JP2009111894A - Video signal processing device, imaging apparatus and video signal processing method - Google Patents

Video signal processing device, imaging apparatus and video signal processing method Download PDF

Info

Publication number
JP2009111894A
JP2009111894A JP2007284172A JP2007284172A JP2009111894A JP 2009111894 A JP2009111894 A JP 2009111894A JP 2007284172 A JP2007284172 A JP 2007284172A JP 2007284172 A JP2007284172 A JP 2007284172A JP 2009111894 A JP2009111894 A JP 2009111894A
Authority
JP
Japan
Prior art keywords
signal
luminance
correction
video signal
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284172A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishide
義章 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007284172A priority Critical patent/JP2009111894A/en
Publication of JP2009111894A publication Critical patent/JP2009111894A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform optimal control so as not to leave unnaturalness in a look by enhancing coloring of a portion on which dynamic range compression processing has been performed by a luminance signal, with a little circuit increase, preventing early fading, and dynamically changing, in accordance with a picture pattern, color leaving processing in a high luminance area during luminance knee correction. <P>SOLUTION: A video signal processing device includes: a luminance generating section 11 for extracting a luminance signal from an input video signal; a subtraction section 15 for subtracting the luminance signal from a color component signal; an arithmetic section 18 which calculates correction coefficients Kw, Kw' based on a signal NAMY calculated based on a maximum value of color component signals of the video signal after LPFing the video signal and a coefficient CHMAX relating to a saturation level of the color component signals and implements knee correction on a luminance signal Y using at least the correction coefficients Kw, Kw'; and an addition section 19 which adds the luminance signal on which the knee correction has been implemented, and an output of the subtraction section 15 and outputs the video signal to which the knee correction has been applied. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば映像信号処理装置等に係り、特に色の回りやそれに伴う色付の不自然さを最適に調整する技術分野に関する。   The present invention relates to, for example, a video signal processing apparatus, and more particularly to a technical field that optimally adjusts color surroundings and accompanying unnaturalness of coloring.

従来、映像信号処理の分野では、映像信号のダイナミックレンジを圧縮し、該圧縮の際にニー特性に応じた非線形変換を行うニー(knee)補正が実施されている。   Conventionally, in the field of video signal processing, knee correction is performed in which the dynamic range of a video signal is compressed and nonlinear conversion is performed in accordance with knee characteristics during the compression.

即ち、このニー補正とは、所定のレベル以上の高輝度部分の映像信号については高い圧縮率で圧縮するような非線形圧縮処理であり、R,G,B毎にそれぞれニー補正をかけるもの(以下、「RGBニー補正」と称する)と、輝度信号を生成し、該輝度信号に応じてKnee補正を行うもの(以下、「輝度ニー補正」と称する)に大別される。   In other words, this knee correction is a nonlinear compression process that compresses a video signal of a high-luminance portion above a predetermined level at a high compression rate, and performs knee correction for each of R, G, and B (hereinafter referred to as “knee correction”). , “RGB knee correction”) and broadly divided into those that generate a luminance signal and perform knee correction according to the luminance signal (hereinafter referred to as “luminance knee correction”).

このニー補正では、例えば、近似曲線を用いて映像信号が処理される。   In this knee correction, for example, a video signal is processed using an approximate curve.

即ち、RGBニー補正では、入力画素値に対する近似曲線の傾きをKSr,KSg,KSb、切片をそれぞれKYr,KYg,KYbとし,R,G,Bの色信号のそれぞれに独立にニー補正をかけた結果を、それぞれR_k,G_k,B_kとすると、その計算式は次式で示される。
R_k=KSr×R+KYr
G_k=KSg×G+KYg
B_k=KSb×G+KYb
このRGBニー補正では、ニー補正のかかった部分の色相が回ってしまうため、ニー補正のかかっていない部分との色が異なって見える等の問題がある。つまり、RGBニー補正では、色信号毎にニー補正が行われるため、高輝度で色が回ってしまう。例えば、人物の肌の色などは、RGBニー補正を行うと黄色が強くなってしまう。
That is, in RGB knee correction, the slope of the approximate curve with respect to the input pixel value is KSr, KSg, KSb, the intercept is KYr, KYg, KYb, respectively, and knee correction is applied independently to each of the R, G, B color signals. If the results are R_k, G_k, and B_k, respectively, the calculation formulas are shown by the following formulas.
R_k = KSr × R + KYr
G_k = KSg × G + KYg
B_k = KSb × G + KYb
In this RGB knee correction, the hue of the portion subjected to knee correction is rotated, so that there is a problem that the color looks different from the portion not subjected to knee correction. That is, in RGB knee correction, knee correction is performed for each color signal, so that the color rotates with high luminance. For example, the color of a person's skin becomes yellow when RGB knee correction is performed.

一方、輝度ニー補正では、輝度信号に対してニー補正が行われるため、色の回りは抑えられるが、同時に行われる彩度絞りの影響により、高輝度域で色がなくなってしまうという欠点がある。   On the other hand, in the luminance knee correction, since the knee correction is performed on the luminance signal, the rotation of the color can be suppressed, but there is a disadvantage that the color disappears in the high luminance region due to the influence of the saturation diaphragm performed simultaneously. .

このような問題に鑑みて、例えば特許文献1では、輝度ニー補正における高輝度での色付を改善するために、彩度絞りに退色を抑制する機能を実装している。   In view of such a problem, for example, in Patent Document 1, in order to improve coloring at high luminance in luminance knee correction, a function for suppressing fading is mounted on the saturation stop.

特開2006−148368号公報JP 2006-148368 A

しかしながら、上記従来技術では、色によって色の残り方が異なる等、見え方に不自然さが残る場合があるといった問題がある。   However, the above-described conventional technique has a problem that unnaturalness may remain in the appearance, such as how the color remains different depending on the color.

