JP2009112132A - Electric train control unit - Google Patents

Electric train control unit Download PDF

Info

Publication number
JP2009112132A
JP2009112132A JP2007282586A JP2007282586A JP2009112132A JP 2009112132 A JP2009112132 A JP 2009112132A JP 2007282586 A JP2007282586 A JP 2007282586A JP 2007282586 A JP2007282586 A JP 2007282586A JP 2009112132 A JP2009112132 A JP 2009112132A
Authority
JP
Japan
Prior art keywords
speed
torque
value
command
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007282586A
Other languages
Japanese (ja)
Other versions
JP4969411B2 (en
Inventor
Takashi Sano
孝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2007282586A priority Critical patent/JP4969411B2/en
Publication of JP2009112132A publication Critical patent/JP2009112132A/en
Application granted granted Critical
Publication of JP4969411B2 publication Critical patent/JP4969411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the wherein readhesion becomes difficult as sliding speed in a sliding state becomes large at the time of deceleration, and a mechanical brake system comes to fixing, so that the system stops rotation of the wheels with drop of vehicle speed, while noise of remarkable discordant squealing occurs, when sliding speed of wheels and rails becomes not less than 20 km/h. <P>SOLUTION: A switching command means switches: a torque command system detecting differential speed between vehicle speed and electromotor rotational speed, performing usual torque control when differential speed is not more than a prescribed value and adding a torque reduction characteristic corresponding to a deflection between differential speed and a limit target value when magnification of differential speed does not stop with a prescribed torque command value; and a torque command system detecting idling or sliding from a change rate of electromotor rotational speed, reducing the torque command value, performing readhesion and raising command torque to a value before idling by selecting time when a readhesion state is stabilized. The electric train control unit speedily performs urgent saving and has high reliability on traveling such as improvement of stability of electric braking force. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鉄道車両用の電気車制御装置に関するものであり、特に空転制御に関する。 The present invention relates to an electric vehicle control device for a railway vehicle, and more particularly to idling control.

鉄道車両の推進制御装置として可変電圧可変周波数のインバータ装置で多相交流電動機を駆動する方式が一般化しつつある。鉄道車両では推進システムの如何に関わらず、いわゆる接線力の低下する現象によって空転や滑走が起き、一時的に推進力や制動力が得られないときがある。鉄道車両の推進制御装置はトルク制御系で構成するのが一般的であり、接線力が低下して空転状態になると車輪の回転速度および駆動源である電動機の回転速度が急激に上昇する。接線力は動輪とレールとの間に作用する推進力であり、通常の粘着状態では動輪の周速度と車両速度とは概略一致する。   As a propulsion control device for a railway vehicle, a method of driving a multiphase AC motor with an inverter device of variable voltage and variable frequency is becoming common. In railway vehicles, regardless of the propulsion system, there is a case in which the so-called tangential force decreases, causing idling or gliding and temporarily preventing propulsion or braking. Generally, a propulsion control device for a railway vehicle is configured by a torque control system. When the tangential force is reduced and the vehicle is idling, the rotational speed of the wheels and the rotational speed of the electric motor as a drive source are rapidly increased. The tangential force is a propulsive force acting between the driving wheel and the rail, and in a normal adhesion state, the peripheral speed of the driving wheel and the vehicle speed substantially coincide with each other.

しかしレールと車輪の接触面に雨滴や雪等が介在し、粘着状態が保てなくなると、駆動源の電動機のトルクがレールに伝達されず、動輪周速度だけが上昇し、車両速度と動輪周速度に大きな差速度(すべり速度)の生じる、いわゆる空転状態となる。
滑走の場合は車両速度に対して、動輪周速度だけが下降することであるが、以下の説明では簡素化のために空転側だけで記述する。
However, if raindrops, snow, etc. intervene on the contact surface between the rail and the wheel, and the adhesive state cannot be maintained, the torque of the motor of the drive source is not transmitted to the rail, only the driving wheel peripheral speed increases, and the vehicle speed and the driving wheel peripheral A so-called idling state occurs in which a large differential speed (sliding speed) occurs in the speed.
In the case of sliding, only the driving wheel peripheral speed decreases with respect to the vehicle speed, but in the following description, only the idle side is described for the sake of simplicity.

