
JP2000072518A (en) Cement for high-fluidity spray concrete
JP2021155228A (en) Cavity-filling cement composition, cavity filler, and filling construction method
JP4217456B2 (en) Curing material composition
JP6959151B2 (en) Mortar composition and mortar
JP6893431B2 (en) Manufacturing method of expandable filler
JP5820195B2 (en) Cementitious composition
JP2008230914A (en) Cement-based composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4550103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250