JP2009113759A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2009113759A
JP2009113759A JP2007292326A JP2007292326A JP2009113759A JP 2009113759 A JP2009113759 A JP 2009113759A JP 2007292326 A JP2007292326 A JP 2007292326A JP 2007292326 A JP2007292326 A JP 2007292326A JP 2009113759 A JP2009113759 A JP 2009113759A
Authority
JP
Japan
Prior art keywords
sensor
strain sensor
strain
rubber
mounting hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292326A
Other languages
Japanese (ja)
Other versions
JP5330676B2 (en
Inventor
Yasuhiro Kubota
康弘 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2007292326A priority Critical patent/JP5330676B2/en
Publication of JP2009113759A publication Critical patent/JP2009113759A/en
Application granted granted Critical
Publication of JP5330676B2 publication Critical patent/JP5330676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of fitting a distortion sensor at a correct position without any trouble attributable to vulcanization heat and vulcanization pressure, and suppressing degradation of the detection accuracy and the reliability caused by the effect of adhesive. <P>SOLUTION: A distortion sensor 21 is inserted in a fitting manner in a sensor fitting hole 20 of a tire body 10 with the sensor fitting hole 20 for fitting the distortion sensor being recessed in an outer surface Gs of a side wall rubber 3G. The distortion sensor 21 has a block shape with a magnet 11 and a magnetic sensor element 12 opposing the magnet 11 being embedded in a rubber base body 13. A peripheral wall surface 25 of the distortion sensor 21 and a peripheral wall surface 23 of the sensor fitting hole 20 are press-fitted to each other without any space by the fitting. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、サイドウォール部に取り付けた歪センサにより測定した歪によって、タイヤに作用する力を検出する検出方法に用いる空気入りタイヤに関する。   The present invention relates to a pneumatic tire used in a detection method for detecting a force acting on a tire based on strain measured by a strain sensor attached to a sidewall portion.

近年、走行中の自動車の安定性、安全性を確保するため、ABS(アンチロックブレーキシステム)、TCS(トラクションコントロールシステム)、VSC(ビークルスタビリティコントロール)などの種々の車両制御システムが開発されている。そして、これらシステムを制御するためには、走行中のタイヤの転動状況を正確に把握することが必要となる。   In recent years, various vehicle control systems such as ABS (anti-lock brake system), TCS (traction control system), and VSC (vehicle stability control) have been developed in order to ensure the stability and safety of a running vehicle. Yes. In order to control these systems, it is necessary to accurately grasp the rolling state of the running tire.

そこで本出願人は、下記の特許文献1において、サイドウォール部に3つ以上の歪センサを取り付け、前記サイドウォール部の歪みを所定の3位置にて同時に測定することにより、その歪出力によって、タイヤに作用する前後力Fx、横力Fy、及び上下荷重Fzの3つの力をそれぞれ推定する技術を提案している。そして、この特許文献1では、前記歪センサの取り付け方法として、
(1)タイヤを加硫成形する前に、歪センサを、サイドウォール部の内部に埋め込む、或いはサイドウォール部の内面又は外面に貼り付け、その後の加硫による加硫接着によって取り付ける、又は
(2)加硫後のサイドウォール部の内面又は外面に、歪センサを、接着剤による接着によって取り付ける、ことが開示されている。
Therefore, in the following Patent Document 1, the present applicant attaches three or more strain sensors to the sidewall portion, and simultaneously measures the strain of the sidewall portion at predetermined three positions. A technique for estimating three forces, namely, a longitudinal force Fx, a lateral force Fy, and a vertical load Fz acting on the tire, is proposed. And in this patent document 1, as the attachment method of the said strain sensor,
(1) Before the tire is vulcanized, the strain sensor is embedded in the sidewall portion or attached to the inner surface or the outer surface of the sidewall portion, and attached by vulcanization adhesion by subsequent vulcanization, or (2) It is disclosed that a strain sensor is attached to an inner surface or an outer surface of a sidewall portion after vulcanization by adhesion with an adhesive.

特開2005−126008号公報Japanese Patent Laid-Open No. 2005-126008

しかし、前者の場合、加硫熱及び加硫圧力によって、歪センサに故障をもたらす恐れを招くとともに、加硫時のゴム流動によって取付位置が変動するなど正確な取付位置が得られ難く、力の検出精度を損ねるという問題がある。他方、後者の場合、接着剤の弾性率が歪みの測定値に大きく影響してしまい、力の検出精度及び信頼性を低下させるという問題がある。   However, in the former case, the vulcanization heat and the vulcanization pressure may cause a failure of the strain sensor, and it is difficult to obtain an accurate mounting position such as the mounting position fluctuating due to rubber flow during vulcanization. There is a problem that the detection accuracy is impaired. On the other hand, in the latter case, there is a problem that the elastic modulus of the adhesive greatly affects the measurement value of the strain, and the accuracy and reliability of the force detection are lowered.

又何れの場合にも、タイヤに歪センサが一体固定されるため、複数個のうちの一つの歪センサが故障した場合にも、タイヤごと交換する必要が生じるなど、経済性を損ねるという問題がある。   In any case, since the strain sensor is integrally fixed to the tire, even if one of the plurality of strain sensors fails, there is a problem that it is necessary to replace the entire tire, which impairs the economy. is there.