従来の交流電動機駆動システムでは、電動機の回転速度の変化率等から空転を空転開始直後に検知し、指令トルクを速やかに低減して電動機および車輪の回転速度が発散することを防止するのが通例であるが、接線力を可能な限り獲得する制御方式として、我々はある程度のすべり速度では指令トルクを引き下げない空転制御方式を提案している。   In conventional AC motor drive systems, it is common to detect idling immediately after the start of idling based on the rate of change in the rotational speed of the motor, etc., and quickly reduce the command torque to prevent the rotational speed of the motor and wheels from diverging. However, as a control method for obtaining the tangential force as much as possible, we have proposed an idling control method that does not reduce the command torque at a certain sliding speed.

図2に我々の提案する粘着制御方式を適用した電気車制御装置の一例をブロック図で示す。電気車制御装置1が交流電動機21,22を駆動するシステムの例である。インバータ制御部103は交流電動機のトルク分電流偏差と励磁分電流偏差とをそれぞれ極小になるように独立に制御する。各偏差はトルク分電流偏差演算部105および磁束分電流偏差演算部106で各指令値と実電流との偏差をそれぞれ演算したものである。   FIG. 2 is a block diagram showing an example of an electric vehicle control apparatus to which the adhesion control method proposed by us is applied. This is an example of a system in which the electric vehicle control device 1 drives the AC motors 21 and 22. The inverter control unit 103 independently controls the torque component current deviation and the excitation component current deviation of the AC motor to be minimized. Each deviation is obtained by calculating a deviation between each command value and the actual current by the torque component current deviation calculation unit 105 and the magnetic flux component current deviation calculation unit 106, respectively.

トルク分電流指令と励磁分電流指令は電流指令発生部102の出力であり、トルク指令100と磁束指令101の指令入力から演算する。トルク指令100は電流指令発生部102に入力する手前で係数乗算部110を通過する。係数乗算部110は、空転発散防止部111の出力である低減係数値をトルク指令に乗じてトルク指令の低減操作を行う。   The torque component current command and the excitation component current command are outputs of the current command generator 102, and are calculated from the command inputs of the torque command 100 and the magnetic flux command 101. The torque command 100 passes through the coefficient multiplier 110 before being input to the current command generator 102. The coefficient multiplying unit 110 multiplies the torque command by the reduction coefficient value that is the output of the idling / divergence prevention unit 111, and performs a torque command reduction operation.

電流演算部104はインバータ制御部103から出力電圧の位相情報を得て、インバータ出力電流から実トルク分電流と実励磁分電流とにベクトル分解した各電流成分を出力する。すべり速度演算部109は車両速度信号4と動輪周速度との差速度を演算する。   The current calculation unit 104 obtains phase information of the output voltage from the inverter control unit 103, and outputs each current component obtained by vector decomposition from the inverter output current into an actual torque component current and an actual excitation component current. A sliding speed calculation unit 109 calculates a differential speed between the vehicle speed signal 4 and the driving wheel peripheral speed.

インバータ制御部103はトルク分電流偏差と励磁分電流偏差情報の他に、電動機の回転速度をインバータ出力周波数に換算した入力情報が必要である。
速度検出器31,32が電動機回転速度を検出し、速度演算部107は前記速度検出器31,32の出力信号の単位時間当りのパルス数等の検出量をインバータ出力周波数に換算する。電動機の回転速度の単位は通常[rad/sec]で表すがインバータ出力周波数に換算した場合の単位は[Hz]、後述するがこれを動輪周速度に換算する場合は[km/h]とする。速度演算部107の出力は様々に利用されるが、すべて比例関係にあり、各参照部でそれぞれの比例係数を乗じて用いるものとし、説明上はいずれも電動機実回転速度信号108とする。
In addition to the torque component current deviation and the excitation component current deviation information, the inverter control unit 103 needs input information obtained by converting the rotation speed of the motor into the inverter output frequency.
The speed detectors 31 and 32 detect the motor rotation speed, and the speed calculation unit 107 converts the detected amount such as the number of pulses per unit time of the output signals of the speed detectors 31 and 32 into the inverter output frequency. The unit of motor rotation speed is usually expressed in [rad / sec], but the unit when converted to the inverter output frequency is [Hz], and will be described below as [km / h] when converted to the peripheral speed of the driving wheel. . Although the output of the speed calculation unit 107 is used in various ways, they are all in a proportional relationship, and are used by multiplying the respective proportional coefficients by each reference unit.

