JP2009112957A - Method for treating soot - Google Patents

Method for treating soot Download PDF

Info

Publication number
JP2009112957A
JP2009112957A JP2007289531A JP2007289531A JP2009112957A JP 2009112957 A JP2009112957 A JP 2009112957A JP 2007289531 A JP2007289531 A JP 2007289531A JP 2007289531 A JP2007289531 A JP 2007289531A JP 2009112957 A JP2009112957 A JP 2009112957A
Authority
JP
Japan
Prior art keywords
smoke
soot
suspension
particles
solid particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007289531A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yanagi
和彦 柳
Junichi Kubota
順一 久保田
Shinji Hasegawa
晋司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASE KK
Original Assignee
BASE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASE KK filed Critical BASE KK
Priority to JP2007289531A priority Critical patent/JP2009112957A/en
Publication of JP2009112957A publication Critical patent/JP2009112957A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Particles Using Liquids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating soot which can effectively remove soot containing minute solids produced by an incomplete combustion reaction. <P>SOLUTION: In the method for treating the soot, the soot is contacted with solid particles which are suspended in a suspension and has a number average particle size of 5-40 μm. The soot is contacted with the solid particles in the suspension by supplying the soot-containing gas into the suspension or spraying the soot-containing gas with the suspension. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は煤煙の処理方法に関し、不完全燃焼反応によって発生する微細な固形物を含有する煤煙を除煙する煤煙の処理方法に関する。   The present invention relates to a method for treating soot, and more particularly to a method for treating soot that removes soot containing fine solids generated by incomplete combustion reaction.

不完全な燃焼反応によって発生する固形物を含有する煤煙を除去する煤煙の処理方法には、各種の方法が行われている。煤煙の処理方法としては、バグフィルター、電気集塵機等による乾式による煤煙の処理方法とともに、湿式により処理が行われており、湿式による処理方法では、薬液との接触による化学反応や活性炭等による吸着による処理方法が一般的である。   Various methods have been used for the soot treatment method for removing soot containing solid matter generated by an incomplete combustion reaction. As a soot treatment method, a wet soot treatment method is used together with a dry soot treatment method using a bag filter, an electrostatic precipitator, etc. In the wet treatment method, a chemical reaction by contact with a chemical solution or adsorption by activated carbon or the like is used. The processing method is common.

例えば、湿式による処理方法では、炭素含有水を径が0.001mm程度のノズルから煙道内に霧状に噴霧して煤煙を吸着除去する方法が提案されている(例えば、特許文献1参照)。
この方法は、微細な炭素粒子の有する吸着性能を利用したものであるものの、煤煙の除去は性能は充分なものではなかった。
特開2006−198458号公報
For example, as a wet processing method, a method of adsorbing and removing soot by spraying carbon-containing water in a mist from a nozzle having a diameter of about 0.001 mm into a flue has been proposed (for example, see Patent Document 1).
Although this method utilizes the adsorption performance of fine carbon particles, the performance of removing smoke has not been sufficient.
JP 2006-198458 A

本発明は、煤煙の処理方法において、液体中に懸濁した固体粒子として活性炭等の吸着特性を有する微細な粒子を利用した場合に比べても煤煙の処理性能が大きな煤煙の処理方法を提供することを課題とするものである。   The present invention provides a soot treatment method that has a large soot treatment performance compared to the case of using fine particles having adsorption characteristics such as activated carbon as solid particles suspended in a liquid in the soot treatment method. This is a problem.

本発明は、煤煙を懸濁液中に懸濁した数平均粒径が5〜40μmの固体粒子と接触させて煤煙を処理する煤煙の処理方法である。
懸濁液中の固体粒子との接触を、懸濁液中へ被処理煤煙含有気体を供給、または被処理煤煙含有気体に懸濁液を噴射することによって行う前記の煤煙の処理方法である。
また、固体粒子が、炭酸カルシウム、水酸化カルシウム、酸化アルミニウム、炭素から選ばれる少なくともいずれか一種の粒子である前記の煤煙の処理方法である。
The present invention is a soot treatment method in which soot is treated by bringing it into contact with solid particles having a number average particle size of 5 to 40 μm suspended in the suspension.
In the method for treating soot, the contact with the solid particles in the suspension is performed by supplying the gas to be treated containing smoke into the suspension or by injecting the suspension into the gas to be treated.
Further, in the above smoke treatment method, the solid particles are at least one kind of particles selected from calcium carbonate, calcium hydroxide, aluminum oxide, and carbon.