そこで本発明は、歪センサを、加硫熱や加硫圧力に起因する故障を招くことなく、かつ正確な位置に取り付けでき、しかも接着剤の影響による検出精度や信頼性の低下を抑制しうるとともに、歪センサの交換を可能として経済性を高めうる空気入りタイヤを提供することを目的としている。   Therefore, the present invention can attach the strain sensor to an accurate position without causing a failure due to vulcanization heat or vulcanization pressure, and can suppress a decrease in detection accuracy and reliability due to the influence of the adhesive. At the same time, it is an object to provide a pneumatic tire capable of replacing the strain sensor and improving economy.

前記目的を達成するために、本願請求項1の発明は、サイドウォール部の歪を測定した歪出力を出力してタイヤに作用する力を検出するために用いる歪センサを具える空気入りタイヤであって、
トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、このカーカスの外側に配されかつ外面がサイドウォール表面をなすサイドウォールゴムとを少なくとも有し、しかも前記サイドウォールゴムの外面に、歪センサ取付け用の有底のセンサ取付け穴を凹設したタイヤ本体、
及びゴム弾性材からなるゴム基体内に、磁石とこの磁石に向き合う磁気センサ素子とを埋設したブロック状の歪センサを具えるとともに、
前記歪センサは、前記センサ取付け穴内に、嵌め合いにて嵌入されることにより該歪センサの周壁面と、前記センサ取付け穴の周壁面とが隙間なく圧接することを特徴としている。
In order to achieve the above-mentioned object, the invention of claim 1 of the present application is a pneumatic tire comprising a strain sensor used for detecting a force acting on the tire by outputting a strain output obtained by measuring the strain of the sidewall portion. There,
It has at least a carcass extending from the tread portion through the sidewall portion to the bead core of the bead portion, and a sidewall rubber disposed on the outside of the carcass and having an outer surface forming a sidewall surface, and on the outer surface of the sidewall rubber. , Tire body with a bottomed sensor mounting hole for strain sensor mounting,
And a block-shaped strain sensor in which a magnet and a magnetic sensor element facing the magnet are embedded in a rubber base made of a rubber elastic material,
The strain sensor is characterized in that the peripheral wall surface of the strain sensor and the peripheral wall surface of the sensor mounting hole are in pressure contact with each other by being fitted into the sensor mounting hole by fitting.

又請求項2の発明では、前記歪センサは、前記ゴム基体のヤング率E1を、前記サイドウォールゴムのヤング率E2以下としたことを特徴としている。   In the invention of claim 2, the strain sensor is characterized in that the Young's modulus E1 of the rubber base is set to be equal to or less than the Young's modulus E2 of the sidewall rubber.

又請求項3の発明では、前記歪センサは直方体をなし、しかも該歪センサは、前記直方体の巾中心線をタイヤ半径方向線に対して30〜60°の角度で傾斜させて取り付くことを特徴としている。   In the invention of claim 3, the strain sensor is a rectangular parallelepiped, and the strain sensor is attached by inclining the width center line of the rectangular parallelepiped at an angle of 30 to 60 ° with respect to the tire radial direction line. It is said.

又請求項4の発明では、前記歪センサは、そのゲインが最大となるゲイン最大線を、前記直方体の巾中心線と一致させたことを特徴としている。   According to a fourth aspect of the present invention, the strain sensor is characterized in that a gain maximum line at which the gain becomes maximum coincides with a width center line of the rectangular parallelepiped.

又請求項5の発明では、前記磁気センサ素子は、ホール素子であることを特徴としている。   The invention of claim 5 is characterized in that the magnetic sensor element is a Hall element.

又前記ヤング率は、JISK6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に記載の試験方法に準拠して測定した300%伸張時の弾性率を意味する。   The Young's modulus means an elastic modulus at 300% elongation measured in accordance with a test method described in JIS K6251 “Vulcanized rubber and thermoplastic rubber—How to obtain tensile properties”.

本発明は叙上の如く、歪センサとして、ゴム弾性材からなるゴム基体内に、磁石とこの磁石に向き合う磁気センサ素子とを埋設したブロック状のものを用いるとともに、この歪センサを、サイドウォールゴムの外面に凹設したセンサ取付け穴内に、嵌め合いにて嵌入している、   As described above, the present invention uses a block-shaped sensor in which a magnet and a magnetic sensor element facing the magnet are embedded in a rubber base made of a rubber elastic material as a strain sensor. In the sensor mounting hole recessed in the outer surface of the rubber, it is fitted with a fit.

