JP2009110768A - Polymer electrolyte fuel cell - Google Patents
Polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP2009110768A JP2009110768A JP2007280545A JP2007280545A JP2009110768A JP 2009110768 A JP2009110768 A JP 2009110768A JP 2007280545 A JP2007280545 A JP 2007280545A JP 2007280545 A JP2007280545 A JP 2007280545A JP 2009110768 A JP2009110768 A JP 2009110768A
- Authority
- JP
- Japan
- Prior art keywords
- ionomer
- polymer electrolyte
- fuel cell
- electrolyte fuel
- transition temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子電解質膜と、イオノマーを含有する触媒拡散層と、を備える固体高分子型燃料電池およびその製造方法に関する。 The present invention relates to a solid polymer fuel cell comprising a solid polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer, and a method for producing the same.
多くの化学電池では、触媒を解して酸化還元反応が利用されている。固体高分子型燃料電池(Polymer Electrolyte Fuel Cell; PEFC)も化学電池の1種であり、たとえば電気自動車、定置コジェネレーションシステム、携帯機器用の電源として研究開発が進められている。固体高分子型燃料電池の心臓部は、水素イオン(H+)導電性の固体高分子電解膜(プロトン伝導膜)を2枚のガス拡散電極で挟んだ膜電極接合体(Member-Electrode Assembly ;MEA)である。膜電極接合体の触媒活性が、燃料電池の発電性能を決める要因の1つである。固体高分子膜電解質の材料としてはパーフルオロ系プロトン伝導性ポリマーが使用され、例えばデュポン社製のナフィオン(Nafion; 商標名)が知られている。ガス拡散電極には触媒層が設けられ、燃料極(アノード触媒層)で水素の酸化(H2→2H++2e-)、空気極(カソード触媒層)で酸素の還元(2H++0.5O2+2e-→H2O)が起こる。 In many chemical cells, a redox reaction is used by disassembling the catalyst. A polymer electrolyte fuel cell (PEFC) is also a type of chemical battery, and research and development are being conducted as a power source for electric vehicles, stationary cogeneration systems, and portable devices, for example. The heart of a polymer electrolyte fuel cell is a membrane-electrode assembly (Member-Electrode Assembly) in which a hydrogen ion (H + ) conductive solid polymer electrolyte membrane (proton conductive membrane) is sandwiched between two gas diffusion electrodes; MEA). The catalytic activity of the membrane electrode assembly is one of the factors that determine the power generation performance of the fuel cell. As a material for the solid polymer membrane electrolyte, a perfluoro proton conductive polymer is used, and for example, Nafion (trade name) manufactured by DuPont is known. The gas diffusion electrode is provided with a catalyst layer, hydrogen oxidation (H 2 → 2H + + 2e − ) at the fuel electrode (anode catalyst layer), and oxygen reduction (2H + + 0.5O 2 ) at the air electrode (cathode catalyst layer). + 2e − → H 2 O) occurs.
固体高分子型燃料電池で使用される触媒電極として、従来、白金担持触媒電極(Pt/C触媒電極)が使用されている。白金担持カーボン触媒電極は、カーボンブラック等の導電性微粒子からなる担体に白金を主体とする活性金属を担持させた構造を有する。近年では、発電能を向上させる目的でイオノマー(ionomer; 有機溶剤に可溶な水素イオン導電性高分子材料)が白金担持カーボン触媒に添加されている。 Conventionally, platinum-supported catalyst electrodes (Pt / C catalyst electrodes) have been used as catalyst electrodes used in polymer electrolyte fuel cells. The platinum-supported carbon catalyst electrode has a structure in which an active metal mainly composed of platinum is supported on a support made of conductive fine particles such as carbon black. In recent years, ionomers (hydrogen ion conductive polymer materials soluble in organic solvents) have been added to platinum-supported carbon catalysts for the purpose of improving power generation capacity.
白金担持カーボン触媒電極は反応ガス種である水素(アノード側)や酸素(カソード側)などのガス相、電子が移動する触媒電極相、イオンが移動するイオノマー相の3種類の異相により構成されており、電気化学反応はこれら異相が接触する三相界面で進行する。したがって、触媒活性を十分に引き出すためには、白金担持カーボン触媒自身の触媒活性に加えて、ガス相と電解質相を加えた三相界面全体の最適化にも配慮する必要がある。とくに三相界面を移動する反応ガス、水素イオン、電子などの移動体に障害(拡散律速)が有れば、本来の触媒が有する活性を十分に活かすことができなくなる。よって、これら移動体の障害とならないように三相界面を構成することが求められる。 A platinum-supported carbon catalyst electrode is composed of three different phases: a gas phase such as reactive gas species hydrogen (anode side) and oxygen (cathode side), a catalyst electrode phase in which electrons move, and an ionomer phase in which ions move. The electrochemical reaction proceeds at the three-phase interface where these different phases come into contact. Therefore, in order to fully extract the catalytic activity, it is necessary to consider the optimization of the entire three-phase interface including the gas phase and the electrolyte phase in addition to the catalytic activity of the platinum-supported carbon catalyst itself. In particular, if there are obstacles (diffusion-controlled) such as reaction gases, hydrogen ions, and electrons moving on the three-phase interface, the activity of the original catalyst cannot be fully utilized. Therefore, it is required to configure a three-phase interface so as not to hinder these moving objects.
