JP2009112175A - Power stabilization system - Google Patents

Power stabilization system Download PDF

Info

Publication number
JP2009112175A
JP2009112175A JP2007284753A JP2007284753A JP2009112175A JP 2009112175 A JP2009112175 A JP 2009112175A JP 2007284753 A JP2007284753 A JP 2007284753A JP 2007284753 A JP2007284753 A JP 2007284753A JP 2009112175 A JP2009112175 A JP 2009112175A
Authority
JP
Japan
Prior art keywords
power
secondary battery
fluctuation
power fluctuation
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284753A
Other languages
Japanese (ja)
Inventor
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007284753A priority Critical patent/JP2009112175A/en
Publication of JP2009112175A publication Critical patent/JP2009112175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To surely bring out an absorbing effect in a power variation caused by charging/discharging of a power-storage unit, and to stabilize a trend in a power supply. <P>SOLUTION: Two systems of power-variation absorbing units 14, 15 comprising a bidirectional AC/DC converter 6 and a secondary battery 7 are provided to a distributing power source 3 connected to a power system 1. For example, in the unit 14, only a power variation in the charging direction is compensated by controlling to maintain the lower-limit voltage of the secondary battery; and in the unit 15, only the power variation in the discharging direction is compensated by controlling to maintain the upper-limit voltage of the secondary battery. The system is thus designed to absorb the power variation within the permissible capacity of the secondary battery. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、風力発電や太陽光発電のような分散形電源システムの発生する電力変動を2次電池で吸収し、連系する電力系統の潮流を安定化させるシステムに関する。   The present invention relates to a system that absorbs power fluctuations generated by a distributed power supply system such as wind power generation or solar power generation with a secondary battery, and stabilizes the power flow of a connected power system.

風力発電や太陽光発電のような分散形電源は、環境条件により発電電力が大きく変動するため、電力系統に大きな潮流変動を発生させる。一般に、このような自然エネルギーを利用した分散形電源は、系統の末端に接続される場合が多く、配線インピーダンスが高い。このため、このような潮流変動により系統電圧が変動してしまい、他の負荷に悪影響を及ぼすことになる。
そこで、従来は2次電池などの電力貯蔵手段を用いて、電力の吸収または放出を行なうことにより、出力変動,負荷変動,潮流変動等の電力変動分を補償するシステムが開発されている(例えば、特許文献1参照)。
Distributed power sources such as wind power generation and solar power generation cause large tidal current fluctuations in the power system because generated power fluctuates greatly depending on environmental conditions. In general, a distributed power source using such natural energy is often connected to the end of the system and has high wiring impedance. For this reason, the system voltage fluctuates due to such a power flow fluctuation, which adversely affects other loads.
Therefore, a system has been developed that compensates for power fluctuations such as output fluctuations, load fluctuations, power fluctuations, etc., by absorbing or releasing power using a power storage means such as a secondary battery (for example, , See Patent Document 1).

図2に、特許文献1に開示の例を示す。
電力変動吸収装置5は、まず、分散電源3の出力電圧と電流を電力検出器11に入力し、分散電源3の発電電力を算出する。また、使用する2次電池7の電圧,電流を2次電池残存容量検出器12に入力し、例えば電流積算演算や電圧−残存容量換算テーブル等により残存容量を算出する。
FIG. 2 shows an example disclosed in Patent Document 1.
First, the power fluctuation absorber 5 inputs the output voltage and current of the distributed power supply 3 to the power detector 11 and calculates the generated power of the distributed power supply 3. Further, the voltage and current of the secondary battery 7 to be used are input to the secondary battery remaining capacity detector 12, and the remaining capacity is calculated by, for example, current integration calculation or a voltage-remaining capacity conversion table.

上記2つの検出信号は双方向交直電力変換装置6の制御回路13に入力され、同変換装置6の出力電力制御信号が算出される。すなわち、制御回路13は、分散電源3の発電出力が増加した場合には、2次電池7の電力放出を減少または電力吸収を増大させ、また、分散電源3の発電出力が減少した場合には、2次電池7の電力吸収を減少または電力放出を増大させるよう、電力補償指令演算機能とその補償指令に基く出力電力制御機能を持つ。これにより、分散形電源3と電力変動吸収装置5の連系点の電力変動を補償している。   The two detection signals are input to the control circuit 13 of the bidirectional AC / DC power converter 6, and the output power control signal of the converter 6 is calculated. That is, the control circuit 13 decreases the power release or power absorption of the secondary battery 7 when the power generation output of the distributed power source 3 increases, and increases the power output of the distributed power source 3 when the power generation output of the distributed power source 3 decreases. A power compensation command calculation function and an output power control function based on the compensation command are provided so as to reduce power absorption of the secondary battery 7 or increase power release. As a result, the power fluctuation at the connection point between the distributed power source 3 and the power fluctuation absorber 5 is compensated.