ここで、ゴムはポアソン比が約0.49であり、歪みに対してほとんど体積変化を示さない特性を有する。従って、サイドウォール部が変形し、前記センサ取付け穴が、例えば一方向に引張りによる伸張変形を受けた場合には、センサ取付け穴は、前記一方向と直交する他方向には、圧縮変形を起こす。このとき、センサ取付け穴内に嵌入される歪センサは、ゴム弾性材を用いて形成されるため、センサ取付け穴の前記圧縮変形によって付勢され、他方向に圧縮変形を起こすとともに、この圧縮変形に伴い前記一方向には伸張変形を起こすことになる。即ち、前記歪センサは、センサ取付け穴の周壁面とは、接着されていなくても、センサ取付け穴の伸張、圧縮の変形に追従して、自在に変形することができ、従って、サイドウォール部の歪みを、接着剤の影響を受けることなく高精度で測定できる。   Here, the rubber has a Poisson's ratio of about 0.49 and has a characteristic that hardly shows a volume change with respect to strain. Accordingly, when the side wall portion is deformed and the sensor mounting hole is subjected to, for example, extension deformation by pulling in one direction, the sensor mounting hole causes compressive deformation in the other direction orthogonal to the one direction. . At this time, since the strain sensor inserted into the sensor mounting hole is formed using a rubber elastic material, the strain sensor is biased by the compression deformation of the sensor mounting hole and causes the compression deformation in the other direction. Along with this, extension deformation occurs in the one direction. That is, even if the strain sensor is not bonded to the peripheral wall surface of the sensor mounting hole, the strain sensor can be freely deformed following the expansion and compression deformation of the sensor mounting hole. Can be measured with high accuracy without being affected by the adhesive.

又前記センサ取付け穴は、タイヤを加硫成形する際の加硫金型によって形成しうるため、歪センサを正確な位置に取り付けしうる。又タイヤの加硫成形後に歪センサを取り付けるため、加硫熱や加硫圧力に起因する歪センサの故障を防止することができる。又歪センサは、センサ取付け穴に嵌入して取り付けられるため、故障した歪センサの交換を可能とする他、摩耗寿命となった空気入りタイヤから歪センサを取り外して再使用しうるなど経済性を高めることができる。   Further, since the sensor mounting hole can be formed by a vulcanization mold when the tire is vulcanized, the strain sensor can be mounted at an accurate position. In addition, since the strain sensor is attached after the tire is vulcanized, failure of the strain sensor due to vulcanization heat or vulcanization pressure can be prevented. In addition, since the strain sensor is fitted into the sensor mounting hole, it is possible to replace a faulty strain sensor, and it is economical because the strain sensor can be removed from a pneumatic tire that has reached the end of its wear life and reused. Can be increased.

以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明の空気入りタイヤの断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a pneumatic tire according to the present invention.

図1において、空気入りタイヤ1は、本例では、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6を有するタイヤ本体10と、このタイヤ本体10のサイドウォール表面に設けられたセンサ取付け穴20内に嵌入される歪センサ21とから構成される。   In FIG. 1, a pneumatic tire 1 includes a tire body 10 having a carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, and a sidewall surface of the tire body 10. And a strain sensor 21 that is fitted into a sensor mounting hole 20 provided in the sensor.

前記タイヤ本体10は、加硫金型により加硫成形された既加硫のタイヤであって、前記カーカス6の外側には、外面Gsがサイドウォール表面をなすサイドウォールゴム3Gが配される。   The tire body 10 is a vulcanized tire that has been vulcanized by a vulcanization mold, and a sidewall rubber 3G having an outer surface Gs forming a sidewall surface is disposed outside the carcass 6.

なお前記カーカス6は、カーカスコードをタイヤ周方向に対して例えば70〜90°の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aから形成される。このカーカスプライ6Aは、前記ビードコア5、5間に跨るプライ本体部6aの両側に、前記ビードコア5の廻りでタイヤ軸方向内側から外側に折り返されるプライ折返し部6bを一連に具える。又前記プライ本体部6aとプライ折返し部6bとの間には、前記ビードコア5からタイヤ半径方向外方にのびる断面三角形状のビード補強用のビードエーペックスゴム8を配設している。   The carcass 6 is formed by one or more carcass plies 6A in this example, in which carcass cords are arranged at an angle of, for example, 70 to 90 ° with respect to the tire circumferential direction. The carcass ply 6 </ b> A includes a series of ply folding portions 6 b that are folded from the inner side to the outer side in the tire axial direction around the bead core 5 on both sides of the ply main body portion 6 a that extends between the bead cores 5 and 5. Further, a bead apex rubber 8 for bead reinforcement having a triangular cross section extending outward from the bead core 5 in the tire radial direction is disposed between the ply main body portion 6a and the ply turn-up portion 6b.

又前記トレッド部2の内部かつカーカス6の半径方向外側には、トレッド補強用のベルト層7がタイヤ周方向に巻装される。前記ベルト層7は、ベルトコードをタイヤ周方向に対して例えば10〜35゜の角度で配列した2枚以上、本例では2枚のベルトプライ7A、7Bから形成され、各ベルトコードがプライ間相互で交差することにより、ベルト剛性を高め、トレッド部2の略全巾をタガ効果を有して強固に補強している。なお本例では、前記ベルト層7の半径方向外側には、高速走行性能および高速耐久性等を高める目的で、バンドコードを周方向に対して5度以下の角度で配列させたバンド層9を設けている。   A tread reinforcing belt layer 7 is wound in the tire circumferential direction inside the tread portion 2 and outside the carcass 6 in the radial direction. The belt layer 7 is formed from two or more belt plies 7A and 7B in which belt cords are arranged at an angle of, for example, 10 to 35 ° with respect to the tire circumferential direction, and each belt cord is between plies. By crossing each other, the belt rigidity is enhanced, and the substantially entire width of the tread portion 2 is firmly reinforced with a tagging effect. In this example, a band layer 9 in which band cords are arranged at an angle of 5 degrees or less with respect to the circumferential direction is provided on the outer side in the radial direction of the belt layer 7 for the purpose of improving high-speed running performance and high-speed durability. Provided.