典型的な固体高分子型燃料電池セルの構成例として、固体高分子電解質にはナフィオン膜を使用し、触媒中のイオノマーにはナフィオン粒子を使用するものがある。つまり、固体高分子電解質膜とイオノマーは同一化学種であり、一方は膜状、他方は分散粒子状として供されている。
白金担持カーボン触媒のイオノマー材料であるナフィオンのガラス転移温度(Tg)は、概ね60℃〜90℃の範囲内である。典型的な固体高分子型燃料電池の発電温度が80℃前後であるので、イオノマーは発電中、ガラス転移温度近傍もしくはそれ以上の熱環境中に曝されていることとなる。この結果、イオノマーの一体層の形成が促進される。イオノマーの一体層が形成された後、更に層が厚くなるに従い、イオノマー層が反応ガスの移動障害となることで燃料電池の発電能を低下させる。燃料電池の「発電→停止」操作を繰り返せば、イオノマーの一体層形成が更に促進される。 The glass transition temperature (Tg) of Nafion, which is the ionomer material of the platinum-supported carbon catalyst, is generally in the range of 60 ° C to 90 ° C. Since the power generation temperature of a typical polymer electrolyte fuel cell is around 80 ° C., the ionomer is exposed to a thermal environment near or above the glass transition temperature during power generation. As a result, the formation of an integral layer of ionomer is facilitated. After the ionomer integral layer is formed, as the layer becomes thicker, the ionomer layer becomes an obstacle to the movement of the reaction gas, thereby reducing the power generation capacity of the fuel cell. If the “power generation → stop” operation of the fuel cell is repeated, the formation of an ionomer integral layer is further promoted.
本発明の目的は、固体高分子型燃料電池のガス拡散電極における反応ガス透過性を損なうことがない三相界面を形成させ、発電時に安定した反応ガス供給を三相界面に対して行うことができる触媒電極を提供することにある。 An object of the present invention is to form a three-phase interface that does not impair the reaction gas permeability in the gas diffusion electrode of a polymer electrolyte fuel cell, and to supply a stable reaction gas to the three-phase interface during power generation. An object of the present invention is to provide a catalyst electrode that can be used.
本発明の固体高分子型燃料電池は、固体高分子電解質膜と、イオノマーを含有する触媒拡散層と、を備える固体高分子型燃料電池において、前記イオノマーが、前記固体高分子電解質膜を構成する高分子とは異なる化学種の水素イオン導電性高分子であり、前記イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高いことを特徴とする。
この固体高分子型燃料電池によれば、イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高いので、イオノマーの形態が維持され、発電時に安定した反応ガス供給を三相界面に対して行うことができる。
The polymer electrolyte fuel cell of the present invention is a polymer electrolyte fuel cell comprising a polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer, and the ionomer constitutes the polymer electrolyte membrane. It is a hydrogen ion conductive polymer of a chemical species different from the polymer, and the glass transition temperature of the ionomer is higher than the glass transition temperature of the polymer constituting the solid polymer electrolyte membrane.
According to this polymer electrolyte fuel cell, since the glass transition temperature of the ionomer is higher than the glass transition temperature of the polymer constituting the solid polymer electrolyte membrane, the ionomer form is maintained and the reaction gas is stable during power generation. Feed can be made to the three-phase interface.
前記イオノマーのガラス転移温度が前記燃料電池の運転温度よりも5℃以上高くてもよい。 The glass transition temperature of the ionomer may be 5 ° C. or more higher than the operating temperature of the fuel cell.
前記固体高分子電解質膜がパーフルオロ系プロトン伝導性ポリマーにより形成されていてもよい。 The solid polymer electrolyte membrane may be formed of a perfluoro proton conductive polymer.
前記イオノマーのガラス転移温度が100℃以上であってもよい。 The glass transition temperature of the ionomer may be 100 ° C. or higher.
前記イオノマーは、芳香族炭化水素系高分子スルホン化物であってもよい。 The ionomer may be an aromatic hydrocarbon polymer sulfonated product.
前記イオノマーは、ポリエーテルエーテルケトンスルホン化物であってもよい。 The ionomer may be a polyether ether ketone sulfonated product.
前記イオノマーは、ポリエーテルスルホンスルホン化物であってもよい。 The ionomer may be a polyethersulfone sulfonated product.