すべり速度信号はすべり速度演算部109の出力であるが、電動機実回転速度信号108から求めた動輪周速度と車両速度信号4との差である。
空転発散防止部111はすべり速度信号が小さい間は、指令トルクを低減しないよう、出力の低減係数値を 1.0 とする。すべり速度が拡大して、より大きな接線力を期待できない領域に至った時点で、すべり速度に応じて空転発散防止部111は出力の低減係数値を 1.0以下に下げ、接線力と電動機の出力トルクとのバランス状態を得て、すべり速度の発散を防止する。
The slip speed signal is an output of the slip speed calculation unit 109, and is a difference between the moving wheel peripheral speed obtained from the actual motor speed signal 108 and the vehicle speed signal 4.
The idling prevention unit 111 sets the output reduction coefficient value to 1.0 so that the command torque is not reduced while the sliding speed signal is small. When the slip speed increases and reaches a region where a larger tangential force cannot be expected, the idling prevention unit 111 reduces the output reduction coefficient value to 1.0 or less according to the slip speed, and the tangential force and the motor output torque. To obtain a balanced state and prevent the sliding speed from diverging.

すべり速度に応じた低減係数値とは 座標標記(すべり速度,低減係数値)に従えば、例えば図5に示すように、(S0,1.0)(S1,0.0)の2点を通る直線で表すような低減特性である。この制御方式はすべり速度と接線力との関係が図3のようになる調査結果に基づくものである。
特開平6−335106号公報
The reduction coefficient value corresponding to the sliding speed is represented by a straight line passing through two points (S0, 1.0) (S1, 0.0) as shown in FIG. 5, for example, according to the coordinate mark (sliding speed, reduction coefficient value). Such a reduction characteristic. This control method is based on the investigation result in which the relationship between the sliding speed and the tangential force is as shown in FIG.
JP-A-6-335106

我々の提案する空転制御方式で、空転しながらも所定の加速特性が得られることは実車試験においても実証されている。しかし、車輪とレールのすべり速度が20km/h以上になると、極めて耳障りな「キーン」という騒音を発することが多くなる。   It has been proved in actual vehicle tests that the specified acceleration characteristics can be obtained while idling by the proposed idling control method. However, when the sliding speed of wheels and rails exceeds 20 km / h, the noise of “Keen” that is extremely annoying is often generated.

また、減速時は滑走状態のすべり速度が大きくなるほど再粘着を図ることが困難になり、車両速度の低下に伴って機械的ブレーキシステムが車輪の回転を止めてしまう「固着」に至る可能性が高くなる。固着は車輪踏面に平坦磨耗を形成し、これが転動騒音を増大させることとなる。   In addition, during deceleration, it becomes more difficult to re-adhere as the sliding speed increases, and as the vehicle speed decreases, the mechanical brake system may lead to "sticking" that stops the rotation of the wheels. Get higher. The sticking forms flat wear on the wheel tread, which increases rolling noise.

請求項1の発明によれば、誘導電動機を駆動する電気車制御装置であって、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度を検知し、該差速度が所定値以下の間は通常のトルク制御を行い、所定のトルク指令値のままでは前記差速度の拡大が止まらない場合に、前記差速度の制限目標値との偏差に応じたトルク低減特性を付加するトルク指令系と、該電動機回転速度の変化率から空転・滑走を検知し速やかに該トルク指令値を低減して再粘着を図り、再粘着状態が安定化する時間を見計らって該トルク指令値を空転前の値に引上げるトルク指令系とを、切換指令手段で切換えるようにしたことを特徴とする。   According to the first aspect of the present invention, there is provided an electric vehicle control device for driving an induction motor, wherein a differential speed between a vehicle speed corresponding to a sliding speed of a wheel and a rail and a motor rotational speed is detected, and the differential speed is a predetermined value. Torque that performs normal torque control during the following period, and adds torque reduction characteristics according to the deviation of the differential speed from the limit target value when the increase in the differential speed does not stop with the specified torque command value The idling / sliding is detected from the command system and the rate of change of the motor rotation speed, the torque command value is quickly reduced and re-adhesion is attempted, and the torque command value is idled in anticipation of the time for the re-adhesion state to stabilize. The torque command system pulled up to the previous value is switched by a switching command means.