次に、前記サイドウォールゴム3Gは、ゴム硬度Hs(デュロメータA硬さ)が、例えば48〜53の軟質のゴムからなり、カーカス6を外傷から被覆保護する。そして、このサイドウォールゴム3Gの外面Gsには、歪センサ21取付け用のセンサ取付け穴20を少なくとも1個以上、好ましくは3個以上、さらに好ましくは6個以上凹設している。なお複数個のセンサ取付け穴20を形成する場合には、図2に示すように、タイヤ軸心を中心とした同一円周線i上に等間隔を隔てて配置することが、測定制御の簡便性等の観点から好ましい。なお同図には、8個のセンサ取付け穴20を同一円周線i上に等間隔を隔てて形成した場合を例示している。   Next, the sidewall rubber 3G is made of a soft rubber having a rubber hardness Hs (durometer A hardness) of, for example, 48 to 53, and covers and protects the carcass 6 from an injury. The outer surface Gs of the sidewall rubber 3G has at least one sensor mounting hole 20 for mounting the strain sensor 21, preferably three or more, more preferably six or more recessed. In the case where a plurality of sensor mounting holes 20 are formed, as shown in FIG. 2, it is convenient to arrange them at equal intervals on the same circumferential line i centered on the tire axis. From the viewpoint of properties and the like. In the figure, a case where eight sensor mounting holes 20 are formed on the same circumferential line i at equal intervals is illustrated.

ここで、前記センサ取付け穴20は、図3に拡大して示すように、前記外面Gsに平行な底面22と、この底面22の周囲を囲む周壁面23とを具え、本例では、この周壁面23が、4つの壁面部23aからなりかつ各壁面部23a及び底面22が長方形をなす直方体形状にて形成される場合を例示している。このようにセンサ取付け穴20を直方体形状で形成することにより、歪センサ21を、正確な姿勢で安定させて取り付けることができるとともに、このセンサ取付け穴20の変形を、歪センサ21に正確に伝えることが可能となり、歪みの測定精度をより向上させることができる。   Here, as shown in an enlarged view in FIG. 3, the sensor mounting hole 20 includes a bottom surface 22 parallel to the outer surface Gs and a peripheral wall surface 23 surrounding the bottom surface 22. The case where the wall surface 23 consists of the four wall surface parts 23a, and each wall surface part 23a and the bottom face 22 are formed in the rectangular parallelepiped shape which makes a rectangle is illustrated. By forming the sensor mounting hole 20 in a rectangular parallelepiped shape in this way, the strain sensor 21 can be stably mounted in an accurate posture, and the deformation of the sensor mounting hole 20 is accurately transmitted to the strain sensor 21. Therefore, distortion measurement accuracy can be further improved.

又前記センサ取付け穴20は、図4に概念的に示すように、その直方体形状の巾中心線c1をタイヤ半径方向線に対して30〜60°、より好ましくは40〜50°、さらに好ましくは45°の角度θにて形成される。   Further, as conceptually shown in FIG. 4, the sensor mounting hole 20 has a rectangular parallelepiped width center line c1 of 30 to 60 °, more preferably 40 to 50 °, and still more preferably, with respect to the tire radial direction line. It is formed at an angle θ of 45 °.

次に、前記歪センサ21として、図5〜7に示すように、ゴム弾性材からなるゴム基体13内に、磁石11と、この磁石11に間隔を有して向き合う磁気センサ素子12とを埋設したブロック状のものが採用される。この歪センサ21は、前記センサ取付け穴20内に嵌め合いにて嵌入されることが必要であり、従って、歪センサ21は、前記センサ取付け穴20よりも嵌め合い代だけ大きい断面形状(センサ取付け穴20の深さ方向と直角な断面形状)にて形成される。本例では、前記センサ取付け穴20が直方体形状にて形成されることから、前記歪センサ21も嵌め合い代だけ大きい断面形状の直方体形状にて形成される。これにより、歪センサ21は、その周壁面25と、センサ取付け穴20の前記周壁面23とが隙間なく圧接した状態で取り付けられる。なお前記嵌め合い代としては特に規制されないが、例えば、センサ取付け穴20の寸法(長さ)に対して0%より大かつ5%以下の範囲とするのが好ましい。   Next, as the strain sensor 21, as shown in FIGS. 5 to 7, a magnet 11 and a magnetic sensor element 12 facing the magnet 11 with a gap are embedded in a rubber base 13 made of a rubber elastic material. A block-shaped one is adopted. The strain sensor 21 needs to be fitted into the sensor mounting hole 20 by fitting. Accordingly, the strain sensor 21 has a sectional shape (sensor mounting larger than the sensor mounting hole 20 by a fitting margin). (Cross-sectional shape perpendicular to the depth direction of the hole 20). In this example, since the sensor mounting hole 20 is formed in a rectangular parallelepiped shape, the strain sensor 21 is also formed in a rectangular parallelepiped shape having a large cross section by a fitting allowance. Thereby, the strain sensor 21 is attached in a state where the peripheral wall surface 25 and the peripheral wall surface 23 of the sensor mounting hole 20 are in pressure contact with no gap. The fitting allowance is not particularly limited, but is preferably in the range of greater than 0% and less than 5% with respect to the dimension (length) of the sensor mounting hole 20, for example.