前記イオノマーは、ポリエーテルイミドスルホン化物であってもよい。 The ionomer may be a polyetherimide sulfonated product.
前記イオノマーは、ポリイミドスルホン化物であってもよい。 The ionomer may be a polyimide sulfonated product.
前記イオノマーは、ポニフェニレンオキシドスルホン化物であってもよい。 The ionomer may be a poniphenylene oxide sulfonated product.
前記イオノマーは、ポリフェニレンサルファイドスルホン化物であってもよい。 The ionomer may be a polyphenylene sulfide sulfonated product.
前記イオノマーは、ポリスルホンスルホン化物であってもよい。 The ionomer may be a polysulfone sulfonated product.
前記イオノマーは、スルホン化ポリサルホン、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーからなる共重合体とスルホン酸基を有する芳香族系炭化水素からなるスルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体、スルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE-g-PSt)、スチレン−(エチレン−ブチレン)−スチレンスルホン化物、フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体、陽イオン交換基導入型スチレン−ジビニルベンゼン共重合体、陰イオン交換基導入型スチレン−ジビニルベンゼン共重合体、ポリオレフィン系高分子、および、末端スルホン酸基を有するハイパーブランチポリマー(HBPES)と直鎖芳香族高分子(PEEES)との共重合体のいずれかであってもよい。 The ionomer is a sulfonated polystyrene-graft-ethylene-tetrafluoroethylene copolymer comprising a sulfonated polysulfone, a copolymer comprising a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and an aromatic hydrocarbon having a sulfonic acid group. Polymer, sulfonic acid type polystyrene-graft-ethylene-tetrafluoroethylene copolymer (ETFE-g-PSt), styrene- (ethylene-butylene) -styrene sulfonated product, fluorine-based vinyl monomer and hydrocarbon-based vinyl monomer Copolymers, cation exchange group-introduced styrene-divinylbenzene copolymers, anion-exchange group-introduced styrene-divinylbenzene copolymers, polyolefin polymers, and hyperbranched polymers having terminal sulfonic acid groups (HBPES ) And linear aromatic polymers ( Or a copolymer with PEEES).
本発明の固体高分子型燃料電池の製造方法は、固体高分子電解質膜と、イオノマーを含有する触媒拡散層と、を備える固体高分子型燃料電池の製造方法において、前記イオノマーが、前記固体高分子電解質膜を構成する高分子とは異なる化学種の水素イオン導電性高分子であり、前記イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高く、前記固体高分子電解質膜と前記触媒拡散層とを接合する際の温度を前記固体高分子電解質膜の材料のガラス転移温度と前記イオノマーのガラス転移温度間の値とすることを特徴とする。
この固体高分子型燃料電池の製造方法によれば、固体高分子電解質膜と触媒拡散層とを接合する際の温度を固体高分子電解質膜の材料のガラス転移温度とイオノマーのガラス転移温度間の値とするので、イオノマーの形態が維持しつつ両者を接合できる。このため、発電時に安定した反応ガス供給を三相界面に対して行うことができる。
The method for producing a polymer electrolyte fuel cell according to the present invention is a method for producing a polymer electrolyte fuel cell comprising a solid polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer. It is a hydrogen ion conductive polymer of a chemical species different from the polymer constituting the molecular electrolyte membrane, and the glass transition temperature of the ionomer is higher than the glass transition temperature of the polymer constituting the solid polymer electrolyte membrane, The temperature at the time of joining the solid polymer electrolyte membrane and the catalyst diffusion layer is a value between the glass transition temperature of the material of the solid polymer electrolyte membrane and the glass transition temperature of the ionomer.
According to this method for producing a solid polymer fuel cell, the temperature at which the solid polymer electrolyte membrane and the catalyst diffusion layer are joined is set between the glass transition temperature of the material of the solid polymer electrolyte membrane and the glass transition temperature of the ionomer. Therefore, both can be joined while maintaining the ionomer form. For this reason, the reactive gas supply stable at the time of electric power generation can be performed with respect to a three-phase interface.
本発明の固体高分子型燃料電池によれば、イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高いので、イオノマーの形態が維持され、発電時に安定した反応ガス供給を三相界面に対して行うことができる。 According to the polymer electrolyte fuel cell of the present invention, since the glass transition temperature of the ionomer is higher than the glass transition temperature of the polymer constituting the solid polymer electrolyte membrane, the ionomer form is maintained and stable during power generation. The reaction gas supply can be made to the three-phase interface.