本発明は、少ない回路増加により、輝度信号によるダイナミックレンジ圧縮処理が行われた部分の色付きを改善し、早い退色を防止し、輝度ニー補正での高輝度域の色残し処理を画柄によって動的に変更すること可能とし、見え方に不自然さが残らないように最適に調整することを課題とする。   The present invention improves the coloring of the portion where the dynamic range compression processing using the luminance signal has been performed with a small increase in the number of circuits, prevents fast fading, and moves the color remaining processing in the high luminance region in luminance knee correction depending on the pattern. It is an object to make an optimal adjustment so as not to leave an unnatural appearance.

本発明の第1の観点による映像信号処理装置は、入力された映像信号から抽出した輝度成分に対してニー補正を行うもので、高輝度部分での色つきを原信号から算出した色濃度に基づいて調整する輝度ニー補正手段を備える。   The video signal processing apparatus according to the first aspect of the present invention performs knee correction on the luminance component extracted from the input video signal, and the color density in the high luminance portion is calculated from the original signal. Luminance knee correction means for adjustment based on the above is provided.

従って、輝度ニー補正手段により、高輝度部分で色回りの少ない自然な色が得られる。   Therefore, the brightness knee correction means can obtain a natural color with less color around the high brightness portion.

この第1の観点において、色濃度とは原信号から算出した彩度であって、輝度ニー補正手段は、輝度に対してニー補正を行う際、高輝度部分での色つきを原信号から算出した彩度のレベルによって調整することとしてもよい。或いは、この第1の観点において、色濃度とは原信号から算出した色差信号のレベルであって、輝度ニー補正手段は、輝度に対してニー補正を行う際、高輝度部分での色つきを原信号から算出した色差信号のレベルによって調整することとしてもよい。   In this first aspect, the color density is the saturation calculated from the original signal, and the luminance knee correction means calculates the coloring in the high luminance portion from the original signal when performing knee correction on the luminance. It may be adjusted according to the saturation level. Alternatively, in this first aspect, the color density is the level of the color difference signal calculated from the original signal, and the luminance knee correction means adds color in the high luminance part when performing knee correction on the luminance. It may be adjusted according to the level of the color difference signal calculated from the original signal.

本発明の第2の観点による映像信号処理装置は、入力された映像信号から輝度信号を抽出する輝度信号生成手段と、映像信号の各色成信号から上記輝度信号を減算する減算手段と、映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、輝度信号生成手段により算出された輝度信号に対して、少なくとも第1及び第2の補正係数を用いてニー補正を実施する演算手段と、ニー補正が実施された輝度信号と減算手段の出力とを加算し、ニー補正が施された映像信号を出力する加算手段とを備える。   A video signal processing apparatus according to a second aspect of the present invention includes a luminance signal generating unit that extracts a luminance signal from an input video signal, a subtracting unit that subtracts the luminance signal from each color signal of the video signal, and a video signal A composite luminance signal is calculated on the basis of a signal calculated based on the maximum value of each color signal of the video signal after low-pass filtering and a predetermined first coefficient. A first correction coefficient is calculated by dividing the corrected signal by the combined luminance signal, and the signal calculated based on the first correction coefficient and the maximum value and the saturation level of the color signal are calculated. A second correction coefficient for preventing fading is calculated based on the second coefficient, and knee correction is performed on the luminance signal calculated by the luminance signal generation unit using at least the first and second correction coefficients. Carry out Comprising calculation means adds the luminance signal knee correction has been performed and the output of the subtraction means, and an adding means for outputting a video signal knee correction has been performed.

従って、演算手段により、輝度信号に対してのみニー補正が実施され、高輝度部分で色回りの少ない自然な色が得られ、見え方が自然となるような調整がなされる。   Accordingly, knee correction is performed only on the luminance signal by the calculation means, and a natural color with less color rotation is obtained in the high luminance portion, and adjustment is performed so that the appearance becomes natural.

この第2の観点において、演算手段は、彩度残し処理を彩度のレベルにより可変とするための第3の補正係数を更に用いて、上記ニー補正を実施することとしてもよい。或いはこの第2の観点において、演算手段は、彩度残し処理を色差信号のレベルにより可変とするための第4の補正係数を更に用いて、上記ニー補正を実施することとしてもよい。   In the second aspect, the calculation means may perform the knee correction by further using a third correction coefficient for making the saturation remaining processing variable according to the saturation level. Alternatively, in the second aspect, the calculation means may perform the knee correction by further using a fourth correction coefficient for making the saturation remaining processing variable according to the level of the color difference signal.

本発明の第3の観点による撮像装置は、被写体像を撮像し、撮像信号を出力する撮像手段と、上記撮像信号に所定の処理を施した映像信号を出力する信号処理手段と、上記映像信号から輝度信号を抽出する輝度信号生成手段と、上記映像信号の各色成信号から上記輝度信号を減算する減算手段と、映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、輝度信号生成手段により算出された輝度信号に対して、少なくとも第1及び第2の補正係数を用いてニー補正を実施する演算手段と、上記ニー補正が実施された輝度信号と上記減算手段の出力とを加算し、ニー補正が施された映像信号を出力する加算手段とを備える。   An imaging apparatus according to a third aspect of the present invention includes an imaging unit that captures a subject image and outputs an imaging signal, a signal processing unit that outputs a video signal obtained by performing predetermined processing on the imaging signal, and the video signal Luminance signal generating means for extracting the luminance signal from the subtracting means for subtracting the luminance signal from each color signal of the video signal, based on the maximum value of each color signal of the video signal after low-pass filtering the video signal A combined luminance signal is calculated based on the calculated signal and a predetermined first coefficient, and a signal obtained by performing knee correction on the combined luminance signal is divided by the combined luminance signal to obtain the first A correction coefficient is calculated, and a second correction coefficient for preventing fading based on the first correction coefficient, a signal calculated based on the maximum value, and a second coefficient related to the saturation level of the color signal is calculated. Calculate and shine An arithmetic unit that performs knee correction on the luminance signal calculated by the signal generation unit using at least the first and second correction coefficients, a luminance signal on which the knee correction has been performed, and an output of the subtracting unit, And adding means for outputting a video signal subjected to knee correction.