前記歪センサ21の磁気センサ素子12としては、ホール素子、及びMR素子(磁気抵抗効果素子)、TMF−MI素子、TMF−FG素子、アモルファスセンサ等が採用でき、特にコンパクトさ、感度、取り扱い易さ等の観点からホール素子が好適に採用できる。   As the magnetic sensor element 12 of the strain sensor 21, a Hall element, an MR element (magnetoresistance effect element), a TMF-MI element, a TMF-FG element, an amorphous sensor, etc. can be adopted, and particularly compactness, sensitivity, and easy handling. A Hall element can be suitably employed from the standpoints of height.

前記歪センサ21として、図5(A)、(B)の如く、1つの磁石11と1つの磁気センサ素子12とで形成した1−1タイプ、又図6(A)、(B)の如く、1つの磁石11と複数(n個、例えば2個)の磁気センサ素子12とで形成した1−nタイプ、又図7(A)、(B)の如く、複数(n個、例えば2個)の磁石11と1つの磁気センサ素子12とで形成したn−1タイプのものが使用できる。図中の符号12sは磁気センサ素子12の受感部面12s、符号11sは磁石11の磁極面を示し、又符号Nは、歪センサ21のゲインが最大となるゲイン最大線を示している。何れの場合にも、前記ゲイン最大線Nは、歪センサ21の直方体形状の巾中心線c2と一致させることが好ましく、これにより、歪センサ21をセンサ取付け穴20に取り付けた際、前記ゲイン最大線Nを、タイヤ半径方向線に対して前記角度θで傾斜させることができる。これにより、剪断歪を含むサイドウォール部3の歪を測定しうるため、タイヤに作用する力の検出精度を高めることができる。   As the strain sensor 21, as shown in FIGS. 5A and 5B, a 1-1 type formed by one magnet 11 and one magnetic sensor element 12, and as shown in FIGS. 6A and 6B. 1-n type formed by one magnet 11 and plural (n, for example, two) magnetic sensor elements 12, and plural (n, for example, two) as shown in FIGS. N-1 type formed by a magnet 11 and one magnetic sensor element 12). In the figure, reference numeral 12 s denotes a sensing surface 12 s of the magnetic sensor element 12, reference numeral 11 s denotes a magnetic pole face of the magnet 11, and reference numeral N denotes a gain maximum line at which the gain of the strain sensor 21 is maximum. In any case, it is preferable that the maximum gain line N coincides with the width center line c2 of the rectangular parallelepiped shape of the strain sensor 21, so that when the strain sensor 21 is mounted in the sensor mounting hole 20, the maximum gain is obtained. The line N can be inclined at the angle θ with respect to the tire radial line. Thereby, since the distortion of the sidewall portion 3 including the shear strain can be measured, the detection accuracy of the force acting on the tire can be increased.

なお各歪センサ21には、測定された歪の歪出力を、車両に設ける車両制御システムの電子制御装置(ECU)に発信する発信手段(図示しない)が内蔵される。この発信手段は、送受信回路、制御回路、メモリー等をチップ化した半導体と、アンテナとから構成され、前記電子制御装置(ECU)からの質問電波を受信したとき、これを電気エネルギーとして使用しメモリー内の歪出力データを応答電波として発信しうる。   Each strain sensor 21 has a built-in transmission means (not shown) for transmitting a strain output of the measured strain to an electronic control unit (ECU) of a vehicle control system provided in the vehicle. This transmitting means is composed of a semiconductor in which a transmission / reception circuit, a control circuit, a memory, etc. are made into a chip, and an antenna. The distortion output data can be transmitted as response radio waves.

ここで、図8(A)に誇張して示すように、サイドウォール部3が変形し、前記センサ取付け穴20が、例えば引張りf1により一方向に伸張変形を受けた場合、センサ取付け穴20は、前記一方向と直交する他方向には、圧縮変形を起こす。このとき、センサ取付け穴20内に嵌入される歪センサ21は、ゴム弾性材を用いて形成されるため、図8(B)に誇張して示すように、センサ取付け穴20の他方向の圧縮f2によって付勢され、他方向に圧縮変形を起こすとともに、この圧縮変形に伴い前記一方向には伸張変形を起こすことになる。即ち、前記歪センサ21は、センサ取付け穴20の周壁面23とは、接着されていなくても、センサ取付け穴20の伸張、圧縮の変形に追従して、自在に変形することが可能となり、サイドウォール部3の歪を、接着剤の影響を受けることなく高精度で測定できる。   Here, as exaggeratedly shown in FIG. 8 (A), when the sidewall portion 3 is deformed and the sensor mounting hole 20 is stretched and deformed in one direction by, for example, the tension f1, the sensor mounting hole 20 is In the other direction orthogonal to the one direction, compression deformation occurs. At this time, since the strain sensor 21 inserted into the sensor mounting hole 20 is formed using a rubber elastic material, the sensor mounting hole 20 is compressed in the other direction as shown exaggeratedly in FIG. It is urged by f2 to cause compressive deformation in the other direction, and along with this compressive deformation, it causes expansion deformation in the one direction. That is, even if the strain sensor 21 is not bonded to the peripheral wall surface 23 of the sensor mounting hole 20, the strain sensor 21 can be freely deformed following the expansion and compression of the sensor mounting hole 20, The distortion of the sidewall portion 3 can be measured with high accuracy without being affected by the adhesive.