本発明の固体高分子型燃料電池の製造方法によれば、固体高分子電解質膜と触媒拡散層とを接合する際の温度を固体高分子電解質膜の材料のガラス転移温度とイオノマーのガラス転移温度間の値とするので、イオノマーの形態が維持しつつ両者を接合できる。このため、発電時に安定した反応ガス供給を三相界面に対して行うことができる。 According to the method for producing a solid polymer fuel cell of the present invention, the temperature at the time of joining the solid polymer electrolyte membrane and the catalyst diffusion layer is set to the glass transition temperature of the material of the solid polymer electrolyte membrane and the glass transition temperature of the ionomer. Since the value is between, both can be joined while maintaining the form of the ionomer. For this reason, the reactive gas supply stable at the time of electric power generation can be performed with respect to a three-phase interface.
以下、図1を参照して、本発明による固体高分子型燃料電池の一実施形態について説明する。 Hereinafter, an embodiment of a polymer electrolyte fuel cell according to the present invention will be described with reference to FIG.
本発明は、触媒中のイオノマーとして燃料電池の発電時温度よりも高いガラス転移温度を有する水素イオン導電性高分子を用いることにより、発電中におけるイオノマーの一体化相互作用を抑制できるという知見に基づくものである。上記の条件を満たしていれば、触媒中のイオノマーは、反応ガスを十分に透過できてガス移動を阻害しない粒子塊状(凝集体)、または、最小限の一体化により形成される、イオノマーがほぼ単層に配列された構造からなるイオノマーの一体層が維持可能となる。加えて、燃料電池の「発電→停止」操作を繰り返しても、イオノマーの一体層形成が促進されることはない。 The present invention is based on the finding that by using a hydrogen ion conductive polymer having a glass transition temperature higher than the power generation temperature of the fuel cell as the ionomer in the catalyst, the integrated interaction of the ionomer during power generation can be suppressed. Is. If the above-mentioned conditions are satisfied, the ionomer in the catalyst can be formed as a mass of particles (aggregate) that can sufficiently permeate the reaction gas and does not inhibit gas movement, or formed by minimal integration. A monolayer of ionomers having a structure arranged in a single layer can be maintained. In addition, even if the “power generation → stop” operation of the fuel cell is repeated, the formation of the ionomer integral layer is not promoted.
図1(a)は、本実施形態の固体高分子型燃料電池に用いられる触媒電極の構造例を示す図である。 FIG. 1A is a view showing a structure example of a catalyst electrode used in the polymer electrolyte fuel cell of the present embodiment.
図1(a)に示すように、この触媒電極では、白金粒子1を多孔質カーボンからなるカーボン担体2に担持させた白金担持カーボン触媒の表面にイオノマー粒子3を被覆している。
As shown in FIG. 1A, in this catalyst electrode, ionomer particles 3 are coated on the surface of a platinum-supported carbon catalyst in which
このイオノマーのガラス転移温度は、発電温度よりも高い値を持つ。このため発電時においても、図1(a)に示すように、イオノマー粒子3はガス移動を阻害しない粒子塊状(凝集体)を維持し、あるいは、イオノマー粒子3どうしの最小限の一体化により形成されるイオノマーの一体層の形態をとる。このイオノマーの一体層は、イオノマー粒子3がほぼ単層に配列された構造(図1(a))である。なお、図1(b)は、イオノマーのガラス転移温度が発電温度以下の場合を示しており、この場合には、発電時の温度上昇によりイオノマー粒子3が溶融して一体層3Aを形成し、ガス移動が阻害される。
The glass transition temperature of this ionomer has a value higher than the power generation temperature. For this reason, even during power generation, as shown in FIG. 1A, the ionomer particles 3 maintain a particle mass (aggregate) that does not inhibit gas movement, or are formed by minimal integration of the ionomer particles 3. It takes the form of an integral layer of ionomer. This monolayer of ionomer has a structure in which ionomer particles 3 are arranged in a substantially single layer (FIG. 1A). FIG. 1B shows a case where the glass transition temperature of the ionomer is equal to or lower than the power generation temperature. In this case, the ionomer particles 3 are melted by the temperature rise during power generation to form the
このように、本発明による燃料電池では、イオノマーの形態を維持することで、反応ガスのガス拡散を阻害しない三相界面を有する白金担持カーボン触媒を得ることができる。その結果、発電時において触媒性能を低下させることなく本来有する触媒活性を維持させることができ、高性能の燃料電池を獲得できる。 Thus, in the fuel cell according to the present invention, a platinum-supported carbon catalyst having a three-phase interface that does not inhibit the gas diffusion of the reaction gas can be obtained by maintaining the ionomer form. As a result, the inherent catalytic activity can be maintained without reducing the catalyst performance during power generation, and a high-performance fuel cell can be obtained.