請求項2の発明によれば、誘導電動機を駆動する請求項1記載の電気車制御装置であって、切換指令手段が運転士の操作するスイッチであることを特徴とする。   According to a second aspect of the present invention, in the electric vehicle control device according to the first aspect of the invention, the switching command means is a switch operated by the driver.

請求項3の発明によれば、誘導電動機を駆動する請求項1記載の電気車制御装置であって、切換指令手段が救援状態を想定したノッチ指令または勾配起動条件を作るノッチ指令等と連動して自動的に切換えることを特徴とする。   According to a third aspect of the present invention, in the electric vehicle control device according to the first aspect of the invention, the switching command means operates in conjunction with a notch command that assumes a relief state or a notch command that creates a gradient starting condition. And switching automatically.

すなわち、誘導電動機を駆動する電気車制御装置であって、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度を検知し、この値が所定値以下の間は通常のトルク制御を行い、所定のトルク指令値のままでは差速度の拡大が止まらない場合に、差速度の制限目標値との偏差に応じたトルク低減特性を付加するトルク指令系と、電動機回転速度の変化率から空転・滑走を検知し速やかにトルク指令値を低減して再粘着を図り、再粘着状態が安定化する時間を見計らって指令トルクを空転前の値に引上げるトルク指令系とを、切換指令手段で切換えるようにする。   That is, an electric vehicle control device for driving an induction motor, which detects a speed difference between a vehicle speed corresponding to a sliding speed of a wheel and a rail and a motor rotation speed, and performs normal torque control while this value is equal to or less than a predetermined value. The torque command system that adds torque reduction characteristics according to the deviation from the limit target value of the differential speed, and the rate of change of the motor rotation speed when the differential speed does not stop increasing with the specified torque command value Switch command to switch to torque command system that detects idling / sliding from time and quickly reduces torque command value to re-adhesion, and increases command torque to the value before idling in anticipation of re-adhesion state stabilization time Switch by means.

本発明は空転状態にあっても所定の車両加速度を得ることを可能にする電気車制御装置を提供するものである。かつ加速特性を優先させることのできる空転制御方式とすべり速度を極力抑制し、騒音抑制を最優先にできる空転制御方式の切換えができるようにすることで、緊急退避を速やかに行う、電気ブレーキ力の安定性向上等、走行に関する信頼性の高い電気車制御装置を提供する。   The present invention provides an electric vehicle control device that makes it possible to obtain a predetermined vehicle acceleration even in an idling state. In addition, the electric braking force that speeds up emergency evacuation by switching between the idling control method that can prioritize acceleration characteristics and the slip speed as much as possible, and switching the idling control method that gives the highest priority to noise suppression. A highly reliable electric vehicle control device for traveling such as improving the stability of the vehicle is provided.

図1に本発明の粘着制御方式の切換え機能を付加した電気車制御装置のブロック図を示す。図1は図2で説明した我々の提案する電気車制御装置に対して、制御ブロックの時間低減係数発生部120、空転滑走検知部121、制御切換え器122、切換え指令123を付加したものである。   FIG. 1 shows a block diagram of an electric vehicle control apparatus to which a switching function of the adhesion control system of the present invention is added. FIG. 1 is obtained by adding a control block time reduction coefficient generation unit 120, an idling / sliding detection unit 121, a control switching unit 122, and a switching command 123 to the electric vehicle control apparatus proposed by FIG. .

空転滑走検知部121は電動機実回転速度信号108の変化率を演算し、力行時はその上昇率、制動時は下降率を予め設定した検知レベルと比較して空転滑走検知信号を出力する。   The idling / sliding detection unit 121 calculates the rate of change of the actual motor speed signal 108, and outputs the idling / sliding detection signal by comparing the rate of increase during power running and the rate of decrease during braking to a preset detection level.