従って、撮像手段により得られた撮像信号に対してA/D変換等の所定の処理が施され得られた映像信号のうち輝度信号に対してのみニー補正が実施されることで、高輝度部分で色回りの少ない自然な色が得られ、見え方が自然となるような調整がなされる。   Accordingly, knee correction is performed only on the luminance signal in the video signal obtained by performing predetermined processing such as A / D conversion on the imaging signal obtained by the imaging means, thereby obtaining a high-luminance portion. In this way, natural colors with few colors are obtained, and adjustments are made so that the appearance is natural.

本発明の第4の観点による映像信号処理方法は、入力された映像信号から輝度信号を抽出するステップと、映像信号の各色成信号から輝度信号を減算するステップと、映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、輝度信号生成手段により算出された輝度信号に対して、少なくとも第1及び第2の補正係数を用いてニー補正を実施するステップと、上記ニー補正が実施された輝度信号と上記減算後の出力とを加算し、ニー補正が施された映像信号を出力するステップと備える。   A video signal processing method according to a fourth aspect of the present invention includes a step of extracting a luminance signal from an input video signal, a step of subtracting the luminance signal from each color signal of the video signal, and after low-pass filtering the video signal A signal obtained by calculating a composite luminance signal based on a signal calculated based on the maximum value of each color signal of the video signal and a predetermined first coefficient, and applying knee correction to the composite luminance signal Is divided by the combined luminance signal, a first correction coefficient is calculated, and the first correction coefficient, the signal calculated based on the maximum value, and the second coefficient related to the saturation level of the color signal are calculated. Calculating a second correction coefficient for preventing color fading based on the first correction coefficient, and performing knee correction on the luminance signal calculated by the luminance signal generation means using at least the first and second correction coefficients; The knee correction is the sum of the output after luminance signal and the subtraction performed, comprising a step of outputting a video signal knee correction has been performed.

従って、輝度信号に対してのみニー補正が実施され、高輝度部分で色回りの少ない自然な色が得られ、見え方が自然となるような調整がなされる。   Therefore, knee correction is performed only on the luminance signal, and a natural color with little color rotation is obtained in the high luminance portion, and adjustment is performed so that the appearance is natural.

本発明によれば、少ない回路増加により、輝度信号によるダイナミックレンジ圧縮処理が行われた部分の色付きを改善し、早い退色を防止し、輝度ニー補正での高輝度域の色残し処理を画柄によって動的に変更すること可能とし、見え方に不自然さが残らないように最適に調整することが可能な映像信号処理装置、撮像装置及び映像信号処理方法を提供することができる。   According to the present invention, by adding a small number of circuits, coloring of a portion subjected to dynamic range compression processing using a luminance signal is improved, fast fading is prevented, and high-luminance color-remaining processing is performed with luminance knee correction. Thus, it is possible to provide a video signal processing device, an imaging device, and a video signal processing method that can be changed dynamically and can be optimally adjusted so as not to leave unnaturalness in appearance.

以下、図面を参照して、本発明を実施するための最良の実施の形態(以下、単に実施の形態と称する)について詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a best mode for carrying out the invention (hereinafter simply referred to as an embodiment) will be described in detail with reference to the drawings.

図1には本発明の一実施の形態に係る映像信号処理装置の構成を示し説明する。   FIG. 1 shows and describes the configuration of a video signal processing apparatus according to an embodiment of the present invention.

この図1に示されるように、この映像信号処理装置は、輝度ニー補正回路1と彩度絞り回路2を有している。このような構成において、R(Red),G(Green),B(Blue)の色信号が輝度ニー補正回路に入力されると、詳細は後述するような輝度ニー補正が行われ、その結果、輝度ニー補正後のR,G,B信号R_yk,G_yk,B_ykが出力される。これら信号R_yk,G_yk,B_ykは、彩度絞り回路2に入力され、詳細は後述する彩度絞り処理が施され、その結果、彩度絞り処理後のR,G,B信号R_ys、G_ys、B_ysが出力される。   As shown in FIG. 1, the video signal processing apparatus includes a luminance knee correction circuit 1 and a saturation diaphragm circuit 2. In such a configuration, when color signals of R (Red), G (Green), and B (Blue) are input to the luminance knee correction circuit, luminance knee correction as will be described in detail later is performed. R, G, B signals R_yk, G_yk, B_yk after luminance knee correction are output. These signals R_yk, G_yk, B_yk are input to the saturation diaphragm circuit 2 and subjected to a saturation diaphragm process, which will be described in detail later. As a result, R, G, B signals R_ys, G_ys, B_ys after the saturation diaphragm process are performed. Is output.

この輝度ニー補正回路1の詳細な構成は、図2に示される。   The detailed configuration of the luminance knee correction circuit 1 is shown in FIG.

即ち、この図2に示されるように、輝度ニー補正回路1は、輝度生成部11、ローパスフィルタ(LPF; Low Pass Filter)12,13、Y/MANY生成部14、減算部15、係数生成部16、Sat生成部17、演算部18、加算部19からなる。   That is, as shown in FIG. 2, the luminance knee correction circuit 1 includes a luminance generation unit 11, low-pass filters (LPFs) 12, 13, a Y / MANY generation unit 14, a subtraction unit 15, and a coefficient generation unit. 16, a Sat generator 17, a calculator 18, and an adder 19.