本発明の方法を採用することにより、気液接触型ガス処理装置等の湿式法では処理が困難とされてきた煤煙の除煙処理を効果的に行うことが可能となる。     By adopting the method of the present invention, it is possible to effectively carry out the smoke removal treatment, which has been difficult to process by a wet method such as a gas-liquid contact gas processing apparatus.

本発明者らは、煤煙を密閉された容器の中に静置しておくと、時間の経過とともに煤煙の透明度が上がってくる現象に着目したものである。これは、煤塵が容器の壁面との衝突で運動エネルギーを失って浮遊できなくなることによるものと考えられる。
したがって、煤煙の粒子が衝突する器壁に代えて、固体粒子を液体中に懸濁した懸濁液を利用することにより、懸濁液中の微細な固体粒子によって煤煙の粒子の効率的な衝突を実現できる煤煙の粒子の速やかな除去が可能であることを見いだしたものである。
The inventors pay attention to a phenomenon in which the smoke becomes more transparent as time passes if the smoke is left in a sealed container. This is thought to be due to the fact that the dust loses kinetic energy due to collision with the wall of the container and cannot float.
Therefore, by using a suspension in which solid particles are suspended in a liquid instead of a vessel wall on which soot particles collide, efficient collision of soot particles by fine solid particles in the suspension It has been found that it is possible to quickly remove soot particles that can achieve the above.

本発明は、煤煙の粒子が懸濁液中の固体粒子との衝突による煤煙の除去を行うものであるので、煤煙に接触させる懸濁液中に懸濁した固体粒子の濃度が高いほど高い消煙効果を得ることができる。   In the present invention, since smoke particles are removed by collision with the solid particles in the suspension, the higher the concentration of the solid particles suspended in the suspension in contact with the smoke, the higher the concentration. A smoke effect can be obtained.

また、固体粒子が懸濁した懸濁液中に煤煙を導入して、煤煙の気泡と固体粒子を接触させる場合には、気泡が小さく、懸濁液の液柱が高いほど、気体と液体との界面面積と接触時間は増し、接触効率を高くすることができる。  In addition, when smoke is introduced into a suspension in which solid particles are suspended and the smoke bubbles are brought into contact with the solid particles, the smaller the bubbles and the higher the liquid column of the suspension, the more the gas and liquid. The interfacial area and the contact time are increased, and the contact efficiency can be increased.

本発明においては、懸濁液としては、取り扱いが容易な水を用いることができる。また、水中に懸濁する固体粒子としては、各種の固体粒子を用いることが可能である。具体的には、水に対する溶解度が小さく、入手が容易であって取り扱いが容易である、炭酸カルシウム、水酸化カルシウム、酸化アルミニウム、酸化ケイ素、砂などの粒子を用いることができる。
これらの粒子のうち、炭酸カルシウムは、優れた効果を示すが、煙に含まれる二酸化炭素の吸収によってpHが低下して懸濁液が酸性化すると炭酸カルシウムが溶解して、粒子を懸濁した効果を得ることができなくなる。したがって、長時間の運転を行う場合にはpHの管理を行うとともに、懸濁液を置換することが必要となる。
In the present invention, water that is easy to handle can be used as the suspension. Moreover, various solid particles can be used as the solid particles suspended in water. Specifically, particles such as calcium carbonate, calcium hydroxide, aluminum oxide, silicon oxide, and sand that have low solubility in water, are easily available, and are easy to handle can be used.
Of these particles, calcium carbonate has an excellent effect, but when the pH is lowered due to absorption of carbon dioxide contained in the smoke and the suspension is acidified, the calcium carbonate dissolves and suspends the particles. The effect cannot be obtained. Therefore, when operating for a long time, it is necessary to manage the pH and replace the suspension.

また、固体粒子の粒径は個数平均粒径で5μmから40μmとすることが好ましく、5μmよりも小さい場合、あるいは40μmより大きい場合には、煤煙の除去効果が小さくなる。
懸濁液の濃度は2質量%から20質量%とすることが好ましく、2質量%より小さい場合は消煙の効果が小さく、20質量%より大きい場合には懸濁液の循環等が困難となる。
The particle size of the solid particles is preferably 5 to 40 μm in terms of number average particle size, and if it is smaller than 5 μm or larger than 40 μm, the effect of removing soot is reduced.
The concentration of the suspension is preferably 2% by mass to 20% by mass, and if it is less than 2% by mass, the effect of smoke suppression is small, and if it is greater than 20% by mass, it is difficult to circulate the suspension. Become.