ただし、双方向交直変換器6や2次電池7では充放電の際に損失が発生するため、そのままでは2次電池7の残存容量は徐々に減少し、終には残存容量の下限値に至り電力変動吸収効果が得られなくなる。同様に、有効電力変動量の平均値が2次電池7に充電する方向に偏っていた場合、そのままでは2次電池7の残存容量は徐々に増加し、終には残存容量の上限値に至り電力変動吸収効果が得られなくなる。   However, in the bidirectional AC / DC converter 6 and the secondary battery 7, loss occurs during charging / discharging, so the remaining capacity of the secondary battery 7 gradually decreases as it is, and finally reaches the lower limit of the remaining capacity. The power fluctuation absorbing effect cannot be obtained. Similarly, when the average value of the active power fluctuation amount is biased in the direction of charging the secondary battery 7, the remaining capacity of the secondary battery 7 gradually increases as it is, and finally reaches the upper limit value of the remaining capacity. The power fluctuation absorbing effect cannot be obtained.

そこで、2次電池7の充放電量の平均的な偏りを補正し、残存容量が長期的に上限値および/または下限値で張り付いてしまう状態を防止するために、各種制御方式が提案されている。
例えば、非特許文献1では、2次電池の端子電圧(残存容量に相当)が予め設定されたしきい値(端子電圧許容範囲に上下2つのしきい値を設定)を超えた場合に、端子電圧許容範囲の中間方向に近づくよう2次電池への出力指令値を補正(分散形電源の有効電力計測値から変動成分を除去した補償目標値に対し補正値を加算)することにより、2次電池の充放電量の平均的な偏りを制御するようにしている。
Therefore, various control methods have been proposed in order to correct the average bias of the charge / discharge amount of the secondary battery 7 and prevent the remaining capacity from sticking to the upper limit value and / or the lower limit value in the long term. ing.
For example, in Non-Patent Document 1, when the terminal voltage of the secondary battery (corresponding to the remaining capacity) exceeds a preset threshold value (two upper and lower threshold values are set in the terminal voltage allowable range), By correcting the output command value to the secondary battery so that it approaches the middle direction of the allowable voltage range (by adding the correction value to the compensation target value obtained by removing the fluctuation component from the active power measurement value of the distributed power source) The average bias of the battery charge / discharge amount is controlled.

なお、2次電池7の残存容量検出には種々の方法があるが、一定時間の充放電電流の積算量(電流時間積(Ah))を用いるのが一般的である(例えば、特許文献2参照)。
特開2006−287998号公報 特開平07−192769号公報 平成12年度調査報告書NEDO-NP-0004「蓄電池併設風力発電導入 可能性調査」(平成14年2月発行)
Although there are various methods for detecting the remaining capacity of the secondary battery 7, it is general to use an integrated amount of charge / discharge current (current time product (Ah)) for a certain time (for example, Patent Document 2). reference).
JP 2006-287998 A JP 07-192769 A FY2000 Survey Report NEDO-NP-0004 “Investigation of Feasibility of Wind Power Generation with Storage Batteries” (issued in February 2002)

しかしながら、上記特許文献2のような積算方式では誤差分も積算されるため、定期的なリセットが必要になる。また、特性劣化により許容容量が低下した場合のメンテナンスも必要になる。一方、非特許文献1のような方式によれば、上記積算方式による問題は回避されるが、残存容量がしきい値を超えた場合に補正動作が開始・終了されるため、特に残存容量がしきい値をまたいで増減を繰り返すと、頻繁に補正動作が繰り返されるため、結果的に良好な電力変動吸収効果が得られないという問題が残る。   However, in the integration method as described in Patent Document 2, errors are also integrated, so that a periodic reset is required. In addition, maintenance is also required when the allowable capacity is reduced due to characteristic deterioration. On the other hand, according to the method as described in Non-Patent Document 1, the problem due to the integration method is avoided, but when the remaining capacity exceeds the threshold value, the correction operation is started / finished. When the increase / decrease is repeated across the threshold value, the correction operation is frequently repeated, and as a result, there remains a problem that a good power fluctuation absorption effect cannot be obtained.