このような構成において、本実施の形態が採用する輝度ニー補正では、色回りを防ぎつつ、退色を抑え、彩度を残すような処理を行う。   In such a configuration, the luminance knee correction employed in the present embodiment performs processing that suppresses color fading and suppresses fading and leaves saturation while preventing color rotation.

即ち、R,G,Bの色信号は、輝度生成部11に入力され、該輝度生成部11にて輝度成分が抽出され、輝度信号Yが生成される。この輝度信号Yは、減算部15に入力されると共に、LPF12にて低周波成分が除去された後、Y/NAMY生成部14にも入力される。   That is, the R, G, B color signals are input to the luminance generation unit 11, the luminance components are extracted by the luminance generation unit 11, and the luminance signal Y is generated. The luminance signal Y is input to the subtractor 15 and is also input to the Y / NAMY generator 14 after the low frequency component is removed by the LPF 12.

また、R,G,Bの色信号は、LPF12にて低周波成分が除去された後、Y/NAMY生成部14にも入力される。Y/NAMY生成部14では、R,G,Bの色信号の最大値である信号NAMYを生成し、輝度信号Yと信号NAMYを係数生成部16に送出する。   The R, G, B color signals are also input to the Y / NAMY generator 14 after the low frequency components are removed by the LPF 12. The Y / NAMY generator 14 generates a signal NAMY that is the maximum value of the R, G, B color signals, and sends the luminance signal Y and the signal NAMY to the coefficient generator 16.

係数生成部16は、入力された色信号の最大値で得られる信号NAMYと輝度信号Yとから、所定の係数KNAMを用いて、次式により合成輝度信号Mix_Yを求める。
Mix_Y=Y+KNAM×(NAMY−Y)
ここで、近似曲線の傾きをKS,切片をKYとし、Mix_Yに対してニー補正をかけ、ニー補正後の輝度値をY_ykとすると、
Y_yk=KS×Mix_Y+KY
が成立する。
The coefficient generation unit 16 obtains a combined luminance signal Mix_Y from the signal NAMY obtained by the maximum value of the input color signal and the luminance signal Y using a predetermined coefficient KNAM according to the following equation.
Mix_Y = Y + KNAM × (NAMY−Y)
Here, if the slope of the approximate curve is KS, the intercept is KY, Mix_Y is knee-corrected, and the luminance value after knee correction is Y_yk,
Y_yk = KS × Mix_Y + KY
Is established.

これより、輝度ニー補正の補正係数Kw(第1の補正係数)は、輝度値Y_ykを合成輝度信号Mix_Yにより除算することにより、
Kw=Y_yk/Mix_Y
となる。
Accordingly, the correction coefficient Kw (first correction coefficient) for luminance knee correction is obtained by dividing the luminance value Y_yk by the combined luminance signal Mix_Y.
Kw = Y_yk / Mix_Y
It becomes.

これに対して、退色を防ぐために係数Kw’(第2の補正係数)を次式により求める。   On the other hand, in order to prevent fading, a coefficient Kw ′ (second correction coefficient) is obtained by the following equation.

Figure 2009111894
Figure 2009111894

ここで、CHMAXは色信号レベルでの飽和レベルである。   Here, CHMAX is a saturation level at the color signal level.

係数生成部16は、こうして算出した係数Kw,Kw'を演算部18に送出する。   The coefficient generator 16 sends the coefficients Kw and Kw ′ thus calculated to the calculator 18.

本実施の形態では、輝度ニー補正を、輝度成分のみに対してかける。   In the present embodiment, the luminance knee correction is applied only to the luminance component.

即ち、演算部18は、係数Kw,Kw'と輝度信号Y、更に所定の係数KADJに基づいて輝度ニー補正をかけた信号Y'を次式により算出する。
Y'=[{KADJ×(Kw−Kw')+Kw'}×Y]
ここで、KADJは、0〜1の値を取る係数であり、0のときに最も退色を防ぐ高価が大きくなる。このようにすることで、乗算演算を減らしながら、高輝度域での色つきを改善することが可能となる。
That is, the calculation unit 18 calculates the coefficient Kw, Kw ′, the luminance signal Y, and the signal Y ′ subjected to the luminance knee correction based on the predetermined coefficient KADJ by the following equation.
Y ′ = [{KADJ × (Kw−Kw ′) + Kw ′} × Y]
Here, KADJ is a coefficient that takes a value between 0 and 1, and when it is 0, the cost for preventing fading is greatest. By doing so, it is possible to improve coloring in a high luminance region while reducing multiplication operations.

この信号Y‘は、加算部19に入力され、加算部19では、減算部15にて生成された色差信号R-Y、G-Y、B-Yと該信号Y’とに基づいて、輝度ニー補正後の出力信号R_yk, G_yk, B_ykを次式により得る。
R_yk=Y'+(R-Y)
G_yk=Y'+(G-Y)
B_yk=Y'+(B-Y)
一方で、退色を防ぐために彩度を残す処理が不自然であるという問題がある。
This signal Y ′ is input to the adder 19, and the adder 19 outputs an output signal after luminance knee correction based on the color difference signals RY, GY, BY generated by the subtractor 15 and the signal Y ′. R_yk, G_yk, B_yk are obtained by the following equations.
R_yk = Y '+ (RY)
G_yk = Y '+ (GY)
B_yk = Y '+ (BY)
On the other hand, there is a problem that the process of leaving the saturation to prevent fading is unnatural.

例えば、ライティングなどの影響で様々な階調を持つことで立体的に見えている部分が、彩度を残す処理を行うことで階調の差がなくなり、一様な色になってしまう。   For example, a portion that has a three-dimensional appearance due to various gradations due to lighting or the like eliminates a difference in gradation by performing a process of leaving saturation, and becomes a uniform color.