時間低減係数発生部120は入力の空転(または滑走)検知信号をトリガにして一定時間幅の大きな低減係数値(例えば0.6)とそれに続く小さい低減係数値(例えば0.8)、さらにその値から一定の上昇率で低減状態を解除(係数初期値1.0)するような低減係数値の時系列変化パターンを出力する。   The time reduction coefficient generation unit 120 is triggered by an input idling (or gliding) detection signal as a trigger for a large reduction coefficient value (for example, 0.6) having a constant time width and a subsequent small reduction coefficient value (for example, 0.8). A time-series change pattern of the reduction coefficient value that outputs the reduction state at the rate of increase (coefficient initial value 1.0) is output.

制御切換え器122はこの時間低減係数発生部120の出力と空転発散防止部111の出力を切換え指令123に応じて選択し、係数乗算部110に低減係数値信号を与える。   The control switch 122 selects the output of the time reduction coefficient generator 120 and the output of the idling prevention unit 111 according to the switching command 123, and gives a reduction coefficient value signal to the coefficient multiplier 110.

空転滑走検知部121は空転(または滑走)発生を速やかに検知するものであり、すべり速度が拡大する前に時間低減係数発生部120が大きな低減係数値を出力し、トルク指令を低減することをこの構成要素(空転制御方式)は意図するものである。   The idling / sliding detection unit 121 detects the occurrence of idling (or gliding) promptly, and the time reduction factor generating unit 120 outputs a large reduction factor value before the sliding speed increases, and reduces the torque command. This component (idling control system) is intended.

従来システムの運転台操作スイッチ類に加えて空転制御を切換えるための専用スイッチを追加することが最も単純な実施例である。通常の運転時は、例えば前記専用スイッチを「切」状態にして、空転滑走検知部121、時間低減係数発生部120の制御ブロックの低減係数値信号を制御切換え器122で選択する。   The simplest embodiment is to add a dedicated switch for switching the idling control in addition to the cab operation switches of the conventional system. During normal operation, for example, the dedicated switch is set to the “OFF” state, and the control switching unit 122 selects the reduction coefficient value signals of the control blocks of the idling / sliding detection unit 121 and the time reduction coefficient generation unit 120.

そして、特定の急勾配区間や空転の多発で運行ダイヤに遅れが生じた場合などに前記専用スイッチを「入」状態として、すべり速度演算部109、空転発散防止部111の制御ブロックの低減係数値信号を用いるように制御切換え器122の選択状態を切換える。   Then, when there is a delay in the operation schedule due to a specific steep slope section or frequent idling, the dedicated switch is set to `` ON '' state, and the reduction coefficient value of the control block of the slip speed calculation unit 109 and idling divergence prevention unit 111 The selection state of the control switch 122 is switched so as to use the signal.

切換え指令123は、例えば運転台に設ける高加速スイッチに連動するものとする。高加速スイッチは勾配区間の登坂時等に通常の加速時より一時的に指令トルクを高めるときに用いるものであり、使用状況から加速特性を優先させ得ると判断できる。   For example, the switching command 123 is linked to a high acceleration switch provided on the cab. The high acceleration switch is used when temporarily increasing the command torque when climbing a slope section, for example, during normal acceleration, and it can be determined that the acceleration characteristics can be prioritized from the usage situation.

また解決しようとする問題点でも述べたように、ブレーキ中にすべり速度を大きくすることは得策ではないことから、ブレーキノッチ投入の判断を加味して切換え指令123を生成し、前記制御切換え器122の選択状態を空転滑走検知部121、時間低減係数発生部120の制御ブロックの低減係数値信号を用いるように構成することで、自動的に加速特性優先の状態を電気車制御装置に実現することができる。   Further, as described in the problem to be solved, it is not a good idea to increase the sliding speed during braking. Therefore, the switching command 123 is generated in consideration of the determination of the brake notch insertion, and the control switching unit 122 By configuring the selected state to use the reduction coefficient value signal of the control block of the idling / sliding detection unit 121 and the time reduction coefficient generation unit 120, the acceleration characteristic priority state is automatically realized in the electric vehicle control device. Can do.