したがって、この発明の課題は、2次電池の残存容量検出方法や特性劣化に関わる課題や、残存容量の適正化制御に関わる課題を解決し、電力貯蔵装置の充放電による電力変動吸収効果を確実に得られるようにすることにある。   Therefore, the problem of the present invention is to solve the problem related to the remaining capacity detection method and characteristic deterioration of the secondary battery and the problem related to the optimization control of the remaining capacity, and to ensure the power fluctuation absorption effect by charging and discharging the power storage device. There is to be obtained.

このような課題を解決するため、この発明では、2次電池と双方向交直変換器とからなる電力変動吸収装置を、電力系統に接続される分散形電源と並列に接続し、前記電力変動吸収装置が充放電を行なうことにより、前記分散形電源の有効電力変動を吸収して、前記電力系統の潮流を安定化させる電力安定化システムにおいて、
前記電力変動吸収装置を2台で構成するとともに、各電力変動吸収装置の制御装置を、前記2次電池の電圧を一定値にするための電力指令を演算する第1の演算手段と、前記分散形電源が出力する有効電力から変動成分を抽出する第2の演算手段と、その有効電力変動成分を正の有効電力変動成分(平均発電電力を上回る発電電力)と負の有効電力変動成分(平均発電電力を下回る発電電力)とに分離する第3の演算手段とから構成し、
2台のうちの一方の電力変動吸収装置は、前記正の有効電力変動成分と、設定電圧を2次電池の下限電圧に設定して演算される電力指令とを加算して充放電電力指令とする充放電動作を行ない、2台のうちの他方の電力変動吸収装置は、前記負の有効電力変動成分と、設定電圧を2次電池の上限電圧に設定して演算される電力指令とを加算して充放電電力指令とする充放電動作を行なうことを特徴とする。
In order to solve such a problem, in the present invention, a power fluctuation absorber comprising a secondary battery and a bidirectional AC / DC converter is connected in parallel with a distributed power source connected to a power system, and the power fluctuation absorption is achieved. In the power stabilization system that stabilizes the power flow of the power system by absorbing the active power fluctuation of the distributed power source by charging and discharging the device,
The power fluctuation absorber is composed of two units, the control device of each power fluctuation absorber is a first computing means for computing a power command for setting the voltage of the secondary battery to a constant value, and the dispersion A second computing means for extracting fluctuation components from the active power output from the power source, the active power fluctuation components being positive active power fluctuation components (generated power exceeding the average generated power) and negative active power fluctuation components (average) A third calculation means that separates the generated power below the generated power),
One of the two power fluctuation absorbing devices adds the positive active power fluctuation component and the power command calculated by setting the set voltage to the lower limit voltage of the secondary battery, The other power fluctuation absorbing device of the two units adds the negative active power fluctuation component and the power command calculated by setting the set voltage to the upper limit voltage of the secondary battery. Then, a charge / discharge operation using the charge / discharge power command is performed.

この発明によれば、2次電池の残存容量検出が不要なため、誤差の問題を無くすことができる。また、2つの電力変動吸収装置は、定常的には2次電池の上限電圧または下限電圧を維持する方向に動作するため、特性劣化した場合でも2次電池の許容容量範囲内で電力変動吸収動作を継続することが可能となる。   According to the present invention, since it is not necessary to detect the remaining capacity of the secondary battery, the problem of errors can be eliminated. In addition, since the two power fluctuation absorbing devices operate in a direction to maintain the upper limit voltage or the lower limit voltage of the secondary battery in a steady state, the power fluctuation absorbing operation is performed within the allowable capacity range of the secondary battery even when the characteristics deteriorate. Can be continued.