その結果、まるで絵画のように見えてしまうという問題がある。   As a result, there is a problem that it looks like a painting.

この問題を解決するために、彩度を残す処理を信号の彩度レベルに応じて可変にするような処理を更に加える。Sat生成部18により生成した係数Sat(第3の補正係数)により、リニアに彩度残し処理を可変にする場合、ニー補正は、次式で表される。   In order to solve this problem, a process for making the process of leaving the saturation variable according to the saturation level of the signal is further added. When the saturation remaining processing is made linear by the coefficient Sat (third correction coefficient) generated by the Sat generator 18, the knee correction is expressed by the following equation.

Figure 2009111894
Figure 2009111894

この場合、係数Satが0に近いほど通常の輝度ニー補正処理となり、逆にSatが1に近いほど彩度残し処理がかかることになる。   In this case, as the coefficient Sat is closer to 0, normal luminance knee correction processing is performed, and conversely, as Sat is closer to 1, saturation remaining processing is performed.

この式での係数Satの範囲や傾きを様々に変えることで、彩度による色つきを調整することも可能となる。なお、例では彩度にリニアに反応するシステムを示しているが、非線形的な応答を示すように改良することも可能である。但し、実際には彩度演算における開平演算は非常に大きな回路規模となる。   By changing the range and slope of the coefficient Sat in this equation in various ways, it is possible to adjust the coloring due to the saturation. In the example, a system that reacts linearly to saturation is shown, but it is also possible to improve the system so as to show a non-linear response. However, in practice, the square root calculation in the saturation calculation has a very large circuit scale.

この問題を回避するために、近似演算などを行うことも考えられるが、近似演算で精度をよくするためには回路規模が大きくなる傾向があり、回路規模を適切にした場合は逆に精度が悪くなるという問題もある。   To avoid this problem, it is conceivable to perform approximate calculations, but there is a tendency for the circuit scale to increase in order to improve accuracy in the approximate calculation. There is also the problem of getting worse.

そこで、彩度の代わりに色差信号のレベルを使用し、同様に彩度残し処理を可変にするようにしてもよいことは勿論である。これは、色差信号のレベルにより彩度残し処理を可変するための係数をNAM_CY(第4の補正係数)とすると、次式で示される。   Therefore, it goes without saying that the level of the color difference signal may be used instead of the saturation, and similarly, the saturation remaining processing may be made variable. This is expressed by the following equation, where NAM_CY (fourth correction coefficient) is a coefficient for changing the saturation remaining processing according to the level of the color difference signal.

Figure 2009111894
Figure 2009111894

この例では、色差の最大値をゲインとして色残し処理を制御している。   In this example, the color leaving process is controlled using the maximum value of the color difference as a gain.

このようにすることで、演算量を最小限にしながら、彩度による色残し処理と類似の効果が得られることになる。同様に、色差の単純な和や平均値を利用する方法や、人間が特に敏感な色を色差の比率で判別してやる方法、彩度演算で開閉演算を行わない等の方法も考えられるが、最終的には人間の視覚特性等を考慮しながら、最適な補正値算出方法を選んでやることが最善と思われる。   By doing in this way, the effect similar to the color-remaining processing by saturation is obtained while minimizing the calculation amount. Similarly, a method that uses a simple sum or average of color differences, a method that distinguishes particularly sensitive colors by the ratio of color differences, and a method that does not perform open / close operations by saturation calculation are also conceivable. Therefore, it seems best to select an optimal correction value calculation method in consideration of human visual characteristics and the like.

以上のようにして求められた信号に対し、彩度絞り回路2は、最終的に色信号毎に設定された飽和レベルに収まるように、彩度絞りをかけることで、輝度ニーの最終的な出力が得られる。これは次式で示すことができる。   With respect to the signal obtained as described above, the saturation stop circuit 2 applies the saturation stop so that it finally falls within the saturation level set for each color signal, thereby obtaining the final luminance knee. Output is obtained. This can be shown by the following equation.

Figure 2009111894
Figure 2009111894

ここで、TEWCは、設定した飽和レベルである。   Here, TEWC is the set saturation level.

以上説明したように、本実施の形態によれば、入力された映像信号から輝度信号Yを抽出する輝度生成部11と、映像信号の各色成信号であるR,G,B信号から輝度信号Yを減算する減算部15と、上記映像信号をLPF12により低域除去した後の映像信号の各色成信号の最大値に基づいて算出される信号NAMYと予め定められた第1の係数としての係数KNAMに基づいて合成輝度信号Mix_Yを算出し、該Mix_Yに対してニー補正をかけた信号Y_ykを該合成輝度信号Mix_Yで除算することで第1の補正係数としてのKwを算出し、該第1の補正係数Kw並びに上記信号NAMY及び上記色信号の飽和レベルに係る第2の係数CHMAXに基づいて退色を防ぐための第2の補正係数Kw’を算出し、輝度生成部11により算出された輝度信号Yに対して、少なくとも第1及び第2の補正係数Kw,Kw’を用いてニー補正を実施する演算部18と、上記ニー補正が実施された輝度信号と減算部15の出力とを加算し、ニー補正が施された映像信号R_yk,G_yk,B_ykを出力する加算部19とを備えた映像信号処理装置が提供される。   As described above, according to the present embodiment, the luminance generator 11 that extracts the luminance signal Y from the input video signal, and the luminance signal Y from the R, G, and B signals that are the color signals of the video signal. A subtractor 15 for subtracting the signal, a signal NAMY calculated based on the maximum value of each color signal of the video signal after the low-frequency removal of the video signal by the LPF 12, and a coefficient KNAM as a predetermined first coefficient And the combined luminance signal Mix_Y is calculated, and the signal Y_yk obtained by performing knee correction on the Mix_Y is divided by the combined luminance signal Mix_Y to calculate Kw as a first correction coefficient. A luminance signal calculated by the luminance generation unit 11 is calculated by calculating a second correction coefficient Kw ′ for preventing fading based on the correction coefficient Kw, the signal NAMY, and the second coefficient CHMAX related to the saturation level of the color signal. For Y, at least first and second correction factors Kw , Kw ′, the arithmetic unit 18 that performs knee correction, and the luminance signal subjected to knee correction and the output of the subtracting unit 15 are added, and the video signals R_yk, G_yk, B_yk subjected to knee correction are added. A video signal processing apparatus including an adding unit 19 for outputting is provided.