本発明の煤煙の除煙処理方法は、燃料、可燃性物質の燃焼あるいは不完全燃焼で発生する煤煙を湿式で除煙処理する際に効果的に利用することができる。また、燃料の燃焼以外にも、合成樹脂等の可燃性部材の切断加工等によって発生する煤煙の除去にも有用である。   The method for removing smoke from smoke according to the present invention can be effectively used when removing smoke generated by burning or incomplete combustion of a fuel or a combustible substance in a wet manner. In addition to the combustion of fuel, it is also useful for removing soot generated by cutting a combustible member such as a synthetic resin.

本発明の煤煙除去方法は、懸濁液と煤煙含有気体を接触させることができれば各種の方法によって実施することできる。
例えば、煤煙を固体粒子を懸濁した懸濁液へ導入する方法、煤煙中に固体粒子を懸濁した懸濁液をシャワー状に降らせて接触する装置を用いる方法等によって実現することができる。
また、懸濁液をシャワー状に降らせて煤煙と接触させる場合には、シャワーする液滴が小さく、その量が多いほど、煤煙と固体粒子との接触する界面面積と接触時間が増し、接触効率が高くなる。
The soot removal method of the present invention can be carried out by various methods as long as the suspension and the soot-containing gas can be brought into contact with each other.
For example, it can be realized by a method of introducing smoke into a suspension in which solid particles are suspended, a method of using a device in which a suspension in which solid particles are suspended in smoke is dropped and brought into contact.
In addition, when the suspension is dropped into a shower and brought into contact with the smoke, the smaller the amount of droplets to be showered, the greater the amount of the droplets to be showered, the greater the interface area and contact time between the smoke and the solid particles, and the higher the contact efficiency. Becomes higher.

以下に、実験例、比較例を示して本発明を説明する。
実施例1
図1に、煤煙の除煙処理に用いる煤煙の捕集方法を説明する。
煤煙発生装置1の発生室2内に、なら材からなる薫製用スモークチップ3の5gを配置して、下部に備えた電気ヒータ4によって加熱して無炎燃焼させるとともに、循環ポンプ5によって煤煙6を容量500mlの捕集容器7含む煤煙発生装置の経路内で均一化するまで煤煙を循環させ煤煙の捕集をした。
The present invention will be described below by showing experimental examples and comparative examples.
Example 1
FIG. 1 illustrates a method for collecting soot used for soot removal.
In the generation chamber 2 of the soot generation device 1, 5 g of smoke smoke chip 3 made of raw material is placed and heated by the electric heater 4 provided at the lower part to be flamelessly combusted. The soot was circulated until the soot was made uniform in the path of the soot generating device including the 500 ml capacity collecting container 7, and soot was collected.

図2に、煤煙の除煙処理の試験方法を説明する示す。
捕集容器7から煤煙6を循環ポンプ8、および流量計9を通じて気液接触容器10の懸濁液11中に供給した。また、循環ポンプ8の出口側にはバイパス管路12を設けて分光光度計13に通気し、分光光度計の出口側は、循環ポンプ8の入口側に接続して、煤煙の濃度の時間変化を測定した。
FIG. 2 shows a method for testing the smoke removal process.
Smoke 6 was supplied from the collection container 7 into the suspension 11 of the gas-liquid contact container 10 through the circulation pump 8 and the flow meter 9. In addition, a bypass pipe 12 is provided on the outlet side of the circulation pump 8 to vent the spectrophotometer 13, and the outlet side of the spectrophotometer is connected to the inlet side of the circulation pump 8 to change the concentration of soot over time. Was measured.