このとき歪センサ21が、センサ取付け穴20に追従して変形するためには、前記ゴム基体13のヤング率E1を、前記サイドウォールゴム3Gのヤング率E2以下とすることが必要であり、E1>E2では、歪センサ21の追従性が減じ、測定精度を低下させる。このような観点から、前記ヤング率E1の上限を、前記ヤング率E2の1.0倍より小、さらには0.95倍以下とするのがより好ましい。又ヤング率E1の下限は、歪センサ21の強度の観点から、ヤング率E2の0.7倍以上が好ましい。   At this time, in order for the strain sensor 21 to deform following the sensor mounting hole 20, the Young's modulus E1 of the rubber base 13 needs to be equal to or less than the Young's modulus E2 of the sidewall rubber 3G. At> E2, the followability of the strain sensor 21 is reduced and the measurement accuracy is lowered. From such a viewpoint, it is more preferable that the upper limit of the Young's modulus E1 is smaller than 1.0 times the Young's modulus E2 and further 0.95 times or less. Further, the lower limit of the Young's modulus E1 is preferably 0.7 times or more of the Young's modulus E2 from the viewpoint of the strength of the strain sensor 21.

次に、前記歪センサ21は、センサ取付け穴20内に嵌入されるとはいえ、タイヤの繰り返し変形によってセンサ取付け穴20から外れる恐れがある。そこで本例では、前記図3に例示する如く、歪センサ21の周壁面25及びセンサ取付け穴20の周壁面23に、互いに係合することにより歪センサ21の外れを防止する係止部26を設けている。この係止部26として、本例では、前記周壁面25に形成されるリブ状(又は溝状)の第1係止部26Aと、周壁面23に形成されて前記第1係止部26Aと係合する溝状(又はリブ状)の第2係止部26Bとからなる場合を例示している。この係止部26は、全壁面部25a、23aに形成する必要はなく、例えば圧接する一対の壁面部25a、23aのみに形成することもできる。又係止部26として、1条の溝状(又はリブ状)以外に複数条の溝状(又はリブ状)とすることもできる。又図9に示すように、歪センサ21及びセンサ取付け穴20の開口側の断面積を減じた楔状とすることもでき、係る場合には、壁面部25a、23a自体が第1、第2係止部26A、26Bを構成している。又ゴム弾性を有するゴム系接着剤を補助的に用い、壁面部25a、23a間の一部を、例えばスポット状に接着しても良い。   Next, although the strain sensor 21 is fitted into the sensor mounting hole 20, there is a possibility that the strain sensor 21 may come off from the sensor mounting hole 20 due to repeated deformation of the tire. Therefore, in this example, as illustrated in FIG. 3, a locking portion 26 that prevents the strain sensor 21 from coming off by engaging with the circumferential wall surface 25 of the strain sensor 21 and the circumferential wall surface 23 of the sensor mounting hole 20. Provided. In this example, the locking portion 26 is a rib-shaped (or groove-shaped) first locking portion 26A formed on the peripheral wall surface 25, and the first locking portion 26A formed on the peripheral wall surface 23. The case where it consists of the groove | channel-shaped (or rib-shaped) 2nd latching | locking part 26B to engage is illustrated. It is not necessary to form this latching | locking part 26 in all the wall surface parts 25a and 23a, for example, it can also form only in a pair of wall surface parts 25a and 23a which press-contact. Moreover, as the latching | locking part 26, it can also be set as multiple groove shape (or rib shape) other than 1 groove shape (or rib shape). Further, as shown in FIG. 9, it can be formed in a wedge shape in which the cross-sectional areas on the opening side of the strain sensor 21 and the sensor mounting hole 20 are reduced. Stop portions 26A and 26B are configured. Further, a rubber-based adhesive having rubber elasticity may be supplementarily used, and a part between the wall surface portions 25a and 23a may be bonded in a spot shape, for example.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