図1はこの発明の実施の形態を示す構成図である。
図1に示すように、それぞれ独立した2組の電力変動吸収装置14,15(双方向交直変換装置6+2次電池7)を、電力系統1につながる分散形電源3と並列に接続して構成される。各電力変動吸収装置14,15は、2次電池7の端子電圧を所望の値にするための電流指令値演算手段22と、分散形電源3が出力する有効電力から変動成分を抽出し、この有効電力変動成分(平均電力を上回る出力成分)を正の電力変動成分と負の電力変動成分(平均電力を下回る出力成分)に分離する演算手段23と、これらの演算結果を加算して得られる充放電電力指令に基づき、双方向交直変換装置6を制御する制御部21を備えている。分散形電源3の発電電力変動成分の演算手段23は、図1では共通化して示されている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As shown in FIG. 1, two sets of independent power fluctuation absorbers 14 and 15 (bidirectional AC / DC converter 6 + secondary battery 7) are connected in parallel with a distributed power source 3 connected to the power system 1. The Each of the power fluctuation absorbers 14 and 15 extracts a fluctuation component from the current command value calculation means 22 for setting the terminal voltage of the secondary battery 7 to a desired value, and the active power output from the distributed power source 3. Obtained by adding the calculation results 23 and the calculation means 23 for separating the active power fluctuation component (the output component exceeding the average power) into the positive power fluctuation component and the negative power fluctuation component (the output component below the average power). A control unit 21 that controls the bidirectional AC / DC converter 6 is provided based on the charge / discharge power command. The calculation means 23 of the generated power fluctuation component of the distributed power source 3 is shown in common in FIG.

以下に、電力変動成分のうち正の電力変動成分のみを吸収する電力変動吸収装置14について説明する。
まず、2次電池7の端子電圧設定値25を2次電池7の下限電圧に設定しておく。この端子電圧設定値と端子電圧検出値との偏差を電圧調節器(AVR)17に入力し、2次電池端子電圧を下限電圧に維持するための出力電力指令値を算出する。ここで、下限電圧は一般に言われる放電終止電圧ではなく、電力安定化システムの仕様(最大出力,期待寿命等)で決まる2次電池電圧動作範囲において下限となる値とする。
The power fluctuation absorber 14 that absorbs only positive power fluctuation components among the power fluctuation components will be described below.
First, the terminal voltage set value 25 of the secondary battery 7 is set to the lower limit voltage of the secondary battery 7. The deviation between the terminal voltage setting value and the terminal voltage detection value is input to the voltage regulator (AVR) 17 to calculate an output power command value for maintaining the secondary battery terminal voltage at the lower limit voltage. Here, the lower limit voltage is not a discharge end voltage generally referred to, but a value that is a lower limit in the secondary battery voltage operation range determined by the specifications (maximum output, expected life, etc.) of the power stabilization system.

次に、分散形電源3の出力電圧と出力電流を電力検出器11に入力して分散形電源の発電電力を検出し、さらに、電力変動成分抽出回路19により発電電力変動成分を抽出する。演算の方法としては、たとえば吸収電力の周波数成分より低い時定数のフィルタにより平均電力を算出し、この平均電力と検出電力との偏差を演算することにより、発電電力変動を演算する方法がある。   Next, the output voltage and output current of the distributed power source 3 are input to the power detector 11 to detect the generated power of the distributed power source, and the power fluctuation component extraction circuit 19 extracts the generated power fluctuation component. As a calculation method, for example, there is a method of calculating the generated power fluctuation by calculating the average power using a filter having a time constant lower than the frequency component of the absorbed power and calculating the deviation between the average power and the detected power.

こうして得られた発電電力変動成分を極性判定回路20に入力し、正の電力変動成分(平均電力を上回る出力成分)を抽出し、これに上記2次電池の下限電圧制御で得られた出力電力指令値を加算し、交流電力指令として制御部21に入力する。制御部21は、電力変動吸収装置15の電力検出器16で検出される出力電力検出値を、交流電力指令値に追従させるように制御演算を行ない、双方向交直変換装置6に対する制御信号を演算する。   The generated power fluctuation component obtained in this way is input to the polarity determination circuit 20, a positive power fluctuation component (an output component exceeding the average power) is extracted, and the output power obtained by the lower limit voltage control of the secondary battery is extracted therefrom. The command value is added and input to the control unit 21 as an AC power command. The control unit 21 performs control calculation so that the output power detection value detected by the power detector 16 of the power fluctuation absorber 15 follows the AC power command value, and calculates a control signal for the bidirectional AC / DC converter 6. To do.