容量250mlの気液接触容器に懸濁液として、個数平均粒径16.5μmの濃度5質量%の水酸化カルシウム懸濁液100mlを入れて、上記した煤煙の捕集容器から通気流量250mL/minの流量で通気し、分光光度計(東ソー製 UV−8000)によって550nmの波長における光学濃度を測定した。また、粒径はレーザー式粒度分布測定装置(島津製作所製SALD−2000)によって測定した。
気液接触時間開始時の光学濃度を10として正規化し、接触開始からの経過時間についての光学濃度を図3に示す。
また、水酸化カルシウムに代えて個数平均平均粒径7.9μm炭酸カルシウムを用いた点を除き実施例1と同様にして測定し、その結果を図3に示す。
100 ml of a calcium hydroxide suspension having a number average particle diameter of 16.5 μm and a concentration of 5% by mass is placed as a suspension in a 250 ml gas-liquid contact container, and the aeration flow rate is 250 ml / min from the soot collection container. The optical density at a wavelength of 550 nm was measured with a spectrophotometer (UV-8000 manufactured by Tosoh Corporation). The particle size was measured with a laser particle size distribution measuring device (SALD-2000 manufactured by Shimadzu Corporation).
The optical density at the start of the gas-liquid contact time is normalized as 10, and the optical density for the elapsed time from the start of contact is shown in FIG.
Moreover, it measured similarly to Example 1 except having replaced the calcium hydroxide with the number average average particle diameter of 7.9 micrometer calcium carbonate, and the result is shown in FIG.

比較例1
実施例1の気液接触容器の懸濁液に代えて、水による除煙効果と比較するために気液接触容器に水のみを入れて、実施例1と同様に測定してその結果を図3に示す。
また、親油性物質による除煙効果と比較するために、ポリエチレングリコール(PEG−12)の5質量%の水溶液のみを入れて、実施例1と同様に測定してその結果を図3に示す。
Comparative Example 1
Instead of the suspension of the gas-liquid contact container of Example 1, only water was put into the gas-liquid contact container for comparison with the smoke removal effect by water, and the measurement was performed in the same manner as in Example 1. 3 shows.
Moreover, in order to compare with the smoke removal effect by a lipophilic substance, only the 5 mass% aqueous solution of polyethyleneglycol (PEG-12) was put, it measured like Example 1, and the result is shown in FIG.

また、煤煙中の油状成分に高い親和性を有する液による除煙効果と比較するために、水溶性切削油(佐鳴製 S−3985)の5質量%水溶液のみを入れて、実施例1と同様に測定してその結果を図3に示す。
また、アルカリ性水溶液による除煙効果と比較するために、5質量%炭酸ナトリウム水溶液のみを入れて、実施例1と同様に測定してその結果を図3に示す。
In addition, in order to compare the smoke removal effect by the liquid having high affinity for the oily component in the smoke, only a 5% by mass aqueous solution of a water-soluble cutting oil (S-3985, manufactured by Sakiru) was added, and Example 1 The same measurement is performed and the result is shown in FIG.
Moreover, in order to compare with the smoke removal effect by alkaline aqueous solution, only 5 mass% sodium carbonate aqueous solution was put, it measured like Example 1, and the result is shown in FIG.

実施例2
実施例1および比較例1の測定結果を示す図3から、煤煙の消煙は、一次反応式型の様相を呈していることが判る。
すなわち、煤煙の初期濃度をAとし(t=0)、消煙濃度をxとしたとき、任意の時間tにおける煤煙濃度はA−xとなる。これを速度式で表すと、
dx/dt = −d[A−x]/dt …(1)
となり、kを消煙度常数として
k = 1/t・ ln[d/[A−x]] …(2)
(1)式をtで積分すると(3)式が得られる。
dx = k・ln[A−x]t …(3)
Example 2
From FIG. 3 showing the measurement results of Example 1 and Comparative Example 1, it can be seen that the smoke extinguishment of smoke has a primary reaction type appearance.
That is, when the initial concentration of smoke is A (t = 0) and the smoke extinction concentration is x, the smoke concentration at an arbitrary time t is A−x. This can be expressed as a velocity equation.
dx / dt = −d [A−x] / dt (1)
And k = 1 / t · ln [d / [A−x]] (2) where k is a smoke extinction constant.
When equation (1) is integrated with t, equation (3) is obtained.
dx = k · ln [A−x] t (3)

図3の縦軸を自然対数変換し、各点の時間軸に対する傾きをもって煤煙の消煙速度定数(k)を求めた、実施例1および比較例1の気液接触液体別の消煙速度常数(k)を表1に示す。   The natural logarithm of the vertical axis of FIG. 3 was used to determine the smoke extinguishing rate constant (k) with the slope of each point with respect to the time axis. Table 1 shows (k).