イオノマー粒子3のイオノマー材料としては、電解質膜として使用するナフィオン等のパーフルオロ系プロトン伝導性ポリマーによりとは異なっており、そのガラス転移温度が燃料電池の発電温度よりも高い水素イオン導電性高分子であれば、任意のものを使用できる。ただし、そのガラス転移温度が発電温度よりも5℃以上高いことが望ましい。また、そのガラス転移温度が100℃以上の水素イオン導電性高分子であれば、さらに好適である。 The ionomer material of the ionomer particle 3 is different from that of a perfluoro proton conductive polymer such as Nafion used as an electrolyte membrane, and has a glass transition temperature higher than the power generation temperature of the fuel cell. Any can be used. However, it is desirable that the glass transition temperature is 5 ° C. higher than the power generation temperature. Further, a hydrogen ion conductive polymer having a glass transition temperature of 100 ° C. or higher is more preferable.
イオノマー粒子3の材料として、とくに好ましくは、ポリエーテルエーテルケトン(PEEK)スルホン化物、ポリエーテルスルホン(PES)スルホン化物、ポリエーテルイミド(PEI)スルホン化物、ポリイミド(PI)スルホン化物、ポニフェニレンオキシド(PPO)スルホン化物、ポリフェニレンサルファイド(PPS)スルホン化物、ポリスルホン(PSF)スルホン化物などの芳香族炭化水素系高分子スルホン化物を用いることができる。 As the material of the ionomer particle 3, particularly preferable are polyetheretherketone (PEEK) sulfonated product, polyethersulfone (PES) sulfonated product, polyetherimide (PEI) sulfonated product, polyimide (PI) sulfonated product, poniphenylene oxide ( Aromatic hydrocarbon polymer sulfonates such as PPO) sulfonate, polyphenylene sulfide (PPS) sulfonate, and polysulfone (PSF) sulfonate can be used.
また、イオノマー粒子3の材料として、スルホン化ポリサルホン、炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーからなる共重合体とスルホン酸基を有する芳香族系炭化水素からなるスルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体、スルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE-g-PSt)、スチレン−(エチレン−ブチレン)−スチレンスルホン化物、フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体、陽イオン交換基導入型スチレン−ジビニルベンゼン共重合体、陰イオン交換基導入型スチレン−ジビニルベンゼン共重合体、ポリオレフィン系高分子、末端スルホン酸基を有するハイパーブランチポリマー(HBPES)と直鎖芳香族高分子(PEEES)との共重合体、その他の水素イオン導電性を有する炭化水素系高分子のいずれかを使用できる。 As the material of the ionomer particle 3, sulfonated polysulfone, a copolymer composed of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a sulfonic acid type polystyrene-graft-ethylene composed of an aromatic hydrocarbon having a sulfonic acid group are used. -Tetrafluoroethylene copolymer, sulfonic acid type polystyrene-Graft-Ethylene-tetrafluoroethylene copolymer (ETFE-g-PSt), Styrene- (ethylene-butylene)-Styrene sulfonated products, fluorinated vinyl monomers and hydrocarbons Copolymers with vinyl monomers, cation exchange group-introduced styrene-divinylbenzene copolymers, anion-exchange group-introduced styrene-divinylbenzene copolymers, polyolefin polymers, hyperbranches having terminal sulfonic acid groups Polymer (HBPES) and linear fragrance Any of a copolymer with a group polymer (PEEEES) and other hydrocarbon polymers having hydrogen ion conductivity can be used.
次に、上記触媒電極を含む膜電極接合体(MEA)の製造方法について説明する。 Next, the manufacturing method of the membrane electrode assembly (MEA) containing the said catalyst electrode is demonstrated.
膜電極接合体は、2枚の触媒拡散層の間に電解質膜を挟み込んだ後に、ホットプレスにて焼成して作製する。ホットプレスの温度は電解質膜のガラス転移温度以上とし、電解質膜表面の流動化を促して膜電極接合体を形成させる。従来、触媒拡散層のイオノマーと電解質膜はともにナフィオン等の同一材質であったため、ホットプレスにより膜表面が流動化するとともに、イオノマー粒子にも粒子間の一体化相互作用が働き、結果として図1(b)に示したような、反応ガスを透過し難いイオノマーの一体層3Aが形成されてしまう。
The membrane / electrode assembly is produced by sandwiching an electrolyte membrane between two catalyst diffusion layers and then firing it with a hot press. The temperature of the hot press is set to be equal to or higher than the glass transition temperature of the electrolyte membrane, and the membrane electrode assembly is formed by promoting fluidization of the electrolyte membrane surface. Conventionally, both the ionomer and the electrolyte membrane of the catalyst diffusion layer are made of the same material such as Nafion, so that the membrane surface is fluidized by hot pressing, and an integrated interaction between the particles acts on the ionomer particles. As shown in (b), an ionomer
これに対し、本実施形態の燃料電池では、電解質膜の材料とは異なるイオノマーを触媒拡散層に使用しているので、上記の問題を解決できる。 On the other hand, in the fuel cell of this embodiment, since the ionomer different from the material of the electrolyte membrane is used for the catalyst diffusion layer, the above problem can be solved.