尚、演算部18は、彩度残し処理を彩度のレベルにより可変とするための第3の補正係数としての係数Satを更に用いて、上記ニー補正を実施するようにしてもよい。演算部18は、彩度残し処理を色差信号のレベルにより可変とするための第4の補正係数としての係数NAM_CYを更に用いて、上記ニー補正を実施するようにしてもよい。   Note that the calculation unit 18 may further perform the knee correction by further using a coefficient Sat as a third correction coefficient for making the saturation remaining processing variable depending on the saturation level. The calculation unit 18 may further perform the knee correction by further using a coefficient NAM_CY as a fourth correction coefficient for making the saturation remaining processing variable according to the level of the color difference signal.

次に、図3には、この一実施の形態に係る映像信号処理装置を撮像装置に適用した構成を示し説明する。この撮像装置は、ディジタルビデオカメラ等であって、レンズユニット100、撮像素子101、アナログ処理及びAD変換部102、欠陥補正部103、カメラ信号処理部104、フレーム処理部105、補正部106と、出力部107とを備えている。映像信号処理装置は、補正部106の一部として実装されることになる。   Next, FIG. 3 shows a configuration in which the video signal processing apparatus according to this embodiment is applied to an imaging apparatus. The imaging apparatus is a digital video camera or the like, and includes a lens unit 100, an imaging device 101, an analog processing and AD conversion unit 102, a defect correction unit 103, a camera signal processing unit 104, a frame processing unit 105, a correction unit 106, And an output unit 107. The video signal processing apparatus is mounted as a part of the correction unit 106.

このような構成において、レンズユニット100は、フォーカスレンズ、ズームレンズ及び絞り羽根等、並びにこれらレンズ等を駆動する駆動部からなる。レンズユニット100を介して入射した被写体像は、撮像素子101にて受光され、光電変換され、撮像信号が出力される。撮像素子101は、C−MOSイメージセンサやCCDイメージセンサ等の固体撮像素子である。撮像信号は、アナログ処理及びA/D変換部102に供給され、クランプや増幅処理等のアナログ処理が施され、A/D変換によりデジタル化される。   In such a configuration, the lens unit 100 includes a focus lens, a zoom lens, a diaphragm blade, and the like, and a drive unit that drives these lenses and the like. The subject image incident through the lens unit 100 is received by the image sensor 101, subjected to photoelectric conversion, and an image signal is output. The image sensor 101 is a solid-state image sensor such as a C-MOS image sensor or a CCD image sensor. The imaging signal is supplied to the analog processing and A / D conversion unit 102, subjected to analog processing such as clamping and amplification processing, and digitized by A / D conversion.

欠陥補正部103は、撮像素子101の画素に欠陥が生じていた場合、その欠陥部分の撮像信号を補正する回路である。欠陥補正部103により欠陥補正処理がされた撮像信号は、カメラ信号処理部104に供給され、ホワイトバランス処理、収差補正処理、シェーディング処理等の処理が施される。これらの処理がされた撮像信号は、フレーム処理部105に供給され、撮像信号に対するフレーム(フィールド)単位の処理が行われる。   The defect correction unit 103 is a circuit that corrects an imaging signal of a defective portion when a defect has occurred in a pixel of the image sensor 101. The imaging signal that has been subjected to the defect correction processing by the defect correction unit 103 is supplied to the camera signal processing unit 104 and subjected to processing such as white balance processing, aberration correction processing, and shading processing. The image signal subjected to these processes is supplied to the frame processing unit 105, and the image signal is subjected to frame (field) unit processing.

そして、このフレーム(フィールド)単位の処理がされた撮像信号は、補正部106に供給される。この補正部106では、輝度信号に対して、前述したような輝度ニー補正等が施され、出力部107へと供給される。こうして、出力部107は、入力された撮像信号を所定の映像フォーマットに対応した信号に変換し、外部に出力する。   Then, the imaging signal that has been processed in units of frames (fields) is supplied to the correction unit 106. In the correction unit 106, the luminance knee correction as described above is performed on the luminance signal and supplied to the output unit 107. Thus, the output unit 107 converts the input imaging signal into a signal corresponding to a predetermined video format, and outputs the signal to the outside.

以上詳述したように、本発明の一実施の形態によれば、輝度信号によるダイナミックレンジ圧縮処理が行われた部分の色付きを改善することが可能となる。更に、少ない回路増加により、早い退色を防ぐことが可能となる。また、輝度ニー補正での高輝度域の色残し処理を画柄によって動的に変更することが可能となる。そして、より少ない回路規模で高輝度の色残し処理を画柄に応じて動的に変更することが可能となる。   As described above in detail, according to an embodiment of the present invention, it is possible to improve coloring of a portion subjected to dynamic range compression processing using a luminance signal. Furthermore, it is possible to prevent fast fading with a small increase in circuit. Further, it is possible to dynamically change the color-remaining process in the high luminance area in the luminance knee correction depending on the pattern. In addition, it is possible to dynamically change the high-luminance color-remaining process with a smaller circuit scale according to the pattern.