表1
気液接触液状物 消煙速度定数(k)
水酸化カルシウム懸濁水 −0.051
炭酸カルシウム懸濁水 −0.027
炭酸ナトリウム水溶液 −0.006
水溶性切削油 −0.012
ポリエチレングリコール水溶液 −0.005
水 −0.002
以上の結果から、煤煙を微粒子を懸濁した懸濁液と接触することによって優れた除煙効果が得られることが確認できた。
table 1
Gas-liquid contact liquid smoke extinction rate constant (k)
Calcium hydroxide suspension -0.051
Calcium carbonate suspension water -0.027
Sodium carbonate aqueous solution -0.006
Water-soluble cutting oil -0.012
Polyethylene glycol aqueous solution -0.005
Water -0.002
From the above results, it was confirmed that excellent smoke removal effect can be obtained by contacting smoke with a suspension in which fine particles are suspended.

実施例3
懸濁液の炭酸カルシウム粒子の粒径を、個数平均粒径が6.3μm、13.9μm、32.8μm、79μmのものに変えて実施例1と同様に測定し、その結果を図4に示す。
また、実施例2と同様に求めた消煙速度定数を表2に示す。
Example 3
The particle diameter of the calcium carbonate particles in the suspension was measured in the same manner as in Example 1 except that the number average particle diameters were 6.3 μm, 13.9 μm, 32.8 μm, and 79 μm, and the results are shown in FIG. Show.
In addition, Table 2 shows the smoke extinguishing rate constants obtained in the same manner as in Example 2.

表2
炭酸カルシウムの平均粒径(μm) 消煙速度定数(k)
6.3 −0.024
13.9 −0.019
32.8 −0.026
79 −0.012
Table 2
Average particle size of calcium carbonate (μm) Smoke-free rate constant (k)
6.3 -0.024
13.9 -0.019
32.8 -0.026
79 -0.012

実施例4
懸濁粒子として個数平均粒径8.7μmの炭酸カルシウムを用いるとともに懸濁液中の濃度を変えた点を除き、実施例1と同様にして光学濃度を測定してその結果を図5に示す。
また、実施例1と同様にして求めた、濃度変化に対する消煙速度定数の変化を図6に示す。
Example 4
The optical density was measured in the same manner as in Example 1 except that calcium carbonate having a number average particle size of 8.7 μm was used as the suspended particles and the concentration in the suspension was changed, and the results are shown in FIG.
Further, FIG. 6 shows the change in the smoke eliminating rate constant with respect to the concentration change obtained in the same manner as in Example 1.

実施例5
以上の実施例で用いた懸濁液中に分散した、炭酸カルシウム、水酸化カルシウムは、いずれも煙の成分とは化学反応を起こす可能性がある粒子であるが、以下のように化学反応を起こさない粒子を懸濁した場合にも同様に消煙が可能であることを確認した。
すなわち、水、個数平均粒径7.9μmの炭酸カルシウム粒子の5質量%含有懸濁水、個数平均粒径6.5μmの竹炭粒子の5質量%含有懸濁水、個数平均粒径6.5μmの酸化アルミニウム粒子の5質量%含有懸濁水のそれぞれについて、実施例1と同様にして消煙効果を試験した。その結果を図7に示す。
Example 5
Calcium carbonate and calcium hydroxide dispersed in the suspension used in the above examples are particles that may cause a chemical reaction with smoke components. It was confirmed that smoke removal was possible in the same manner when particles that did not wake were suspended.
That is, water, suspended water containing 5% by mass of calcium carbonate particles having a number average particle size of 7.9 μm, suspended water containing 5% by mass of bamboo charcoal particles having a number average particle size of 6.5 μm, and aluminum oxide particles having a number average particle size of 6.5 μm. About each 5 mass% containing suspension water, it carried out similarly to Example 1, and tested the smoke-removal effect. The result is shown in FIG.

実施例6
これまでの実施例では、なら材からなる薫製用スモークチップ、すなわちセルロース系物質で煤煙を調製したが、セルロース系物質の熱分解物質の他、合成樹脂類や天然油脂類の熱分解物質が煤塵を構成した場合についての除煙効果を確認した。
合成樹脂として、ポリスチレン樹脂を用いて実施例5と同様にして煤煙を調製し、実施例5と同様にして消煙試験を実施し、その結果を図8に示す。
Example 6
In the examples so far, smoke smoke chips made of raw materials, that is, smoke is prepared with a cellulosic material, but in addition to the pyrolyzate of the cellulosic material, the pyrolyzate of synthetic resins and natural fats and oils is also dusty. The smoke removal effect was confirmed for the case of the configuration.
As a synthetic resin, a smoke resin was prepared in the same manner as in Example 5 using a polystyrene resin, and a smoke extinguishing test was performed in the same manner as in Example 5. The result is shown in FIG.