このとき、2次電池の上限電圧制御で得られた出力電力指令値が、補償する発電電力変動成分よりも遅い応答をするように、電圧調節器(AVR)17の時定数を設定することにより、発電電力変動量の補償動作が優先され、電力変動吸収装置14は分散形電源3が発生する正の発電電力変動を吸収しながら、平均的には2次電池7の下限電圧近傍、すなわち低残在容量状態を維持するようにする。   At this time, by setting the time constant of the voltage regulator (AVR) 17 so that the output power command value obtained by the upper limit voltage control of the secondary battery responds slower than the generated power fluctuation component to be compensated. The power fluctuation absorbing device 14 gives priority to the compensation operation of the generated power fluctuation amount, and the power fluctuation absorbing device 14 absorbs the positive fluctuation of the generated power generated by the distributed power source 3 while averaging, in the vicinity of the lower limit voltage of the secondary battery 7, that is, low Maintain the remaining capacity state.

次に、負の電力変動成分のみを吸収する電力変動吸収装置15について説明する。
まず、2次電池7の端子電圧設定値25を2次電池7の上限電圧に設定しておく。この端子電圧設定値と端子電圧検出値との偏差を電圧調節器(AVR)17に入力し、2次電池端子電圧を上限電圧に維持するための出力電力指令値を算出する。ここで、上限電圧は一般に言われる満充電電圧ではなく、電力安定化システムの仕様(最大出力,期待寿命等)で決まる2次電池電圧動作範囲において上限となる値とする。
Next, the power fluctuation absorber 15 that absorbs only negative power fluctuation components will be described.
First, the terminal voltage set value 25 of the secondary battery 7 is set to the upper limit voltage of the secondary battery 7. The deviation between the terminal voltage setting value and the terminal voltage detection value is input to the voltage regulator (AVR) 17 to calculate an output power command value for maintaining the secondary battery terminal voltage at the upper limit voltage. Here, the upper limit voltage is not a full charge voltage generally referred to, but a value that becomes an upper limit in the secondary battery voltage operation range determined by the specifications (maximum output, expected life, etc.) of the power stabilization system.

次に、分散形電源3の出力電圧と出力電流を電力検出器11に入力し、分散形電源の発電電力を検出し、さらに、電力変動成分抽出回路19により発電電力変動成分を抽出する。演算の方法としては、たとえば吸収電力の周波数成分より低い時定数のフィルタにより平均電力を算出し、この平均電力と検出電力との偏差を演算することにより、発電電力変動を演算する方法がある。   Next, the output voltage and output current of the distributed power source 3 are input to the power detector 11, the generated power of the distributed power source is detected, and the generated power fluctuation component is extracted by the power fluctuation component extraction circuit 19. As a calculation method, for example, there is a method of calculating the generated power fluctuation by calculating the average power using a filter having a time constant lower than the frequency component of the absorbed power and calculating the deviation between the average power and the detected power.

こうして得られた発電電力変動成分を極性判定回路20に入力し、負の電力変動成分(平均電力を下回る出力成分)を抽出し、これに上記2次電池の下限電圧制御で得られた出力電力指令値を加算し、交流電力指令として制御部21に入力する。制御部21は、電力変動吸収装置15の電力検出器16で検出される出力電力検出値を、交流電力指令値に追従させるように制御演算し、双方向交直変換装置6に対する制御信号を演算する。   The generated power fluctuation component obtained in this way is input to the polarity determination circuit 20 to extract a negative power fluctuation component (an output component lower than the average power), and the output power obtained by the lower limit voltage control of the secondary battery is extracted therefrom. The command value is added and input to the control unit 21 as an AC power command. The control unit 21 performs control calculation so that the output power detection value detected by the power detector 16 of the power fluctuation absorber 15 follows the AC power command value, and calculates a control signal for the bidirectional AC / DC converter 6. .

このとき、2次電池の下限電圧制御で得られた出力電力指令値が、補償する発電電力変動成分よりも遅い応答をするように、電圧調節器(AVR)17の時定数を設定することにより、発電電力変動量の補償動作が優先され、電力変動吸収装置15は分散形電源3が発生する負の発電電力変動を吸収しながら、平均的には2次電池7の上限電圧近傍、すなわち高残在容量状態を維持するようにする。   At this time, by setting the time constant of the voltage regulator (AVR) 17 so that the output power command value obtained by the lower limit voltage control of the secondary battery responds slower than the generated power fluctuation component to be compensated. The power fluctuation absorbing device 15 gives priority to the compensation operation of the generated power fluctuation amount, and on the average, the power fluctuation absorbing device 15 absorbs the negative generated power fluctuation generated by the distributed power source 3 and is, on average, near the upper limit voltage of the secondary battery 7, that is, high Maintain the remaining capacity state.