イオノマー裁量として電解質膜の材料のガラス転移温度(α)よりも高いガラス転移温度(β)である水素イオン導電性高分子を用い、かつ、ホットプレスの設定温度(γ)を電解質膜の材料のガラス転移温度(α)とイオノマーのガラス転移温度(β)間の値とする。すなわち、
α≦γ<β
とした場合、ホットプレスで膜表面の流動化を促して膜電極接合体を形成させつつ、イオノマー粒子間の一体化相互作用を無くす、あるいは極度の抑制することができる。この結果、イオノマーは反応ガスを十分に透過できてガス移動を阻害しない粒子塊状(凝集体)、または最小限の一体化により形成されるイオノマーの一体層(ほぼ単層に配列された構造)の形態となる。
The ionomer discretion uses a hydrogen ion conductive polymer whose glass transition temperature (β) is higher than the glass transition temperature (α) of the electrolyte membrane material, and the hot press set temperature (γ) The value is between the glass transition temperature (α) and the glass transition temperature (β) of the ionomer. That is,
α ≦ γ <β
In such a case, the fluid interaction on the surface of the membrane is promoted by hot pressing to form a membrane electrode assembly, and the integrated interaction between the ionomer particles can be eliminated or extremely suppressed. As a result, the ionomer can sufficiently permeate the reaction gas and has a particle mass (aggregate) that does not hinder gas movement, or an ionomer integrated layer (structure arranged in a substantially single layer) formed by minimal integration. It becomes a form.
膜電極接合体の具体的な作製手順として、例えば、特開2005−5171号公報に開示されたものがある。 As a specific production procedure of the membrane electrode assembly, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2005-5171.
この手順では、触媒拡散層を含むガス拡散電極を作製した後に、2枚の触媒拡散層の間に電解質膜を挟み込んで、ホットプレスで焼成する。プレス時の温度は電解質膜の材質のガラス転移温度以上とし、膜表面の流動化を促して膜電極接合体を形成させる。電解質膜がナフィオン膜であれば、ガラス転移温度は概ね60〜90℃の範囲内であるので、ホットプレス温度は100〜150℃程度が一般的である。従来のガス拡散電極を用いる場合に、従来の条件でホットプレス形成を行った場合、加温時には電解質膜の表面流動化が起こるとともに、ナフィオン等、触媒拡散層のイオノマー粒子間に一体化相互作用が働き、加温前は粒子凝集状であったイオノマー相では、イオノマーの一体層形成が促進される(図1(b))。このため触媒表面にイオノマーの一体層が被覆する形態となり、図1(a)に示すような、一体相互作用を経ないイオノマーの一次凝集体やイオノマーがほぼ単層に配列した構造を持つ触媒と比較して、反応ガスが触媒表面へ拡散移動する際にイオノマー層が拡散移動を阻害する度合い(ガスの拡散律速)が大きくなる。このような触媒を使用した燃料電池セルでは、触媒本来の性能を引き出すことができず、高性能かつ効率的な発電は期待できない。 In this procedure, after producing a gas diffusion electrode including a catalyst diffusion layer, an electrolyte membrane is sandwiched between the two catalyst diffusion layers and fired by hot pressing. The temperature during pressing is equal to or higher than the glass transition temperature of the material of the electrolyte membrane, and fluidization of the membrane surface is promoted to form a membrane electrode assembly. If the electrolyte membrane is a Nafion membrane, the glass transition temperature is generally in the range of 60 to 90 ° C, so the hot press temperature is generally about 100 to 150 ° C. When a conventional gas diffusion electrode is used and hot press formation is performed under conventional conditions, surface fluidization of the electrolyte membrane occurs during heating, and there is an integral interaction between ionomer particles in the catalyst diffusion layer such as Nafion. In the ionomer phase, which is in the form of particle aggregation before heating, the formation of an ionomer integral layer is promoted (FIG. 1B). For this reason, the catalyst surface has a form in which an ionomer integral layer is coated, and a catalyst having a structure in which primary aggregates of ionomers and ionomers that do not undergo integral interaction are arranged in a single layer as shown in FIG. In comparison, when the reaction gas diffuses and moves to the catalyst surface, the degree of inhibition of the diffusion movement of the ionomer layer (gas diffusion rate limiting) increases. In a fuel cell using such a catalyst, the original performance of the catalyst cannot be extracted, and high-performance and efficient power generation cannot be expected.