以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなくその趣旨を逸脱しない範囲で種々の改良・変更が可能であることは勿論である。   The embodiment of the present invention has been described above, but the present invention is not limited to this, and it is needless to say that various improvements and changes can be made without departing from the spirit of the present invention.

本発明の一実施の形態に係る映像信号処理装置の構成図。1 is a configuration diagram of a video signal processing apparatus according to an embodiment of the present invention. 映像信号処理装置の輝度ニー補正回路の詳細な構成図。The detailed block diagram of the brightness | luminance knee correction circuit of a video signal processing apparatus. 本実施の形態に係る映像信号処理装置を適用した撮像装置の構成図。The block diagram of the imaging device to which the video signal processing apparatus which concerns on this Embodiment is applied.

符号の説明Explanation of symbols

1…輝度ニー補正回路、2…彩度絞り回路、11…輝度生成部、12…LPF、13…LPF、14…Y/NAMY生成部、15…減算部、16…係数生成部、17…Sat生成部、18…演算部、19…加算部   DESCRIPTION OF SYMBOLS 1 ... Luminance knee correction circuit, 2 ... Saturation stop circuit, 11 ... Luminance production | generation part, 12 ... LPF, 13 ... LPF, 14 ... Y / NAMY production | generation part, 15 ... Subtraction part, 16 ... Coefficient production | generation part, 17 ... Sat Generation unit, 18 ... calculation unit, 19 ... addition unit

Claims (8)

映像信号処理装置において、
入力された映像信号から抽出した輝度成分に対してニー補正を行うもので、高輝度部分での色つきを原信号から算出した色濃度に基づいて調整する輝度ニー補正手段を備えた
ことを特徴とする映像信号処理装置。
In the video signal processing device,
A knee correction is performed on the luminance component extracted from the input video signal, and luminance knee correction means for adjusting the coloring in the high luminance portion based on the color density calculated from the original signal is provided. A video signal processing apparatus.
上記色濃度とは原信号から算出した彩度であって、
上記輝度ニー補正手段は、輝度に対してニー補正を行う際、高輝度部分での色つきを原信号から算出した彩度のレベルによって調整する
ことを特徴とする請求項1に記載の映像信号処理装置。
The color density is the saturation calculated from the original signal,
2. The video signal according to claim 1, wherein the luminance knee correction unit adjusts coloring in a high luminance portion according to a saturation level calculated from an original signal when performing knee correction on luminance. Processing equipment.
上記色濃度とは原信号から算出した色差信号のレベルであって、
上記輝度ニー補正手段は、輝度に対してニー補正を行う際、高輝度部分での色つきを原信号から算出した色差信号のレベルによって調整する
ことを特徴とする請求項1に記載の映像信号処理装置。
The color density is the level of the color difference signal calculated from the original signal,
2. The video signal according to claim 1, wherein the luminance knee correction means adjusts coloring in a high luminance portion according to a level of a color difference signal calculated from an original signal when performing knee correction on luminance. Processing equipment.
入力された映像信号から輝度信号を抽出する輝度信号生成手段と、
上記映像信号の各色成信号から上記輝度信号を減算する減算手段と、
上記映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、上記輝度信号生成手段により算出された輝度信号に対して、少なくとも上記第1及び第2の補正係数を用いてニー補正を実施する演算手段と、
上記ニー補正が実施された輝度信号と上記減算手段の出力とを加算し、ニー補正が施された映像信号を出力する加算手段とを備えた
ことを特徴とする映像信号処理装置。
Luminance signal generating means for extracting a luminance signal from the input video signal;
Subtracting means for subtracting the luminance signal from each color signal of the video signal;
A composite luminance signal is calculated based on a signal calculated based on the maximum value of each color signal of the video signal after low-pass filtering the video signal and a predetermined first coefficient, and the composite luminance signal A first correction coefficient is calculated by dividing the signal subjected to knee correction by the combined luminance signal, and the signal calculated based on the first correction coefficient and the maximum value and the saturation of the color signal are calculated. A second correction coefficient for preventing fading is calculated based on the second coefficient relating to the level, and at least the first and second correction coefficients are applied to the luminance signal calculated by the luminance signal generating means. Computing means for performing knee correction using,
A video signal processing apparatus comprising: an addition unit that adds the luminance signal subjected to the knee correction and the output of the subtraction unit and outputs a video signal subjected to the knee correction.
上記演算手段は、彩度残し処理を彩度のレベルにより可変とするための第3の補正係数を更に用いて、上記ニー補正を実施する
ことを特徴とする請求項4に記載の映像信号処理装置。
5. The video signal processing according to claim 4, wherein the arithmetic means further performs the knee correction by further using a third correction coefficient for making the saturation remaining processing variable according to the saturation level. apparatus.
上記演算手段は、彩度残し処理を色差信号のレベルにより可変とするための第4の補正係数を更に用いて、上記ニー補正を実施する
ことを特徴とする請求項4に記載の映像信号処理装置。
5. The video signal processing according to claim 4, wherein the arithmetic means further performs the knee correction by further using a fourth correction coefficient for making the saturation remaining processing variable according to the level of the color difference signal. apparatus.
被写体像を撮像し、撮像信号を出力する撮像手段と、
上記撮像信号に所定の処理を施した映像信号を出力する信号処理手段と、
上記映像信号から輝度信号を抽出する輝度信号生成手段と、
上記映像信号の各色成信号から上記輝度信号を減算する減算手段と、
上記映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、上記輝度信号生成手段により算出された輝度信号に対して、少なくとも上記第1及び第2の補正係数を用いてニー補正を実施する演算手段と、
上記ニー補正が実施された輝度信号と上記減算手段の出力とを加算し、ニー補正が施された映像信号を出力する加算手段とを備えた
ことを特徴とする撮像装置。
Imaging means for capturing a subject image and outputting an imaging signal;
Signal processing means for outputting a video signal obtained by performing predetermined processing on the imaging signal;
Luminance signal generating means for extracting a luminance signal from the video signal;
Subtracting means for subtracting the luminance signal from each color signal of the video signal;
A composite luminance signal is calculated based on a signal calculated based on the maximum value of each color signal of the video signal after low-pass filtering the video signal and a predetermined first coefficient, and the composite luminance signal A first correction coefficient is calculated by dividing the signal subjected to knee correction by the combined luminance signal, and the signal calculated based on the first correction coefficient and the maximum value and the saturation of the color signal are calculated. A second correction coefficient for preventing fading is calculated based on the second coefficient relating to the level, and at least the first and second correction coefficients are applied to the luminance signal calculated by the luminance signal generating means. Computing means for performing knee correction using,
An image pickup apparatus comprising: an addition unit that adds the luminance signal subjected to the knee correction and the output of the subtraction unit and outputs a video signal subjected to the knee correction.
入力された映像信号から輝度信号を抽出するステップと、
上記映像信号の各色成信号から上記輝度信号を減算するステップと、
上記映像信号をローパスフィルタリングした後の映像信号の各色成信号の最大値に基づいて算出される信号と予め定められた第1の係数とに基づいて合成輝度信号を算出し、該合成輝度信号に対してニー補正をかけた信号を該合成輝度信号で除算することで第1の補正係数を算出し、該第1の補正係数並びに上記最大値に基づいて算出された信号及び上記色信号の飽和レベルに係る第2の係数に基づいて退色を防ぐための第2の補正係数を算出し、上記輝度信号生成手段により算出された輝度信号に対して、少なくとも上記第1及び第2の補正係数を用いてニー補正を実施するステップと、
上記ニー補正が実施された輝度信号と上記減算後の出力とを加算し、ニー補正が施された映像信号を出力するステップと備えた
ことを特徴とする映像信号処理方法。
Extracting a luminance signal from the input video signal;
Subtracting the luminance signal from each color signal of the video signal;
A composite luminance signal is calculated based on a signal calculated based on the maximum value of each color signal of the video signal after low-pass filtering the video signal and a predetermined first coefficient, and the composite luminance signal A first correction coefficient is calculated by dividing the signal subjected to knee correction by the combined luminance signal, and the signal calculated based on the first correction coefficient and the maximum value and the saturation of the color signal are calculated. A second correction coefficient for preventing fading is calculated based on the second coefficient relating to the level, and at least the first and second correction coefficients are applied to the luminance signal calculated by the luminance signal generating means. Using to perform knee correction,
A video signal processing method comprising: adding the luminance signal subjected to the knee correction and the output after the subtraction to output a video signal subjected to the knee correction.
JP2007284172A 2007-10-31 2007-10-31 Video signal processing device, imaging apparatus and video signal processing method Pending JP2009111894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284172A JP2009111894A (en) 2007-10-31 2007-10-31 Video signal processing device, imaging apparatus and video signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284172A JP2009111894A (en) 2007-10-31 2007-10-31 Video signal processing device, imaging apparatus and video signal processing method