実施例7
次いで、羊毛を材料として実施例1と同様にしてタンパク質由来の煤煙を調製し、実施例5と同様にして消煙試験を実施し、その結果を図9に示す。
Example 7
Next, protein-derived soot was prepared in the same manner as in Example 1 using wool as a material, and a smoke-removal test was conducted in the same manner as in Example 5. The results are shown in FIG.

実施例8
次いで、鉱物系機械油をガラス繊維に含浸させたものを材料として、実施例5と同様にして油由来の煤煙を調製し、実施例5と同様にして消煙試験を実施し、その結果を図10に示す。
以上の結果から、本発明の煤煙の除去方法が煤煙の原料の種類に依存せずに消煙効果を有することが示された。
Example 8
Then, using a material impregnated with glass fiber with mineral machine oil as a material, a soot derived from oil was prepared in the same manner as in Example 5, and a smoke extinguishing test was conducted in the same manner as in Example 5. As shown in FIG.
From the above results, it was shown that the soot removal method of the present invention has a smoke eliminating effect without depending on the type of the soot raw material.

実施例9
構造用合板を電気ヒータによって無炎燃焼により発生させた煤煙を、図11に示す気液接触装置20の下部の煤煙入口21から13m3/分の流量で供給し、充填層22の上部の噴射装置23によって、貯槽24から循環ポンプ25によって供給された個数平均粒径13.89μmの炭酸カルシウム粒子の濃度5質量%の懸濁液を、115L/分の流量でシャワー状に降らせて、気液接触装置20の上部の排気口26から処理された煙を排出するとともに、気液接触装置20の下部から排出される懸濁液を循環ポンプ27によって貯槽24に回収した。
また、排気口26に、レーヨン製不織布(クラレクラフレックス製 ZR−1000−30)をフィルターとして装着し、1分間排気を通気させた後のフィルターを未通気フィルターを参照として、分光測色器(ミノルタ製CM−2002)によって分光反射率を測定してその結果を図12に示す。
また、比較のために、水のみをシャワー状に降らせた場合についても同様に測定して図12に示した。
Example 9
Smoke generated by flameless combustion of the structural plywood by the electric heater is supplied at a flow rate of 13 m 3 / min from the lower smoke inlet 21 of the gas-liquid contact device 20 shown in FIG. The apparatus 23 causes a suspension of calcium carbonate particles having a number average particle diameter of 13.89 μm supplied from the storage tank 24 by the circulation pump 25 to fall in a shower form at a flow rate of 115 L / min. The treated smoke was discharged from the upper exhaust port 26 of the contact device 20, and the suspension discharged from the lower portion of the gas-liquid contact device 20 was collected in the storage tank 24 by the circulation pump 27.
Also, a rayon nonwoven fabric (Kuraray Laurex ZR-1000-30) is attached to the exhaust port 26 as a filter, and the filter after venting the exhaust gas for 1 minute is referred to the non-vented filter. Spectral reflectance was measured by Minolta CM-2002), and the result is shown in FIG.
Further, for comparison, the same measurement was performed for the case where only water was dropped in a shower shape, and the result was shown in FIG.

微粒子を分散した懸濁液と煤煙を含む煙とを接触させることによって、微粒子に煤煙を衝突させることによって煤煙を懸濁液中に除去することができ、気液接触型処理装置など湿式法では困難とされてきた煤煙の除煙処理を効果的に行うことが可能となる。   By bringing the suspension in which the fine particles are dispersed into contact with the smoke containing smoke, the smoke can be removed into the suspension by causing the smoke to collide with the fine particles. In a wet method such as a gas-liquid contact processing apparatus, It becomes possible to effectively perform the smoke removal treatment of the soot that has been considered difficult.