以上のように2つの電力変動吸収装置14,15を動作させることにより、2次電池7は許容容量に対し電池特性で決まる、ほぼ一定比率の残存容量状態で動作することになる。よって、残存容量検出が不要となり、さらに特性劣化した場合においても、2次電池の許容容量内で電力変動吸収動作を継続することが可能となる。   By operating the two power fluctuation absorbers 14 and 15 as described above, the secondary battery 7 operates in a remaining capacity state at a substantially constant ratio determined by the battery characteristics with respect to the allowable capacity. Accordingly, it is not necessary to detect the remaining capacity, and even when the characteristics are further deteriorated, it is possible to continue the power fluctuation absorbing operation within the allowable capacity of the secondary battery.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 従来例を示すブロック図Block diagram showing a conventional example

符号の説明Explanation of symbols

1…電力系統、2…負荷、3…分散形電源、5…電力変動吸収装置、6…双方向交直変換装置、7…2次電池、8…電流検出器(ACCT)、9…電流検出器(DCCT)、11…電力検出器(分散形電源用)、12…2次電池残存容量検出器、13…双方向交直変換装置制御回路、14…第1の電力変動吸収装置、15…第2の電力変動吸収装置、16…出力電力検出器、17…自動電圧調節器(AVR)、19…電力変動成分抽出回路、20…極性判定回路、21…交直変換装置出力制御部、22…2次電池電圧制御部、23…分散形電源発電電力変動演算部、24…加算器、25…2次電池端子電圧設定値(第1の電力変動吸収装置用)、26…2次電池端子電圧設定値(第2の電力変動吸収装置用)、30…第1の電力変動吸収装置用制御回路、31…第2の電力変動吸収装置用制御回路。   DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2 ... Load, 3 ... Distributed power supply, 5 ... Power fluctuation absorber, 6 ... Bidirectional AC / DC converter, 7 ... Secondary battery, 8 ... Current detector (ACCT), 9 ... Current detector (DCCT), 11 ... power detector (for distributed power source), 12 ... secondary battery remaining capacity detector, 13 ... bidirectional AC / DC converter control circuit, 14 ... first power fluctuation absorber, 15 ... second Power fluctuation absorber, 16 ... output power detector, 17 ... automatic voltage regulator (AVR), 19 ... power fluctuation component extraction circuit, 20 ... polarity determination circuit, 21 ... AC-DC converter output control unit, 22 ... secondary Battery voltage control unit, 23 ... distributed power generation power fluctuation calculation unit, 24 ... adder, 25 ... secondary battery terminal voltage setting value (for the first power fluctuation absorber), 26 ... secondary battery terminal voltage setting value (For second power fluctuation absorber), 30... First power fluctuation absorber control circuit, 3 ... second power fluctuation absorber control circuit.

Claims (1)

2次電池と双方向交直変換器とからなる電力変動吸収装置を、電力系統に接続される分散形電源と並列に接続し、前記電力変動吸収装置が充放電を行なうことにより、前記分散形電源の有効電力変動を吸収して、前記電力系統の潮流を安定化させる電力安定化システムにおいて、
前記電力変動吸収装置を2台で構成するとともに、各電力変動吸収装置の制御装置を、前記2次電池の電圧を一定値にするための電力指令を演算する第1の演算手段と、前記分散形電源が出力する有効電力から変動成分を抽出する第2の演算手段と、その有効電力変動成分を正の有効電力変動成分(平均発電電力を上回る発電電力)と負の有効電力変動成分(平均発電電力を下回る発電電力)とに分離する第3の演算手段とから構成し、
2台のうちの一方の電力変動吸収装置は、前記正の有効電力変動成分と、設定電圧を2次電池の下限電圧に設定して演算される電力指令とを加算して充放電電力指令とする充放電動作を行ない、2台のうちの他方の電力変動吸収装置は、前記負の有効電力変動成分と、設定電圧を2次電池の上限電圧に設定して演算される電力指令とを加算して充放電電力指令とする充放電動作を行なうことを特徴とする電力安定化システム。
A power fluctuation absorber comprising a secondary battery and a bidirectional AC / DC converter is connected in parallel with a distributed power source connected to a power system, and the power fluctuation absorber performs charging / discharging, whereby the distributed power source In a power stabilization system that absorbs fluctuations in active power and stabilizes power flow in the power system,
The power fluctuation absorber is composed of two units, the control device of each power fluctuation absorber is a first computing means for computing a power command for setting the voltage of the secondary battery to a constant value, and the dispersion A second computing means for extracting fluctuation components from the active power output from the power source, the active power fluctuation components being positive active power fluctuation components (generated power exceeding the average generated power) and negative active power fluctuation components (average) A third calculation means that separates the generated power below the generated power),
One of the two power fluctuation absorbing devices adds the positive active power fluctuation component and the power command calculated by setting the set voltage to the lower limit voltage of the secondary battery, The other power fluctuation absorbing device of the two units adds the negative active power fluctuation component and the power command calculated by setting the set voltage to the upper limit voltage of the secondary battery. And performing a charge / discharge operation based on a charge / discharge power command.
JP2007284753A 2007-11-01 2007-11-01 Power stabilization system Pending JP2009112175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284753A JP2009112175A (en) 2007-11-01 2007-11-01 Power stabilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284753A JP2009112175A (en) 2007-11-01 2007-11-01 Power stabilization system