Publications (1)

Publication Number Publication Date
JP2009111894A true JP2009111894A (en) 2009-05-21

Family

ID=40779859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284172A Pending JP2009111894A (en) 2007-10-31 2007-10-31 Video signal processing device, imaging apparatus and video signal processing method

Country Status (1)

Country Link
JP (1) JP2009111894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150127524A (en) 2014-05-07 2015-11-17 한화테크윈 주식회사 Image processing apparatus and image processing method
JP2017167047A (en) * 2016-03-17 2017-09-21 株式会社東芝 Defect inspection device, defect inspection program, and defect inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150127524A (en) 2014-05-07 2015-11-17 한화테크윈 주식회사 Image processing apparatus and image processing method
JP2017167047A (en) * 2016-03-17 2017-09-21 株式会社東芝 Defect inspection device, defect inspection program, and defect inspection method

Similar Documents

Publication Publication Date Title
KR101267404B1 (en) Image processor, image processing method, and recording medium
KR101099401B1 (en) Image processing apparatus and computer-readable medium
JP5223742B2 (en) Edge-enhanced image processing apparatus
WO2010053029A1 (en) Image inputting apparatus
EP2426928A2 (en) Image processing apparatus, image processing method and program
JP2007110576A (en) Color correction device for subject image data and control method thereof
JP5392560B2 (en) Image processing apparatus and image processing method
JP4892909B2 (en) Signal processing method, signal processing circuit, and camera system using the same
US8427560B2 (en) Image processing device
US8648937B2 (en) Image processing apparatus, image processing method, and camera module
JP2007228451A (en) Imaging apparatus
WO2015190320A1 (en) Image capture apparatus and image capture method
JP2005109991A (en) Signal processing method and device, and imaging device
JP2018182376A (en) Image processing apparatus
JP2004282133A (en) Automatic white balance processor and method, and image signal processor
GB2399252A (en) Edge enhancement and colour reduction processing of an image
JP2004266347A (en) Image processor, program for the same, and recording medium for the processor
US20230196530A1 (en) Image processing apparatus, image processing method, and image capture apparatus
JP2007288573A (en) Chroma suppress processing device
JP2009111894A (en) Video signal processing device, imaging apparatus and video signal processing method
JP2008219198A (en) Image processor and image processing program
EP1895781B1 (en) Method of and apparatus for adjusting colour saturation
JP2001189945A (en) Image pickup device
JP2009081526A (en) Imaging apparatus
JP4496931B2 (en) Video signal processing apparatus and method