図1は、煤煙の除煙処理試験に用いた煤煙の捕集方法を説明する図である。FIG. 1 is a diagram for explaining a method for collecting soot used in a soot removal test. 図2は、煤煙の除煙処理の試験方法を説明する図である。FIG. 2 is a diagram for explaining a test method for smoke removal processing of smoke. 図3は、懸濁粒子、溶質を変えた場合の煤煙の除去効果を説明する図である。FIG. 3 is a diagram for explaining the smoke removal effect when the suspended particles and solute are changed. 図4は、懸濁粒子とした炭酸カルシウム粒子の粒径を変えた場合の煤煙の除去効果を説明する図である。FIG. 4 is a diagram for explaining the smoke removal effect when the particle size of the calcium carbonate particles as suspended particles is changed. 図5は、懸濁粒子とした炭酸カルシウム粒子の濃度を変えた場合の煤煙の除去効果を説明する図である。FIG. 5 is a diagram for explaining the smoke removal effect when the concentration of calcium carbonate particles as suspended particles is changed. 図6は、懸濁粒子とした炭酸カルシウム粒子の濃度変化に対する消煙速度定数の変化を説明する図である。FIG. 6 is a diagram for explaining the change of the smoke extinguishing rate constant with respect to the change in the concentration of calcium carbonate particles as suspended particles. 図7は、懸濁粒子と化学反応を起こさない粒子を用いた場合の消煙効果を説明する図である。FIG. 7 is a diagram for explaining the smoke-extinguishing effect when particles that do not cause chemical reaction with suspended particles are used. 図8は、プラスチックスから生じる煤煙の消煙効果を説明する図である。FIG. 8 is a diagram for explaining the smoke eliminating effect of smoke generated from plastics. 図9は、タンパク質から生じる煤煙の消煙効果を説明する図である。FIG. 9 is a diagram for explaining the smoke eliminating effect of soot generated from protein. 図10は、 油から生じる煤煙の消煙効果を説明する図である。FIG. 10 is a diagram for explaining the smoke eliminating effect of soot generated from oil. 図11は、充填層を有する気液接触装置を用いた場合の消煙効果を説明する図である。FIG. 11 is a diagram for explaining the smoke eliminating effect when a gas-liquid contact device having a packed bed is used. 図12は、図11の装置による消煙速度を説明する図である。FIG. 12 is a diagram for explaining the smoke evacuation speed by the apparatus of FIG.

符号の説明Explanation of symbols

1…煤煙発生装置、2…発生室、3…薫製用スモークチップ、4…電気ヒータ、5…循環ポンプ、6…煤煙、7…捕集容器、8…循環ポンプ、9…流量計、10…気液接触容器、11…懸濁液、12…バイパス管路、13…分光光度計、20…気液接触装置、21…煤煙入口、22…充填層、23…噴射装置、24…貯槽、25…循環ポンプ、26…排気口、27…循環ポンプ  1 ... Smoke generator, 2 ... Generation chamber, 3 ... Smoked smoke chip, 4 ... Electric heater, 5 ... Circulation pump, 6 ... Smoke, 7 ... Collection container, 8 ... Circulation pump, 9 ... Flow meter, 10 ... Gas-liquid contact container, 11 ... suspension, 12 ... bypass, 13 ... spectrophotometer, 20 ... gas-liquid contact device, 21 ... smoke inlet, 22 ... packed bed, 23 ... injection device, 24 ... storage tank, 25 ... circulation pump, 26 ... exhaust port, 27 ... circulation pump

Claims (2)

懸濁液中に懸濁した数平均粒径が5〜40μmの固体粒子と煤煙を接触させて煤煙を処理することを特徴とする煤煙の処理方法。   A soot treatment method comprising treating soot by bringing solid particles having a number average particle diameter of 5 to 40 μm suspended in a suspension into contact with the soot. 懸濁液中の固体粒子との接触を、懸濁液中へ被処理煤煙含有気体を供給、または被処理煤煙含有気体に懸濁液を噴射することによって行うことを特徴とする請求項1または2記載の煤煙の処理方法。   The contact with solid particles in the suspension is performed by supplying a gas containing smoke to be treated into the suspension or by injecting the suspension into the gas containing smoke to be treated. 2. The method for treating smoke according to 2.
JP2007289531A 2007-11-07 2007-11-07 Method for treating soot Pending JP2009112957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289531A JP2009112957A (en) 2007-11-07 2007-11-07 Method for treating soot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289531A JP2009112957A (en) 2007-11-07 2007-11-07 Method for treating soot

Publications (1)

Publication Number Publication Date
JP2009112957A true JP2009112957A (en) 2009-05-28