しかし、上記のように、ガラス転移温度が焼成温度(γ)よりも高い値を有する水素イオン導電性高分子をイオノマー成分として用いれば、電極膜接合体の作製工程中でのイオノマーの一体化相互作用が起こらない。よって、イオノマーは反応ガスを十分に透過できてガス移動を阻害しない粒子塊状(凝集体)または最小限の一体化により形成されるイオノマーの一体層(ほぼ単層に配列された構造)が形成されて維持される(図1(a))。このため、ホットプレスの設定温度(γ)を電解質膜の材料のガラス転移温度(α)とイオノマーのガラス転移温度(β)間の値とすることで、触媒本来の活性を引き出すことが可能となる。 However, as described above, if a hydrogen ion conductive polymer having a glass transition temperature higher than the firing temperature (γ) is used as the ionomer component, the ionomer can be integrated with each other during the production process of the electrode membrane assembly. There is no effect. Therefore, the ionomer can sufficiently permeate the reaction gas and form a lump of particles (aggregate) that does not impede gas movement or an ionomer integrated layer (structure arranged in a single layer) formed by minimal integration. (FIG. 1A). Therefore, it is possible to bring out the original activity of the catalyst by setting the hot press set temperature (γ) between the glass transition temperature (α) of the electrolyte membrane material and the glass transition temperature (β) of the ionomer. Become.
実用上、電極膜接合体を作製する方法において、電解質膜の材質のガラス転移温度(α)とイオノマーのガラス転移温度(β)が、
α≦β−5
であり、かつホットプレス成形時の温度(γ)を、
α≦γ<β
とすれば、より好適な電極膜接合体を作製することが可能となる。
In practice, in the method of producing an electrode membrane assembly, the glass transition temperature (α) of the material of the electrolyte membrane and the glass transition temperature (β) of the ionomer are:
α ≦ β-5
And the temperature (γ) at the time of hot press molding,
α ≦ γ <β
Then, it becomes possible to produce a more suitable electrode membrane assembly.
以上説明したように、本発明の固体高分子型燃料電池によれば、イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高いので、イオノマーの形態が維持され、発電時に安定した反応ガス供給を三相界面に対して行うことができる。また、本発明の固体高分子型燃料電池の製造方法によれば、固体高分子電解質膜と触媒拡散層とを接合する際の温度を固体高分子電解質膜の材料のガラス転移温度とイオノマーのガラス転移温度間の値とするので、イオノマーの形態が維持しつつ両者を接合できる。このため、発電時に安定した反応ガス供給を三相界面に対して行うことができる。 As described above, according to the polymer electrolyte fuel cell of the present invention, since the glass transition temperature of the ionomer is higher than the glass transition temperature of the polymer constituting the solid polymer electrolyte membrane, the form of the ionomer is maintained. Thus, a stable reaction gas can be supplied to the three-phase interface during power generation. Further, according to the method for producing a polymer electrolyte fuel cell of the present invention, the temperature at the time of joining the polymer electrolyte membrane and the catalyst diffusion layer is set to the glass transition temperature of the material of the polymer electrolyte membrane and the ionomer glass. Since the value is between the transition temperatures, both can be joined while maintaining the ionomer form. For this reason, the reactive gas supply stable at the time of electric power generation can be performed with respect to a three-phase interface.
本発明の適用範囲は上記実施形態に限定されることはない。本発明は、固体高分子電解質膜と、イオノマーを含有する触媒拡散層と、を備える固体高分子型燃料電池およびその製造方法に対し、広く適用することができる。 The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a polymer electrolyte fuel cell including a polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer and a method for producing the same.
1 白金粒子
2 カーボン担体
3 イオノマー粒子(イオノマー)
1
Claims (14)
前記イオノマーが、前記固体高分子電解質膜を構成する高分子とは異なる化学種の水素イオン導電性高分子であり、前記イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高いことを特徴とする固体高分子型燃料電池。 In a polymer electrolyte fuel cell comprising a polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer,
The ionomer is a hydrogen ion conductive polymer of a chemical species different from the polymer constituting the solid polymer electrolyte membrane, and the glass transition temperature of the ionomer is a polymer glass constituting the solid polymer electrolyte membrane. A polymer electrolyte fuel cell characterized by being higher than a transition temperature.