本発明の効果を確認するため、タイヤサイズ245/40ZR18のタイヤ本体のサイドウォール表面に、9.5mm(縦)×6.5mm(横)×5mm(深さ)の直方体形状のセンサ取付け穴を凹設するとともに、このセンサ取付け穴内に、9.7mm(縦)×6.7mm(横)×4.8mm(高さ)の直方体形状の歪センサを、接着剤を用いることなく、嵌め合い代(0.2mm)にて嵌入することで取り付けた。なおセンサ取付け穴は、その直方体の巾中心線がタイヤ半径方向線に対して45°の角度で傾斜した状態にて、リムフランジの上端から半径方向外側に5mm離れた位置に形成された。又歪センサは、サイドウォールゴムと同じゴムからなるゴム基体内に、磁石とホール素子とを埋設して形成され、そのゲイン最大線は直方体の巾中心線と一致している。   In order to confirm the effect of the present invention, a sensor mounting hole having a rectangular parallelepiped shape of 9.5 mm (vertical) × 6.5 mm (horizontal) × 5 mm (depth) is formed on the sidewall surface of the tire body of the tire size 245 / 40ZR18. A 9.7 mm (vertical) x 6.7 mm (horizontal) x 4.8 mm (height) rectangular parallelepiped strain sensor is inserted into this sensor mounting hole without using an adhesive. It was attached by inserting at (0.2 mm). The sensor mounting hole was formed at a position 5 mm away radially outward from the upper end of the rim flange with the width center line of the rectangular parallelepiped inclined at an angle of 45 ° with respect to the tire radial direction line. The strain sensor is formed by embedding a magnet and a hall element in a rubber base made of the same rubber as the sidewall rubber, and its maximum gain line coincides with the width center line of the rectangular parallelepiped.

そしてこの歪センサ付きの空気入りタイヤを、ドラム試験機にて速度80km/hで走行させ、サイドウォール部の歪みを測定した。図10は、タイヤが1回転する際の歪センサの出力値のグラフであり、該図10に示すように、タイヤの回転位置において、歪みを測定しうることが確認できる。又本実験では、このような出力値を出しながら3万km走行しうることも確認できた。   And this pneumatic tire with a strain sensor was run at a speed of 80 km / h with a drum tester, and the distortion of the sidewall portion was measured. FIG. 10 is a graph of the output value of the strain sensor when the tire makes one revolution. As shown in FIG. 10, it can be confirmed that the strain can be measured at the rotational position of the tire. In this experiment, it was also confirmed that the vehicle could travel 30,000 km while giving such an output value.

本発明の空気入りタイヤの一実施例を示す断面図である。It is sectional drawing which shows one Example of the pneumatic tire of this invention. 歪センサの配置状態を略示する空気入りタイヤの側面図である。It is a side view of the pneumatic tire which shows the arrangement state of a strain sensor schematically. センサ取付け穴を、歪センサとともに示す分解斜視図である。It is a disassembled perspective view which shows a sensor attachment hole with a distortion sensor. 歪センサの取り付け方向を示す線図である。It is a diagram which shows the attachment direction of a strain sensor. (A)、(B)は、歪センサの一実施例を示す平面図及び斜視図である。(A), (B) is the top view and perspective view which show one Example of a strain sensor. (A)、(B)は、歪センサの他の実施例を示す平面図及び斜視図である。(A), (B) is the top view and perspective view which show the other Example of a strain sensor. (A)、(B)は、歪センサのさらに他の実施例を示す平面図及び斜視図である。(A), (B) is the top view and perspective view which show other Example of a strain sensor. (A)、(B)は、本発明の作用効果を説明する平面図である。(A), (B) is a top view explaining the effect of this invention. 係止部の他の例を示す断面図である。It is sectional drawing which shows the other example of a latching | locking part. 実施例における歪センサの出力値のグラフである。It is a graph of the output value of the distortion sensor in an Example.

符号の説明Explanation of symbols

1 空気入りタイヤ
2 トレッド部
3 サイドウォール部
3G サイドウォールゴム
4 ビード部
5 ビードコア
6 カーカス
10 タイヤ本体
11 磁石
12 磁気センサ素子
13 ゴム基体
20 センサ取付け穴
21 歪センサ
23、25 周壁面
c1、c2 巾中心線
Gs 外面
N ゲイン最大線
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 2 Tread part 3 Side wall part 3G Side wall rubber 4 Bead part 5 Bead core 6 Carcass 10 Tire main body 11 Magnet 12 Magnetic sensor element 13 Rubber base 20 Sensor mounting hole 21 Strain sensor 23, 25 Circumferential wall surface c1, c2 Width Center line Gs Outer surface N Gain maximum line

Claims (5)