すべり速度を拡大させずに低すべり状態を維持させる制御は、車輪踏面やレールの荒損を防止できるが、稀に接点力係数の極端に低下する自然環境条件も発生するため、車両の推進力が犠牲になる場合も考えられる。これに対してすべり速度を大きくして接線力を確保する粘着制御方式に切り替え可能な制御システム構成は、推進力を犠牲になることを回避するため、車両運用上の信頼性を高めることができる。かつ、鉄道車両に限らず、路面走行車両においても、誘導機または同期機で推進される電気車両の空転制御にも応用可能である。
Control that maintains a low slip state without increasing the slip speed can prevent wheel treads and rails from being damaged, but in some rare cases, natural environmental conditions where the contact force coefficient is extremely reduced may also occur. May be sacrificed. On the other hand, the control system configuration that can be switched to the adhesion control system that increases the sliding speed and secures the tangential force avoids sacrificing the propulsive force, and can increase the reliability in vehicle operation. . In addition, the present invention is applicable not only to railroad vehicles but also to road running vehicles and to idling control of electric vehicles propelled by induction machines or synchronous machines.

本発明の実施例のブロック図Block diagram of an embodiment of the present invention 基本の制御方式のブロック図Basic control block diagram すべり速度と空転検知信号の関係Relationship between slip speed and slip detection signal 再粘着制御の係数パターンCohesive pattern for re-adhesion control 空転発散防止部のすべり速度と低減係数値の関係Relationship between slip rate and reduction factor value of anti-spin divergence prevention part

符号の説明Explanation of symbols

1 電気車制御装置
21 交流電動機
22 交流電動機
31 速度検出器
32 速度検出器
4 車両速度信号
100 トルク指令
101 磁束指令
102 電流指令発生部
103 インバータ制御部
104 電流演算部
105 トルク分電流偏差演算部
106 磁束分電流偏差演算部
107 速度演算部
108 電動機実回転速度信号
109 すべり速度演算部
110 係数乗算部
111 空転発散防止部
120 時間低減係数発生部
121 空転滑走検知部
122 制御切換え器
123 切換え指令
DESCRIPTION OF SYMBOLS 1 Electric vehicle control apparatus 21 AC motor 22 AC motor 31 Speed detector 32 Speed detector 4 Vehicle speed signal 100 Torque command
DESCRIPTION OF SYMBOLS 101 Magnetic flux command 102 Current command generation part 103 Inverter control part 104 Current calculation part 105 Torque component current deviation calculation part 106 Magnetic flux part current deviation calculation part 107 Speed calculation part 108 Electric motor real rotational speed signal 109 Slip speed calculation part 110 Coefficient multiplication part 111 Idling prevention unit 120 hours reduction factor generator
121 idling / sliding detection unit 122 control switching unit 123 switching command

Claims (3)

誘導電動機を駆動する電気車制御装置であって、車輪とレールのすべり速度に相当する車両速度と電動機回転速度の差速度を検知し、該差速度が所定値以下の間は通常のトルク制御を行い、所定のトルク指令値のままでは前記差速度の拡大が止まらない場合に、前記差速度の制限目標値との偏差に応じたトルク低減特性を付加するトルク指令系と、該電動機回転速度の変化率から空転・滑走を検知し速やかに該トルク指令値を低減して再粘着を図り、再粘着状態が安定化する時間を見計らって該トルク指令値を空転前の値に引上げるトルク指令系とを、切換指令手段で切換えるようにしたことを特徴とする電気車制御装置。 An electric vehicle control device for driving an induction motor, which detects a difference between a vehicle speed corresponding to a sliding speed of a wheel and a rail and a motor rotation speed, and performs normal torque control while the difference speed is equal to or less than a predetermined value. A torque command system for adding a torque reduction characteristic according to a deviation from the limit target value of the differential speed when the expansion of the differential speed does not stop if the predetermined torque command value is maintained, and the rotation speed of the motor Torque command system that detects idling / sliding from the rate of change, quickly reduces the torque command value, re-adheses, and increases the torque command value to the value before idling in anticipation of the time for the re-adhesion state to stabilize Is switched by a switching command means. 誘導電動機を駆動する電気車制御装置であって、切換指令手段が運転士の操作するスイッチであることを特徴とする請求項1記載の電気車制御装置。 2. The electric vehicle control device according to claim 1, wherein the electric vehicle control device drives the induction motor, and the switching command means is a switch operated by a driver. 誘導電動機を駆動する電気車制御装置であって、切換指令手段が救援状態を想定したノッチ指令または勾配起動条件を作るノッチ指令等と連動して自動的に切換ることを特徴とする請求項1記載の電気車制御装置。
2. An electric vehicle control device for driving an induction motor, wherein the switching command means automatically switches in conjunction with a notch command assuming a rescue state or a notch command for creating a gradient starting condition. The electric vehicle control apparatus as described.
JP2007282586A 2007-10-31 2007-10-31 Electric vehicle control device Active JP4969411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282586A JP4969411B2 (en) 2007-10-31 2007-10-31 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282586A JP4969411B2 (en) 2007-10-31 2007-10-31 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2009112132A true JP2009112132A (en) 2009-05-21
JP4969411B2 JP4969411B2 (en) 2012-07-04