Family

ID=40780699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289531A Pending JP2009112957A (en) 2007-11-07 2007-11-07 Method for treating soot

Country Status (1)

Country Link
JP (1) JP2009112957A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004111A (en) * 2013-06-21 2015-01-08 大陽日酸株式会社 Carburizing device
JP2015004108A (en) * 2013-06-21 2015-01-08 大陽日酸株式会社 Production method of atmospheric gas for carburization
JP2016006236A (en) * 2015-09-30 2016-01-14 大陽日酸株式会社 Production method of atmospheric gas for carburization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260889A (en) * 1986-05-07 1987-11-13 Babcock Hitachi Kk Method of desulfurization in gasifying oven
JPH0975659A (en) * 1995-09-08 1997-03-25 Babcock Hitachi Kk Wet exhaust gas desulfurizer
JP2004361107A (en) * 2003-06-02 2004-12-24 Takehiko Morimoto Apparatus and method for measuring concentration of co in exhaust combustion gas
WO2007106372A2 (en) * 2006-03-10 2007-09-20 Comrie Douglas C Carbon dioxide sequestration materials and processes
JP2007260553A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Treatment method of exhaust gas and fly ash of incineration plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260889A (en) * 1986-05-07 1987-11-13 Babcock Hitachi Kk Method of desulfurization in gasifying oven
JPH0975659A (en) * 1995-09-08 1997-03-25 Babcock Hitachi Kk Wet exhaust gas desulfurizer
JP2004361107A (en) * 2003-06-02 2004-12-24 Takehiko Morimoto Apparatus and method for measuring concentration of co in exhaust combustion gas
WO2007106372A2 (en) * 2006-03-10 2007-09-20 Comrie Douglas C Carbon dioxide sequestration materials and processes
JP2007260553A (en) * 2006-03-28 2007-10-11 Kurita Water Ind Ltd Treatment method of exhaust gas and fly ash of incineration plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004111A (en) * 2013-06-21 2015-01-08 大陽日酸株式会社 Carburizing device
JP2015004108A (en) * 2013-06-21 2015-01-08 大陽日酸株式会社 Production method of atmospheric gas for carburization
JP2016006236A (en) * 2015-09-30 2016-01-14 大陽日酸株式会社 Production method of atmospheric gas for carburization

Similar Documents

Publication Publication Date Title
JP4621095B2 (en) Air purifier
JP2017504476A (en) Marine exhaust gas purification system
JP2011515210A5 (en)
CN102284223A (en) Multifunctional indoor air purifier
CN105688624A (en) Waste gas purifier
Noorimotlagh et al. Optimized adsorption of 4-chlorophenol onto activated carbon derived from milk vetch utilizing response surface methodology
WO2015169125A1 (en) Method for removing dust in gas fumes
JP2007224792A (en) Method and device for controlling exhaust emission for internal combustion engine
JP2009112957A (en) Method for treating soot
JP5847424B2 (en) Gas processing equipment
JPS62500505A (en) How to purify the air
JP3997745B2 (en) Regeneration method of ozonolysis type gas adsorbent
CN102114376A (en) Method of pretreating adhesive odorous substance generated in tire factory
CN105688638A (en) Method and device for treating sulfur-containing waste gas by utilizing foam absorption method
CN110227312B (en) Exhaust gas purification method
CA1064814A (en) Method and apparatus for removing particulate material from a gas
KR20070082493A (en) The method to seize volatile organic compounds by using mist of organic solvents
CN107787245A (en) Method for going the removal of mercury from the flue gas of combustion plant
RU2438994C2 (en) Method of treatment
JP2009189938A (en) Regeneration method of active carbon by microbubble and device using this method
Maiyalagan et al. A low cost adsorbent prepared from Curcuma angustifolia scales for removal of Basic violet 14 from aqueous solution
CN104388146A (en) Control method for reducing fire coal power plant flue gas mercury discharge
JP2005349350A (en) Exhaust gas treatment apparatus
CN106659961B (en) Method for surface charge modification
EP4149672B1 (en) Filter element for gaseous fluids

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20090305

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Effective date: 20110527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20110725

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Effective date: 20110728

Free format text: JAPANESE INTERMEDIATE CODE: A602

A521 Written amendment

Effective date: 20110825

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121109

Free format text: JAPANESE INTERMEDIATE CODE: A02