サイドウォール部の歪を測定した歪出力を出力してタイヤに作用する力を検出するために用いる歪センサを具える空気入りタイヤであって、
トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、このカーカスの外側に配されかつ外面がサイドウォール表面をなすサイドウォールゴムとを少なくとも有し、しかも前記サイドウォールゴムの外面に、歪センサ取付け用の有底のセンサ取付け穴を凹設したタイヤ本体、
及びゴム弾性材からなるゴム基体内に、磁石とこの磁石に向き合う磁気センサ素子とを埋設したブロック状の歪センサを具えるとともに、
前記歪センサは、前記センサ取付け穴内に、嵌め合いにて嵌入されることにより該歪センサの周壁面と、前記センサ取付け穴の周壁面とが隙間なく圧接することを特徴とする空気入りタイヤ。
A pneumatic tire comprising a strain sensor used for detecting a force acting on the tire by outputting a strain output obtained by measuring the strain of the sidewall portion,
It has at least a carcass extending from the tread portion through the sidewall portion to the bead core of the bead portion, and a sidewall rubber disposed on the outside of the carcass and having an outer surface forming a sidewall surface, and on the outer surface of the sidewall rubber. , Tire body with a bottomed sensor mounting hole for strain sensor mounting,
And a block-shaped strain sensor in which a magnet and a magnetic sensor element facing the magnet are embedded in a rubber base made of a rubber elastic material,
The pneumatic tire according to claim 1, wherein the strain sensor is fitted into the sensor mounting hole by fitting so that the peripheral wall surface of the strain sensor and the peripheral wall surface of the sensor mounting hole are in pressure contact with each other without a gap.
前記歪センサは、前記ゴム基体のヤング率E1を、前記サイドウォールゴムのヤング率E2以下としたことを特徴とする請求項1記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the strain sensor has a Young's modulus E1 of the rubber base that is equal to or less than a Young's modulus E2 of the sidewall rubber. 前記歪センサは直方体をなし、しかも該歪センサは、前記直方体の巾中心線をタイヤ半径方向線に対して30〜60°の角度で傾斜させて取り付くことを特徴とする請求項1又は2記載の空気入りタイヤ。   3. The strain sensor according to claim 1, wherein the strain sensor is a rectangular parallelepiped, and the strain sensor is attached by inclining a width center line of the rectangular parallelepiped at an angle of 30 to 60 degrees with respect to a tire radial direction line. Pneumatic tires. 前記歪センサは、そのゲインが最大となるゲイン最大線を、前記直方体の巾中心線と一致させたことを特徴とする請求項3記載の空気入りタイヤ。   The pneumatic tire according to claim 3, wherein the strain sensor has a gain maximum line at which the gain is maximum matched with a width center line of the rectangular parallelepiped. 前記磁気センサ素子は、ホール素子であることを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the magnetic sensor element is a Hall element.
JP2007292326A 2007-11-09 2007-11-09 Pneumatic tire Active JP5330676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292326A JP5330676B2 (en) 2007-11-09 2007-11-09 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292326A JP5330676B2 (en) 2007-11-09 2007-11-09 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2009113759A true JP2009113759A (en) 2009-05-28
JP5330676B2 JP5330676B2 (en) 2013-10-30

Family

ID=40781375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292326A Active JP5330676B2 (en) 2007-11-09 2007-11-09 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5330676B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232721A (en) * 2011-05-09 2012-11-29 Sumitomo Rubber Ind Ltd Pneumatic tire
JP6099180B1 (en) * 2016-11-02 2017-03-22 株式会社 東港タイヤサービス Structure to attach reinforcements to the sidewalls of tires for construction, construction equipment, industrial, and transportation vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132177A (en) * 2003-10-29 2005-05-26 Yokohama Rubber Co Ltd:The Tire sensor pin and tire
JP2006027403A (en) * 2004-07-14 2006-02-02 Sumitomo Rubber Ind Ltd Sensing method for front-rear force acting on tire and pneumatic tire applied to sensing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132177A (en) * 2003-10-29 2005-05-26 Yokohama Rubber Co Ltd:The Tire sensor pin and tire
JP2006027403A (en) * 2004-07-14 2006-02-02 Sumitomo Rubber Ind Ltd Sensing method for front-rear force acting on tire and pneumatic tire applied to sensing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232721A (en) * 2011-05-09 2012-11-29 Sumitomo Rubber Ind Ltd Pneumatic tire
JP6099180B1 (en) * 2016-11-02 2017-03-22 株式会社 東港タイヤサービス Structure to attach reinforcements to the sidewalls of tires for construction, construction equipment, industrial, and transportation vehicles

Also Published As

Publication number Publication date
JP5330676B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5027549B2 (en) Pneumatic tire and method for detecting force acting on it
US7707876B2 (en) Method for estimating tire force acting on rolling tire
JP4914179B2 (en) Pneumatic tire and method for detecting force acting on it
US7249498B2 (en) System and method for determining tire force
US7313952B2 (en) Method and system for monitoring instantaneous behavior of a tire in a rolling condition
JP4276686B2 (en) Detection method of tire acting force
US11541695B2 (en) Pneumatic tire, tire wear information acquisition system, and method for acquiring wear information of pneumatic tire
US7236892B2 (en) Vehicle wheel state monitoring device and method
JP4928352B2 (en) Detection method of longitudinal force acting on tire
JP2005126008A (en) Detection method for force applied to tire and pneumatic tire used for it
JP5330676B2 (en) Pneumatic tire
JP2009126460A (en) Failure detection method for tire
JP2010215178A (en) Method for estimating force applied to tire and pneumatic tire used therefor
JP6027305B2 (en) Pneumatic tire
JP5302729B2 (en) Pneumatic tire and strain sensor used therefor
CN111405992B (en) Tire assembly and tire deformation state determination system
JP4520783B2 (en) Detection method of longitudinal force acting on tire
JP2012250592A (en) Pneumatic tire
JP5199926B2 (en) Method for estimating force acting on tire and pneumatic tire used therefor
JP2008249567A (en) Deformation measuring method for pneumatic tire
JP5580547B2 (en) Method for estimating vertical force acting on tire
JP5395477B2 (en) Method for estimating force acting on tire and pneumatic tire used therefor
JP5149531B2 (en) Method for detecting decrease in tire air pressure
JP2010247696A (en) Estimation method for vertical force working on tire
JP2009208621A (en) Camber angle estimation method and camber angle monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250