Publications (1)

Publication Number Publication Date
JP2009112175A true JP2009112175A (en) 2009-05-21

Family

ID=40780041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284753A Pending JP2009112175A (en) 2007-11-01 2007-11-01 Power stabilization system

Country Status (1)

Country Link
JP (1) JP2009112175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147211A (en) * 2010-01-12 2011-07-28 Kansai Electric Power Co Inc:The Power controlling apparatus
JP2011239670A (en) * 2010-05-03 2011-11-24 Siemens Aktiengesellschaft Electric power exchanging system between battery and electric power network, method for exchanging electrical energy between battery and electric power network, and method for applying electric power exchanging system
JP2012019667A (en) * 2010-07-09 2012-01-26 Toshiba Corp Control device for power storage device
JP2013102563A (en) * 2011-11-07 2013-05-23 Sanyo Electric Co Ltd Power storage device and power supply system
CN105186553A (en) * 2015-08-09 2015-12-23 青岛威控电气有限公司 Intelligent-microgrid-based wind power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147211A (en) * 2010-01-12 2011-07-28 Kansai Electric Power Co Inc:The Power controlling apparatus
JP2011239670A (en) * 2010-05-03 2011-11-24 Siemens Aktiengesellschaft Electric power exchanging system between battery and electric power network, method for exchanging electrical energy between battery and electric power network, and method for applying electric power exchanging system
JP2012019667A (en) * 2010-07-09 2012-01-26 Toshiba Corp Control device for power storage device
JP2013102563A (en) * 2011-11-07 2013-05-23 Sanyo Electric Co Ltd Power storage device and power supply system
CN105186553A (en) * 2015-08-09 2015-12-23 青岛威控电气有限公司 Intelligent-microgrid-based wind power generation system

Similar Documents

Publication Publication Date Title
JP5391598B2 (en) Stabilized control system for distributed power supply
JP4715624B2 (en) Power stabilization system, power stabilization control program, and power stabilization control method
US8373312B2 (en) Solar power generation stabilization system and method
KR101631065B1 (en) Battery system and method for connecting battery
TWI466406B (en) Solar power generation system and power supply system
JP2011078313A (en) Power storage device using electric double-layer capacitor
US9882423B2 (en) Uninterruptible power supply control
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
JP2009112175A (en) Power stabilization system
JP2012100487A (en) Power system stabilizing apparatus
JP4764982B2 (en) Power stabilization system using power storage device
CN112106288B (en) Power conversion device and power conversion system
US10916944B2 (en) Solar and/or wind inverter
AU2008364376B2 (en) Output power control apparatus
US10951039B2 (en) Multi-input PV inverter system and method
JP2015061331A (en) Voltage fluctuation suppression device
JP5762757B2 (en) Solar power system
US9831714B2 (en) Battery storage system and controlling method of the same
JP2017229117A (en) Power control system
JP6438072B2 (en) Power control apparatus, power control system, and power control method
JP6372291B2 (en) Grid interconnection system and method for controlling grid interconnection system
JPWO2018155442A1 (en) DC power supply system
JP7080644B2 (en) Charge control device and charge control method
JP7020824B2 (en) Battery converter and three-phase power storage system
JP2012170192A (en) Power feed system