前記イオノマーが、前記固体高分子電解質膜を構成する高分子とは異なる化学種の水素イオン導電性高分子であり、前記イオノマーのガラス転移温度が前記固体高分子電解質膜を構成する高分子のガラス転移温度よりも高く、
前記固体高分子電解質膜と前記触媒拡散層とを接合する際の温度を前記固体高分子電解質膜の材料のガラス転移温度と前記イオノマーのガラス転移温度間の値とすることを特徴とする固体高分子型燃料電池の製造方法。 In a method for producing a polymer electrolyte fuel cell comprising a polymer electrolyte membrane and a catalyst diffusion layer containing an ionomer,
The ionomer is a hydrogen ion conductive polymer of a chemical species different from the polymer constituting the solid polymer electrolyte membrane, and the glass transition temperature of the ionomer is a polymer glass constituting the solid polymer electrolyte membrane. Higher than the transition temperature,
The temperature at the time of joining the solid polymer electrolyte membrane and the catalyst diffusion layer is set to a value between the glass transition temperature of the material of the solid polymer electrolyte membrane and the glass transition temperature of the ionomer. A method for producing a molecular fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007280545A JP2009110768A (en) | 2007-10-29 | 2007-10-29 | Polymer electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007280545A JP2009110768A (en) | 2007-10-29 | 2007-10-29 | Polymer electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009110768A true JP2009110768A (en) | 2009-05-21 |
Family
ID=40779040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007280545A Pending JP2009110768A (en) | 2007-10-29 | 2007-10-29 | Polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009110768A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129426A (en) * | 2009-12-18 | 2011-06-30 | Toyota Motor Corp | Method of manufacturing membrane electrode assembly |
JP2012089378A (en) * | 2010-10-20 | 2012-05-10 | Toyota Motor Corp | Manufacturing method for fuel cell |
JP2017073356A (en) * | 2015-10-09 | 2017-04-13 | トヨタ自動車株式会社 | Catalyst layer for fuel cell and fuel cell |
-
2007
- 2007-10-29 JP JP2007280545A patent/JP2009110768A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129426A (en) * | 2009-12-18 | 2011-06-30 | Toyota Motor Corp | Method of manufacturing membrane electrode assembly |
JP2012089378A (en) * | 2010-10-20 | 2012-05-10 | Toyota Motor Corp | Manufacturing method for fuel cell |
DE102011054574A1 (en) | 2010-10-20 | 2012-05-10 | Toyota Jidosha Kabushiki Kaisha | Method for producing a fuel cell |
US9496560B2 (en) | 2010-10-20 | 2016-11-15 | Toyota Jidosha Kabushiki Kaisha | Fuel cell production method |
DE102011054574B4 (en) * | 2010-10-20 | 2017-11-23 | Toyota Jidosha Kabushiki Kaisha | Method for producing a fuel cell |
JP2017073356A (en) * | 2015-10-09 | 2017-04-13 | トヨタ自動車株式会社 | Catalyst layer for fuel cell and fuel cell |
US10333153B2 (en) | 2015-10-09 | 2019-06-25 | Toyota Jidosha Kabushiki Kaisha | Fuel cell catalyst layer, and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use | |
US8039414B2 (en) | Method for preparing metal catalyst and electrode | |
US9537156B2 (en) | Method for making membrane-electrode assembly for fuel cell and method for making fuel cell system comprising the same | |
KR100578970B1 (en) | Electrode for fuel cell and fuel cell comprising same | |
KR20170069783A (en) | Catalyst slurry composition for polymer electrolyte fuel cell, membrane electrode assembly, and manufacturing methode of membrane electrode assembly | |
JP2006318755A (en) | Film-electrode assembly for solid polymer fuel cell | |
JP2009110768A (en) | Polymer electrolyte fuel cell | |
KR101312971B1 (en) | Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell | |
KR20090132214A (en) | Membrane and electrode assembly for fuel cell, manufacturing method, and fuel cell using the same | |
KR101341956B1 (en) | Membrane electrode assembly for fuel cells having improved efficiency and durability and fuel cell comprising the same | |
KR20090009643A (en) | An electrode for proton exchange membrane fuel cell comprising double catalyst layer and method for preparation of the same | |
US10396383B2 (en) | Membrane electrode assembly and fuel cell comprising the same | |
US11271234B2 (en) | Fuel cell with improved durability | |
KR101098676B1 (en) | Method of preparing the electrode for fuel cell and Membrane electrode assembly and Fuel cell comprising the electrode made by the same | |
KR100612235B1 (en) | A membrane for fuel cell and a fuel cell comprising the same | |
KR20170112542A (en) | Membrane electrode assembly for polymer electolyte fuel cell and manufacturing method thereof | |
KR20160025110A (en) | Circular Polymer Electrolyte Membrane Fuel Cell with Centre Forced Cooling | |
KR101181853B1 (en) | Electrode and membrane/electrode assembly for fuel cell and fuel cell comprising same | |
KR101125651B1 (en) | A membrane/electrode assembly for fuel cell and a fuel cell comprising the same | |
US20230099815A1 (en) | Fuel cells with improved membrane life | |
JP2009295428A (en) | Manufacturing method of membrane electrode assembly, and manufacturing method of fuel cell | |
Kwon et al. | Polymer electrolyte membrane and methanol fuel cell | |
KR20170004747A (en) | Membrane electrode assembly, fuel cell comprising the membrane electrode assembly and battery module having the fuel cell | |
Rosli et al. | Study of the Variation of Catalyst Loading in Cathode for SPEEK/CSMM Membrane in Direct Methanol Fuel Cell (DMFC) | |
JP2011156511A (en) | Electrode catalyst, membrane electrode assembly, and fuel battery cell |