Family

ID=40780006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282586A Active JP4969411B2 (en) 2007-10-31 2007-10-31 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP4969411B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192924A (en) * 2013-03-26 2014-10-06 Meidensha Corp Controlling device for cart in which each wheel is driven independently
CN117341489A (en) * 2023-09-05 2024-01-05 西南交通大学 Train stepless coupling prediction adhesion control method for permanent magnet traction system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227603A (en) * 1985-03-30 1986-10-09 Toshiba Corp Controller for electric railcar
JPH05276606A (en) * 1992-03-25 1993-10-22 Toshiba Corp Controller and control method for vehicle
JPH09233605A (en) * 1996-02-23 1997-09-05 Toshiba Corp Electric car controller
JP2005168177A (en) * 2003-12-02 2005-06-23 East Japan Railway Co Train control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227603A (en) * 1985-03-30 1986-10-09 Toshiba Corp Controller for electric railcar
JPH05276606A (en) * 1992-03-25 1993-10-22 Toshiba Corp Controller and control method for vehicle
JPH09233605A (en) * 1996-02-23 1997-09-05 Toshiba Corp Electric car controller
JP2005168177A (en) * 2003-12-02 2005-06-23 East Japan Railway Co Train control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192924A (en) * 2013-03-26 2014-10-06 Meidensha Corp Controlling device for cart in which each wheel is driven independently
CN117341489A (en) * 2023-09-05 2024-01-05 西南交通大学 Train stepless coupling prediction adhesion control method for permanent magnet traction system
CN117341489B (en) * 2023-09-05 2024-04-16 西南交通大学 Train stepless coupling prediction adhesion control method for permanent magnet traction system

Also Published As

Publication number Publication date
JP4969411B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US5677610A (en) Control apparatus for electric vehicles
EP0218839A2 (en) A control apparatus for maintaining traction in electric rolling stock
JP3323899B2 (en) Electric car control device
US20130238176A1 (en) Control device for electric rolling stock
JP5673938B2 (en) Electric vehicle control device
EP2879902B1 (en) Optimized control of the operation of one or more traction systems of a train for entering and exiting from a coasting condition
JPH0956005A (en) Controller for electric vehicle
JP2008289237A (en) Motor controller and readhesion control method
JP2000312403A (en) Control device for electric rolling stock
JP4969411B2 (en) Electric vehicle control device
JP3129063B2 (en) Control device for induction motor electric vehicle
JP2008148445A (en) Drive control device for railway vehicle
JP5063274B2 (en) Electric vehicle control device
JP4818244B2 (en) Electric motor control device and re-adhesion control method
JP2009100603A (en) Electric vehicle controller
JP2007110891A (en) Method for maintaining dc voltage applied to input of dc-ac converter, data recording medium therefor, and electric vehicle using the method
JP2008289238A (en) Motor controller and readhesion control method
JPH06141403A (en) Vehicle controller and electric railcar controller
JP2002345108A (en) Controller for electric vehicle
JP2005094837A (en) Electric vehicle control unit
JP6259321B2 (en) Electric vehicle control device
JP2000224708A (en) Electric rolling stock controller
JPH10257611A (en) Re-adhesion control apparatus for electric vehicle
JP4594776B2 (en) Electric vehicle control device
JP2005261113A (en) Electric vehicle control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150